2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
32 #include <drm/i915_drm.h>
34 #include "gem/i915_gem_context.h"
36 #include "gen6_ppgtt.h"
38 #include "i915_trace.h"
39 #include "intel_context.h"
41 #include "intel_gt_irq.h"
42 #include "intel_gt_pm_irq.h"
43 #include "intel_reset.h"
44 #include "intel_ring.h"
45 #include "intel_workarounds.h"
47 /* Rough estimate of the typical request size, performing a flush,
48 * set-context and then emitting the batch.
50 #define LEGACY_REQUEST_SIZE 200
53 gen2_render_ring_flush(struct i915_request
*rq
, u32 mode
)
55 unsigned int num_store_dw
;
60 if (mode
& EMIT_INVALIDATE
)
62 if (mode
& EMIT_FLUSH
)
65 cs
= intel_ring_begin(rq
, 2 + 3 * num_store_dw
);
70 while (num_store_dw
--) {
71 *cs
++ = MI_STORE_DWORD_IMM
| MI_MEM_VIRTUAL
;
72 *cs
++ = intel_gt_scratch_offset(rq
->engine
->gt
,
73 INTEL_GT_SCRATCH_FIELD_DEFAULT
);
76 *cs
++ = MI_FLUSH
| MI_NO_WRITE_FLUSH
;
78 intel_ring_advance(rq
, cs
);
84 gen4_render_ring_flush(struct i915_request
*rq
, u32 mode
)
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
101 * I915_GEM_DOMAIN_COMMAND may not exist?
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
118 if (mode
& EMIT_INVALIDATE
) {
120 if (IS_G4X(rq
->i915
) || IS_GEN(rq
->i915
, 5))
121 cmd
|= MI_INVALIDATE_ISP
;
125 if (mode
& EMIT_INVALIDATE
)
128 cs
= intel_ring_begin(rq
, i
);
135 * A random delay to let the CS invalidate take effect? Without this
136 * delay, the GPU relocation path fails as the CS does not see
137 * the updated contents. Just as important, if we apply the flushes
138 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
139 * write and before the invalidate on the next batch), the relocations
140 * still fail. This implies that is a delay following invalidation
141 * that is required to reset the caches as opposed to a delay to
142 * ensure the memory is written.
144 if (mode
& EMIT_INVALIDATE
) {
145 *cs
++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
;
146 *cs
++ = intel_gt_scratch_offset(rq
->engine
->gt
,
147 INTEL_GT_SCRATCH_FIELD_DEFAULT
) |
148 PIPE_CONTROL_GLOBAL_GTT
;
152 for (i
= 0; i
< 12; i
++)
155 *cs
++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
;
156 *cs
++ = intel_gt_scratch_offset(rq
->engine
->gt
,
157 INTEL_GT_SCRATCH_FIELD_DEFAULT
) |
158 PIPE_CONTROL_GLOBAL_GTT
;
165 intel_ring_advance(rq
, cs
);
171 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
172 * implementing two workarounds on gen6. From section 1.4.7.1
173 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
175 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
176 * produced by non-pipelined state commands), software needs to first
177 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
180 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
181 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
183 * And the workaround for these two requires this workaround first:
185 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
186 * BEFORE the pipe-control with a post-sync op and no write-cache
189 * And this last workaround is tricky because of the requirements on
190 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
193 * "1 of the following must also be set:
194 * - Render Target Cache Flush Enable ([12] of DW1)
195 * - Depth Cache Flush Enable ([0] of DW1)
196 * - Stall at Pixel Scoreboard ([1] of DW1)
197 * - Depth Stall ([13] of DW1)
198 * - Post-Sync Operation ([13] of DW1)
199 * - Notify Enable ([8] of DW1)"
201 * The cache flushes require the workaround flush that triggered this
202 * one, so we can't use it. Depth stall would trigger the same.
203 * Post-sync nonzero is what triggered this second workaround, so we
204 * can't use that one either. Notify enable is IRQs, which aren't
205 * really our business. That leaves only stall at scoreboard.
208 gen6_emit_post_sync_nonzero_flush(struct i915_request
*rq
)
211 intel_gt_scratch_offset(rq
->engine
->gt
,
212 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH
);
215 cs
= intel_ring_begin(rq
, 6);
219 *cs
++ = GFX_OP_PIPE_CONTROL(5);
220 *cs
++ = PIPE_CONTROL_CS_STALL
| PIPE_CONTROL_STALL_AT_SCOREBOARD
;
221 *cs
++ = scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
;
222 *cs
++ = 0; /* low dword */
223 *cs
++ = 0; /* high dword */
225 intel_ring_advance(rq
, cs
);
227 cs
= intel_ring_begin(rq
, 6);
231 *cs
++ = GFX_OP_PIPE_CONTROL(5);
232 *cs
++ = PIPE_CONTROL_QW_WRITE
;
233 *cs
++ = scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
;
237 intel_ring_advance(rq
, cs
);
243 gen6_render_ring_flush(struct i915_request
*rq
, u32 mode
)
246 intel_gt_scratch_offset(rq
->engine
->gt
,
247 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH
);
251 /* Force SNB workarounds for PIPE_CONTROL flushes */
252 ret
= gen6_emit_post_sync_nonzero_flush(rq
);
256 /* Just flush everything. Experiments have shown that reducing the
257 * number of bits based on the write domains has little performance
260 if (mode
& EMIT_FLUSH
) {
261 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
262 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
264 * Ensure that any following seqno writes only happen
265 * when the render cache is indeed flushed.
267 flags
|= PIPE_CONTROL_CS_STALL
;
269 if (mode
& EMIT_INVALIDATE
) {
270 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
271 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
272 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
273 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
274 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
275 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
277 * TLB invalidate requires a post-sync write.
279 flags
|= PIPE_CONTROL_QW_WRITE
| PIPE_CONTROL_CS_STALL
;
282 cs
= intel_ring_begin(rq
, 4);
286 *cs
++ = GFX_OP_PIPE_CONTROL(4);
288 *cs
++ = scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
;
290 intel_ring_advance(rq
, cs
);
295 static u32
*gen6_rcs_emit_breadcrumb(struct i915_request
*rq
, u32
*cs
)
297 /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
298 *cs
++ = GFX_OP_PIPE_CONTROL(4);
299 *cs
++ = PIPE_CONTROL_CS_STALL
| PIPE_CONTROL_STALL_AT_SCOREBOARD
;
303 *cs
++ = GFX_OP_PIPE_CONTROL(4);
304 *cs
++ = PIPE_CONTROL_QW_WRITE
;
305 *cs
++ = intel_gt_scratch_offset(rq
->engine
->gt
,
306 INTEL_GT_SCRATCH_FIELD_DEFAULT
) |
307 PIPE_CONTROL_GLOBAL_GTT
;
310 /* Finally we can flush and with it emit the breadcrumb */
311 *cs
++ = GFX_OP_PIPE_CONTROL(4);
312 *cs
++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
|
313 PIPE_CONTROL_DEPTH_CACHE_FLUSH
|
314 PIPE_CONTROL_DC_FLUSH_ENABLE
|
315 PIPE_CONTROL_QW_WRITE
|
316 PIPE_CONTROL_CS_STALL
);
317 *cs
++ = i915_request_active_timeline(rq
)->hwsp_offset
|
318 PIPE_CONTROL_GLOBAL_GTT
;
319 *cs
++ = rq
->fence
.seqno
;
321 *cs
++ = MI_USER_INTERRUPT
;
324 rq
->tail
= intel_ring_offset(rq
, cs
);
325 assert_ring_tail_valid(rq
->ring
, rq
->tail
);
331 gen7_render_ring_cs_stall_wa(struct i915_request
*rq
)
335 cs
= intel_ring_begin(rq
, 4);
339 *cs
++ = GFX_OP_PIPE_CONTROL(4);
340 *cs
++ = PIPE_CONTROL_CS_STALL
| PIPE_CONTROL_STALL_AT_SCOREBOARD
;
343 intel_ring_advance(rq
, cs
);
349 gen7_render_ring_flush(struct i915_request
*rq
, u32 mode
)
352 intel_gt_scratch_offset(rq
->engine
->gt
,
353 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH
);
357 * Ensure that any following seqno writes only happen when the render
358 * cache is indeed flushed.
