treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / display / intel_hdcp.c
blob0fdbd39f664148021292af6d0888792811f4015d
1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
15 #include <drm/drm_hdcp.h>
16 #include <drm/i915_component.h>
18 #include "i915_reg.h"
19 #include "intel_display_power.h"
20 #include "intel_display_types.h"
21 #include "intel_hdcp.h"
22 #include "intel_sideband.h"
23 #include "intel_connector.h"
25 #define KEY_LOAD_TRIES 5
26 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS 50
27 #define HDCP2_LC_RETRY_CNT 3
29 static
30 bool intel_hdcp_is_ksv_valid(u8 *ksv)
32 int i, ones = 0;
33 /* KSV has 20 1's and 20 0's */
34 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
35 ones += hweight8(ksv[i]);
36 if (ones != 20)
37 return false;
39 return true;
42 static
43 int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
44 const struct intel_hdcp_shim *shim, u8 *bksv)
46 int ret, i, tries = 2;
48 /* HDCP spec states that we must retry the bksv if it is invalid */
49 for (i = 0; i < tries; i++) {
50 ret = shim->read_bksv(intel_dig_port, bksv);
51 if (ret)
52 return ret;
53 if (intel_hdcp_is_ksv_valid(bksv))
54 break;
56 if (i == tries) {
57 DRM_DEBUG_KMS("Bksv is invalid\n");
58 return -ENODEV;
61 return 0;
64 /* Is HDCP1.4 capable on Platform and Sink */
65 bool intel_hdcp_capable(struct intel_connector *connector)
67 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
68 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
69 bool capable = false;
70 u8 bksv[5];
72 if (!shim)
73 return capable;
75 if (shim->hdcp_capable) {
76 shim->hdcp_capable(intel_dig_port, &capable);
77 } else {
78 if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
79 capable = true;
82 return capable;
85 /* Is HDCP2.2 capable on Platform and Sink */
86 bool intel_hdcp2_capable(struct intel_connector *connector)
88 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
89 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
90 struct intel_hdcp *hdcp = &connector->hdcp;
91 bool capable = false;
93 /* I915 support for HDCP2.2 */
94 if (!hdcp->hdcp2_supported)
95 return false;
97 /* MEI interface is solid */
98 mutex_lock(&dev_priv->hdcp_comp_mutex);
99 if (!dev_priv->hdcp_comp_added || !dev_priv->hdcp_master) {
100 mutex_unlock(&dev_priv->hdcp_comp_mutex);
101 return false;
103 mutex_unlock(&dev_priv->hdcp_comp_mutex);
105 /* Sink's capability for HDCP2.2 */
106 hdcp->shim->hdcp_2_2_capable(intel_dig_port, &capable);
108 return capable;
111 static inline
112 bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
113 enum transcoder cpu_transcoder, enum port port)
115 return I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
116 HDCP_STATUS_ENC;
119 static inline
120 bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
121 enum transcoder cpu_transcoder, enum port port)
123 return I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
124 LINK_ENCRYPTION_STATUS;
127 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
128 const struct intel_hdcp_shim *shim)
130 int ret, read_ret;
131 bool ksv_ready;
133 /* Poll for ksv list ready (spec says max time allowed is 5s) */
134 ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
135 &ksv_ready),
136 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
137 100 * 1000);
138 if (ret)
139 return ret;
140 if (read_ret)
141 return read_ret;
142 if (!ksv_ready)
143 return -ETIMEDOUT;
145 return 0;
148 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
150 struct i915_power_domains *power_domains = &dev_priv->power_domains;
151 struct i915_power_well *power_well;
152 enum i915_power_well_id id;
153 bool enabled = false;
156 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
157 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
159 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
160 id = HSW_DISP_PW_GLOBAL;
161 else
162 id = SKL_DISP_PW_1;
164 mutex_lock(&power_domains->lock);
166 /* PG1 (power well #1) needs to be enabled */
167 for_each_power_well(dev_priv, power_well) {
168 if (power_well->desc->id == id) {
169 enabled = power_well->desc->ops->is_enabled(dev_priv,
170 power_well);
171 break;
174 mutex_unlock(&power_domains->lock);
177 * Another req for hdcp key loadability is enabled state of pll for
178 * cdclk. Without active crtc we wont land here. So we are assuming that
179 * cdclk is already on.
182 return enabled;
185 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
187 I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
188 I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
189 HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
192 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
194 int ret;
195 u32 val;
197 val = I915_READ(HDCP_KEY_STATUS);
198 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
199 return 0;
202 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
203 * out of reset. So if Key is not already loaded, its an error state.
205 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
206 if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
207 return -ENXIO;
210 * Initiate loading the HDCP key from fuses.
212 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
213 * platforms except BXT and GLK, differ in the key load trigger process
214 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
216 if (IS_GEN9_BC(dev_priv)) {
217 ret = sandybridge_pcode_write(dev_priv,
218 SKL_PCODE_LOAD_HDCP_KEYS, 1);
219 if (ret) {
220 DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
221 ret);
222 return ret;
224 } else {
225 I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
228 /* Wait for the keys to load (500us) */
229 ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
230 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
231 10, 1, &val);
232 if (ret)
233 return ret;
234 else if (!(val & HDCP_KEY_LOAD_STATUS))
235 return -ENXIO;
237 /* Send Aksv over to PCH display for use in authentication */
238 I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
240 return 0;
243 /* Returns updated SHA-1 index */
244 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
246 I915_WRITE(HDCP_SHA_TEXT, sha_text);
247 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
248 DRM_ERROR("Timed out waiting for SHA1 ready\n");
249 return -ETIMEDOUT;
251 return 0;
254 static
255 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
256 enum transcoder cpu_transcoder, enum port port)
258 if (INTEL_GEN(dev_priv) >= 12) {
259 switch (cpu_transcoder) {
260 case TRANSCODER_A:
261 return HDCP_TRANSA_REP_PRESENT |
262 HDCP_TRANSA_SHA1_M0;
263 case TRANSCODER_B:
264 return HDCP_TRANSB_REP_PRESENT |
265 HDCP_TRANSB_SHA1_M0;
266 case TRANSCODER_C:
267 return HDCP_TRANSC_REP_PRESENT |
268 HDCP_TRANSC_SHA1_M0;
269 case TRANSCODER_D:
270 return HDCP_TRANSD_REP_PRESENT |
271 HDCP_TRANSD_SHA1_M0;
272 default:
273 DRM_ERROR("Unknown transcoder %d\n", cpu_transcoder);
274 return -EINVAL;
278 switch (port) {
279 case PORT_A:
280 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
281 case PORT_B:
282 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
283 case PORT_C:
284 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
285 case PORT_D:
286 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
287 case PORT_E:
288 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
289 default:
290 DRM_ERROR("Unknown port %d\n", port);
291 return -EINVAL;
295 static
296 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
297 const struct intel_hdcp_shim *shim,
298 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
300 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
301 struct drm_i915_private *dev_priv;
302 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
303 enum port port = intel_dig_port->base.port;
304 u32 vprime, sha_text, sha_leftovers, rep_ctl;
305 int ret, i, j, sha_idx;
307 dev_priv = intel_dig_port->base.base.dev->dev_private;
309 /* Process V' values from the receiver */
310 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
311 ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
312 if (ret)
313 return ret;
314 I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
318 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
319 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
320 * stream is written via the HDCP_SHA_TEXT register in 32-bit
321 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
322 * index will keep track of our progress through the 64 bytes as well as
323 * helping us work the 40-bit KSVs through our 32-bit register.
