treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gt / intel_ring_submission.c
blobbc44fe8e5ffa520309c60d9428fc6711ff544d0a
1 /*
2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
32 #include <drm/i915_drm.h>
34 #include "gem/i915_gem_context.h"
36 #include "gen6_ppgtt.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "intel_context.h"
40 #include "intel_gt.h"
41 #include "intel_gt_irq.h"
42 #include "intel_gt_pm_irq.h"
43 #include "intel_reset.h"
44 #include "intel_ring.h"
45 #include "intel_workarounds.h"
47 /* Rough estimate of the typical request size, performing a flush,
48 * set-context and then emitting the batch.
50 #define LEGACY_REQUEST_SIZE 200
52 static int
53 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
55 unsigned int num_store_dw;
56 u32 cmd, *cs;
58 cmd = MI_FLUSH;
59 num_store_dw = 0;
60 if (mode & EMIT_INVALIDATE)
61 cmd |= MI_READ_FLUSH;
62 if (mode & EMIT_FLUSH)
63 num_store_dw = 4;
65 cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
66 if (IS_ERR(cs))
67 return PTR_ERR(cs);
69 *cs++ = cmd;
70 while (num_store_dw--) {
71 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
72 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
73 INTEL_GT_SCRATCH_FIELD_DEFAULT);
74 *cs++ = 0;
76 *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
78 intel_ring_advance(rq, cs);
80 return 0;
83 static int
84 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
86 u32 cmd, *cs;
87 int i;
90 * read/write caches:
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
96 * read-only caches:
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
101 * I915_GEM_DOMAIN_COMMAND may not exist?
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
109 * TLBs:
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
117 cmd = MI_FLUSH;
118 if (mode & EMIT_INVALIDATE) {
119 cmd |= MI_EXE_FLUSH;
120 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
121 cmd |= MI_INVALIDATE_ISP;
124 i = 2;
125 if (mode & EMIT_INVALIDATE)
126 i += 20;
128 cs = intel_ring_begin(rq, i);
129 if (IS_ERR(cs))
130 return PTR_ERR(cs);
132 *cs++ = cmd;
135 * A random delay to let the CS invalidate take effect? Without this
136 * delay, the GPU relocation path fails as the CS does not see
137 * the updated contents. Just as important, if we apply the flushes
138 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
139 * write and before the invalidate on the next batch), the relocations
140 * still fail. This implies that is a delay following invalidation
141 * that is required to reset the caches as opposed to a delay to
142 * ensure the memory is written.
144 if (mode & EMIT_INVALIDATE) {
145 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
146 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
147 INTEL_GT_SCRATCH_FIELD_DEFAULT) |
148 PIPE_CONTROL_GLOBAL_GTT;
149 *cs++ = 0;
150 *cs++ = 0;
152 for (i = 0; i < 12; i++)
153 *cs++ = MI_FLUSH;
155 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
156 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
157 INTEL_GT_SCRATCH_FIELD_DEFAULT) |
158 PIPE_CONTROL_GLOBAL_GTT;
159 *cs++ = 0;
160 *cs++ = 0;
163 *cs++ = cmd;
165 intel_ring_advance(rq, cs);
167 return 0;
171 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
172 * implementing two workarounds on gen6. From section 1.4.7.1
173 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
175 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
176 * produced by non-pipelined state commands), software needs to first
177 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
178 * 0.
180 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
181 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
183 * And the workaround for these two requires this workaround first:
185 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
186 * BEFORE the pipe-control with a post-sync op and no write-cache
187 * flushes.
189 * And this last workaround is tricky because of the requirements on
190 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
191 * volume 2 part 1:
193 * "1 of the following must also be set:
194 * - Render Target Cache Flush Enable ([12] of DW1)
195 * - Depth Cache Flush Enable ([0] of DW1)
196 * - Stall at Pixel Scoreboard ([1] of DW1)
197 * - Depth Stall ([13] of DW1)
198 * - Post-Sync Operation ([13] of DW1)
199 * - Notify Enable ([8] of DW1)"
201 * The cache flushes require the workaround flush that triggered this
202 * one, so we can't use it. Depth stall would trigger the same.
203 * Post-sync nonzero is what triggered this second workaround, so we
204 * can't use that one either. Notify enable is IRQs, which aren't
205 * really our business. That leaves only stall at scoreboard.