360 * Workaround: 4th PIPE_CONTROL command (except the ones with only
361 * read-cache invalidate bits set) must have the CS_STALL bit set. We
362 * don't try to be clever and just set it unconditionally.
364 flags
|= PIPE_CONTROL_CS_STALL
;
367 * CS_STALL suggests at least a post-sync write.
369 flags
|= PIPE_CONTROL_QW_WRITE
;
370 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
372 /* Just flush everything. Experiments have shown that reducing the
373 * number of bits based on the write domains has little performance
376 if (mode
& EMIT_FLUSH
) {
377 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
378 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
379 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
380 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
382 if (mode
& EMIT_INVALIDATE
) {
383 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
384 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
385 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
386 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
387 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
388 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
389 flags
|= PIPE_CONTROL_MEDIA_STATE_CLEAR
;
391 /* Workaround: we must issue a pipe_control with CS-stall bit
392 * set before a pipe_control command that has the state cache
393 * invalidate bit set. */
394 gen7_render_ring_cs_stall_wa(rq
);
397 cs
= intel_ring_begin(rq
, 4);
401 *cs
++ = GFX_OP_PIPE_CONTROL(4);
403 *cs
++ = scratch_addr
;
405 intel_ring_advance(rq
, cs
);
410 static u32
*gen7_rcs_emit_breadcrumb(struct i915_request
*rq
, u32
*cs
)
412 *cs
++ = GFX_OP_PIPE_CONTROL(4);
413 *cs
++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
|
414 PIPE_CONTROL_DEPTH_CACHE_FLUSH
|
415 PIPE_CONTROL_DC_FLUSH_ENABLE
|
416 PIPE_CONTROL_FLUSH_ENABLE
|
417 PIPE_CONTROL_QW_WRITE
|
418 PIPE_CONTROL_GLOBAL_GTT_IVB
|
419 PIPE_CONTROL_CS_STALL
);
420 *cs
++ = i915_request_active_timeline(rq
)->hwsp_offset
;
421 *cs
++ = rq
->fence
.seqno
;
423 *cs
++ = MI_USER_INTERRUPT
;
426 rq
->tail
= intel_ring_offset(rq
, cs
);
427 assert_ring_tail_valid(rq
->ring
, rq
->tail
);
432 static u32
*gen6_xcs_emit_breadcrumb(struct i915_request
*rq
, u32
*cs
)
434 GEM_BUG_ON(i915_request_active_timeline(rq
)->hwsp_ggtt
!= rq
->engine
->status_page
.vma
);
435 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq
)->hwsp_offset
) != I915_GEM_HWS_SEQNO_ADDR
);
437 *cs
++ = MI_FLUSH_DW
| MI_FLUSH_DW_OP_STOREDW
| MI_FLUSH_DW_STORE_INDEX
;
438 *cs
++ = I915_GEM_HWS_SEQNO_ADDR
| MI_FLUSH_DW_USE_GTT
;
439 *cs
++ = rq
->fence
.seqno
;
441 *cs
++ = MI_USER_INTERRUPT
;
443 rq
->tail
= intel_ring_offset(rq
, cs
);
444 assert_ring_tail_valid(rq
->ring
, rq
->tail
);
449 #define GEN7_XCS_WA 32
450 static u32
*gen7_xcs_emit_breadcrumb(struct i915_request
*rq
, u32
*cs
)
454 GEM_BUG_ON(i915_request_active_timeline(rq
)->hwsp_ggtt
!= rq
->engine
->status_page
.vma
);
455 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq
)->hwsp_offset
) != I915_GEM_HWS_SEQNO_ADDR
);
457 *cs
++ = MI_FLUSH_DW
| MI_INVALIDATE_TLB
|
458 MI_FLUSH_DW_OP_STOREDW
| MI_FLUSH_DW_STORE_INDEX
;
459 *cs
++ = I915_GEM_HWS_SEQNO_ADDR
| MI_FLUSH_DW_USE_GTT
;
460 *cs
++ = rq
->fence
.seqno
;
462 for (i
= 0; i
< GEN7_XCS_WA
; i
++) {
463 *cs
++ = MI_STORE_DWORD_INDEX
;
464 *cs
++ = I915_GEM_HWS_SEQNO_ADDR
;
465 *cs
++ = rq
->fence
.seqno
;
472 *cs
++ = MI_USER_INTERRUPT
;
475 rq
->tail
= intel_ring_offset(rq
, cs
);
476 assert_ring_tail_valid(rq
->ring
, rq
->tail
);
482 static void set_hwstam(struct intel_engine_cs
*engine
, u32 mask
)
485 * Keep the render interrupt unmasked as this papers over
486 * lost interrupts following a reset.
488 if (engine
->class == RENDER_CLASS
) {
489 if (INTEL_GEN(engine
->i915
) >= 6)
492 mask
&= ~I915_USER_INTERRUPT
;
495 intel_engine_set_hwsp_writemask(engine
, mask
);
498 static void set_hws_pga(struct intel_engine_cs
*engine
, phys_addr_t phys
)
502 addr
= lower_32_bits(phys
);
503 if (INTEL_GEN(engine
->i915
) >= 4)
504 addr
|= (phys
>> 28) & 0xf0;
506 intel_uncore_write(engine
->uncore
, HWS_PGA
, addr
);
509 static struct page
*status_page(struct intel_engine_cs
*engine
)
511 struct drm_i915_gem_object
*obj
= engine
->status_page
.vma
->obj
;
513 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj
));
514 return sg_page(obj
->mm
.pages
->sgl
);
517 static void ring_setup_phys_status_page(struct intel_engine_cs
*engine
)
519 set_hws_pga(engine
, PFN_PHYS(page_to_pfn(status_page(engine
))));
520 set_hwstam(engine
, ~0u);
523 static void set_hwsp(struct intel_engine_cs
*engine
, u32 offset
)
528 * The ring status page addresses are no longer next to the rest of
529 * the ring registers as of gen7.
531 if (IS_GEN(engine
->i915
, 7)) {
532 switch (engine
->id
) {
534 * No more rings exist on Gen7. Default case is only to shut up
535 * gcc switch check warning.
538 GEM_BUG_ON(engine
->id
);
541 hwsp
= RENDER_HWS_PGA_GEN7
;
544 hwsp
= BLT_HWS_PGA_GEN7
;
547 hwsp
= BSD_HWS_PGA_GEN7
;
550 hwsp
= VEBOX_HWS_PGA_GEN7
;
553 } else if (IS_GEN(engine
->i915
, 6)) {
554 hwsp
= RING_HWS_PGA_GEN6(engine
->mmio_base
);
556 hwsp
= RING_HWS_PGA(engine
->mmio_base
);
559 intel_uncore_write(engine
->uncore
, hwsp
, offset
);
560 intel_uncore_posting_read(engine
->uncore
, hwsp
);
563 static void flush_cs_tlb(struct intel_engine_cs
*engine
)
565 struct drm_i915_private
*dev_priv
= engine
->i915
;
567 if (!IS_GEN_RANGE(dev_priv
, 6, 7))
570 /* ring should be idle before issuing a sync flush*/
571 WARN_ON((ENGINE_READ(engine
, RING_MI_MODE
) & MODE_IDLE
) == 0);
573 ENGINE_WRITE(engine
, RING_INSTPM
,
574 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE
|
576 if (intel_wait_for_register(engine
->uncore
,
577 RING_INSTPM(engine
->mmio_base
),
578 INSTPM_SYNC_FLUSH
, 0,
580 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
584 static void ring_setup_status_page(struct intel_engine_cs
*engine
)
586 set_hwsp(engine
, i915_ggtt_offset(engine
->status_page
.vma
));
587 set_hwstam(engine
, ~0u);
589 flush_cs_tlb(engine
);
592 static bool stop_ring(struct intel_engine_cs
*engine
)
594 struct drm_i915_private
*dev_priv
= engine
->i915
;
596 if (INTEL_GEN(dev_priv
) > 2) {
598 RING_MI_MODE
, _MASKED_BIT_ENABLE(STOP_RING
));
599 if (intel_wait_for_register(engine
->uncore
,
600 RING_MI_MODE(engine
->mmio_base
),
604 DRM_ERROR("%s : timed out trying to stop ring\n",
608 * Sometimes we observe that the idle flag is not
609 * set even though the ring is empty. So double
610 * check before giving up.