325 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
327 sha_idx = 0;
328 sha_text = 0;
329 sha_leftovers = 0;
330 rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
331 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
332 for (i = 0; i < num_downstream; i++) {
333 unsigned int sha_empty;
334 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
336 /* Fill up the empty slots in sha_text and write it out */
337 sha_empty = sizeof(sha_text) - sha_leftovers;
338 for (j = 0; j < sha_empty; j++)
339 sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
341 ret = intel_write_sha_text(dev_priv, sha_text);
342 if (ret < 0)
343 return ret;
345 /* Programming guide writes this every 64 bytes */
346 sha_idx += sizeof(sha_text);
347 if (!(sha_idx % 64))
348 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
350 /* Store the leftover bytes from the ksv in sha_text */
351 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
352 sha_text = 0;
353 for (j = 0; j < sha_leftovers; j++)
354 sha_text |= ksv[sha_empty + j] <<
355 ((sizeof(sha_text) - j - 1) * 8);
358 * If we still have room in sha_text for more data, continue.
359 * Otherwise, write it out immediately.
361 if (sizeof(sha_text) > sha_leftovers)
362 continue;
364 ret = intel_write_sha_text(dev_priv, sha_text);
365 if (ret < 0)
366 return ret;
367 sha_leftovers = 0;
368 sha_text = 0;
369 sha_idx += sizeof(sha_text);
373 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
374 * bytes are leftover from the last ksv, we might be able to fit them
375 * all in sha_text (first 2 cases), or we might need to split them up
376 * into 2 writes (last 2 cases).
378 if (sha_leftovers == 0) {
379 /* Write 16 bits of text, 16 bits of M0 */
380 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
381 ret = intel_write_sha_text(dev_priv,
382 bstatus[0] << 8 | bstatus[1]);
383 if (ret < 0)
384 return ret;
385 sha_idx += sizeof(sha_text);
387 /* Write 32 bits of M0 */
388 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
389 ret = intel_write_sha_text(dev_priv, 0);
390 if (ret < 0)
391 return ret;
392 sha_idx += sizeof(sha_text);
394 /* Write 16 bits of M0 */
395 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
396 ret = intel_write_sha_text(dev_priv, 0);
397 if (ret < 0)
398 return ret;
399 sha_idx += sizeof(sha_text);
401 } else if (sha_leftovers == 1) {
402 /* Write 24 bits of text, 8 bits of M0 */
403 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
404 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
405 /* Only 24-bits of data, must be in the LSB */
406 sha_text = (sha_text & 0xffffff00) >> 8;
407 ret = intel_write_sha_text(dev_priv, sha_text);
408 if (ret < 0)
409 return ret;
410 sha_idx += sizeof(sha_text);
412 /* Write 32 bits of M0 */
413 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
414 ret = intel_write_sha_text(dev_priv, 0);
415 if (ret < 0)
416 return ret;
417 sha_idx += sizeof(sha_text);
419 /* Write 24 bits of M0 */
420 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
421 ret = intel_write_sha_text(dev_priv, 0);
422 if (ret < 0)
423 return ret;
424 sha_idx += sizeof(sha_text);
426 } else if (sha_leftovers == 2) {
427 /* Write 32 bits of text */
428 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
429 sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
430 ret = intel_write_sha_text(dev_priv, sha_text);
431 if (ret < 0)
432 return ret;
433 sha_idx += sizeof(sha_text);
435 /* Write 64 bits of M0 */
436 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
437 for (i = 0; i < 2; i++) {
438 ret = intel_write_sha_text(dev_priv, 0);
439 if (ret < 0)
440 return ret;
441 sha_idx += sizeof(sha_text);
443 } else if (sha_leftovers == 3) {
444 /* Write 32 bits of text */
445 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
446 sha_text |= bstatus[0] << 24;
447 ret = intel_write_sha_text(dev_priv, sha_text);
448 if (ret < 0)
449 return ret;
450 sha_idx += sizeof(sha_text);
452 /* Write 8 bits of text, 24 bits of M0 */
453 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
454 ret = intel_write_sha_text(dev_priv, bstatus[1]);
455 if (ret < 0)
456 return ret;
457 sha_idx += sizeof(sha_text);
459 /* Write 32 bits of M0 */
460 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
461 ret = intel_write_sha_text(dev_priv, 0);
462 if (ret < 0)
463 return ret;
464 sha_idx += sizeof(sha_text);
466 /* Write 8 bits of M0 */
467 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
468 ret = intel_write_sha_text(dev_priv, 0);
469 if (ret < 0)
470 return ret;
471 sha_idx += sizeof(sha_text);
472 } else {
473 DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
474 sha_leftovers);
475 return -EINVAL;
478 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
479 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
480 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
481 ret = intel_write_sha_text(dev_priv, 0);
482 if (ret < 0)
483 return ret;
484 sha_idx += sizeof(sha_text);
488 * Last write gets the length of the concatenation in bits. That is:
489 * - 5 bytes per device
490 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
492 sha_text = (num_downstream * 5 + 10) * 8;
493 ret = intel_write_sha_text(dev_priv, sha_text);
494 if (ret < 0)
495 return ret;
497 /* Tell the HW we're done with the hash and wait for it to ACK */
498 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
499 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
500 HDCP_SHA1_COMPLETE, 1)) {
501 DRM_ERROR("Timed out waiting for SHA1 complete\n");
502 return -ETIMEDOUT;
504 if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
505 DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
506 return -ENXIO;
509 return 0;
512 /* Implements Part 2 of the HDCP authorization procedure */
513 static
514 int intel_hdcp_auth_downstream(struct intel_connector *connector)
516 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
517 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
518 struct drm_device *dev = connector->base.dev;
519 u8 bstatus[2], num_downstream, *ksv_fifo;
520 int ret, i, tries = 3;
522 ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
523 if (ret) {
524 DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
525 return ret;
528 ret = shim->read_bstatus(intel_dig_port, bstatus);
529 if (ret)
530 return ret;
532 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
533 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
534 DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
535 return -EPERM;
539 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
540 * the HDCP encryption. That implies that repeater can't have its own
541 * display. As there is no consumption of encrypted content in the
542 * repeater with 0 downstream devices, we are failing the
543 * authentication.
545 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
546 if (num_downstream == 0) {
547 DRM_DEBUG_KMS("Repeater with zero downstream devices\n");
548 return -EINVAL;
551 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
552 if (!ksv_fifo) {
553 DRM_DEBUG_KMS("Out of mem: ksv_fifo\n");
554 return -ENOMEM;
557 ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
558 if (ret)
559 goto err;
561 if (drm_hdcp_check_ksvs_revoked(dev, ksv_fifo, num_downstream)) {
562 DRM_ERROR("Revoked Ksv(s) in ksv_fifo\n");
563 ret = -EPERM;
564 goto err;
568 * When V prime mismatches, DP Spec mandates re-read of
569 * V prime atleast twice.