207 static int
208 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
210 u32 scratch_addr =
211 intel_gt_scratch_offset(rq->engine->gt,
212 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
213 u32 *cs;
215 cs = intel_ring_begin(rq, 6);
216 if (IS_ERR(cs))
217 return PTR_ERR(cs);
219 *cs++ = GFX_OP_PIPE_CONTROL(5);
220 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
221 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
222 *cs++ = 0; /* low dword */
223 *cs++ = 0; /* high dword */
224 *cs++ = MI_NOOP;
225 intel_ring_advance(rq, cs);
227 cs = intel_ring_begin(rq, 6);
228 if (IS_ERR(cs))
229 return PTR_ERR(cs);
231 *cs++ = GFX_OP_PIPE_CONTROL(5);
232 *cs++ = PIPE_CONTROL_QW_WRITE;
233 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
234 *cs++ = 0;
235 *cs++ = 0;
236 *cs++ = MI_NOOP;
237 intel_ring_advance(rq, cs);
239 return 0;
242 static int
243 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
245 u32 scratch_addr =
246 intel_gt_scratch_offset(rq->engine->gt,
247 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
248 u32 *cs, flags = 0;
249 int ret;
251 /* Force SNB workarounds for PIPE_CONTROL flushes */
252 ret = gen6_emit_post_sync_nonzero_flush(rq);
253 if (ret)
254 return ret;
256 /* Just flush everything. Experiments have shown that reducing the
257 * number of bits based on the write domains has little performance
258 * impact.
260 if (mode & EMIT_FLUSH) {
261 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
262 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
264 * Ensure that any following seqno writes only happen
265 * when the render cache is indeed flushed.
267 flags |= PIPE_CONTROL_CS_STALL;
269 if (mode & EMIT_INVALIDATE) {
270 flags |= PIPE_CONTROL_TLB_INVALIDATE;
271 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
272 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
273 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
274 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
275 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
277 * TLB invalidate requires a post-sync write.
279 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
282 cs = intel_ring_begin(rq, 4);
283 if (IS_ERR(cs))
284 return PTR_ERR(cs);
286 *cs++ = GFX_OP_PIPE_CONTROL(4);
287 *cs++ = flags;
288 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
289 *cs++ = 0;
290 intel_ring_advance(rq, cs);
292 return 0;
295 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
297 /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
298 *cs++ = GFX_OP_PIPE_CONTROL(4);
299 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
300 *cs++ = 0;
301 *cs++ = 0;
303 *cs++ = GFX_OP_PIPE_CONTROL(4);
304 *cs++ = PIPE_CONTROL_QW_WRITE;
305 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
306 INTEL_GT_SCRATCH_FIELD_DEFAULT) |
307 PIPE_CONTROL_GLOBAL_GTT;
308 *cs++ = 0;
310 /* Finally we can flush and with it emit the breadcrumb */
311 *cs++ = GFX_OP_PIPE_CONTROL(4);
312 *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
313 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
314 PIPE_CONTROL_DC_FLUSH_ENABLE |
315 PIPE_CONTROL_QW_WRITE |
316 PIPE_CONTROL_CS_STALL);
317 *cs++ = i915_request_active_timeline(rq)->hwsp_offset |
318 PIPE_CONTROL_GLOBAL_GTT;
319 *cs++ = rq->fence.seqno;
321 *cs++ = MI_USER_INTERRUPT;
322 *cs++ = MI_NOOP;
324 rq->tail = intel_ring_offset(rq, cs);
325 assert_ring_tail_valid(rq->ring, rq->tail);
327 return cs;
330 static int
331 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
333 u32 *cs;
335 cs = intel_ring_begin(rq, 4);
336 if (IS_ERR(cs))
337 return PTR_ERR(cs);
339 *cs++ = GFX_OP_PIPE_CONTROL(4);
340 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
341 *cs++ = 0;
342 *cs++ = 0;
343 intel_ring_advance(rq, cs);
345 return 0;
348 static int
349 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
351 u32 scratch_addr =
352 intel_gt_scratch_offset(rq->engine->gt,
353 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
354 u32 *cs, flags = 0;
357 * Ensure that any following seqno writes only happen when the render
358 * cache is indeed flushed.
360 * Workaround: 4th PIPE_CONTROL command (except the ones with only
361 * read-cache invalidate bits set) must have the CS_STALL bit set. We
362 * don't try to be clever and just set it unconditionally.
364 flags |= PIPE_CONTROL_CS_STALL;
367 * CS_STALL suggests at least a post-sync write.