612 if (ENGINE_READ(engine
, RING_HEAD
) !=
613 ENGINE_READ(engine
, RING_TAIL
))
618 ENGINE_WRITE(engine
, RING_HEAD
, ENGINE_READ(engine
, RING_TAIL
));
620 ENGINE_WRITE(engine
, RING_HEAD
, 0);
621 ENGINE_WRITE(engine
, RING_TAIL
, 0);
623 /* The ring must be empty before it is disabled */
624 ENGINE_WRITE(engine
, RING_CTL
, 0);
626 return (ENGINE_READ(engine
, RING_HEAD
) & HEAD_ADDR
) == 0;
629 static int xcs_resume(struct intel_engine_cs
*engine
)
631 struct drm_i915_private
*dev_priv
= engine
->i915
;
632 struct intel_ring
*ring
= engine
->legacy
.ring
;
635 ENGINE_TRACE(engine
, "ring:{HEAD:%04x, TAIL:%04x}\n",
636 ring
->head
, ring
->tail
);
638 intel_uncore_forcewake_get(engine
->uncore
, FORCEWAKE_ALL
);
640 /* WaClearRingBufHeadRegAtInit:ctg,elk */
641 if (!stop_ring(engine
)) {
642 /* G45 ring initialization often fails to reset head to zero */
643 DRM_DEBUG_DRIVER("%s head not reset to zero "
644 "ctl %08x head %08x tail %08x start %08x\n",
646 ENGINE_READ(engine
, RING_CTL
),
647 ENGINE_READ(engine
, RING_HEAD
),
648 ENGINE_READ(engine
, RING_TAIL
),
649 ENGINE_READ(engine
, RING_START
));
651 if (!stop_ring(engine
)) {
652 DRM_ERROR("failed to set %s head to zero "
653 "ctl %08x head %08x tail %08x start %08x\n",
655 ENGINE_READ(engine
, RING_CTL
),
656 ENGINE_READ(engine
, RING_HEAD
),
657 ENGINE_READ(engine
, RING_TAIL
),
658 ENGINE_READ(engine
, RING_START
));
664 if (HWS_NEEDS_PHYSICAL(dev_priv
))
665 ring_setup_phys_status_page(engine
);
667 ring_setup_status_page(engine
);
669 intel_engine_reset_breadcrumbs(engine
);
671 /* Enforce ordering by reading HEAD register back */
672 ENGINE_POSTING_READ(engine
, RING_HEAD
);
675 * Initialize the ring. This must happen _after_ we've cleared the ring
676 * registers with the above sequence (the readback of the HEAD registers
677 * also enforces ordering), otherwise the hw might lose the new ring
680 ENGINE_WRITE(engine
, RING_START
, i915_ggtt_offset(ring
->vma
));
682 /* Check that the ring offsets point within the ring! */
683 GEM_BUG_ON(!intel_ring_offset_valid(ring
, ring
->head
));
684 GEM_BUG_ON(!intel_ring_offset_valid(ring
, ring
->tail
));
685 intel_ring_update_space(ring
);
687 /* First wake the ring up to an empty/idle ring */
688 ENGINE_WRITE(engine
, RING_HEAD
, ring
->head
);
689 ENGINE_WRITE(engine
, RING_TAIL
, ring
->head
);
690 ENGINE_POSTING_READ(engine
, RING_TAIL
);
692 ENGINE_WRITE(engine
, RING_CTL
, RING_CTL_SIZE(ring
->size
) | RING_VALID
);
694 /* If the head is still not zero, the ring is dead */
695 if (intel_wait_for_register(engine
->uncore
,
696 RING_CTL(engine
->mmio_base
),
697 RING_VALID
, RING_VALID
,
699 DRM_ERROR("%s initialization failed "
700 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
702 ENGINE_READ(engine
, RING_CTL
),
703 ENGINE_READ(engine
, RING_CTL
) & RING_VALID
,
704 ENGINE_READ(engine
, RING_HEAD
), ring
->head
,
705 ENGINE_READ(engine
, RING_TAIL
), ring
->tail
,
706 ENGINE_READ(engine
, RING_START
),
707 i915_ggtt_offset(ring
->vma
));
712 if (INTEL_GEN(dev_priv
) > 2)
714 RING_MI_MODE
, _MASKED_BIT_DISABLE(STOP_RING
));
716 /* Now awake, let it get started */
717 if (ring
->tail
!= ring
->head
) {
718 ENGINE_WRITE(engine
, RING_TAIL
, ring
->tail
);
719 ENGINE_POSTING_READ(engine
, RING_TAIL
);
722 /* Papering over lost _interrupts_ immediately following the restart */
723 intel_engine_signal_breadcrumbs(engine
);
725 intel_uncore_forcewake_put(engine
->uncore
, FORCEWAKE_ALL
);
730 static void reset_prepare(struct intel_engine_cs
*engine
)
732 struct intel_uncore
*uncore
= engine
->uncore
;
733 const u32 base
= engine
->mmio_base
;
736 * We stop engines, otherwise we might get failed reset and a
737 * dead gpu (on elk). Also as modern gpu as kbl can suffer
738 * from system hang if batchbuffer is progressing when
739 * the reset is issued, regardless of READY_TO_RESET ack.
740 * Thus assume it is best to stop engines on all gens
741 * where we have a gpu reset.
743 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
745 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
747 * FIXME: Wa for more modern gens needs to be validated
749 ENGINE_TRACE(engine
, "\n");
751 if (intel_engine_stop_cs(engine
))
752 ENGINE_TRACE(engine
, "timed out on STOP_RING\n");
754 intel_uncore_write_fw(uncore
,
756 intel_uncore_read_fw(uncore
, RING_TAIL(base
)));
757 intel_uncore_posting_read_fw(uncore
, RING_HEAD(base
)); /* paranoia */
759 intel_uncore_write_fw(uncore
, RING_HEAD(base
), 0);
760 intel_uncore_write_fw(uncore
, RING_TAIL(base
), 0);
761 intel_uncore_posting_read_fw(uncore
, RING_TAIL(base
));
763 /* The ring must be empty before it is disabled */
764 intel_uncore_write_fw(uncore
, RING_CTL(base
), 0);
766 /* Check acts as a post */
767 if (intel_uncore_read_fw(uncore
, RING_HEAD(base
)))
768 ENGINE_TRACE(engine
, "ring head [%x] not parked\n",
769 intel_uncore_read_fw(uncore
, RING_HEAD(base
)));
772 static void reset_rewind(struct intel_engine_cs
*engine
, bool stalled
)
774 struct i915_request
*pos
, *rq
;
779 spin_lock_irqsave(&engine
->active
.lock
, flags
);
780 list_for_each_entry(pos
, &engine
->active
.requests
, sched
.link
) {
781 if (!i915_request_completed(pos
)) {
788 * The guilty request will get skipped on a hung engine.
790 * Users of client default contexts do not rely on logical
791 * state preserved between batches so it is safe to execute
792 * queued requests following the hang. Non default contexts
793 * rely on preserved state, so skipping a batch loses the
794 * evolution of the state and it needs to be considered corrupted.