571 for (i = 0; i < tries; i++) {
572 ret = intel_hdcp_validate_v_prime(connector, shim,
573 ksv_fifo, num_downstream,
574 bstatus);
575 if (!ret)
576 break;
579 if (i == tries) {
580 DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
581 goto err;
584 DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
585 num_downstream);
586 ret = 0;
587 err:
588 kfree(ksv_fifo);
589 return ret;
592 /* Implements Part 1 of the HDCP authorization procedure */
593 static int intel_hdcp_auth(struct intel_connector *connector)
595 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
596 struct intel_hdcp *hdcp = &connector->hdcp;
597 struct drm_device *dev = connector->base.dev;
598 const struct intel_hdcp_shim *shim = hdcp->shim;
599 struct drm_i915_private *dev_priv;
600 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
601 enum port port;
602 unsigned long r0_prime_gen_start;
603 int ret, i, tries = 2;
604 union {
605 u32 reg[2];
606 u8 shim[DRM_HDCP_AN_LEN];
607 } an;
608 union {
609 u32 reg[2];
610 u8 shim[DRM_HDCP_KSV_LEN];
611 } bksv;
612 union {
613 u32 reg;
614 u8 shim[DRM_HDCP_RI_LEN];
615 } ri;
616 bool repeater_present, hdcp_capable;
618 dev_priv = intel_dig_port->base.base.dev->dev_private;
620 port = intel_dig_port->base.port;
623 * Detects whether the display is HDCP capable. Although we check for
624 * valid Bksv below, the HDCP over DP spec requires that we check
625 * whether the display supports HDCP before we write An. For HDMI
626 * displays, this is not necessary.
628 if (shim->hdcp_capable) {
629 ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
630 if (ret)
631 return ret;
632 if (!hdcp_capable) {
633 DRM_DEBUG_KMS("Panel is not HDCP capable\n");
634 return -EINVAL;
638 /* Initialize An with 2 random values and acquire it */
639 for (i = 0; i < 2; i++)
640 I915_WRITE(HDCP_ANINIT(dev_priv, cpu_transcoder, port),
641 get_random_u32());
642 I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
643 HDCP_CONF_CAPTURE_AN);
645 /* Wait for An to be acquired */
646 if (intel_de_wait_for_set(dev_priv,
647 HDCP_STATUS(dev_priv, cpu_transcoder, port),
648 HDCP_STATUS_AN_READY, 1)) {
649 DRM_ERROR("Timed out waiting for An\n");
650 return -ETIMEDOUT;
653 an.reg[0] = I915_READ(HDCP_ANLO(dev_priv, cpu_transcoder, port));
654 an.reg[1] = I915_READ(HDCP_ANHI(dev_priv, cpu_transcoder, port));
655 ret = shim->write_an_aksv(intel_dig_port, an.shim);
656 if (ret)
657 return ret;
659 r0_prime_gen_start = jiffies;
661 memset(&bksv, 0, sizeof(bksv));
663 ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
664 if (ret < 0)
665 return ret;
667 if (drm_hdcp_check_ksvs_revoked(dev, bksv.shim, 1)) {
668 DRM_ERROR("BKSV is revoked\n");
669 return -EPERM;
672 I915_WRITE(HDCP_BKSVLO(dev_priv, cpu_transcoder, port), bksv.reg[0]);
673 I915_WRITE(HDCP_BKSVHI(dev_priv, cpu_transcoder, port), bksv.reg[1]);
675 ret = shim->repeater_present(intel_dig_port, &repeater_present);
676 if (ret)
677 return ret;
678 if (repeater_present)
679 I915_WRITE(HDCP_REP_CTL,
680 intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
681 port));
683 ret = shim->toggle_signalling(intel_dig_port, true);
684 if (ret)
685 return ret;
687 I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
688 HDCP_CONF_AUTH_AND_ENC);
690 /* Wait for R0 ready */
691 if (wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
692 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
693 DRM_ERROR("Timed out waiting for R0 ready\n");
694 return -ETIMEDOUT;
698 * Wait for R0' to become available. The spec says 100ms from Aksv, but
699 * some monitors can take longer than this. We'll set the timeout at
700 * 300ms just to be sure.
702 * On DP, there's an R0_READY bit available but no such bit
703 * exists on HDMI. Since the upper-bound is the same, we'll just do
704 * the stupid thing instead of polling on one and not the other.
706 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
708 tries = 3;
711 * DP HDCP Spec mandates the two more reattempt to read R0, incase
712 * of R0 mismatch.
714 for (i = 0; i < tries; i++) {
715 ri.reg = 0;
716 ret = shim->read_ri_prime(intel_dig_port, ri.shim);
717 if (ret)
718 return ret;
719 I915_WRITE(HDCP_RPRIME(dev_priv, cpu_transcoder, port), ri.reg);
721 /* Wait for Ri prime match */
722 if (!wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
723 port)) &
724 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
725 break;
728 if (i == tries) {
729 DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
730 I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
731 port)));
732 return -ETIMEDOUT;
735 /* Wait for encryption confirmation */
736 if (intel_de_wait_for_set(dev_priv,
737 HDCP_STATUS(dev_priv, cpu_transcoder, port),
738 HDCP_STATUS_ENC,
739 ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
740 DRM_ERROR("Timed out waiting for encryption\n");
741 return -ETIMEDOUT;
745 * XXX: If we have MST-connected devices, we need to enable encryption
746 * on those as well.
