treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gem / i915_gem_shrinker.c
blobf7e4b39c734f36e76d79d0ae2c250d709fb7ba8d
1 /*
2 * SPDX-License-Identifier: MIT
4 * Copyright © 2008-2015 Intel Corporation
5 */
7 #include <linux/oom.h>
8 #include <linux/sched/mm.h>
9 #include <linux/shmem_fs.h>
10 #include <linux/slab.h>
11 #include <linux/swap.h>
12 #include <linux/pci.h>
13 #include <linux/dma-buf.h>
14 #include <linux/vmalloc.h>
15 #include <drm/i915_drm.h>
17 #include "i915_trace.h"
19 static bool swap_available(void)
21 return get_nr_swap_pages() > 0;
24 static bool can_release_pages(struct drm_i915_gem_object *obj)
26 /* Consider only shrinkable ojects. */
27 if (!i915_gem_object_is_shrinkable(obj))
28 return false;
31 * Only report true if by unbinding the object and putting its pages
32 * we can actually make forward progress towards freeing physical
33 * pages.
35 * If the pages are pinned for any other reason than being bound
36 * to the GPU, simply unbinding from the GPU is not going to succeed
37 * in releasing our pin count on the pages themselves.
39 if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count))
40 return false;
43 * We can only return physical pages to the system if we can either
44 * discard the contents (because the user has marked them as being
45 * purgeable) or if we can move their contents out to swap.
47 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
50 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj,
51 unsigned long shrink)
53 unsigned long flags;
55 flags = 0;
56 if (shrink & I915_SHRINK_ACTIVE)
57 flags = I915_GEM_OBJECT_UNBIND_ACTIVE;
59 if (i915_gem_object_unbind(obj, flags) == 0)
60 __i915_gem_object_put_pages(obj);
62 return !i915_gem_object_has_pages(obj);
65 static void try_to_writeback(struct drm_i915_gem_object *obj,
66 unsigned int flags)
68 switch (obj->mm.madv) {
69 case I915_MADV_DONTNEED:
70 i915_gem_object_truncate(obj);
71 case __I915_MADV_PURGED:
72 return;
75 if (flags & I915_SHRINK_WRITEBACK)
76 i915_gem_object_writeback(obj);
79 /**
80 * i915_gem_shrink - Shrink buffer object caches
81 * @i915: i915 device
82 * @target: amount of memory to make available, in pages
83 * @nr_scanned: optional output for number of pages scanned (incremental)
84 * @shrink: control flags for selecting cache types
86 * This function is the main interface to the shrinker. It will try to release
87 * up to @target pages of main memory backing storage from buffer objects.
88 * Selection of the specific caches can be done with @flags. This is e.g. useful
89 * when purgeable objects should be removed from caches preferentially.
91 * Note that it's not guaranteed that released amount is actually available as
92 * free system memory - the pages might still be in-used to due to other reasons
93 * (like cpu mmaps) or the mm core has reused them before we could grab them.
94 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
95 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
97 * Also note that any kind of pinning (both per-vma address space pins and
98 * backing storage pins at the buffer object level) result in the shrinker code
99 * having to skip the object.
101 * Returns:
102 * The number of pages of backing storage actually released.
104 unsigned long
105 i915_gem_shrink(struct drm_i915_private *i915,
106 unsigned long target,
107 unsigned long *nr_scanned,
108 unsigned int shrink)
110 const struct {
111 struct list_head *list;
112 unsigned int bit;
113 } phases[] = {
114 { &i915->mm.purge_list, ~0u },
116 &i915->mm.shrink_list,
117 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
119 { NULL, 0 },
120 }, *phase;
121 intel_wakeref_t wakeref = 0;
122 unsigned long count = 0;
123 unsigned long scanned = 0;
126 * When shrinking the active list, we should also consider active
127 * contexts. Active contexts are pinned until they are retired, and
128 * so can not be simply unbound to retire and unpin their pages. To
129 * shrink the contexts, we must wait until the gpu is idle and
130 * completed its switch to the kernel context. In short, we do
131 * not have a good mechanism for idling a specific context.
134 trace_i915_gem_shrink(i915, target, shrink);
137 * Unbinding of objects will require HW access; Let us not wake the
138 * device just to recover a little memory. If absolutely necessary,
139 * we will force the wake during oom-notifier.
141 if (shrink & I915_SHRINK_BOUND) {
142 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm);
143 if (!wakeref)
144 shrink &= ~I915_SHRINK_BOUND;
148 * As we may completely rewrite the (un)bound list whilst unbinding
149 * (due to retiring requests) we have to strictly process only
150 * one element of the list at the time, and recheck the list
151 * on every iteration.
153 * In particular, we must hold a reference whilst removing the
154 * object as we may end up waiting for and/or retiring the objects.
155 * This might release the final reference (held by the active list)
156 * and result in the object being freed from under us. This is
157 * similar to the precautions the eviction code must take whilst
158 * removing objects.