369 flags |= PIPE_CONTROL_QW_WRITE;
370 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
372 /* Just flush everything. Experiments have shown that reducing the
373 * number of bits based on the write domains has little performance
374 * impact.
376 if (mode & EMIT_FLUSH) {
377 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
378 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
379 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
380 flags |= PIPE_CONTROL_FLUSH_ENABLE;
382 if (mode & EMIT_INVALIDATE) {
383 flags |= PIPE_CONTROL_TLB_INVALIDATE;
384 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
385 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
386 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
387 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
388 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
389 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
391 /* Workaround: we must issue a pipe_control with CS-stall bit
392 * set before a pipe_control command that has the state cache
393 * invalidate bit set. */
394 gen7_render_ring_cs_stall_wa(rq);
397 cs = intel_ring_begin(rq, 4);
398 if (IS_ERR(cs))
399 return PTR_ERR(cs);
401 *cs++ = GFX_OP_PIPE_CONTROL(4);
402 *cs++ = flags;
403 *cs++ = scratch_addr;
404 *cs++ = 0;
405 intel_ring_advance(rq, cs);
407 return 0;
410 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
412 *cs++ = GFX_OP_PIPE_CONTROL(4);
413 *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
414 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
415 PIPE_CONTROL_DC_FLUSH_ENABLE |
416 PIPE_CONTROL_FLUSH_ENABLE |
417 PIPE_CONTROL_QW_WRITE |
418 PIPE_CONTROL_GLOBAL_GTT_IVB |
419 PIPE_CONTROL_CS_STALL);
420 *cs++ = i915_request_active_timeline(rq)->hwsp_offset;
421 *cs++ = rq->fence.seqno;
423 *cs++ = MI_USER_INTERRUPT;
424 *cs++ = MI_NOOP;
426 rq->tail = intel_ring_offset(rq, cs);
427 assert_ring_tail_valid(rq->ring, rq->tail);
429 return cs;
432 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
434 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
435 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
437 *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
438 *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
439 *cs++ = rq->fence.seqno;
441 *cs++ = MI_USER_INTERRUPT;
443 rq->tail = intel_ring_offset(rq, cs);
444 assert_ring_tail_valid(rq->ring, rq->tail);
446 return cs;
449 #define GEN7_XCS_WA 32
450 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
452 int i;
454 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
455 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
457 *cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB |
458 MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
459 *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
460 *cs++ = rq->fence.seqno;
462 for (i = 0; i < GEN7_XCS_WA; i++) {
463 *cs++ = MI_STORE_DWORD_INDEX;
464 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
465 *cs++ = rq->fence.seqno;
468 *cs++ = MI_FLUSH_DW;
469 *cs++ = 0;
470 *cs++ = 0;
472 *cs++ = MI_USER_INTERRUPT;
473 *cs++ = MI_NOOP;
475 rq->tail = intel_ring_offset(rq, cs);
476 assert_ring_tail_valid(rq->ring, rq->tail);
478 return cs;
480 #undef GEN7_XCS_WA
482 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
485 * Keep the render interrupt unmasked as this papers over
486 * lost interrupts following a reset.
488 if (engine->class == RENDER_CLASS) {
489 if (INTEL_GEN(engine->i915) >= 6)
490 mask &= ~BIT(0);
491 else
492 mask &= ~I915_USER_INTERRUPT;
495 intel_engine_set_hwsp_writemask(engine, mask);
498 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
500 u32 addr;
502 addr = lower_32_bits(phys);
503 if (INTEL_GEN(engine->i915) >= 4)
504 addr |= (phys >> 28) & 0xf0;
506 intel_uncore_write(engine->uncore, HWS_PGA, addr);
509 static struct page *status_page(struct intel_engine_cs *engine)
511 struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
513 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
514 return sg_page(obj->mm.pages->sgl);
517 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
519 set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
520 set_hwstam(engine, ~0u);
523 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
525 i915_reg_t hwsp;
528 * The ring status page addresses are no longer next to the rest of
529 * the ring registers as of gen7.
531 if (IS_GEN(engine->i915, 7)) {
532 switch (engine->id) {
534 * No more rings exist on Gen7. Default case is only to shut up
535 * gcc switch check warning.