795 * Executing more queued batches on top of corrupted state is
796 * risky. But we take the risk by trying to advance through
797 * the queued requests in order to make the client behaviour
798 * more predictable around resets, by not throwing away random
799 * amount of batches it has prepared for execution. Sophisticated
800 * clients can use gem_reset_stats_ioctl and dma fence status
801 * (exported via sync_file info ioctl on explicit fences) to observe
802 * when it loses the context state and should rebuild accordingly.
804 * The context ban, and ultimately the client ban, mechanism are safety
805 * valves if client submission ends up resulting in nothing more than
811 * Try to restore the logical GPU state to match the
812 * continuation of the request queue. If we skip the
813 * context/PD restore, then the next request may try to execute
814 * assuming that its context is valid and loaded on the GPU and
815 * so may try to access invalid memory, prompting repeated GPU
818 * If the request was guilty, we still restore the logical
819 * state in case the next request requires it (e.g. the
820 * aliasing ppgtt), but skip over the hung batch.
822 * If the request was innocent, we try to replay the request
823 * with the restored context.
825 __i915_request_reset(rq
, stalled
);
827 GEM_BUG_ON(rq
->ring
!= engine
->legacy
.ring
);
830 head
= engine
->legacy
.ring
->tail
;
832 engine
->legacy
.ring
->head
= intel_ring_wrap(engine
->legacy
.ring
, head
);
834 spin_unlock_irqrestore(&engine
->active
.lock
, flags
);
837 static void reset_finish(struct intel_engine_cs
*engine
)
841 static int rcs_resume(struct intel_engine_cs
*engine
)
843 struct drm_i915_private
*i915
= engine
->i915
;
844 struct intel_uncore
*uncore
= engine
->uncore
;
847 * Disable CONSTANT_BUFFER before it is loaded from the context
848 * image. For as it is loaded, it is executed and the stored
849 * address may no longer be valid, leading to a GPU hang.
851 * This imposes the requirement that userspace reload their
852 * CONSTANT_BUFFER on every batch, fortunately a requirement
853 * they are already accustomed to from before contexts were
857 intel_uncore_write(uncore
, ECOSKPD
,
858 _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE
));
860 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
861 if (IS_GEN_RANGE(i915
, 4, 6))
862 intel_uncore_write(uncore
, MI_MODE
,
863 _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH
));
865 /* We need to disable the AsyncFlip performance optimisations in order
866 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
867 * programmed to '1' on all products.
869 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
871 if (IS_GEN_RANGE(i915
, 6, 7))
872 intel_uncore_write(uncore
, MI_MODE
,
873 _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
875 /* Required for the hardware to program scanline values for waiting */
876 /* WaEnableFlushTlbInvalidationMode:snb */
878 intel_uncore_write(uncore
, GFX_MODE
,
879 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
));
881 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
883 intel_uncore_write(uncore
, GFX_MODE_GEN7
,
884 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
) |
885 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE
));
887 if (IS_GEN(i915
, 6)) {
888 /* From the Sandybridge PRM, volume 1 part 3, page 24:
889 * "If this bit is set, STCunit will have LRA as replacement
890 * policy. [...] This bit must be reset. LRA replacement
891 * policy is not supported."
893 intel_uncore_write(uncore
, CACHE_MODE_0
,
894 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
897 if (IS_GEN_RANGE(i915
, 6, 7))
898 intel_uncore_write(uncore
, INSTPM
,
899 _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
901 return xcs_resume(engine
);
904 static void reset_cancel(struct intel_engine_cs
*engine
)
906 struct i915_request
*request
;
909 spin_lock_irqsave(&engine
->active
.lock
, flags
);
911 /* Mark all submitted requests as skipped. */
912 list_for_each_entry(request
, &engine
->active
.requests
, sched
.link
) {
913 if (!i915_request_signaled(request
))
914 dma_fence_set_error(&request
->fence
, -EIO
);
916 i915_request_mark_complete(request
);
919 /* Remaining _unready_ requests will be nop'ed when submitted */
921 spin_unlock_irqrestore(&engine
->active
.lock
, flags
);
924 static void i9xx_submit_request(struct i915_request
*request
)
926 i915_request_submit(request
);
927 wmb(); /* paranoid flush writes out of the WCB before mmio */
929 ENGINE_WRITE(request
->engine
, RING_TAIL
,
930 intel_ring_set_tail(request
->ring
, request
->tail
));
933 static u32
*i9xx_emit_breadcrumb(struct i915_request
*rq
, u32
*cs
)
935 GEM_BUG_ON(i915_request_active_timeline(rq
)->hwsp_ggtt
!= rq
->engine
->status_page
.vma
);
936 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq
)->hwsp_offset
) != I915_GEM_HWS_SEQNO_ADDR
);
940 *cs
++ = MI_STORE_DWORD_INDEX
;
941 *cs
++ = I915_GEM_HWS_SEQNO_ADDR
;
942 *cs
++ = rq
->fence
.seqno
;
944 *cs
++ = MI_USER_INTERRUPT
;
947 rq
->tail
= intel_ring_offset(rq
, cs
);
948 assert_ring_tail_valid(rq
->ring
, rq
->tail
);
953 #define GEN5_WA_STORES 8 /* must be at least 1! */
954 static u32
*gen5_emit_breadcrumb(struct i915_request
*rq
, u32
*cs
)
958 GEM_BUG_ON(i915_request_active_timeline(rq
)->hwsp_ggtt
!= rq
->engine
->status_page
.vma
);
959 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq
)->hwsp_offset
) != I915_GEM_HWS_SEQNO_ADDR
);
963 BUILD_BUG_ON(GEN5_WA_STORES
< 1);
964 for (i
= 0; i
< GEN5_WA_STORES
; i
++) {
965 *cs
++ = MI_STORE_DWORD_INDEX
;
966 *cs
++ = I915_GEM_HWS_SEQNO_ADDR
;
967 *cs
++ = rq
->fence
.seqno
;
970 *cs
++ = MI_USER_INTERRUPT
;
972 rq
->tail
= intel_ring_offset(rq
, cs
);
973 assert_ring_tail_valid(rq
->ring
, rq
->tail
);
977 #undef GEN5_WA_STORES
980 gen5_irq_enable(struct intel_engine_cs
*engine
)
982 gen5_gt_enable_irq(engine
->gt
, engine
->irq_enable_mask
);
986 gen5_irq_disable(struct intel_engine_cs
*engine
)
988 gen5_gt_disable_irq(engine
->gt
, engine
->irq_enable_mask
);
