treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gem / i915_gem_domain.c
blob0cc40e77bbd2fcb2bb85a01768993a57a08e9a88
1 /*
2 * SPDX-License-Identifier: MIT
4 * Copyright © 2014-2016 Intel Corporation
5 */
7 #include "display/intel_frontbuffer.h"
9 #include "i915_drv.h"
10 #include "i915_gem_clflush.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
14 #include "i915_vma.h"
15 #include "i915_gem_lmem.h"
16 #include "i915_gem_mman.h"
18 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
21 * We manually flush the CPU domain so that we can override and
22 * force the flush for the display, and perform it asyncrhonously.
24 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
25 if (obj->cache_dirty)
26 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
27 obj->write_domain = 0;
30 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
32 if (!i915_gem_object_is_framebuffer(obj))
33 return;
35 i915_gem_object_lock(obj);
36 __i915_gem_object_flush_for_display(obj);
37 i915_gem_object_unlock(obj);
40 /**
41 * Moves a single object to the WC read, and possibly write domain.
42 * @obj: object to act on
43 * @write: ask for write access or read only
45 * This function returns when the move is complete, including waiting on
46 * flushes to occur.
48 int
49 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
51 int ret;
53 assert_object_held(obj);
55 ret = i915_gem_object_wait(obj,
56 I915_WAIT_INTERRUPTIBLE |
57 (write ? I915_WAIT_ALL : 0),
58 MAX_SCHEDULE_TIMEOUT);
59 if (ret)
60 return ret;
62 if (obj->write_domain == I915_GEM_DOMAIN_WC)
63 return 0;
65 /* Flush and acquire obj->pages so that we are coherent through
66 * direct access in memory with previous cached writes through
67 * shmemfs and that our cache domain tracking remains valid.
68 * For example, if the obj->filp was moved to swap without us
69 * being notified and releasing the pages, we would mistakenly
70 * continue to assume that the obj remained out of the CPU cached
71 * domain.
73 ret = i915_gem_object_pin_pages(obj);
74 if (ret)
75 return ret;
77 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
79 /* Serialise direct access to this object with the barriers for
80 * coherent writes from the GPU, by effectively invalidating the
81 * WC domain upon first access.
83 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
84 mb();
86 /* It should now be out of any other write domains, and we can update
87 * the domain values for our changes.
89 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
90 obj->read_domains |= I915_GEM_DOMAIN_WC;
91 if (write) {
92 obj->read_domains = I915_GEM_DOMAIN_WC;
93 obj->write_domain = I915_GEM_DOMAIN_WC;
94 obj->mm.dirty = true;
97 i915_gem_object_unpin_pages(obj);
98 return 0;
102 * Moves a single object to the GTT read, and possibly write domain.
103 * @obj: object to act on
104 * @write: ask for write access or read only
106 * This function returns when the move is complete, including waiting on
107 * flushes to occur.
110 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
112 int ret;
114 assert_object_held(obj);
116 ret = i915_gem_object_wait(obj,
117 I915_WAIT_INTERRUPTIBLE |
118 (write ? I915_WAIT_ALL : 0),
119 MAX_SCHEDULE_TIMEOUT);
120 if (ret)
121 return ret;
123 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
124 return 0;
126 /* Flush and acquire obj->pages so that we are coherent through
127 * direct access in memory with previous cached writes through
128 * shmemfs and that our cache domain tracking remains valid.
129 * For example, if the obj->filp was moved to swap without us
130 * being notified and releasing the pages, we would mistakenly
131 * continue to assume that the obj remained out of the CPU cached
132 * domain.
134 ret = i915_gem_object_pin_pages(obj);
135 if (ret)
136 return ret;
138 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
140 /* Serialise direct access to this object with the barriers for
141 * coherent writes from the GPU, by effectively invalidating the
142 * GTT domain upon first access.
144 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
145 mb();
147 /* It should now be out of any other write domains, and we can update
148 * the domain values for our changes.
150 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
151 obj->read_domains |= I915_GEM_DOMAIN_GTT;
152 if (write) {
153 struct i915_vma *vma;
155 obj->read_domains = I915_GEM_DOMAIN_GTT;
156 obj->write_domain = I915_GEM_DOMAIN_GTT;
157 obj->mm.dirty = true;
159 spin_lock(&obj->vma.lock);
160 for_each_ggtt_vma(vma, obj)
161 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
162 i915_vma_set_ggtt_write(vma);
163 spin_unlock(&obj->vma.lock);
166 i915_gem_object_unpin_pages(obj);
167 return 0;
171 * Changes the cache-level of an object across all VMA.