537 default:
538 GEM_BUG_ON(engine->id);
539 /* fallthrough */
540 case RCS0:
541 hwsp = RENDER_HWS_PGA_GEN7;
542 break;
543 case BCS0:
544 hwsp = BLT_HWS_PGA_GEN7;
545 break;
546 case VCS0:
547 hwsp = BSD_HWS_PGA_GEN7;
548 break;
549 case VECS0:
550 hwsp = VEBOX_HWS_PGA_GEN7;
551 break;
553 } else if (IS_GEN(engine->i915, 6)) {
554 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
555 } else {
556 hwsp = RING_HWS_PGA(engine->mmio_base);
559 intel_uncore_write(engine->uncore, hwsp, offset);
560 intel_uncore_posting_read(engine->uncore, hwsp);
563 static void flush_cs_tlb(struct intel_engine_cs *engine)
565 struct drm_i915_private *dev_priv = engine->i915;
567 if (!IS_GEN_RANGE(dev_priv, 6, 7))
568 return;
570 /* ring should be idle before issuing a sync flush*/
571 WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
573 ENGINE_WRITE(engine, RING_INSTPM,
574 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
575 INSTPM_SYNC_FLUSH));
576 if (intel_wait_for_register(engine->uncore,
577 RING_INSTPM(engine->mmio_base),
578 INSTPM_SYNC_FLUSH, 0,
579 1000))
580 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
581 engine->name);
584 static void ring_setup_status_page(struct intel_engine_cs *engine)
586 set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
587 set_hwstam(engine, ~0u);
589 flush_cs_tlb(engine);
592 static bool stop_ring(struct intel_engine_cs *engine)
594 struct drm_i915_private *dev_priv = engine->i915;
596 if (INTEL_GEN(dev_priv) > 2) {
597 ENGINE_WRITE(engine,
598 RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
599 if (intel_wait_for_register(engine->uncore,
600 RING_MI_MODE(engine->mmio_base),
601 MODE_IDLE,
602 MODE_IDLE,
603 1000)) {
604 DRM_ERROR("%s : timed out trying to stop ring\n",
605 engine->name);
608 * Sometimes we observe that the idle flag is not
609 * set even though the ring is empty. So double
610 * check before giving up.
612 if (ENGINE_READ(engine, RING_HEAD) !=
613 ENGINE_READ(engine, RING_TAIL))
614 return false;
618 ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
620 ENGINE_WRITE(engine, RING_HEAD, 0);
621 ENGINE_WRITE(engine, RING_TAIL, 0);
623 /* The ring must be empty before it is disabled */
624 ENGINE_WRITE(engine, RING_CTL, 0);
626 return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
629 static int xcs_resume(struct intel_engine_cs *engine)
631 struct drm_i915_private *dev_priv = engine->i915;
632 struct intel_ring *ring = engine->legacy.ring;
633 int ret = 0;
635 ENGINE_TRACE(engine, "ring:{HEAD:%04x, TAIL:%04x}\n",
636 ring->head, ring->tail);
638 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
640 /* WaClearRingBufHeadRegAtInit:ctg,elk */
641 if (!stop_ring(engine)) {
642 /* G45 ring initialization often fails to reset head to zero */
643 DRM_DEBUG_DRIVER("%s head not reset to zero "
644 "ctl %08x head %08x tail %08x start %08x\n",
645 engine->name,
646 ENGINE_READ(engine, RING_CTL),
647 ENGINE_READ(engine, RING_HEAD),
648 ENGINE_READ(engine, RING_TAIL),
649 ENGINE_READ(engine, RING_START));
651 if (!stop_ring(engine)) {
652 DRM_ERROR("failed to set %s head to zero "
653 "ctl %08x head %08x tail %08x start %08x\n",
654 engine->name,
655 ENGINE_READ(engine, RING_CTL),
656 ENGINE_READ(engine, RING_HEAD),
657 ENGINE_READ(engine, RING_TAIL),
658 ENGINE_READ(engine, RING_START));
659 ret = -EIO;
660 goto out;
664 if (HWS_NEEDS_PHYSICAL(dev_priv))
665 ring_setup_phys_status_page(engine);
666 else
667 ring_setup_status_page(engine);
669 intel_engine_reset_breadcrumbs(engine);
671 /* Enforce ordering by reading HEAD register back */
672 ENGINE_POSTING_READ(engine, RING_HEAD);
675 * Initialize the ring. This must happen _after_ we've cleared the ring
676 * registers with the above sequence (the readback of the HEAD registers
677 * also enforces ordering), otherwise the hw might lose the new ring
678 * register values.