749 if (repeater_present)
750 return intel_hdcp_auth_downstream(connector);
752 DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
753 return 0;
756 static int _intel_hdcp_disable(struct intel_connector *connector)
758 struct intel_hdcp *hdcp = &connector->hdcp;
759 struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
760 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
761 enum port port = intel_dig_port->base.port;
762 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
763 int ret;
765 DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
766 connector->base.name, connector->base.base.id);
768 hdcp->hdcp_encrypted = false;
769 I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
770 if (intel_de_wait_for_clear(dev_priv,
771 HDCP_STATUS(dev_priv, cpu_transcoder, port),
772 ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
773 DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
774 return -ETIMEDOUT;
777 ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
778 if (ret) {
779 DRM_ERROR("Failed to disable HDCP signalling\n");
780 return ret;
783 DRM_DEBUG_KMS("HDCP is disabled\n");
784 return 0;
787 static int _intel_hdcp_enable(struct intel_connector *connector)
789 struct intel_hdcp *hdcp = &connector->hdcp;
790 struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
791 int i, ret, tries = 3;
793 DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
794 connector->base.name, connector->base.base.id);
796 if (!hdcp_key_loadable(dev_priv)) {
797 DRM_ERROR("HDCP key Load is not possible\n");
798 return -ENXIO;
801 for (i = 0; i < KEY_LOAD_TRIES; i++) {
802 ret = intel_hdcp_load_keys(dev_priv);
803 if (!ret)
804 break;
805 intel_hdcp_clear_keys(dev_priv);
807 if (ret) {
808 DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
809 return ret;
812 /* Incase of authentication failures, HDCP spec expects reauth. */
813 for (i = 0; i < tries; i++) {
814 ret = intel_hdcp_auth(connector);
815 if (!ret) {
816 hdcp->hdcp_encrypted = true;
817 return 0;
820 DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
822 /* Ensuring HDCP encryption and signalling are stopped. */
823 _intel_hdcp_disable(connector);
826 DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
827 return ret;
830 static inline
831 struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
833 return container_of(hdcp, struct intel_connector, hdcp);
836 /* Implements Part 3 of the HDCP authorization procedure */
837 static int intel_hdcp_check_link(struct intel_connector *connector)
839 struct intel_hdcp *hdcp = &connector->hdcp;
840 struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
841 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
842 enum port port = intel_dig_port->base.port;
843 enum transcoder cpu_transcoder;
844 int ret = 0;
846 mutex_lock(&hdcp->mutex);
847 cpu_transcoder = hdcp->cpu_transcoder;
849 /* Check_link valid only when HDCP1.4 is enabled */
850 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
851 !hdcp->hdcp_encrypted) {
852 ret = -EINVAL;
853 goto out;
856 if (WARN_ON(!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
857 DRM_ERROR("%s:%d HDCP link stopped encryption,%x\n",
858 connector->base.name, connector->base.base.id,
859 I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
860 port)));
861 ret = -ENXIO;
862 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
863 schedule_work(&hdcp->prop_work);
864 goto out;
867 if (hdcp->shim->check_link(intel_dig_port)) {
868 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
869 hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
870 schedule_work(&hdcp->prop_work);
872 goto out;
875 DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
876 connector->base.name, connector->base.base.id);
878 ret = _intel_hdcp_disable(connector);
879 if (ret) {
880 DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
881 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
882 schedule_work(&hdcp->prop_work);
883 goto out;
886 ret = _intel_hdcp_enable(connector);
887 if (ret) {
888 DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
889 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
890 schedule_work(&hdcp->prop_work);
891 goto out;
894 out:
895 mutex_unlock(&hdcp->mutex);
896 return ret;
899 static void intel_hdcp_prop_work(struct work_struct *work)
901 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
902 prop_work);
903 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
904 struct drm_device *dev = connector->base.dev;
906 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
907 mutex_lock(&hdcp->mutex);
910 * This worker is only used to flip between ENABLED/DESIRED. Either of
911 * those to UNDESIRED is handled by core. If value == UNDESIRED,
912 * we're running just after hdcp has been disabled, so just exit
914 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
915 drm_hdcp_update_content_protection(&connector->base,
916 hdcp->value);
918 mutex_unlock(&hdcp->mutex);
919 drm_modeset_unlock(&dev->mode_config.connection_mutex);
922 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
924 /* PORT E doesn't have HDCP, and PORT F is disabled */
925 return INTEL_INFO(dev_priv)->display.has_hdcp && port < PORT_E;
928 static int
929 hdcp2_prepare_ake_init(struct intel_connector *connector,
930 struct hdcp2_ake_init *ake_data)
932 struct hdcp_port_data *data = &connector->hdcp.port_data;
933 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
934 struct i915_hdcp_comp_master *comp;
935 int ret;
937 mutex_lock(&dev_priv->hdcp_comp_mutex);
938 comp = dev_priv->hdcp_master;
940 if (!comp || !comp->ops) {
941 mutex_unlock(&dev_priv->hdcp_comp_mutex);
942 return -EINVAL;
945 ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
946 if (ret)
947 DRM_DEBUG_KMS("Prepare_ake_init failed. %d\n", ret);
948 mutex_unlock(&dev_priv->hdcp_comp_mutex);
950 return ret;
953 static int
954 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
955 struct hdcp2_ake_send_cert *rx_cert,
956 bool *paired,
957 struct hdcp2_ake_no_stored_km *ek_pub_km,
958 size_t *msg_sz)
960 struct hdcp_port_data *data = &connector->hdcp.port_data;
961 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
962 struct i915_hdcp_comp_master *comp;
963 int ret;
965 mutex_lock(&dev_priv->hdcp_comp_mutex);
966 comp = dev_priv->hdcp_master;
968 if (!comp || !comp->ops) {
969 mutex_unlock(&dev_priv->hdcp_comp_mutex);
970 return -EINVAL;
973 ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
974 rx_cert, paired,
975 ek_pub_km, msg_sz);
976 if (ret < 0)
977 DRM_DEBUG_KMS("Verify rx_cert failed. %d\n", ret);
978 mutex_unlock(&dev_priv->hdcp_comp_mutex);
980 return ret;
983 static int hdcp2_verify_hprime(struct intel_connector *connector,
984 struct hdcp2_ake_send_hprime *rx_hprime)
986 struct hdcp_port_data *data = &connector->hdcp.port_data;
987 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
988 struct i915_hdcp_comp_master *comp;
989 int ret;
991 mutex_lock(&dev_priv->hdcp_comp_mutex);
992 comp = dev_priv->hdcp_master;
994 if (!comp || !comp->ops) {
995 mutex_unlock(&dev_priv->hdcp_comp_mutex);
996 return -EINVAL;
999 ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1000 if (ret < 0)