172 * @obj: object to act on
173 * @cache_level: new cache level to set for the object
175 * After this function returns, the object will be in the new cache-level
176 * across all GTT and the contents of the backing storage will be coherent,
177 * with respect to the new cache-level. In order to keep the backing storage
178 * coherent for all users, we only allow a single cache level to be set
179 * globally on the object and prevent it from being changed whilst the
180 * hardware is reading from the object. That is if the object is currently
181 * on the scanout it will be set to uncached (or equivalent display
182 * cache coherency) and all non-MOCS GPU access will also be uncached so
183 * that all direct access to the scanout remains coherent.
185 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
186 enum i915_cache_level cache_level)
188 int ret;
190 if (obj->cache_level == cache_level)
191 return 0;
193 ret = i915_gem_object_wait(obj,
194 I915_WAIT_INTERRUPTIBLE |
195 I915_WAIT_ALL,
196 MAX_SCHEDULE_TIMEOUT);
197 if (ret)
198 return ret;
200 ret = i915_gem_object_lock_interruptible(obj);
201 if (ret)
202 return ret;
204 /* Always invalidate stale cachelines */
205 if (obj->cache_level != cache_level) {
206 i915_gem_object_set_cache_coherency(obj, cache_level);
207 obj->cache_dirty = true;
210 i915_gem_object_unlock(obj);
212 /* The cache-level will be applied when each vma is rebound. */
213 return i915_gem_object_unbind(obj,
214 I915_GEM_OBJECT_UNBIND_ACTIVE |
215 I915_GEM_OBJECT_UNBIND_BARRIER);
218 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
219 struct drm_file *file)
221 struct drm_i915_gem_caching *args = data;
222 struct drm_i915_gem_object *obj;
223 int err = 0;
225 rcu_read_lock();
226 obj = i915_gem_object_lookup_rcu(file, args->handle);
227 if (!obj) {
228 err = -ENOENT;
229 goto out;
232 switch (obj->cache_level) {
233 case I915_CACHE_LLC:
234 case I915_CACHE_L3_LLC:
235 args->caching = I915_CACHING_CACHED;
236 break;
238 case I915_CACHE_WT:
239 args->caching = I915_CACHING_DISPLAY;
240 break;
242 default:
243 args->caching = I915_CACHING_NONE;
244 break;
246 out:
247 rcu_read_unlock();
248 return err;
251 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
254 struct drm_i915_private *i915 = to_i915(dev);
255 struct drm_i915_gem_caching *args = data;
256 struct drm_i915_gem_object *obj;
257 enum i915_cache_level level;
258 int ret = 0;
260 switch (args->caching) {
261 case I915_CACHING_NONE:
262 level = I915_CACHE_NONE;
263 break;
264 case I915_CACHING_CACHED:
266 * Due to a HW issue on BXT A stepping, GPU stores via a
267 * snooped mapping may leave stale data in a corresponding CPU
268 * cacheline, whereas normally such cachelines would get
269 * invalidated.
271 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
272 return -ENODEV;
274 level = I915_CACHE_LLC;
275 break;
276 case I915_CACHING_DISPLAY:
277 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
278 break;
279 default:
280 return -EINVAL;
283 obj = i915_gem_object_lookup(file, args->handle);
284 if (!obj)
285 return -ENOENT;
288 * The caching mode of proxy object is handled by its generator, and
289 * not allowed to be changed by userspace.
291 if (i915_gem_object_is_proxy(obj)) {
292 ret = -ENXIO;
293 goto out;
296 ret = i915_gem_object_set_cache_level(obj, level);
298 out:
299 i915_gem_object_put(obj);
300 return ret;
304 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
305 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
306 * (for pageflips). We only flush the caches while preparing the buffer for
307 * display, the callers are responsible for frontbuffer flush.
309 struct i915_vma *
310 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
311 u32 alignment,
312 const struct i915_ggtt_view *view,
313 unsigned int flags)
315 struct drm_i915_private *i915 = to_i915(obj->base.dev);
316 struct i915_vma *vma;
317 int ret;
319 /* Frame buffer must be in LMEM (no migration yet) */
320 if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
321 return ERR_PTR(-EINVAL);
324 * The display engine is not coherent with the LLC cache on gen6. As
325 * a result, we make sure that the pinning that is about to occur is
326 * done with uncached PTEs. This is lowest common denominator for all
327 * chipsets.
329 * However for gen6+, we could do better by using the GFDT bit instead
330 * of uncaching, which would allow us to flush all the LLC-cached data
331 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
333 ret = i915_gem_object_set_cache_level(obj,
334 HAS_WT(i915) ?
335 I915_CACHE_WT : I915_CACHE_NONE);
336 if (ret)
337 return ERR_PTR(ret);
340 * As the user may map the buffer once pinned in the display plane
341 * (e.g. libkms for the bootup splash), we have to ensure that we
342 * always use map_and_fenceable for all scanout buffers. However,
343 * it may simply be too big to fit into mappable, in which case
344 * put it anyway and hope that userspace can cope (but always first
345 * try to preserve the existing ABI).
