treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gem / i915_gem_shmem.c
bloba2a980d9d24132d3d00976c1a71584ad43d63f23
1 /*
2 * SPDX-License-Identifier: MIT
4 * Copyright © 2014-2016 Intel Corporation
5 */
7 #include <linux/pagevec.h>
8 #include <linux/swap.h>
10 #include "gem/i915_gem_region.h"
11 #include "i915_drv.h"
12 #include "i915_gemfs.h"
13 #include "i915_gem_object.h"
14 #include "i915_scatterlist.h"
15 #include "i915_trace.h"
18 * Move pages to appropriate lru and release the pagevec, decrementing the
19 * ref count of those pages.
21 static void check_release_pagevec(struct pagevec *pvec)
23 check_move_unevictable_pages(pvec);
24 __pagevec_release(pvec);
25 cond_resched();
28 static int shmem_get_pages(struct drm_i915_gem_object *obj)
30 struct drm_i915_private *i915 = to_i915(obj->base.dev);
31 struct intel_memory_region *mem = obj->mm.region;
32 const unsigned long page_count = obj->base.size / PAGE_SIZE;
33 unsigned long i;
34 struct address_space *mapping;
35 struct sg_table *st;
36 struct scatterlist *sg;
37 struct sgt_iter sgt_iter;
38 struct page *page;
39 unsigned long last_pfn = 0; /* suppress gcc warning */
40 unsigned int max_segment = i915_sg_segment_size();
41 unsigned int sg_page_sizes;
42 struct pagevec pvec;
43 gfp_t noreclaim;
44 int ret;
47 * Assert that the object is not currently in any GPU domain. As it
48 * wasn't in the GTT, there shouldn't be any way it could have been in
49 * a GPU cache
51 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
52 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
55 * If there's no chance of allocating enough pages for the whole
56 * object, bail early.
58 if (obj->base.size > resource_size(&mem->region))
59 return -ENOMEM;
61 st = kmalloc(sizeof(*st), GFP_KERNEL);
62 if (!st)
63 return -ENOMEM;
65 rebuild_st:
66 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
67 kfree(st);
68 return -ENOMEM;
72 * Get the list of pages out of our struct file. They'll be pinned
73 * at this point until we release them.
75 * Fail silently without starting the shrinker
77 mapping = obj->base.filp->f_mapping;
78 mapping_set_unevictable(mapping);
79 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
80 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
82 sg = st->sgl;
83 st->nents = 0;
84 sg_page_sizes = 0;
85 for (i = 0; i < page_count; i++) {
86 const unsigned int shrink[] = {
87 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
89 }, *s = shrink;
90 gfp_t gfp = noreclaim;
92 do {
93 cond_resched();
94 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
95 if (!IS_ERR(page))
96 break;
98 if (!*s) {
99 ret = PTR_ERR(page);
100 goto err_sg;
103 i915_gem_shrink(i915, 2 * page_count, NULL, *s++);
106 * We've tried hard to allocate the memory by reaping
107 * our own buffer, now let the real VM do its job and
108 * go down in flames if truly OOM.
110 * However, since graphics tend to be disposable,
111 * defer the oom here by reporting the ENOMEM back
112 * to userspace.
114 if (!*s) {
115 /* reclaim and warn, but no oom */
116 gfp = mapping_gfp_mask(mapping);
119 * Our bo are always dirty and so we require
120 * kswapd to reclaim our pages (direct reclaim
121 * does not effectively begin pageout of our
122 * buffers on its own). However, direct reclaim
123 * only waits for kswapd when under allocation
124 * congestion. So as a result __GFP_RECLAIM is
125 * unreliable and fails to actually reclaim our
126 * dirty pages -- unless you try over and over
127 * again with !__GFP_NORETRY. However, we still
128 * want to fail this allocation rather than
129 * trigger the out-of-memory killer and for
130 * this we want __GFP_RETRY_MAYFAIL.