160 * Also note that although these lists do not hold a reference to
161 * the object we can safely grab one here: The final object
162 * unreferencing and the bound_list are both protected by the
163 * dev->struct_mutex and so we won't ever be able to observe an
164 * object on the bound_list with a reference count equals 0.
166 for (phase = phases; phase->list; phase++) {
167 struct list_head still_in_list;
168 struct drm_i915_gem_object *obj;
169 unsigned long flags;
171 if ((shrink & phase->bit) == 0)
172 continue;
174 INIT_LIST_HEAD(&still_in_list);
177 * We serialize our access to unreferenced objects through
178 * the use of the struct_mutex. While the objects are not
179 * yet freed (due to RCU then a workqueue) we still want
180 * to be able to shrink their pages, so they remain on
181 * the unbound/bound list until actually freed.
183 spin_lock_irqsave(&i915->mm.obj_lock, flags);
184 while (count < target &&
185 (obj = list_first_entry_or_null(phase->list,
186 typeof(*obj),
187 mm.link))) {
188 list_move_tail(&obj->mm.link, &still_in_list);
190 if (shrink & I915_SHRINK_VMAPS &&
191 !is_vmalloc_addr(obj->mm.mapping))
192 continue;
194 if (!(shrink & I915_SHRINK_ACTIVE) &&
195 i915_gem_object_is_framebuffer(obj))
196 continue;
198 if (!(shrink & I915_SHRINK_BOUND) &&
199 atomic_read(&obj->bind_count))
200 continue;
202 if (!can_release_pages(obj))
203 continue;
205 if (!kref_get_unless_zero(&obj->base.refcount))
206 continue;
208 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
210 if (unsafe_drop_pages(obj, shrink)) {
211 /* May arrive from get_pages on another bo */
212 mutex_lock(&obj->mm.lock);
213 if (!i915_gem_object_has_pages(obj)) {
214 try_to_writeback(obj, shrink);
215 count += obj->base.size >> PAGE_SHIFT;
217 mutex_unlock(&obj->mm.lock);
220 scanned += obj->base.size >> PAGE_SHIFT;
221 i915_gem_object_put(obj);
223 spin_lock_irqsave(&i915->mm.obj_lock, flags);
225 list_splice_tail(&still_in_list, phase->list);
226 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
229 if (shrink & I915_SHRINK_BOUND)
230 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
232 if (nr_scanned)
233 *nr_scanned += scanned;
234 return count;
238 * i915_gem_shrink_all - Shrink buffer object caches completely
239 * @i915: i915 device
241 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
242 * caches completely. It also first waits for and retires all outstanding
243 * requests to also be able to release backing storage for active objects.
245 * This should only be used in code to intentionally quiescent the gpu or as a
246 * last-ditch effort when memory seems to have run out.
248 * Returns:
249 * The number of pages of backing storage actually released.
251 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
253 intel_wakeref_t wakeref;
254 unsigned long freed = 0;
256 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
257 freed = i915_gem_shrink(i915, -1UL, NULL,
258 I915_SHRINK_BOUND |
259 I915_SHRINK_UNBOUND |
260 I915_SHRINK_ACTIVE);
263 return freed;
266 static unsigned long
267 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
269 struct drm_i915_private *i915 =
270 container_of(shrinker, struct drm_i915_private, mm.shrinker);
271 unsigned long num_objects;
272 unsigned long count;
274 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
275 num_objects = READ_ONCE(i915->mm.shrink_count);
278 * Update our preferred vmscan batch size for the next pass.
279 * Our rough guess for an effective batch size is roughly 2
280 * available GEM objects worth of pages. That is we don't want
281 * the shrinker to fire, until it is worth the cost of freeing an
282 * entire GEM object.
284 if (num_objects) {
285 unsigned long avg = 2 * count / num_objects;
287 i915->mm.shrinker.batch =
288 max((i915->mm.shrinker.batch + avg) >> 1,
289 128ul /* default SHRINK_BATCH */);
292 return count;
295 static unsigned long
296 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
298 struct drm_i915_private *i915 =
299 container_of(shrinker, struct drm_i915_private, mm.shrinker);
300 unsigned long freed;
302 sc->nr_scanned = 0;
304 freed = i915_gem_shrink(i915,
305 sc->nr_to_scan,
306 &sc->nr_scanned,
307 I915_SHRINK_BOUND |
308 I915_SHRINK_UNBOUND);
309 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
310 intel_wakeref_t wakeref;
312 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
313 freed += i915_gem_shrink(i915,
314 sc->nr_to_scan - sc->nr_scanned,
315 &sc->nr_scanned,
316 I915_SHRINK_ACTIVE |
317 I915_SHRINK_BOUND |
318 I915_SHRINK_UNBOUND |
319 I915_SHRINK_WRITEBACK);
323 return sc->nr_scanned ? freed : SHRINK_STOP;
326 static int
327 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
329 struct drm_i915_private *i915 =
330 container_of(nb, struct drm_i915_private, mm.oom_notifier);
331 struct drm_i915_gem_object *obj;
332 unsigned long unevictable, available, freed_pages;
333 intel_wakeref_t wakeref;
334 unsigned long flags;
336 freed_pages = 0;
337 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
338 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
339 I915_SHRINK_ACTIVE |
340 I915_SHRINK_BOUND |
341 I915_SHRINK_UNBOUND |
342 I915_SHRINK_WRITEBACK);
344 /* Because we may be allocating inside our own driver, we cannot
345 * assert that there are no objects with pinned pages that are not
346 * being pointed to by hardware.