680 ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
682 /* Check that the ring offsets point within the ring! */
683 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
684 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
685 intel_ring_update_space(ring);
687 /* First wake the ring up to an empty/idle ring */
688 ENGINE_WRITE(engine, RING_HEAD, ring->head);
689 ENGINE_WRITE(engine, RING_TAIL, ring->head);
690 ENGINE_POSTING_READ(engine, RING_TAIL);
692 ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
694 /* If the head is still not zero, the ring is dead */
695 if (intel_wait_for_register(engine->uncore,
696 RING_CTL(engine->mmio_base),
697 RING_VALID, RING_VALID,
698 50)) {
699 DRM_ERROR("%s initialization failed "
700 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
701 engine->name,
702 ENGINE_READ(engine, RING_CTL),
703 ENGINE_READ(engine, RING_CTL) & RING_VALID,
704 ENGINE_READ(engine, RING_HEAD), ring->head,
705 ENGINE_READ(engine, RING_TAIL), ring->tail,
706 ENGINE_READ(engine, RING_START),
707 i915_ggtt_offset(ring->vma));
708 ret = -EIO;
709 goto out;
712 if (INTEL_GEN(dev_priv) > 2)
713 ENGINE_WRITE(engine,
714 RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
716 /* Now awake, let it get started */
717 if (ring->tail != ring->head) {
718 ENGINE_WRITE(engine, RING_TAIL, ring->tail);
719 ENGINE_POSTING_READ(engine, RING_TAIL);
722 /* Papering over lost _interrupts_ immediately following the restart */
723 intel_engine_signal_breadcrumbs(engine);
724 out:
725 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
727 return ret;
730 static void reset_prepare(struct intel_engine_cs *engine)
732 struct intel_uncore *uncore = engine->uncore;
733 const u32 base = engine->mmio_base;
736 * We stop engines, otherwise we might get failed reset and a
737 * dead gpu (on elk). Also as modern gpu as kbl can suffer
738 * from system hang if batchbuffer is progressing when
739 * the reset is issued, regardless of READY_TO_RESET ack.
740 * Thus assume it is best to stop engines on all gens
741 * where we have a gpu reset.
743 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
745 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
747 * FIXME: Wa for more modern gens needs to be validated
749 ENGINE_TRACE(engine, "\n");
751 if (intel_engine_stop_cs(engine))
752 ENGINE_TRACE(engine, "timed out on STOP_RING\n");
754 intel_uncore_write_fw(uncore,
755 RING_HEAD(base),
756 intel_uncore_read_fw(uncore, RING_TAIL(base)));
757 intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
759 intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
760 intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
761 intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
763 /* The ring must be empty before it is disabled */
764 intel_uncore_write_fw(uncore, RING_CTL(base), 0);
766 /* Check acts as a post */
767 if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
768 ENGINE_TRACE(engine, "ring head [%x] not parked\n",
769 intel_uncore_read_fw(uncore, RING_HEAD(base)));
772 static void reset_rewind(struct intel_engine_cs *engine, bool stalled)
774 struct i915_request *pos, *rq;
775 unsigned long flags;
776 u32 head;
778 rq = NULL;
779 spin_lock_irqsave(&engine->active.lock, flags);
780 list_for_each_entry(pos, &engine->active.requests, sched.link) {
781 if (!i915_request_completed(pos)) {
782 rq = pos;
783 break;
788 * The guilty request will get skipped on a hung engine.
790 * Users of client default contexts do not rely on logical
791 * state preserved between batches so it is safe to execute
792 * queued requests following the hang. Non default contexts
793 * rely on preserved state, so skipping a batch loses the
794 * evolution of the state and it needs to be considered corrupted.
795 * Executing more queued batches on top of corrupted state is
796 * risky. But we take the risk by trying to advance through
797 * the queued requests in order to make the client behaviour
798 * more predictable around resets, by not throwing away random
799 * amount of batches it has prepared for execution. Sophisticated
800 * clients can use gem_reset_stats_ioctl and dma fence status
801 * (exported via sync_file info ioctl on explicit fences) to observe
802 * when it loses the context state and should rebuild accordingly.
804 * The context ban, and ultimately the client ban, mechanism are safety
805 * valves if client submission ends up resulting in nothing more than
806 * subsequent hangs.