132 gfp |= __GFP_RETRY_MAYFAIL;
134 } while (1);
136 if (!i ||
137 sg->length >= max_segment ||
138 page_to_pfn(page) != last_pfn + 1) {
139 if (i) {
140 sg_page_sizes |= sg->length;
141 sg = sg_next(sg);
143 st->nents++;
144 sg_set_page(sg, page, PAGE_SIZE, 0);
145 } else {
146 sg->length += PAGE_SIZE;
148 last_pfn = page_to_pfn(page);
150 /* Check that the i965g/gm workaround works. */
151 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
153 if (sg) { /* loop terminated early; short sg table */
154 sg_page_sizes |= sg->length;
155 sg_mark_end(sg);
158 /* Trim unused sg entries to avoid wasting memory. */
159 i915_sg_trim(st);
161 ret = i915_gem_gtt_prepare_pages(obj, st);
162 if (ret) {
164 * DMA remapping failed? One possible cause is that
165 * it could not reserve enough large entries, asking
166 * for PAGE_SIZE chunks instead may be helpful.
168 if (max_segment > PAGE_SIZE) {
169 for_each_sgt_page(page, sgt_iter, st)
170 put_page(page);
171 sg_free_table(st);
173 max_segment = PAGE_SIZE;
174 goto rebuild_st;
175 } else {
176 dev_warn(&i915->drm.pdev->dev,
177 "Failed to DMA remap %lu pages\n",
178 page_count);
179 goto err_pages;
183 if (i915_gem_object_needs_bit17_swizzle(obj))
184 i915_gem_object_do_bit_17_swizzle(obj, st);
186 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
188 return 0;
190 err_sg:
191 sg_mark_end(sg);
192 err_pages:
193 mapping_clear_unevictable(mapping);
194 pagevec_init(&pvec);
195 for_each_sgt_page(page, sgt_iter, st) {
196 if (!pagevec_add(&pvec, page))
197 check_release_pagevec(&pvec);
199 if (pagevec_count(&pvec))
200 check_release_pagevec(&pvec);
201 sg_free_table(st);
202 kfree(st);
205 * shmemfs first checks if there is enough memory to allocate the page
206 * and reports ENOSPC should there be insufficient, along with the usual
207 * ENOMEM for a genuine allocation failure.
209 * We use ENOSPC in our driver to mean that we have run out of aperture
210 * space and so want to translate the error from shmemfs back to our
211 * usual understanding of ENOMEM.
213 if (ret == -ENOSPC)
214 ret = -ENOMEM;
216 return ret;
219 static void
220 shmem_truncate(struct drm_i915_gem_object *obj)
223 * Our goal here is to return as much of the memory as
224 * is possible back to the system as we are called from OOM.
225 * To do this we must instruct the shmfs to drop all of its
226 * backing pages, *now*.
228 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
229 obj->mm.madv = __I915_MADV_PURGED;
230 obj->mm.pages = ERR_PTR(-EFAULT);
233 static void
234 shmem_writeback(struct drm_i915_gem_object *obj)
236 struct address_space *mapping;
237 struct writeback_control wbc = {
238 .sync_mode = WB_SYNC_NONE,
239 .nr_to_write = SWAP_CLUSTER_MAX,
240 .range_start = 0,
241 .range_end = LLONG_MAX,
242 .for_reclaim = 1,
244 unsigned long i;
247 * Leave mmapings intact (GTT will have been revoked on unbinding,
248 * leaving only CPU mmapings around) and add those pages to the LRU
249 * instead of invoking writeback so they are aged and paged out
250 * as normal.