347 vma = ERR_PTR(-ENOSPC);
348 if ((flags & PIN_MAPPABLE) == 0 &&
349 (!view || view->type == I915_GGTT_VIEW_NORMAL))
350 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
351 flags |
352 PIN_MAPPABLE |
353 PIN_NONBLOCK);
354 if (IS_ERR(vma))
355 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
356 if (IS_ERR(vma))
357 return vma;
359 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
361 i915_gem_object_flush_if_display(obj);
363 return vma;
366 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
368 struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 struct i915_vma *vma;
371 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
372 if (!atomic_read(&obj->bind_count))
373 return;
375 mutex_lock(&i915->ggtt.vm.mutex);
376 spin_lock(&obj->vma.lock);
377 for_each_ggtt_vma(vma, obj) {
378 if (!drm_mm_node_allocated(&vma->node))
379 continue;
381 GEM_BUG_ON(vma->vm != &i915->ggtt.vm);
382 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
384 spin_unlock(&obj->vma.lock);
385 mutex_unlock(&i915->ggtt.vm.mutex);
387 if (i915_gem_object_is_shrinkable(obj)) {
388 unsigned long flags;
390 spin_lock_irqsave(&i915->mm.obj_lock, flags);
392 if (obj->mm.madv == I915_MADV_WILLNEED &&
393 !atomic_read(&obj->mm.shrink_pin))
394 list_move_tail(&obj->mm.link, &i915->mm.shrink_list);
396 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
400 void
401 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
403 struct drm_i915_gem_object *obj = vma->obj;
405 assert_object_held(obj);
407 /* Bump the LRU to try and avoid premature eviction whilst flipping */
408 i915_gem_object_bump_inactive_ggtt(obj);
410 i915_vma_unpin(vma);
414 * Moves a single object to the CPU read, and possibly write domain.
415 * @obj: object to act on
416 * @write: requesting write or read-only access
418 * This function returns when the move is complete, including waiting on
419 * flushes to occur.
422 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
424 int ret;
426 assert_object_held(obj);
428 ret = i915_gem_object_wait(obj,
429 I915_WAIT_INTERRUPTIBLE |
430 (write ? I915_WAIT_ALL : 0),
431 MAX_SCHEDULE_TIMEOUT);
432 if (ret)
433 return ret;
435 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
437 /* Flush the CPU cache if it's still invalid. */
438 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
439 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
440 obj->read_domains |= I915_GEM_DOMAIN_CPU;
443 /* It should now be out of any other write domains, and we can update
444 * the domain values for our changes.
446 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
448 /* If we're writing through the CPU, then the GPU read domains will
449 * need to be invalidated at next use.
451 if (write)
452 __start_cpu_write(obj);
454 return 0;
458 * Called when user space prepares to use an object with the CPU, either
459 * through the mmap ioctl's mapping or a GTT mapping.
460 * @dev: drm device
461 * @data: ioctl data blob
462 * @file: drm file
465 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
466 struct drm_file *file)
468 struct drm_i915_gem_set_domain *args = data;
469 struct drm_i915_gem_object *obj;
470 u32 read_domains = args->read_domains;
471 u32 write_domain = args->write_domain;
472 int err;
474 /* Only handle setting domains to types used by the CPU. */
475 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
476 return -EINVAL;
479 * Having something in the write domain implies it's in the read
480 * domain, and only that read domain. Enforce that in the request.
482 if (write_domain && read_domains != write_domain)
483 return -EINVAL;
485 if (!read_domains)
486 return 0;
488 obj = i915_gem_object_lookup(file, args->handle);
489 if (!obj)
490 return -ENOENT;
493 * Already in the desired write domain? Nothing for us to do!
495 * We apply a little bit of cunning here to catch a broader set of
496 * no-ops. If obj->write_domain is set, we must be in the same
497 * obj->read_domains, and only that domain. Therefore, if that
498 * obj->write_domain matches the request read_domains, we are
499 * already in the same read/write domain and can skip the operation,
500 * without having to further check the requested write_domain.
502 if (READ_ONCE(obj->write_domain) == read_domains) {
503 err = 0;
504 goto out;
508 * Try to flush the object off the GPU without holding the lock.
509 * We will repeat the flush holding the lock in the normal manner
510 * to catch cases where we are gazumped.