348 available = unevictable = 0;
349 spin_lock_irqsave(&i915->mm.obj_lock, flags);
350 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
351 if (!can_release_pages(obj))
352 unevictable += obj->base.size >> PAGE_SHIFT;
353 else
354 available += obj->base.size >> PAGE_SHIFT;
356 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
358 if (freed_pages || available)
359 pr_info("Purging GPU memory, %lu pages freed, "
360 "%lu pages still pinned, %lu pages left available.\n",
361 freed_pages, unevictable, available);
363 *(unsigned long *)ptr += freed_pages;
364 return NOTIFY_DONE;
367 static int
368 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
370 struct drm_i915_private *i915 =
371 container_of(nb, struct drm_i915_private, mm.vmap_notifier);
372 struct i915_vma *vma, *next;
373 unsigned long freed_pages = 0;
374 intel_wakeref_t wakeref;
376 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
377 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
378 I915_SHRINK_BOUND |
379 I915_SHRINK_UNBOUND |
380 I915_SHRINK_VMAPS);
382 /* We also want to clear any cached iomaps as they wrap vmap */
383 mutex_lock(&i915->ggtt.vm.mutex);
384 list_for_each_entry_safe(vma, next,
385 &i915->ggtt.vm.bound_list, vm_link) {
386 unsigned long count = vma->node.size >> PAGE_SHIFT;
388 if (!vma->iomap || i915_vma_is_active(vma))
389 continue;
391 if (__i915_vma_unbind(vma) == 0)
392 freed_pages += count;
394 mutex_unlock(&i915->ggtt.vm.mutex);
396 *(unsigned long *)ptr += freed_pages;
397 return NOTIFY_DONE;
400 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915)
402 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
403 i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
404 i915->mm.shrinker.seeks = DEFAULT_SEEKS;
405 i915->mm.shrinker.batch = 4096;
406 WARN_ON(register_shrinker(&i915->mm.shrinker));
408 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
409 WARN_ON(register_oom_notifier(&i915->mm.oom_notifier));
411 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
412 WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier));
415 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915)
417 WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
418 WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier));
419 unregister_shrinker(&i915->mm.shrinker);
422 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
423 struct mutex *mutex)
425 bool unlock = false;
427 if (!IS_ENABLED(CONFIG_LOCKDEP))
428 return;
430 if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) {
431 mutex_acquire(&i915->drm.struct_mutex.dep_map,
432 I915_MM_NORMAL, 0, _RET_IP_);
433 unlock = true;
436 fs_reclaim_acquire(GFP_KERNEL);
438 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
439 mutex_release(&mutex->dep_map, _RET_IP_);
441 fs_reclaim_release(GFP_KERNEL);
443 if (unlock)
444 mutex_release(&i915->drm.struct_mutex.dep_map, _RET_IP_);
447 #define obj_to_i915(obj__) to_i915((obj__)->base.dev)
449 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj)
451 struct drm_i915_private *i915 = obj_to_i915(obj);
452 unsigned long flags;
455 * We can only be called while the pages are pinned or when
456 * the pages are released. If pinned, we should only be called
457 * from a single caller under controlled conditions; and on release
458 * only one caller may release us. Neither the two may cross.
460 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0))
461 return;
463 spin_lock_irqsave(&i915->mm.obj_lock, flags);
464 if (!atomic_fetch_inc(&obj->mm.shrink_pin) &&
465 !list_empty(&obj->mm.link)) {
466 list_del_init(&obj->mm.link);
467 i915->mm.shrink_count--;
468 i915->mm.shrink_memory -= obj->base.size;
470 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
473 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj,
474 struct list_head *head)
476 struct drm_i915_private *i915 = obj_to_i915(obj);
477 unsigned long flags;
479 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
480 if (!i915_gem_object_is_shrinkable(obj))
481 return;
483 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1))
484 return;
486 spin_lock_irqsave(&i915->mm.obj_lock, flags);
487 GEM_BUG_ON(!kref_read(&obj->base.refcount));
488 if (atomic_dec_and_test(&obj->mm.shrink_pin)) {
489 GEM_BUG_ON(!list_empty(&obj->mm.link));
491 list_add_tail(&obj->mm.link, head);
492 i915->mm.shrink_count++;
493 i915->mm.shrink_memory += obj->base.size;
496 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
499 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj)
501 __i915_gem_object_make_shrinkable(obj,
502 &obj_to_i915(obj)->mm.shrink_list);
505 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj)
507 __i915_gem_object_make_shrinkable(obj,
508 &obj_to_i915(obj)->mm.purge_list);