992 i9xx_irq_enable(struct intel_engine_cs
*engine
)
994 engine
->i915
->irq_mask
&= ~engine
->irq_enable_mask
;
995 intel_uncore_write(engine
->uncore
, GEN2_IMR
, engine
->i915
->irq_mask
);
996 intel_uncore_posting_read_fw(engine
->uncore
, GEN2_IMR
);
1000 i9xx_irq_disable(struct intel_engine_cs
*engine
)
1002 engine
->i915
->irq_mask
|= engine
->irq_enable_mask
;
1003 intel_uncore_write(engine
->uncore
, GEN2_IMR
, engine
->i915
->irq_mask
);
1007 i8xx_irq_enable(struct intel_engine_cs
*engine
)
1009 struct drm_i915_private
*i915
= engine
->i915
;
1011 i915
->irq_mask
&= ~engine
->irq_enable_mask
;
1012 intel_uncore_write16(&i915
->uncore
, GEN2_IMR
, i915
->irq_mask
);
1013 ENGINE_POSTING_READ16(engine
, RING_IMR
);
1017 i8xx_irq_disable(struct intel_engine_cs
*engine
)
1019 struct drm_i915_private
*i915
= engine
->i915
;
1021 i915
->irq_mask
|= engine
->irq_enable_mask
;
1022 intel_uncore_write16(&i915
->uncore
, GEN2_IMR
, i915
->irq_mask
);
1026 bsd_ring_flush(struct i915_request
*rq
, u32 mode
)
1030 cs
= intel_ring_begin(rq
, 2);
1036 intel_ring_advance(rq
, cs
);
1041 gen6_irq_enable(struct intel_engine_cs
*engine
)
1043 ENGINE_WRITE(engine
, RING_IMR
,
1044 ~(engine
->irq_enable_mask
| engine
->irq_keep_mask
));
1046 /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1047 ENGINE_POSTING_READ(engine
, RING_IMR
);
1049 gen5_gt_enable_irq(engine
->gt
, engine
->irq_enable_mask
);
1053 gen6_irq_disable(struct intel_engine_cs
*engine
)
1055 ENGINE_WRITE(engine
, RING_IMR
, ~engine
->irq_keep_mask
);
1056 gen5_gt_disable_irq(engine
->gt
, engine
->irq_enable_mask
);
1060 hsw_vebox_irq_enable(struct intel_engine_cs
*engine
)
1062 ENGINE_WRITE(engine
, RING_IMR
, ~engine
->irq_enable_mask
);
1064 /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1065 ENGINE_POSTING_READ(engine
, RING_IMR
);
1067 gen6_gt_pm_unmask_irq(engine
->gt
, engine
->irq_enable_mask
);
1071 hsw_vebox_irq_disable(struct intel_engine_cs
*engine
)
1073 ENGINE_WRITE(engine
, RING_IMR
, ~0);
1074 gen6_gt_pm_mask_irq(engine
->gt
, engine
->irq_enable_mask
);
1078 i965_emit_bb_start(struct i915_request
*rq
,
1079 u64 offset
, u32 length
,
1080 unsigned int dispatch_flags
)
1084 cs
= intel_ring_begin(rq
, 2);
1088 *cs
++ = MI_BATCH_BUFFER_START
| MI_BATCH_GTT
| (dispatch_flags
&
1089 I915_DISPATCH_SECURE
? 0 : MI_BATCH_NON_SECURE_I965
);
1091 intel_ring_advance(rq
, cs
);
1096 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1097 #define I830_BATCH_LIMIT SZ_256K
1098 #define I830_TLB_ENTRIES (2)
1099 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1101 i830_emit_bb_start(struct i915_request
*rq
,
1102 u64 offset
, u32 len
,
1103 unsigned int dispatch_flags
)
1105 u32
*cs
, cs_offset
=
1106 intel_gt_scratch_offset(rq
->engine
->gt
,
1107 INTEL_GT_SCRATCH_FIELD_DEFAULT
);
1109 GEM_BUG_ON(rq
->engine
->gt
->scratch
->size
< I830_WA_SIZE
);
1111 cs
= intel_ring_begin(rq
, 6);
1115 /* Evict the invalid PTE TLBs */
1116 *cs
++ = COLOR_BLT_CMD
| BLT_WRITE_RGBA
;
1117 *cs
++ = BLT_DEPTH_32
| BLT_ROP_COLOR_COPY
| 4096;
1118 *cs
++ = I830_TLB_ENTRIES
<< 16 | 4; /* load each page */
1122 intel_ring_advance(rq
, cs
);
1124 if ((dispatch_flags
& I915_DISPATCH_PINNED
) == 0) {
1125 if (len
> I830_BATCH_LIMIT
)
1128 cs
= intel_ring_begin(rq
, 6 + 2);
1132 /* Blit the batch (which has now all relocs applied) to the
1133 * stable batch scratch bo area (so that the CS never
1134 * stumbles over its tlb invalidation bug) ...
1136 *cs
++ = SRC_COPY_BLT_CMD
| BLT_WRITE_RGBA
| (6 - 2);
1137 *cs
++ = BLT_DEPTH_32
| BLT_ROP_SRC_COPY
| 4096;
1138 *cs
++ = DIV_ROUND_UP(len
, 4096) << 16 | 4096;
1145 intel_ring_advance(rq
, cs
);
1147 /* ... and execute it. */
1151 cs
= intel_ring_begin(rq
, 2);
1155 *cs
++ = MI_BATCH_BUFFER_START
| MI_BATCH_GTT
;
1156 *cs
++ = offset
| (dispatch_flags
& I915_DISPATCH_SECURE
? 0 :
1157 MI_BATCH_NON_SECURE
);
1158 intel_ring_advance(rq
, cs
);
1164 i915_emit_bb_start(struct i915_request
*rq
,
1165 u64 offset
, u32 len
,
1166 unsigned int dispatch_flags
)
1170 cs
= intel_ring_begin(rq
, 2);
1174 *cs
++ = MI_BATCH_BUFFER_START
| MI_BATCH_GTT
;
1175 *cs
++ = offset
| (dispatch_flags
& I915_DISPATCH_SECURE
? 0 :
1176 MI_BATCH_NON_SECURE
);
1177 intel_ring_advance(rq
, cs
);
1182 static void __ring_context_fini(struct intel_context
*ce
)
1184 i915_vma_put(ce
->state
);
1187 static void ring_context_destroy(struct kref
*ref
)
1189 struct intel_context
*ce
= container_of(ref
, typeof(*ce
), ref
);
1191 GEM_BUG_ON(intel_context_is_pinned(ce
));
1194 __ring_context_fini(ce
);
1196 intel_context_fini(ce
);
1197 intel_context_free(ce
);
1200 static struct i915_address_space
*vm_alias(struct intel_context
*ce
)
1202 struct i915_address_space
*vm
;
1205 if (i915_is_ggtt(vm
))
1206 vm
= &i915_vm_to_ggtt(vm
)->alias
->vm
;
1211 static int __context_pin_ppgtt(struct intel_context
*ce
)
1213 struct i915_address_space
*vm
;
1218 err
= gen6_ppgtt_pin(i915_vm_to_ppgtt((vm
)));
1223 static void __context_unpin_ppgtt(struct intel_context
*ce
)
1225 struct i915_address_space
*vm
;
1229 gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm
));
1232 static void ring_context_unpin(struct intel_context
*ce
)
1234 __context_unpin_ppgtt(ce
);
1237 static struct i915_vma
*
1238 alloc_context_vma(struct intel_engine_cs
*engine
)
1240 struct drm_i915_private
*i915
= engine
->i915
;
1241 struct drm_i915_gem_object
*obj
;
1242 struct i915_vma
*vma
;
1245 obj
= i915_gem_object_create_shmem(i915
, engine
->context_size
);
1247 return ERR_CAST(obj
);
1250 * Try to make the context utilize L3 as well as LLC.
1252 * On VLV we don't have L3 controls in the PTEs so we
1253 * shouldn't touch the cache level, especially as that
1254 * would make the object snooped which might have a
1255 * negative performance impact.
1257 * Snooping is required on non-llc platforms in execlist
1258 * mode, but since all GGTT accesses use PAT entry 0 we
1259 * get snooping anyway regardless of cache_level.
1261 * This is only applicable for Ivy Bridge devices since
1262 * later platforms don't have L3 control bits in the PTE.