1001 DRM_DEBUG_KMS("Verify hprime failed. %d\n", ret);
1002 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1004 return ret;
1007 static int
1008 hdcp2_store_pairing_info(struct intel_connector *connector,
1009 struct hdcp2_ake_send_pairing_info *pairing_info)
1011 struct hdcp_port_data *data = &connector->hdcp.port_data;
1012 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1013 struct i915_hdcp_comp_master *comp;
1014 int ret;
1016 mutex_lock(&dev_priv->hdcp_comp_mutex);
1017 comp = dev_priv->hdcp_master;
1019 if (!comp || !comp->ops) {
1020 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1021 return -EINVAL;
1024 ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1025 if (ret < 0)
1026 DRM_DEBUG_KMS("Store pairing info failed. %d\n", ret);
1027 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1029 return ret;
1032 static int
1033 hdcp2_prepare_lc_init(struct intel_connector *connector,
1034 struct hdcp2_lc_init *lc_init)
1036 struct hdcp_port_data *data = &connector->hdcp.port_data;
1037 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1038 struct i915_hdcp_comp_master *comp;
1039 int ret;
1041 mutex_lock(&dev_priv->hdcp_comp_mutex);
1042 comp = dev_priv->hdcp_master;
1044 if (!comp || !comp->ops) {
1045 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1046 return -EINVAL;
1049 ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1050 if (ret < 0)
1051 DRM_DEBUG_KMS("Prepare lc_init failed. %d\n", ret);
1052 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1054 return ret;
1057 static int
1058 hdcp2_verify_lprime(struct intel_connector *connector,
1059 struct hdcp2_lc_send_lprime *rx_lprime)
1061 struct hdcp_port_data *data = &connector->hdcp.port_data;
1062 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1063 struct i915_hdcp_comp_master *comp;
1064 int ret;
1066 mutex_lock(&dev_priv->hdcp_comp_mutex);
1067 comp = dev_priv->hdcp_master;
1069 if (!comp || !comp->ops) {
1070 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1071 return -EINVAL;
1074 ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1075 if (ret < 0)
1076 DRM_DEBUG_KMS("Verify L_Prime failed. %d\n", ret);
1077 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1079 return ret;
1082 static int hdcp2_prepare_skey(struct intel_connector *connector,
1083 struct hdcp2_ske_send_eks *ske_data)
1085 struct hdcp_port_data *data = &connector->hdcp.port_data;
1086 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1087 struct i915_hdcp_comp_master *comp;
1088 int ret;
1090 mutex_lock(&dev_priv->hdcp_comp_mutex);
1091 comp = dev_priv->hdcp_master;
1093 if (!comp || !comp->ops) {
1094 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1095 return -EINVAL;
1098 ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1099 if (ret < 0)
1100 DRM_DEBUG_KMS("Get session key failed. %d\n", ret);
1101 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1103 return ret;
1106 static int
1107 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1108 struct hdcp2_rep_send_receiverid_list
1109 *rep_topology,
1110 struct hdcp2_rep_send_ack *rep_send_ack)
1112 struct hdcp_port_data *data = &connector->hdcp.port_data;
1113 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1114 struct i915_hdcp_comp_master *comp;
1115 int ret;
1117 mutex_lock(&dev_priv->hdcp_comp_mutex);
1118 comp = dev_priv->hdcp_master;
1120 if (!comp || !comp->ops) {
1121 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1122 return -EINVAL;
1125 ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1126 rep_topology,
1127 rep_send_ack);
1128 if (ret < 0)
1129 DRM_DEBUG_KMS("Verify rep topology failed. %d\n", ret);
1130 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1132 return ret;
1135 static int
1136 hdcp2_verify_mprime(struct intel_connector *connector,
1137 struct hdcp2_rep_stream_ready *stream_ready)
1139 struct hdcp_port_data *data = &connector->hdcp.port_data;
1140 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1141 struct i915_hdcp_comp_master *comp;
1142 int ret;
1144 mutex_lock(&dev_priv->hdcp_comp_mutex);
1145 comp = dev_priv->hdcp_master;
1147 if (!comp || !comp->ops) {
1148 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1149 return -EINVAL;
1152 ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1153 if (ret < 0)
1154 DRM_DEBUG_KMS("Verify mprime failed. %d\n", ret);
1155 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1157 return ret;
1160 static int hdcp2_authenticate_port(struct intel_connector *connector)
1162 struct hdcp_port_data *data = &connector->hdcp.port_data;
1163 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1164 struct i915_hdcp_comp_master *comp;
1165 int ret;
1167 mutex_lock(&dev_priv->hdcp_comp_mutex);
1168 comp = dev_priv->hdcp_master;
1170 if (!comp || !comp->ops) {
1171 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1172 return -EINVAL;
1175 ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1176 if (ret < 0)
1177 DRM_DEBUG_KMS("Enable hdcp auth failed. %d\n", ret);
1178 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1180 return ret;
1183 static int hdcp2_close_mei_session(struct intel_connector *connector)
1185 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1186 struct i915_hdcp_comp_master *comp;
1187 int ret;
1189 mutex_lock(&dev_priv->hdcp_comp_mutex);
1190 comp = dev_priv->hdcp_master;
1192 if (!comp || !comp->ops) {
1193 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1194 return -EINVAL;
1197 ret = comp->ops->close_hdcp_session(comp->mei_dev,
1198 &connector->hdcp.port_data);
1199 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1201 return ret;
1204 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1206 return hdcp2_close_mei_session(connector);
1209 /* Authentication flow starts from here */
1210 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1212 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1213 struct intel_hdcp *hdcp = &connector->hdcp;
1214 struct drm_device *dev = connector->base.dev;
1215 union {
1216 struct hdcp2_ake_init ake_init;
1217 struct hdcp2_ake_send_cert send_cert;
1218 struct hdcp2_ake_no_stored_km no_stored_km;
1219 struct hdcp2_ake_send_hprime send_hprime;
1220 struct hdcp2_ake_send_pairing_info pairing_info;
1221 } msgs;
1222 const struct intel_hdcp_shim *shim = hdcp->shim;
1223 size_t size;
1224 int ret;
1226 /* Init for seq_num */
1227 hdcp->seq_num_v = 0;
1228 hdcp->seq_num_m = 0;
1230 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1231 if (ret < 0)
1232 return ret;
1234 ret = shim->write_2_2_msg(intel_dig_port, &msgs.ake_init,
1235 sizeof(msgs.ake_init));
1236 if (ret < 0)
1237 return ret;
1239 ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_CERT,
1240 &msgs.send_cert, sizeof(msgs.send_cert));
1241 if (ret < 0)
1242 return ret;
1244 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1245 DRM_DEBUG_KMS("cert.rx_caps dont claim HDCP2.2\n");
1246 return -EINVAL;
1249 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1251 if (drm_hdcp_check_ksvs_revoked(dev, msgs.send_cert.cert_rx.receiver_id,
1252 1)) {
1253 DRM_ERROR("Receiver ID is revoked\n");
1254 return -EPERM;
1258 * Here msgs.no_stored_km will hold msgs corresponding to the km
1259 * stored also.