252 mapping = obj->base.filp->f_mapping;
254 /* Begin writeback on each dirty page */
255 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
256 struct page *page;
258 page = find_lock_entry(mapping, i);
259 if (!page || xa_is_value(page))
260 continue;
262 if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
263 int ret;
265 SetPageReclaim(page);
266 ret = mapping->a_ops->writepage(page, &wbc);
267 if (!PageWriteback(page))
268 ClearPageReclaim(page);
269 if (!ret)
270 goto put;
272 unlock_page(page);
273 put:
274 put_page(page);
278 void
279 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
280 struct sg_table *pages,
281 bool needs_clflush)
283 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
285 if (obj->mm.madv == I915_MADV_DONTNEED)
286 obj->mm.dirty = false;
288 if (needs_clflush &&
289 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
290 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
291 drm_clflush_sg(pages);
293 __start_cpu_write(obj);
296 static void
297 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
299 struct sgt_iter sgt_iter;
300 struct pagevec pvec;
301 struct page *page;
303 __i915_gem_object_release_shmem(obj, pages, true);
305 i915_gem_gtt_finish_pages(obj, pages);
307 if (i915_gem_object_needs_bit17_swizzle(obj))
308 i915_gem_object_save_bit_17_swizzle(obj, pages);
310 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
312 pagevec_init(&pvec);
313 for_each_sgt_page(page, sgt_iter, pages) {
314 if (obj->mm.dirty)
315 set_page_dirty(page);
317 if (obj->mm.madv == I915_MADV_WILLNEED)
318 mark_page_accessed(page);
320 if (!pagevec_add(&pvec, page))
321 check_release_pagevec(&pvec);
323 if (pagevec_count(&pvec))
324 check_release_pagevec(&pvec);
325 obj->mm.dirty = false;
327 sg_free_table(pages);
328 kfree(pages);
331 static int
332 shmem_pwrite(struct drm_i915_gem_object *obj,
333 const struct drm_i915_gem_pwrite *arg)
335 struct address_space *mapping = obj->base.filp->f_mapping;
336 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
337 u64 remain, offset;
338 unsigned int pg;
340 /* Caller already validated user args */
341 GEM_BUG_ON(!access_ok(user_data, arg->size));
344 * Before we instantiate/pin the backing store for our use, we
345 * can prepopulate the shmemfs filp efficiently using a write into
346 * the pagecache. We avoid the penalty of instantiating all the
347 * pages, important if the user is just writing to a few and never
348 * uses the object on the GPU, and using a direct write into shmemfs
349 * allows it to avoid the cost of retrieving a page (either swapin
350 * or clearing-before-use) before it is overwritten.
352 if (i915_gem_object_has_pages(obj))
353 return -ENODEV;
355 if (obj->mm.madv != I915_MADV_WILLNEED)
356 return -EFAULT;
359 * Before the pages are instantiated the object is treated as being
360 * in the CPU domain. The pages will be clflushed as required before
361 * use, and we can freely write into the pages directly. If userspace
362 * races pwrite with any other operation; corruption will ensue -
363 * that is userspace's prerogative!
366 remain = arg->size;
367 offset = arg->offset;
368 pg = offset_in_page(offset);
370 do {
371 unsigned int len, unwritten;
372 struct page *page;
373 void *data, *vaddr;
374 int err;
375 char c;
377 len = PAGE_SIZE - pg;
378 if (len > remain)
379 len = remain;
381 /* Prefault the user page to reduce potential recursion */
382 err = __get_user(c, user_data);
383 if (err)
384 return err;
386 err = __get_user(c, user_data + len - 1);
387 if (err)
388 return err;
390 err = pagecache_write_begin(obj->base.filp, mapping,
391 offset, len, 0,
392 &page, &data);
393 if (err < 0)
394 return err;
396 vaddr = kmap_atomic(page);
397 unwritten = __copy_from_user_inatomic(vaddr + pg,
398 user_data,
399 len);
400 kunmap_atomic(vaddr);
402 err = pagecache_write_end(obj->base.filp, mapping,
403 offset, len, len - unwritten,
404 page, data);
405 if (err < 0)
406 return err;
408 /* We don't handle -EFAULT, leave it to the caller to check */
409 if (unwritten)
410 return -ENODEV;
412 remain -= len;
413 user_data += len;
414 offset += len;
415 pg = 0;
416 } while (remain);
418 return 0;
421 static void shmem_release(struct drm_i915_gem_object *obj)
423 i915_gem_object_release_memory_region(obj);
425 fput(obj->base.filp);
428 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
429 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
430 I915_GEM_OBJECT_IS_SHRINKABLE,
432 .get_pages = shmem_get_pages,
433 .put_pages = shmem_put_pages,