809 if (rq) {
811 * Try to restore the logical GPU state to match the
812 * continuation of the request queue. If we skip the
813 * context/PD restore, then the next request may try to execute
814 * assuming that its context is valid and loaded on the GPU and
815 * so may try to access invalid memory, prompting repeated GPU
816 * hangs.
818 * If the request was guilty, we still restore the logical
819 * state in case the next request requires it (e.g. the
820 * aliasing ppgtt), but skip over the hung batch.
822 * If the request was innocent, we try to replay the request
823 * with the restored context.
825 __i915_request_reset(rq, stalled);
827 GEM_BUG_ON(rq->ring != engine->legacy.ring);
828 head = rq->head;
829 } else {
830 head = engine->legacy.ring->tail;
832 engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
834 spin_unlock_irqrestore(&engine->active.lock, flags);
837 static void reset_finish(struct intel_engine_cs *engine)
841 static int rcs_resume(struct intel_engine_cs *engine)
843 struct drm_i915_private *i915 = engine->i915;
844 struct intel_uncore *uncore = engine->uncore;
847 * Disable CONSTANT_BUFFER before it is loaded from the context
848 * image. For as it is loaded, it is executed and the stored
849 * address may no longer be valid, leading to a GPU hang.
851 * This imposes the requirement that userspace reload their
852 * CONSTANT_BUFFER on every batch, fortunately a requirement
853 * they are already accustomed to from before contexts were
854 * enabled.
856 if (IS_GEN(i915, 4))
857 intel_uncore_write(uncore, ECOSKPD,
858 _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
860 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
861 if (IS_GEN_RANGE(i915, 4, 6))
862 intel_uncore_write(uncore, MI_MODE,
863 _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
865 /* We need to disable the AsyncFlip performance optimisations in order
866 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
867 * programmed to '1' on all products.
869 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
871 if (IS_GEN_RANGE(i915, 6, 7))
872 intel_uncore_write(uncore, MI_MODE,
873 _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
875 /* Required for the hardware to program scanline values for waiting */
876 /* WaEnableFlushTlbInvalidationMode:snb */
877 if (IS_GEN(i915, 6))
878 intel_uncore_write(uncore, GFX_MODE,
879 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
881 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
882 if (IS_GEN(i915, 7))
883 intel_uncore_write(uncore, GFX_MODE_GEN7,
884 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
885 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
887 if (IS_GEN(i915, 6)) {
888 /* From the Sandybridge PRM, volume 1 part 3, page 24:
889 * "If this bit is set, STCunit will have LRA as replacement
890 * policy. [...] This bit must be reset. LRA replacement
891 * policy is not supported."
893 intel_uncore_write(uncore, CACHE_MODE_0,
894 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
897 if (IS_GEN_RANGE(i915, 6, 7))
898 intel_uncore_write(uncore, INSTPM,
899 _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
901 return xcs_resume(engine);
904 static void reset_cancel(struct intel_engine_cs *engine)
906 struct i915_request *request;
907 unsigned long flags;
909 spin_lock_irqsave(&engine->active.lock, flags);
911 /* Mark all submitted requests as skipped. */
912 list_for_each_entry(request, &engine->active.requests, sched.link) {
913 if (!i915_request_signaled(request))
914 dma_fence_set_error(&request->fence, -EIO);
916 i915_request_mark_complete(request);
919 /* Remaining _unready_ requests will be nop'ed when submitted */
921 spin_unlock_irqrestore(&engine->active.lock, flags);
924 static void i9xx_submit_request(struct i915_request *request)
926 i915_request_submit(request);
927 wmb(); /* paranoid flush writes out of the WCB before mmio */
929 ENGINE_WRITE(request->engine, RING_TAIL,
930 intel_ring_set_tail(request->ring, request->tail));
933 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
935 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
936 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
938 *cs++ = MI_FLUSH;
940 *cs++ = MI_STORE_DWORD_INDEX;
941 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
942 *cs++ = rq->fence.seqno;
944 *cs++ = MI_USER_INTERRUPT;
945 *cs++ = MI_NOOP;
947 rq->tail = intel_ring_offset(rq, cs);
948 assert_ring_tail_valid(rq->ring, rq->tail);
950 return cs;
953 #define GEN5_WA_STORES 8 /* must be at least 1! */
954 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
956 int i;