1261 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1262 &hdcp->is_paired,
1263 &msgs.no_stored_km, &size);
1264 if (ret < 0)
1265 return ret;
1267 ret = shim->write_2_2_msg(intel_dig_port, &msgs.no_stored_km, size);
1268 if (ret < 0)
1269 return ret;
1271 ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1272 &msgs.send_hprime, sizeof(msgs.send_hprime));
1273 if (ret < 0)
1274 return ret;
1276 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1277 if (ret < 0)
1278 return ret;
1280 if (!hdcp->is_paired) {
1281 /* Pairing is required */
1282 ret = shim->read_2_2_msg(intel_dig_port,
1283 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1284 &msgs.pairing_info,
1285 sizeof(msgs.pairing_info));
1286 if (ret < 0)
1287 return ret;
1289 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1290 if (ret < 0)
1291 return ret;
1292 hdcp->is_paired = true;
1295 return 0;
1298 static int hdcp2_locality_check(struct intel_connector *connector)
1300 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1301 struct intel_hdcp *hdcp = &connector->hdcp;
1302 union {
1303 struct hdcp2_lc_init lc_init;
1304 struct hdcp2_lc_send_lprime send_lprime;
1305 } msgs;
1306 const struct intel_hdcp_shim *shim = hdcp->shim;
1307 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1309 for (i = 0; i < tries; i++) {
1310 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1311 if (ret < 0)
1312 continue;
1314 ret = shim->write_2_2_msg(intel_dig_port, &msgs.lc_init,
1315 sizeof(msgs.lc_init));
1316 if (ret < 0)
1317 continue;
1319 ret = shim->read_2_2_msg(intel_dig_port,
1320 HDCP_2_2_LC_SEND_LPRIME,
1321 &msgs.send_lprime,
1322 sizeof(msgs.send_lprime));
1323 if (ret < 0)
1324 continue;
1326 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1327 if (!ret)
1328 break;
1331 return ret;
1334 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1336 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1337 struct intel_hdcp *hdcp = &connector->hdcp;
1338 struct hdcp2_ske_send_eks send_eks;
1339 int ret;
1341 ret = hdcp2_prepare_skey(connector, &send_eks);
1342 if (ret < 0)
1343 return ret;
1345 ret = hdcp->shim->write_2_2_msg(intel_dig_port, &send_eks,
1346 sizeof(send_eks));
1347 if (ret < 0)
1348 return ret;
1350 return 0;
1353 static
1354 int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1356 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1357 struct intel_hdcp *hdcp = &connector->hdcp;
1358 union {
1359 struct hdcp2_rep_stream_manage stream_manage;
1360 struct hdcp2_rep_stream_ready stream_ready;
1361 } msgs;
1362 const struct intel_hdcp_shim *shim = hdcp->shim;
1363 int ret;
1365 /* Prepare RepeaterAuth_Stream_Manage msg */
1366 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1367 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1369 /* K no of streams is fixed as 1. Stored as big-endian. */
1370 msgs.stream_manage.k = cpu_to_be16(1);
1372 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1373 msgs.stream_manage.streams[0].stream_id = 0;
1374 msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1376 /* Send it to Repeater */
1377 ret = shim->write_2_2_msg(intel_dig_port, &msgs.stream_manage,
1378 sizeof(msgs.stream_manage));
1379 if (ret < 0)
1380 return ret;
1382 ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_STREAM_READY,
1383 &msgs.stream_ready, sizeof(msgs.stream_ready));
1384 if (ret < 0)
1385 return ret;
1387 hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1388 hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1390 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1391 if (ret < 0)
1392 return ret;
1394 hdcp->seq_num_m++;
1396 if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1397 DRM_DEBUG_KMS("seq_num_m roll over.\n");
1398 return -1;
1401 return 0;
1404 static
1405 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1407 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1408 struct intel_hdcp *hdcp = &connector->hdcp;
1409 struct drm_device *dev = connector->base.dev;
1410 union {
1411 struct hdcp2_rep_send_receiverid_list recvid_list;
1412 struct hdcp2_rep_send_ack rep_ack;
1413 } msgs;
1414 const struct intel_hdcp_shim *shim = hdcp->shim;
1415 u32 seq_num_v, device_cnt;
1416 u8 *rx_info;
1417 int ret;
1419 ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1420 &msgs.recvid_list, sizeof(msgs.recvid_list));
1421 if (ret < 0)
1422 return ret;
1424 rx_info = msgs.recvid_list.rx_info;
1426 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1427 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1428 DRM_DEBUG_KMS("Topology Max Size Exceeded\n");
1429 return -EINVAL;
1432 /* Converting and Storing the seq_num_v to local variable as DWORD */
1433 seq_num_v =
1434 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1436 if (seq_num_v < hdcp->seq_num_v) {
1437 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1438 DRM_DEBUG_KMS("Seq_num_v roll over.\n");
1439 return -EINVAL;
1442 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1443 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1444 if (drm_hdcp_check_ksvs_revoked(dev, msgs.recvid_list.receiver_ids,
1445 device_cnt)) {
1446 DRM_ERROR("Revoked receiver ID(s) is in list\n");
1447 return -EPERM;
1450 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1451 &msgs.recvid_list,
1452 &msgs.rep_ack);
1453 if (ret < 0)
1454 return ret;
1456 hdcp->seq_num_v = seq_num_v;
1457 ret = shim->write_2_2_msg(intel_dig_port, &msgs.rep_ack,
1458 sizeof(msgs.rep_ack));
1459 if (ret < 0)
1460 return ret;
1462 return 0;
1465 static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1467 int ret;
1469 ret = hdcp2_authenticate_repeater_topology(connector);
1470 if (ret < 0)
1471 return ret;
1473 return hdcp2_propagate_stream_management_info(connector);
1476 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1478 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1479 struct intel_hdcp *hdcp = &connector->hdcp;
1480 const struct intel_hdcp_shim *shim = hdcp->shim;
1481 int ret;
1483 ret = hdcp2_authentication_key_exchange(connector);
1484 if (ret < 0) {
1485 DRM_DEBUG_KMS("AKE Failed. Err : %d\n", ret);
1486 return ret;
1489 ret = hdcp2_locality_check(connector);
1490 if (ret < 0) {
1491 DRM_DEBUG_KMS("Locality Check failed. Err : %d\n", ret);
1492 return ret;
1495 ret = hdcp2_session_key_exchange(connector);
1496 if (ret < 0) {
1497 DRM_DEBUG_KMS("SKE Failed. Err : %d\n", ret);
1498 return ret;
1501 if (shim->config_stream_type) {
1502 ret = shim->config_stream_type(intel_dig_port,
1503 hdcp->is_repeater,
1504 hdcp->content_type);
1505 if (ret < 0)
1506 return ret;
1509 if (hdcp->is_repeater) {
1510 ret = hdcp2_authenticate_repeater(connector);
1511 if (ret < 0) {
1512 DRM_DEBUG_KMS("Repeater Auth Failed. Err: %d\n", ret);
1513 return ret;
1517 hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1518 ret = hdcp2_authenticate_port(connector);
1519 if (ret < 0)
1520 return ret;
1522 return ret;
1525 static int hdcp2_enable_encryption(struct intel_connector *connector)
1527 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1528 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1529 struct intel_hdcp *hdcp = &connector->hdcp;
1530 enum port port = connector->encoder->port;
1531 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1532 int ret;
1534 WARN_ON(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1535 LINK_ENCRYPTION_STATUS);
1536 if (hdcp->shim->toggle_signalling) {
1537 ret = hdcp->shim->toggle_signalling(intel_dig_port, true);
1538 if (ret) {
1539 DRM_ERROR("Failed to enable HDCP signalling. %d\n",
1540 ret);
1541 return ret;
1545 if (I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1546 LINK_AUTH_STATUS) {
1547 /* Link is Authenticated. Now set for Encryption */
1548 I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
1549 I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder,
1550 port)) |
1551 CTL_LINK_ENCRYPTION_REQ);
1554 ret = intel_de_wait_for_set(dev_priv,
1555 HDCP2_STATUS(dev_priv, cpu_transcoder,
1556 port),
1557 LINK_ENCRYPTION_STATUS,
1558 ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1560 return ret;
1563 static int hdcp2_disable_encryption(struct intel_connector *connector)
1565 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1566 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1567 struct intel_hdcp *hdcp = &connector->hdcp;
1568 enum port port = connector->encoder->port;
1569 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1570 int ret;
1572 WARN_ON(!(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1573 LINK_ENCRYPTION_STATUS));
1575 I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
1576 I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder, port)) &
1577 ~CTL_LINK_ENCRYPTION_REQ);
1579 ret = intel_de_wait_for_clear(dev_priv,
1580 HDCP2_STATUS(dev_priv, cpu_transcoder,
1581 port),
1582 LINK_ENCRYPTION_STATUS,
1583 ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1584 if (ret == -ETIMEDOUT)
1585 DRM_DEBUG_KMS("Disable Encryption Timedout");
1587 if (hdcp->shim->toggle_signalling) {
1588 ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
1589 if (ret) {
1590 DRM_ERROR("Failed to disable HDCP signalling. %d\n",
1591 ret);
1592 return ret;
1596 return ret;
1599 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1601 int ret, i, tries = 3;
1603 for (i = 0; i < tries; i++) {
1604 ret = hdcp2_authenticate_sink(connector);
1605 if (!ret)
1606 break;
1608 /* Clearing the mei hdcp session */
1609 DRM_DEBUG_KMS("HDCP2.2 Auth %d of %d Failed.(%d)\n",
1610 i + 1, tries, ret);
1611 if (hdcp2_deauthenticate_port(connector) < 0)
1612 DRM_DEBUG_KMS("Port deauth failed.\n");
1615 if (i != tries) {
1617 * Ensuring the required 200mSec min time interval between
1618 * Session Key Exchange and encryption.