512 err = i915_gem_object_wait(obj,
513 I915_WAIT_INTERRUPTIBLE |
514 I915_WAIT_PRIORITY |
515 (write_domain ? I915_WAIT_ALL : 0),
516 MAX_SCHEDULE_TIMEOUT);
517 if (err)
518 goto out;
521 * Proxy objects do not control access to the backing storage, ergo
522 * they cannot be used as a means to manipulate the cache domain
523 * tracking for that backing storage. The proxy object is always
524 * considered to be outside of any cache domain.
526 if (i915_gem_object_is_proxy(obj)) {
527 err = -ENXIO;
528 goto out;
532 * Flush and acquire obj->pages so that we are coherent through
533 * direct access in memory with previous cached writes through
534 * shmemfs and that our cache domain tracking remains valid.
535 * For example, if the obj->filp was moved to swap without us
536 * being notified and releasing the pages, we would mistakenly
537 * continue to assume that the obj remained out of the CPU cached
538 * domain.
540 err = i915_gem_object_pin_pages(obj);
541 if (err)
542 goto out;
544 err = i915_gem_object_lock_interruptible(obj);
545 if (err)
546 goto out_unpin;
548 if (read_domains & I915_GEM_DOMAIN_WC)
549 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
550 else if (read_domains & I915_GEM_DOMAIN_GTT)
551 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
552 else
553 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
555 /* And bump the LRU for this access */
556 i915_gem_object_bump_inactive_ggtt(obj);
558 i915_gem_object_unlock(obj);
560 if (write_domain)
561 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
563 out_unpin:
564 i915_gem_object_unpin_pages(obj);
565 out:
566 i915_gem_object_put(obj);
567 return err;
571 * Pins the specified object's pages and synchronizes the object with
572 * GPU accesses. Sets needs_clflush to non-zero if the caller should
573 * flush the object from the CPU cache.
575 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
576 unsigned int *needs_clflush)
578 int ret;
580 *needs_clflush = 0;
581 if (!i915_gem_object_has_struct_page(obj))
582 return -ENODEV;
584 ret = i915_gem_object_lock_interruptible(obj);
585 if (ret)
586 return ret;
588 ret = i915_gem_object_wait(obj,
589 I915_WAIT_INTERRUPTIBLE,
590 MAX_SCHEDULE_TIMEOUT);
591 if (ret)
592 goto err_unlock;
594 ret = i915_gem_object_pin_pages(obj);
595 if (ret)
596 goto err_unlock;
598 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
599 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
600 ret = i915_gem_object_set_to_cpu_domain(obj, false);
601 if (ret)
602 goto err_unpin;
603 else
604 goto out;
607 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
609 /* If we're not in the cpu read domain, set ourself into the gtt
610 * read domain and manually flush cachelines (if required). This
611 * optimizes for the case when the gpu will dirty the data
612 * anyway again before the next pread happens.
614 if (!obj->cache_dirty &&
615 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
616 *needs_clflush = CLFLUSH_BEFORE;
618 out:
619 /* return with the pages pinned */
620 return 0;
622 err_unpin:
623 i915_gem_object_unpin_pages(obj);
624 err_unlock:
625 i915_gem_object_unlock(obj);
626 return ret;
629 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
630 unsigned int *needs_clflush)
632 int ret;
634 *needs_clflush = 0;
635 if (!i915_gem_object_has_struct_page(obj))
636 return -ENODEV;
638 ret = i915_gem_object_lock_interruptible(obj);
639 if (ret)
640 return ret;
642 ret = i915_gem_object_wait(obj,
643 I915_WAIT_INTERRUPTIBLE |
644 I915_WAIT_ALL,
645 MAX_SCHEDULE_TIMEOUT);
646 if (ret)
647 goto err_unlock;
649 ret = i915_gem_object_pin_pages(obj);
650 if (ret)
651 goto err_unlock;
653 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
654 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
655 ret = i915_gem_object_set_to_cpu_domain(obj, true);
656 if (ret)
657 goto err_unpin;
658 else
659 goto out;
662 i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
664 /* If we're not in the cpu write domain, set ourself into the
665 * gtt write domain and manually flush cachelines (as required).
666 * This optimizes for the case when the gpu will use the data
667 * right away and we therefore have to clflush anyway.
669 if (!obj->cache_dirty) {
670 *needs_clflush |= CLFLUSH_AFTER;
673 * Same trick applies to invalidate partially written
674 * cachelines read before writing.
676 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
677 *needs_clflush |= CLFLUSH_BEFORE;
680 out:
681 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
682 obj->mm.dirty = true;
683 /* return with the pages pinned */
684 return 0;
686 err_unpin:
687 i915_gem_object_unpin_pages(obj);
688 err_unlock:
689 i915_gem_object_unlock(obj);
690 return ret;