434 .truncate = shmem_truncate,
435 .writeback = shmem_writeback,
437 .pwrite = shmem_pwrite,
439 .release = shmem_release,
442 static int __create_shmem(struct drm_i915_private *i915,
443 struct drm_gem_object *obj,
444 resource_size_t size)
446 unsigned long flags = VM_NORESERVE;
447 struct file *filp;
449 drm_gem_private_object_init(&i915->drm, obj, size);
451 if (i915->mm.gemfs)
452 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
453 flags);
454 else
455 filp = shmem_file_setup("i915", size, flags);
456 if (IS_ERR(filp))
457 return PTR_ERR(filp);
459 obj->filp = filp;
460 return 0;
463 static struct drm_i915_gem_object *
464 create_shmem(struct intel_memory_region *mem,
465 resource_size_t size,
466 unsigned int flags)
468 static struct lock_class_key lock_class;
469 struct drm_i915_private *i915 = mem->i915;
470 struct drm_i915_gem_object *obj;
471 struct address_space *mapping;
472 unsigned int cache_level;
473 gfp_t mask;
474 int ret;
476 obj = i915_gem_object_alloc();
477 if (!obj)
478 return ERR_PTR(-ENOMEM);
480 ret = __create_shmem(i915, &obj->base, size);
481 if (ret)
482 goto fail;
484 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
485 if (IS_I965GM(i915) || IS_I965G(i915)) {
486 /* 965gm cannot relocate objects above 4GiB. */
487 mask &= ~__GFP_HIGHMEM;
488 mask |= __GFP_DMA32;
491 mapping = obj->base.filp->f_mapping;
492 mapping_set_gfp_mask(mapping, mask);
493 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
495 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class);
497 obj->write_domain = I915_GEM_DOMAIN_CPU;
498 obj->read_domains = I915_GEM_DOMAIN_CPU;
500 if (HAS_LLC(i915))
501 /* On some devices, we can have the GPU use the LLC (the CPU
502 * cache) for about a 10% performance improvement
503 * compared to uncached. Graphics requests other than
504 * display scanout are coherent with the CPU in
505 * accessing this cache. This means in this mode we
506 * don't need to clflush on the CPU side, and on the
507 * GPU side we only need to flush internal caches to
508 * get data visible to the CPU.
510 * However, we maintain the display planes as UC, and so
511 * need to rebind when first used as such.
513 cache_level = I915_CACHE_LLC;
514 else
515 cache_level = I915_CACHE_NONE;
517 i915_gem_object_set_cache_coherency(obj, cache_level);
519 i915_gem_object_init_memory_region(obj, mem, 0);
521 return obj;
523 fail:
524 i915_gem_object_free(obj);
525 return ERR_PTR(ret);
528 struct drm_i915_gem_object *
529 i915_gem_object_create_shmem(struct drm_i915_private *i915,
530 resource_size_t size)
532 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
533 size, 0);
536 /* Allocate a new GEM object and fill it with the supplied data */
537 struct drm_i915_gem_object *
538 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
539 const void *data, resource_size_t size)
541 struct drm_i915_gem_object *obj;
542 struct file *file;
543 resource_size_t offset;
544 int err;
546 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
547 if (IS_ERR(obj))
548 return obj;
550 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
552 file = obj->base.filp;
553 offset = 0;
554 do {
555 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
556 struct page *page;
557 void *pgdata, *vaddr;
559 err = pagecache_write_begin(file, file->f_mapping,
560 offset, len, 0,
561 &page, &pgdata);
562 if (err < 0)
563 goto fail;
565 vaddr = kmap(page);
566 memcpy(vaddr, data, len);
567 kunmap(page);
569 err = pagecache_write_end(file, file->f_mapping,
570 offset, len, len,
571 page, pgdata);
572 if (err < 0)
573 goto fail;
575 size -= len;
576 data += len;
577 offset += len;
578 } while (size);
580 return obj;
582 fail:
583 i915_gem_object_put(obj);
584 return ERR_PTR(err);
587 static int init_shmem(struct intel_memory_region *mem)
589 int err;
591 err = i915_gemfs_init(mem->i915);
592 if (err) {
593 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
594 err);
597 intel_memory_region_set_name(mem, "system");
599 return 0; /* Don't error, we can simply fallback to the kernel mnt */
602 static void release_shmem(struct intel_memory_region *mem)
604 i915_gemfs_fini(mem->i915);
607 static const struct intel_memory_region_ops shmem_region_ops = {
608 .init = init_shmem,
609 .release = release_shmem,
610 .create_object = create_shmem,
613 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915)
615 return intel_memory_region_create(i915, 0,
616 totalram_pages() << PAGE_SHIFT,
617 PAGE_SIZE, 0,
618 &shmem_region_ops);