1620 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1621 ret = hdcp2_enable_encryption(connector);
1622 if (ret < 0) {
1623 DRM_DEBUG_KMS("Encryption Enable Failed.(%d)\n", ret);
1624 if (hdcp2_deauthenticate_port(connector) < 0)
1625 DRM_DEBUG_KMS("Port deauth failed.\n");
1629 return ret;
1632 static int _intel_hdcp2_enable(struct intel_connector *connector)
1634 struct intel_hdcp *hdcp = &connector->hdcp;
1635 int ret;
1637 DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1638 connector->base.name, connector->base.base.id,
1639 hdcp->content_type);
1641 ret = hdcp2_authenticate_and_encrypt(connector);
1642 if (ret) {
1643 DRM_DEBUG_KMS("HDCP2 Type%d Enabling Failed. (%d)\n",
1644 hdcp->content_type, ret);
1645 return ret;
1648 DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is enabled. Type %d\n",
1649 connector->base.name, connector->base.base.id,
1650 hdcp->content_type);
1652 hdcp->hdcp2_encrypted = true;
1653 return 0;
1656 static int _intel_hdcp2_disable(struct intel_connector *connector)
1658 int ret;
1660 DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being Disabled\n",
1661 connector->base.name, connector->base.base.id);
1663 ret = hdcp2_disable_encryption(connector);
1665 if (hdcp2_deauthenticate_port(connector) < 0)
1666 DRM_DEBUG_KMS("Port deauth failed.\n");
1668 connector->hdcp.hdcp2_encrypted = false;
1670 return ret;
1673 /* Implements the Link Integrity Check for HDCP2.2 */
1674 static int intel_hdcp2_check_link(struct intel_connector *connector)
1676 struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1677 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1678 struct intel_hdcp *hdcp = &connector->hdcp;
1679 enum port port = connector->encoder->port;
1680 enum transcoder cpu_transcoder;
1681 int ret = 0;
1683 mutex_lock(&hdcp->mutex);
1684 cpu_transcoder = hdcp->cpu_transcoder;
1686 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1687 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1688 !hdcp->hdcp2_encrypted) {
1689 ret = -EINVAL;
1690 goto out;
1693 if (WARN_ON(!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
1694 DRM_ERROR("HDCP2.2 link stopped the encryption, %x\n",
1695 I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder,
1696 port)));
1697 ret = -ENXIO;
1698 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1699 schedule_work(&hdcp->prop_work);
1700 goto out;
1703 ret = hdcp->shim->check_2_2_link(intel_dig_port);
1704 if (ret == HDCP_LINK_PROTECTED) {
1705 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1706 hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1707 schedule_work(&hdcp->prop_work);
1709 goto out;
1712 if (ret == HDCP_TOPOLOGY_CHANGE) {
1713 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1714 goto out;
1716 DRM_DEBUG_KMS("HDCP2.2 Downstream topology change\n");
1717 ret = hdcp2_authenticate_repeater_topology(connector);
1718 if (!ret) {
1719 hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1720 schedule_work(&hdcp->prop_work);
1721 goto out;
1723 DRM_DEBUG_KMS("[%s:%d] Repeater topology auth failed.(%d)\n",
1724 connector->base.name, connector->base.base.id,
1725 ret);
1726 } else {
1727 DRM_DEBUG_KMS("[%s:%d] HDCP2.2 link failed, retrying auth\n",
1728 connector->base.name, connector->base.base.id);
1731 ret = _intel_hdcp2_disable(connector);
1732 if (ret) {
1733 DRM_ERROR("[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1734 connector->base.name, connector->base.base.id, ret);
1735 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1736 schedule_work(&hdcp->prop_work);
1737 goto out;
1740 ret = _intel_hdcp2_enable(connector);
1741 if (ret) {
1742 DRM_DEBUG_KMS("[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1743 connector->base.name, connector->base.base.id,
1744 ret);
1745 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1746 schedule_work(&hdcp->prop_work);
1747 goto out;
1750 out:
1751 mutex_unlock(&hdcp->mutex);
1752 return ret;
1755 static void intel_hdcp_check_work(struct work_struct *work)
1757 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1758 struct intel_hdcp,
1759 check_work);
1760 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1762 if (!intel_hdcp2_check_link(connector))
1763 schedule_delayed_work(&hdcp->check_work,
1764 DRM_HDCP2_CHECK_PERIOD_MS);
1765 else if (!intel_hdcp_check_link(connector))
1766 schedule_delayed_work(&hdcp->check_work,
1767 DRM_HDCP_CHECK_PERIOD_MS);
1770 static int i915_hdcp_component_bind(struct device *i915_kdev,
1771 struct device *mei_kdev, void *data)
1773 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1775 DRM_DEBUG("I915 HDCP comp bind\n");
1776 mutex_lock(&dev_priv->hdcp_comp_mutex);
1777 dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1778 dev_priv->hdcp_master->mei_dev = mei_kdev;
1779 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1781 return 0;
1784 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1785 struct device *mei_kdev, void *data)
1787 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1789 DRM_DEBUG("I915 HDCP comp unbind\n");
1790 mutex_lock(&dev_priv->hdcp_comp_mutex);
1791 dev_priv->hdcp_master = NULL;
1792 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1795 static const struct component_ops i915_hdcp_component_ops = {
1796 .bind = i915_hdcp_component_bind,
1797 .unbind = i915_hdcp_component_unbind,
1800 static inline
1801 enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
1803 switch (port) {
1804 case PORT_A:
1805 return MEI_DDI_A;
1806 case PORT_B ... PORT_F:
1807 return (enum mei_fw_ddi)port;
1808 default:
1809 return MEI_DDI_INVALID_PORT;
1813 static inline
1814 enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
1816 switch (cpu_transcoder) {
1817 case TRANSCODER_A ... TRANSCODER_D:
1818 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
1819 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
1820 return MEI_INVALID_TRANSCODER;
1824 static inline int initialize_hdcp_port_data(struct intel_connector *connector,
1825 const struct intel_hdcp_shim *shim)
1827 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1828 struct intel_hdcp *hdcp = &connector->hdcp;
1829 struct hdcp_port_data *data = &hdcp->port_data;
1831 if (INTEL_GEN(dev_priv) < 12)
1832 data->fw_ddi =
1833 intel_get_mei_fw_ddi_index(connector->encoder->port);
1834 else
1836 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
1837 * with zero(INVALID PORT index).