1264 if (IS_IVYBRIDGE(i915
))
1265 i915_gem_object_set_cache_coherency(obj
, I915_CACHE_L3_LLC
);
1267 if (engine
->default_state
) {
1268 void *defaults
, *vaddr
;
1270 vaddr
= i915_gem_object_pin_map(obj
, I915_MAP_WB
);
1271 if (IS_ERR(vaddr
)) {
1272 err
= PTR_ERR(vaddr
);
1276 defaults
= i915_gem_object_pin_map(engine
->default_state
,
1278 if (IS_ERR(defaults
)) {
1279 err
= PTR_ERR(defaults
);
1283 memcpy(vaddr
, defaults
, engine
->context_size
);
1284 i915_gem_object_unpin_map(engine
->default_state
);
1286 i915_gem_object_flush_map(obj
);
1287 i915_gem_object_unpin_map(obj
);
1290 vma
= i915_vma_instance(obj
, &engine
->gt
->ggtt
->vm
, NULL
);
1299 i915_gem_object_unpin_map(obj
);
1301 i915_gem_object_put(obj
);
1302 return ERR_PTR(err
);
1305 static int ring_context_alloc(struct intel_context
*ce
)
1307 struct intel_engine_cs
*engine
= ce
->engine
;
1309 /* One ringbuffer to rule them all */
1310 GEM_BUG_ON(!engine
->legacy
.ring
);
1311 ce
->ring
= engine
->legacy
.ring
;
1312 ce
->timeline
= intel_timeline_get(engine
->legacy
.timeline
);
1314 GEM_BUG_ON(ce
->state
);
1315 if (engine
->context_size
) {
1316 struct i915_vma
*vma
;
1318 vma
= alloc_context_vma(engine
);
1320 return PTR_ERR(vma
);
1323 if (engine
->default_state
)
1324 __set_bit(CONTEXT_VALID_BIT
, &ce
->flags
);
1330 static int ring_context_pin(struct intel_context
*ce
)
1332 return __context_pin_ppgtt(ce
);
1335 static void ring_context_reset(struct intel_context
*ce
)
1337 intel_ring_reset(ce
->ring
, ce
->ring
->emit
);
1340 static const struct intel_context_ops ring_context_ops
= {
1341 .alloc
= ring_context_alloc
,
1343 .pin
= ring_context_pin
,
1344 .unpin
= ring_context_unpin
,
1346 .enter
= intel_context_enter_engine
,
1347 .exit
= intel_context_exit_engine
,
1349 .reset
= ring_context_reset
,
1350 .destroy
= ring_context_destroy
,
1353 static int load_pd_dir(struct i915_request
*rq
,
1354 const struct i915_ppgtt
*ppgtt
,
1357 const struct intel_engine_cs
* const engine
= rq
->engine
;
1360 cs
= intel_ring_begin(rq
, 12);
1364 *cs
++ = MI_LOAD_REGISTER_IMM(1);
1365 *cs
++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine
->mmio_base
));
1368 *cs
++ = MI_LOAD_REGISTER_IMM(1);
1369 *cs
++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine
->mmio_base
));
1370 *cs
++ = px_base(ppgtt
->pd
)->ggtt_offset
<< 10;
1372 /* Stall until the page table load is complete? */
1373 *cs
++ = MI_STORE_REGISTER_MEM
| MI_SRM_LRM_GLOBAL_GTT
;
1374 *cs
++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine
->mmio_base
));
1375 *cs
++ = intel_gt_scratch_offset(engine
->gt
,
1376 INTEL_GT_SCRATCH_FIELD_DEFAULT
);
1378 *cs
++ = MI_LOAD_REGISTER_IMM(1);
1379 *cs
++ = i915_mmio_reg_offset(RING_INSTPM(engine
->mmio_base
));
1380 *cs
++ = _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE
);
1382 intel_ring_advance(rq
, cs
);
1384 return rq
->engine
->emit_flush(rq
, EMIT_FLUSH
);
1387 static inline int mi_set_context(struct i915_request
*rq
, u32 flags
)
1389 struct drm_i915_private
*i915
= rq
->i915
;
1390 struct intel_engine_cs
*engine
= rq
->engine
;
1391 enum intel_engine_id id
;
1392 const int num_engines
=
1393 IS_HASWELL(i915
) ? RUNTIME_INFO(i915
)->num_engines
- 1 : 0;
1394 bool force_restore
= false;
1399 if (IS_GEN(i915
, 7))
1400 len
+= 2 + (num_engines
? 4 * num_engines
+ 6 : 0);
1401 else if (IS_GEN(i915
, 5))
1403 if (flags
& MI_FORCE_RESTORE
) {
1404 GEM_BUG_ON(flags
& MI_RESTORE_INHIBIT
);
1405 flags
&= ~MI_FORCE_RESTORE
;
1406 force_restore
= true;
1410 cs
= intel_ring_begin(rq
, len
);
1414 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1415 if (IS_GEN(i915
, 7)) {
1416 *cs
++ = MI_ARB_ON_OFF
| MI_ARB_DISABLE
;
1418 struct intel_engine_cs
*signaller
;
1420 *cs
++ = MI_LOAD_REGISTER_IMM(num_engines
);
1421 for_each_engine(signaller
, engine
->gt
, id
) {
1422 if (signaller
== engine
)
1425 *cs
++ = i915_mmio_reg_offset(
1426 RING_PSMI_CTL(signaller
->mmio_base
));
1427 *cs
++ = _MASKED_BIT_ENABLE(
1428 GEN6_PSMI_SLEEP_MSG_DISABLE
);
1431 } else if (IS_GEN(i915
, 5)) {
1433 * This w/a is only listed for pre-production ilk a/b steppings,
1434 * but is also mentioned for programming the powerctx. To be
1435 * safe, just apply the workaround; we do not use SyncFlush so
1436 * this should never take effect and so be a no-op!
1438 *cs
++ = MI_SUSPEND_FLUSH
| MI_SUSPEND_FLUSH_EN
;
1441 if (force_restore
) {
1443 * The HW doesn't handle being told to restore the current
1444 * context very well. Quite often it likes goes to go off and
1445 * sulk, especially when it is meant to be reloading PP_DIR.
1446 * A very simple fix to force the reload is to simply switch
1447 * away from the current context and back again.
1449 * Note that the kernel_context will contain random state
1450 * following the INHIBIT_RESTORE. We accept this since we
1451 * never use the kernel_context state; it is merely a
1452 * placeholder we use to flush other contexts.
1454 *cs
++ = MI_SET_CONTEXT
;
1455 *cs
++ = i915_ggtt_offset(engine
->kernel_context
->state
) |
1461 *cs
++ = MI_SET_CONTEXT
;
1462 *cs
++ = i915_ggtt_offset(rq
->context
->state
) | flags
;
1464 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1465 * WaMiSetContext_Hang:snb,ivb,vlv
1469 if (IS_GEN(i915
, 7)) {
1471 struct intel_engine_cs
*signaller
;
1472 i915_reg_t last_reg
= {}; /* keep gcc quiet */
1474 *cs
++ = MI_LOAD_REGISTER_IMM(num_engines
);
1475 for_each_engine(signaller
, engine
->gt
, id
) {
1476 if (signaller
== engine
)
1479 last_reg
= RING_PSMI_CTL(signaller
->mmio_base
);
1480 *cs
++ = i915_mmio_reg_offset(last_reg
);
1481 *cs
++ = _MASKED_BIT_DISABLE(
1482 GEN6_PSMI_SLEEP_MSG_DISABLE
);
1485 /* Insert a delay before the next switch! */
1486 *cs
++ = MI_STORE_REGISTER_MEM
| MI_SRM_LRM_GLOBAL_GTT
;
1487 *cs
++ = i915_mmio_reg_offset(last_reg
);
1488 *cs
++ = intel_gt_scratch_offset(engine
->gt
,
1489 INTEL_GT_SCRATCH_FIELD_DEFAULT
);
1492 *cs
++ = MI_ARB_ON_OFF
| MI_ARB_ENABLE
;
1493 } else if (IS_GEN(i915
, 5)) {
1494 *cs
++ = MI_SUSPEND_FLUSH
;
1497 intel_ring_advance(rq
, cs
);
1502 static int remap_l3_slice(struct i915_request
*rq
, int slice
)
1504 u32
*cs
, *remap_info
= rq
->i915
->l3_parity
.remap_info
[slice
];
1510 cs
= intel_ring_begin(rq
, GEN7_L3LOG_SIZE
/4 * 2 + 2);
1515 * Note: We do not worry about the concurrent register cacheline hang
1516 * here because no other code should access these registers other than
1517 * at initialization time.