958 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
959 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
961 *cs++ = MI_FLUSH;
963 BUILD_BUG_ON(GEN5_WA_STORES < 1);
964 for (i = 0; i < GEN5_WA_STORES; i++) {
965 *cs++ = MI_STORE_DWORD_INDEX;
966 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
967 *cs++ = rq->fence.seqno;
970 *cs++ = MI_USER_INTERRUPT;
972 rq->tail = intel_ring_offset(rq, cs);
973 assert_ring_tail_valid(rq->ring, rq->tail);
975 return cs;
977 #undef GEN5_WA_STORES
979 static void
980 gen5_irq_enable(struct intel_engine_cs *engine)
982 gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
985 static void
986 gen5_irq_disable(struct intel_engine_cs *engine)
988 gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
991 static void
992 i9xx_irq_enable(struct intel_engine_cs *engine)
994 engine->i915->irq_mask &= ~engine->irq_enable_mask;
995 intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
996 intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
999 static void
1000 i9xx_irq_disable(struct intel_engine_cs *engine)
1002 engine->i915->irq_mask |= engine->irq_enable_mask;
1003 intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1006 static void
1007 i8xx_irq_enable(struct intel_engine_cs *engine)
1009 struct drm_i915_private *i915 = engine->i915;
1011 i915->irq_mask &= ~engine->irq_enable_mask;
1012 intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1013 ENGINE_POSTING_READ16(engine, RING_IMR);
1016 static void
1017 i8xx_irq_disable(struct intel_engine_cs *engine)
1019 struct drm_i915_private *i915 = engine->i915;
1021 i915->irq_mask |= engine->irq_enable_mask;
1022 intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1025 static int
1026 bsd_ring_flush(struct i915_request *rq, u32 mode)
1028 u32 *cs;
1030 cs = intel_ring_begin(rq, 2);
1031 if (IS_ERR(cs))
1032 return PTR_ERR(cs);
1034 *cs++ = MI_FLUSH;
1035 *cs++ = MI_NOOP;
1036 intel_ring_advance(rq, cs);
1037 return 0;
1040 static void
1041 gen6_irq_enable(struct intel_engine_cs *engine)
1043 ENGINE_WRITE(engine, RING_IMR,
1044 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1046 /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1047 ENGINE_POSTING_READ(engine, RING_IMR);
1049 gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1052 static void
1053 gen6_irq_disable(struct intel_engine_cs *engine)
1055 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1056 gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1059 static void
1060 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1062 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1064 /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1065 ENGINE_POSTING_READ(engine, RING_IMR);
1067 gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1070 static void
1071 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1073 ENGINE_WRITE(engine, RING_IMR, ~0);
1074 gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1077 static int
1078 i965_emit_bb_start(struct i915_request *rq,
1079 u64 offset, u32 length,
1080 unsigned int dispatch_flags)
1082 u32 *cs;
1084 cs = intel_ring_begin(rq, 2);
1085 if (IS_ERR(cs))
1086 return PTR_ERR(cs);
1088 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1089 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1090 *cs++ = offset;
1091 intel_ring_advance(rq, cs);
1093 return 0;
1096 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1097 #define I830_BATCH_LIMIT SZ_256K
1098 #define I830_TLB_ENTRIES (2)
1099 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1100 static int
1101 i830_emit_bb_start(struct i915_request *rq,
1102 u64 offset, u32 len,
1103 unsigned int dispatch_flags)
1105 u32 *cs, cs_offset =
1106 intel_gt_scratch_offset(rq->engine->gt,
1107 INTEL_GT_SCRATCH_FIELD_DEFAULT);
1109 GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1111 cs = intel_ring_begin(rq, 6);
1112 if (IS_ERR(cs))
1113 return PTR_ERR(cs);
1115 /* Evict the invalid PTE TLBs */
1116 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1117 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1118 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1119 *cs++ = cs_offset;
1120 *cs++ = 0xdeadbeef;
1121 *cs++ = MI_NOOP;
1122 intel_ring_advance(rq, cs);
1124 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1125 if (len > I830_BATCH_LIMIT)
1126 return -ENOSPC;
1128 cs = intel_ring_begin(rq, 6 + 2);
1129 if (IS_ERR(cs))
1130 return PTR_ERR(cs);
1132 /* Blit the batch (which has now all relocs applied) to the
1133 * stable batch scratch bo area (so that the CS never
1134 * stumbles over its tlb invalidation bug) ...