1839 data->fw_ddi = MEI_DDI_INVALID_PORT;
1842 * As associated transcoder is set and modified at modeset, here fw_tc
1843 * is initialized to zero (invalid transcoder index). This will be
1844 * retained for <Gen12 forever.
1846 data->fw_tc = MEI_INVALID_TRANSCODER;
1848 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1849 data->protocol = (u8)shim->protocol;
1851 data->k = 1;
1852 if (!data->streams)
1853 data->streams = kcalloc(data->k,
1854 sizeof(struct hdcp2_streamid_type),
1855 GFP_KERNEL);
1856 if (!data->streams) {
1857 DRM_ERROR("Out of Memory\n");
1858 return -ENOMEM;
1861 data->streams[0].stream_id = 0;
1862 data->streams[0].stream_type = hdcp->content_type;
1864 return 0;
1867 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1869 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1870 return false;
1872 return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) ||
1873 IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv));
1876 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
1878 int ret;
1880 if (!is_hdcp2_supported(dev_priv))
1881 return;
1883 mutex_lock(&dev_priv->hdcp_comp_mutex);
1884 WARN_ON(dev_priv->hdcp_comp_added);
1886 dev_priv->hdcp_comp_added = true;
1887 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1888 ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
1889 I915_COMPONENT_HDCP);
1890 if (ret < 0) {
1891 DRM_DEBUG_KMS("Failed at component add(%d)\n", ret);
1892 mutex_lock(&dev_priv->hdcp_comp_mutex);
1893 dev_priv->hdcp_comp_added = false;
1894 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1895 return;
1899 static void intel_hdcp2_init(struct intel_connector *connector,
1900 const struct intel_hdcp_shim *shim)
1902 struct intel_hdcp *hdcp = &connector->hdcp;
1903 int ret;
1905 ret = initialize_hdcp_port_data(connector, shim);
1906 if (ret) {
1907 DRM_DEBUG_KMS("Mei hdcp data init failed\n");
1908 return;
1911 hdcp->hdcp2_supported = true;
1914 int intel_hdcp_init(struct intel_connector *connector,
1915 const struct intel_hdcp_shim *shim)
1917 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1918 struct intel_hdcp *hdcp = &connector->hdcp;
1919 int ret;
1921 if (!shim)
1922 return -EINVAL;
1924 if (is_hdcp2_supported(dev_priv))
1925 intel_hdcp2_init(connector, shim);
1927 ret =
1928 drm_connector_attach_content_protection_property(&connector->base,
1929 hdcp->hdcp2_supported);
1930 if (ret) {
1931 hdcp->hdcp2_supported = false;
1932 kfree(hdcp->port_data.streams);
1933 return ret;
1936 hdcp->shim = shim;
1937 mutex_init(&hdcp->mutex);
1938 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
1939 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
1940 init_waitqueue_head(&hdcp->cp_irq_queue);
1942 return 0;
1945 int intel_hdcp_enable(struct intel_connector *connector,
1946 enum transcoder cpu_transcoder, u8 content_type)
1948 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1949 struct intel_hdcp *hdcp = &connector->hdcp;
1950 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
1951 int ret = -EINVAL;
1953 if (!hdcp->shim)
1954 return -ENOENT;
1956 mutex_lock(&hdcp->mutex);
1957 WARN_ON(hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
1958 hdcp->content_type = content_type;
1960 if (INTEL_GEN(dev_priv) >= 12) {
1961 hdcp->cpu_transcoder = cpu_transcoder;
1962 hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder);
1966 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
1967 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
1969 if (intel_hdcp2_capable(connector)) {
1970 ret = _intel_hdcp2_enable(connector);
1971 if (!ret)
1972 check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
1976 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
1977 * be attempted.
1979 if (ret && intel_hdcp_capable(connector) &&
1980 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
1981 ret = _intel_hdcp_enable(connector);
1984 if (!ret) {
1985 schedule_delayed_work(&hdcp->check_work, check_link_interval);
1986 hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1987 schedule_work(&hdcp->prop_work);
1990 mutex_unlock(&hdcp->mutex);
1991 return ret;
1994 int intel_hdcp_disable(struct intel_connector *connector)
1996 struct intel_hdcp *hdcp = &connector->hdcp;
1997 int ret = 0;
1999 if (!hdcp->shim)
2000 return -ENOENT;
2002 mutex_lock(&hdcp->mutex);
2004 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2005 hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
2006 if (hdcp->hdcp2_encrypted)
2007 ret = _intel_hdcp2_disable(connector);
2008 else if (hdcp->hdcp_encrypted)
2009 ret = _intel_hdcp_disable(connector);
2012 mutex_unlock(&hdcp->mutex);
2013 cancel_delayed_work_sync(&hdcp->check_work);
2014 return ret;
2017 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2019 mutex_lock(&dev_priv->hdcp_comp_mutex);
2020 if (!dev_priv->hdcp_comp_added) {
2021 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2022 return;
2025 dev_priv->hdcp_comp_added = false;
2026 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2028 component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2031 void intel_hdcp_cleanup(struct intel_connector *connector)
2033 if (!connector->hdcp.shim)
2034 return;
2036 mutex_lock(&connector->hdcp.mutex);
2037 kfree(connector->hdcp.port_data.streams);
2038 mutex_unlock(&connector->hdcp.mutex);
2041 void intel_hdcp_atomic_check(struct drm_connector *connector,
2042 struct drm_connector_state *old_state,
2043 struct drm_connector_state *new_state)
2045 u64 old_cp = old_state->content_protection;
2046 u64 new_cp = new_state->content_protection;
2047 struct drm_crtc_state *crtc_state;
2049 if (!new_state->crtc) {
2051 * If the connector is being disabled with CP enabled, mark it
2052 * desired so it's re-enabled when the connector is brought back
2054 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2055 new_state->content_protection =
2056 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2057 return;
2061 * Nothing to do if the state didn't change, or HDCP was activated since
2062 * the last commit. And also no change in hdcp content type.
2064 if (old_cp == new_cp ||
2065 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2066 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2067 if (old_state->hdcp_content_type ==
2068 new_state->hdcp_content_type)
2069 return;
2072 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2073 new_state->crtc);
2074 crtc_state->mode_changed = true;
2077 /* Handles the CP_IRQ raised from the DP HDCP sink */
2078 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2080 struct intel_hdcp *hdcp = &connector->hdcp;
2082 if (!hdcp->shim)
2083 return;
2085 atomic_inc(&connector->hdcp.cp_irq_count);
2086 wake_up_all(&connector->hdcp.cp_irq_queue);
2088 schedule_delayed_work(&hdcp->check_work, 0);