1519 *cs
++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE
/4);
1520 for (i
= 0; i
< GEN7_L3LOG_SIZE
/4; i
++) {
1521 *cs
++ = i915_mmio_reg_offset(GEN7_L3LOG(slice
, i
));
1522 *cs
++ = remap_info
[i
];
1525 intel_ring_advance(rq
, cs
);
1530 static int remap_l3(struct i915_request
*rq
)
1532 struct i915_gem_context
*ctx
= i915_request_gem_context(rq
);
1535 if (!ctx
|| !ctx
->remap_slice
)
1538 for (i
= 0; i
< MAX_L3_SLICES
; i
++) {
1539 if (!(ctx
->remap_slice
& BIT(i
)))
1542 err
= remap_l3_slice(rq
, i
);
1547 ctx
->remap_slice
= 0;
1551 static int switch_mm(struct i915_request
*rq
, struct i915_address_space
*vm
)
1558 ret
= rq
->engine
->emit_flush(rq
, EMIT_FLUSH
);
1563 * Not only do we need a full barrier (post-sync write) after
1564 * invalidating the TLBs, but we need to wait a little bit
1565 * longer. Whether this is merely delaying us, or the
1566 * subsequent flush is a key part of serialising with the
1567 * post-sync op, this extra pass appears vital before a
1570 ret
= load_pd_dir(rq
, i915_vm_to_ppgtt(vm
), PP_DIR_DCLV_2G
);
1574 return rq
->engine
->emit_flush(rq
, EMIT_INVALIDATE
);
1577 static int switch_context(struct i915_request
*rq
)
1579 struct intel_context
*ce
= rq
->context
;
1582 GEM_BUG_ON(HAS_EXECLISTS(rq
->i915
));
1584 ret
= switch_mm(rq
, vm_alias(ce
));
1591 GEM_BUG_ON(rq
->engine
->id
!= RCS0
);
1593 /* For resource streamer on HSW+ and power context elsewhere */
1594 BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN
!= MI_SAVE_EXT_STATE_EN
);
1595 BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN
!= MI_RESTORE_EXT_STATE_EN
);
1597 flags
= MI_SAVE_EXT_STATE_EN
| MI_MM_SPACE_GTT
;
1598 if (test_bit(CONTEXT_VALID_BIT
, &ce
->flags
))
1599 flags
|= MI_RESTORE_EXT_STATE_EN
;
1601 flags
|= MI_RESTORE_INHIBIT
;
1603 ret
= mi_set_context(rq
, flags
);
1615 static int ring_request_alloc(struct i915_request
*request
)
1619 GEM_BUG_ON(!intel_context_is_pinned(request
->context
));
1620 GEM_BUG_ON(i915_request_timeline(request
)->has_initial_breadcrumb
);
1623 * Flush enough space to reduce the likelihood of waiting after
1624 * we start building the request - in which case we will just
1625 * have to repeat work.
1627 request
->reserved_space
+= LEGACY_REQUEST_SIZE
;
1629 /* Unconditionally invalidate GPU caches and TLBs. */
1630 ret
= request
->engine
->emit_flush(request
, EMIT_INVALIDATE
);
1634 ret
= switch_context(request
);
1638 request
->reserved_space
-= LEGACY_REQUEST_SIZE
;
1642 static void gen6_bsd_submit_request(struct i915_request
*request
)
1644 struct intel_uncore
*uncore
= request
->engine
->uncore
;
1646 intel_uncore_forcewake_get(uncore
, FORCEWAKE_ALL
);
1648 /* Every tail move must follow the sequence below */
1650 /* Disable notification that the ring is IDLE. The GT
1651 * will then assume that it is busy and bring it out of rc6.
1653 intel_uncore_write_fw(uncore
, GEN6_BSD_SLEEP_PSMI_CONTROL
,
1654 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
1656 /* Clear the context id. Here be magic! */
1657 intel_uncore_write64_fw(uncore
, GEN6_BSD_RNCID
, 0x0);
1659 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1660 if (__intel_wait_for_register_fw(uncore
,
1661 GEN6_BSD_SLEEP_PSMI_CONTROL
,
1662 GEN6_BSD_SLEEP_INDICATOR
,
1665 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1667 /* Now that the ring is fully powered up, update the tail */
1668 i9xx_submit_request(request
);
1670 /* Let the ring send IDLE messages to the GT again,
1671 * and so let it sleep to conserve power when idle.
1673 intel_uncore_write_fw(uncore
, GEN6_BSD_SLEEP_PSMI_CONTROL
,
1674 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
1676 intel_uncore_forcewake_put(uncore
, FORCEWAKE_ALL
);
1679 static int mi_flush_dw(struct i915_request
*rq
, u32 flags
)
1683 cs
= intel_ring_begin(rq
, 4);
1690 * We always require a command barrier so that subsequent
1691 * commands, such as breadcrumb interrupts, are strictly ordered
1692 * wrt the contents of the write cache being flushed to memory
1693 * (and thus being coherent from the CPU).
1695 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
1698 * Bspec vol 1c.3 - blitter engine command streamer:
1699 * "If ENABLED, all TLBs will be invalidated once the flush
1700 * operation is complete. This bit is only valid when the
1701 * Post-Sync Operation field is a value of 1h or 3h."
1706 *cs
++ = I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
;
1710 intel_ring_advance(rq
, cs
);
1715 static int gen6_flush_dw(struct i915_request
*rq
, u32 mode
, u32 invflags
)
1717 return mi_flush_dw(rq
, mode
& EMIT_INVALIDATE
? invflags
: 0);
1720 static int gen6_bsd_ring_flush(struct i915_request
*rq
, u32 mode
)
1722 return gen6_flush_dw(rq
, mode
, MI_INVALIDATE_TLB
| MI_INVALIDATE_BSD
);
1726 hsw_emit_bb_start(struct i915_request
*rq
,
1727 u64 offset
, u32 len
,
1728 unsigned int dispatch_flags
)
1732 cs
= intel_ring_begin(rq
, 2);
1736 *cs
++ = MI_BATCH_BUFFER_START
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1737 0 : MI_BATCH_PPGTT_HSW
| MI_BATCH_NON_SECURE_HSW
);
1738 /* bit0-7 is the length on GEN6+ */
1740 intel_ring_advance(rq
, cs
);
1746 gen6_emit_bb_start(struct i915_request
*rq
,
1747 u64 offset
, u32 len
,
1748 unsigned int dispatch_flags
)
1752 cs
= intel_ring_begin(rq
, 2);
1756 *cs
++ = MI_BATCH_BUFFER_START
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1757 0 : MI_BATCH_NON_SECURE_I965
);
1758 /* bit0-7 is the length on GEN6+ */
1760 intel_ring_advance(rq
, cs
);
1765 /* Blitter support (SandyBridge+) */
1767 static int gen6_ring_flush(struct i915_request
*rq
, u32 mode
)
1769 return gen6_flush_dw(rq
, mode
, MI_INVALIDATE_TLB
);
1772 static void i9xx_set_default_submission(struct intel_engine_cs
*engine
)
1774 engine
->submit_request
= i9xx_submit_request
;
1776 engine
->park
= NULL
;
1777 engine
->unpark
= NULL
;
1780 static void gen6_bsd_set_default_submission(struct intel_engine_cs
*engine
)
1782 i9xx_set_default_submission(engine
);
1783 engine
->submit_request
= gen6_bsd_submit_request
;
1786 static void ring_release(struct intel_engine_cs
*engine
)
1788 struct drm_i915_private
*dev_priv
= engine
->i915
;
1790 WARN_ON(INTEL_GEN(dev_priv
) > 2 &&
1791 (ENGINE_READ(engine
, RING_MI_MODE
) & MODE_IDLE
) == 0);
1793 intel_engine_cleanup_common(engine
);
1795 intel_ring_unpin(engine
->legacy
.ring
);
1796 intel_ring_put(engine
->legacy
.ring
);
1798 intel_timeline_unpin(engine
->legacy
.timeline
);
1799 intel_timeline_put(engine
->legacy
.timeline
);
1802 static void setup_irq(struct intel_engine_cs
*engine
)
1804 struct drm_i915_private
*i915
= engine
->i915
;
1806 if (INTEL_GEN(i915
) >= 6) {
1807 engine
->irq_enable
= gen6_irq_enable
;
1808 engine
->irq_disable
= gen6_irq_disable
;
1809 } else if (INTEL_GEN(i915
) >= 5) {
1810 engine
->irq_enable
= gen5_irq_enable
;
1811 engine
->irq_disable
= gen5_irq_disable
;
1812 } else if (INTEL_GEN(i915
) >= 3) {
1813 engine
->irq_enable
= i9xx_irq_enable
;
1814 engine
->irq_disable
= i9xx_irq_disable
;
1816 engine
->irq_enable
= i8xx_irq_enable
;
1817 engine
->irq_disable
= i8xx_irq_disable
;
1821 static void setup_common(struct intel_engine_cs
*engine
)
1823 struct drm_i915_private
*i915
= engine
->i915
;
1825 /* gen8+ are only supported with execlists */
1826 GEM_BUG_ON(INTEL_GEN(i915
) >= 8);
1830 engine
->resume
= xcs_resume
;
1831 engine
->reset
.prepare
= reset_prepare
;
1832 engine
->reset
.rewind
= reset_rewind
;
1833 engine
->reset
.cancel
= reset_cancel
;
1834 engine
->reset
.finish
= reset_finish
;
1836 engine
->cops
= &ring_context_ops
;
1837 engine
->request_alloc
= ring_request_alloc
;
1840 * Using a global execution timeline; the previous final breadcrumb is
1841 * equivalent to our next initial bread so we can elide
1842 * engine->emit_init_breadcrumb().
1844 engine
->emit_fini_breadcrumb
= i9xx_emit_breadcrumb
;
1845 if (IS_GEN(i915
, 5))
1846 engine
->emit_fini_breadcrumb
= gen5_emit_breadcrumb
;
1848 engine
->set_default_submission
= i9xx_set_default_submission
;
1850 if (INTEL_GEN(i915
) >= 6)
1851 engine
->emit_bb_start
= gen6_emit_bb_start
;
1852 else if (INTEL_GEN(i915
) >= 4)
1853 engine
->emit_bb_start
= i965_emit_bb_start
;
1854 else if (IS_I830(i915
) || IS_I845G(i915
))
1855 engine
->emit_bb_start
= i830_emit_bb_start
;
1857 engine
->emit_bb_start
= i915_emit_bb_start
;
1860 static void setup_rcs(struct intel_engine_cs
*engine
)
1862 struct drm_i915_private
*i915
= engine
->i915
;
1864 if (HAS_L3_DPF(i915
))
1865 engine
->irq_keep_mask
= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
1867 engine
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
;
1869 if (INTEL_GEN(i915
) >= 7) {
1870 engine
->emit_flush
= gen7_render_ring_flush
;
1871 engine
->emit_fini_breadcrumb
= gen7_rcs_emit_breadcrumb
;
1872 } else if (IS_GEN(i915
, 6)) {
1873 engine
->emit_flush
= gen6_render_ring_flush
;
1874 engine
->emit_fini_breadcrumb
= gen6_rcs_emit_breadcrumb
;
1875 } else if (IS_GEN(i915
, 5)) {
1876 engine
->emit_flush
= gen4_render_ring_flush
;
1878 if (INTEL_GEN(i915
) < 4)
1879 engine
->emit_flush
= gen2_render_ring_flush
;
1881 engine
->emit_flush
= gen4_render_ring_flush
;
1882 engine
->irq_enable_mask
= I915_USER_INTERRUPT
;
1885 if (IS_HASWELL(i915
))
1886 engine
->emit_bb_start
= hsw_emit_bb_start
;
1888 engine
->resume
= rcs_resume
;
1891 static void setup_vcs(struct intel_engine_cs
*engine
)
1893 struct drm_i915_private
*i915
= engine
->i915
;
1895 if (INTEL_GEN(i915
) >= 6) {
1896 /* gen6 bsd needs a special wa for tail updates */
1897 if (IS_GEN(i915
, 6))
1898 engine
->set_default_submission
= gen6_bsd_set_default_submission
;
1899 engine
->emit_flush
= gen6_bsd_ring_flush
;
1900 engine
->irq_enable_mask
= GT_BSD_USER_INTERRUPT
;
1902 if (IS_GEN(i915
, 6))
1903 engine
->emit_fini_breadcrumb
= gen6_xcs_emit_breadcrumb
;
1905 engine
->emit_fini_breadcrumb
= gen7_xcs_emit_breadcrumb
;
1907 engine
->emit_flush
= bsd_ring_flush
;
1908 if (IS_GEN(i915
, 5))
1909 engine
->irq_enable_mask
= ILK_BSD_USER_INTERRUPT
;
1911 engine
->irq_enable_mask
= I915_BSD_USER_INTERRUPT
;
1915 static void setup_bcs(struct intel_engine_cs
*engine
)
1917 struct drm_i915_private
*i915
= engine
->i915
;
1919 engine
->emit_flush
= gen6_ring_flush
;
1920 engine
->irq_enable_mask
= GT_BLT_USER_INTERRUPT
;
1922 if (IS_GEN(i915
, 6))
1923 engine
->emit_fini_breadcrumb
= gen6_xcs_emit_breadcrumb
;
1925 engine
->emit_fini_breadcrumb
= gen7_xcs_emit_breadcrumb
;
1928 static void setup_vecs(struct intel_engine_cs
*engine
)
1930 struct drm_i915_private
*i915
= engine
->i915
;
1932 GEM_BUG_ON(INTEL_GEN(i915
) < 7);
1934 engine
->emit_flush
= gen6_ring_flush
;
1935 engine
->irq_enable_mask
= PM_VEBOX_USER_INTERRUPT
;
1936 engine
->irq_enable
= hsw_vebox_irq_enable
;
1937 engine
->irq_disable
= hsw_vebox_irq_disable
;
1939 engine
->emit_fini_breadcrumb
= gen7_xcs_emit_breadcrumb
;
1942 int intel_ring_submission_setup(struct intel_engine_cs
*engine
)
1944 struct intel_timeline
*timeline
;
1945 struct intel_ring
*ring
;
1948 setup_common(engine
);
1950 switch (engine
->class) {
1954 case VIDEO_DECODE_CLASS
:
1957 case COPY_ENGINE_CLASS
:
1960 case VIDEO_ENHANCEMENT_CLASS
:
1964 MISSING_CASE(engine
->class);
1968 timeline
= intel_timeline_create(engine
->gt
, engine
->status_page
.vma
);
1969 if (IS_ERR(timeline
)) {
1970 err
= PTR_ERR(timeline
);
1973 GEM_BUG_ON(timeline
->has_initial_breadcrumb
);
1975 err
= intel_timeline_pin(timeline
);
1979 ring
= intel_engine_create_ring(engine
, SZ_16K
);
1981 err
= PTR_ERR(ring
);
1982 goto err_timeline_unpin
;
1985 err
= intel_ring_pin(ring
);
1989 GEM_BUG_ON(engine
->legacy
.ring
);
1990 engine
->legacy
.ring
= ring
;
1991 engine
->legacy
.timeline
= timeline
;
1993 GEM_BUG_ON(timeline
->hwsp_ggtt
!= engine
->status_page
.vma
);
1995 /* Finally, take ownership and responsibility for cleanup! */
1996 engine
->release
= ring_release
;
2001 intel_ring_put(ring
);
2003 intel_timeline_unpin(timeline
);
2005 intel_timeline_put(timeline
);
2007 intel_engine_cleanup_common(engine
);