1136 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1137 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1138 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1139 *cs++ = cs_offset;
1140 *cs++ = 4096;
1141 *cs++ = offset;
1143 *cs++ = MI_FLUSH;
1144 *cs++ = MI_NOOP;
1145 intel_ring_advance(rq, cs);
1147 /* ... and execute it. */
1148 offset = cs_offset;
1151 cs = intel_ring_begin(rq, 2);
1152 if (IS_ERR(cs))
1153 return PTR_ERR(cs);
1155 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1156 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1157 MI_BATCH_NON_SECURE);
1158 intel_ring_advance(rq, cs);
1160 return 0;
1163 static int
1164 i915_emit_bb_start(struct i915_request *rq,
1165 u64 offset, u32 len,
1166 unsigned int dispatch_flags)
1168 u32 *cs;
1170 cs = intel_ring_begin(rq, 2);
1171 if (IS_ERR(cs))
1172 return PTR_ERR(cs);
1174 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1175 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1176 MI_BATCH_NON_SECURE);
1177 intel_ring_advance(rq, cs);
1179 return 0;
1182 static void __ring_context_fini(struct intel_context *ce)
1184 i915_vma_put(ce->state);
1187 static void ring_context_destroy(struct kref *ref)
1189 struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1191 GEM_BUG_ON(intel_context_is_pinned(ce));
1193 if (ce->state)
1194 __ring_context_fini(ce);
1196 intel_context_fini(ce);
1197 intel_context_free(ce);
1200 static struct i915_address_space *vm_alias(struct intel_context *ce)
1202 struct i915_address_space *vm;
1204 vm = ce->vm;
1205 if (i915_is_ggtt(vm))
1206 vm = &i915_vm_to_ggtt(vm)->alias->vm;
1208 return vm;
1211 static int __context_pin_ppgtt(struct intel_context *ce)
1213 struct i915_address_space *vm;
1214 int err = 0;
1216 vm = vm_alias(ce);
1217 if (vm)
1218 err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1220 return err;
1223 static void __context_unpin_ppgtt(struct intel_context *ce)
1225 struct i915_address_space *vm;
1227 vm = vm_alias(ce);
1228 if (vm)
1229 gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1232 static void ring_context_unpin(struct intel_context *ce)
1234 __context_unpin_ppgtt(ce);
1237 static struct i915_vma *
1238 alloc_context_vma(struct intel_engine_cs *engine)
1240 struct drm_i915_private *i915 = engine->i915;
1241 struct drm_i915_gem_object *obj;
1242 struct i915_vma *vma;
1243 int err;
1245 obj = i915_gem_object_create_shmem(i915, engine->context_size);
1246 if (IS_ERR(obj))
1247 return ERR_CAST(obj);
1250 * Try to make the context utilize L3 as well as LLC.
1252 * On VLV we don't have L3 controls in the PTEs so we
1253 * shouldn't touch the cache level, especially as that
1254 * would make the object snooped which might have a
1255 * negative performance impact.
1257 * Snooping is required on non-llc platforms in execlist
1258 * mode, but since all GGTT accesses use PAT entry 0 we
1259 * get snooping anyway regardless of cache_level.
1261 * This is only applicable for Ivy Bridge devices since
1262 * later platforms don't have L3 control bits in the PTE.
1264 if (IS_IVYBRIDGE(i915))
1265 i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1267 if (engine->default_state) {
1268 void *defaults, *vaddr;
1270 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1271 if (IS_ERR(vaddr)) {
1272 err = PTR_ERR(vaddr);
1273 goto err_obj;
1276 defaults = i915_gem_object_pin_map(engine->default_state,
1277 I915_MAP_WB);
1278 if (IS_ERR(defaults)) {
1279 err = PTR_ERR(defaults);
1280 goto err_map;
1283 memcpy(vaddr, defaults, engine->context_size);
1284 i915_gem_object_unpin_map(engine->default_state);
1286 i915_gem_object_flush_map(obj);
1287 i915_gem_object_unpin_map(obj);
1290 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1291 if (IS_ERR(vma)) {
1292 err = PTR_ERR(vma);
1293 goto err_obj;
1296 return vma;
1298 err_map:
1299 i915_gem_object_unpin_map(obj);
1300 err_obj:
1301 i915_gem_object_put(obj);
1302 return ERR_PTR(err);
1305 static int ring_context_alloc(struct intel_context *ce)
1307 struct intel_engine_cs *engine = ce->engine;
1309 /* One ringbuffer to rule them all */
1310 GEM_BUG_ON(!engine->legacy.ring);
1311 ce->ring = engine->legacy.ring;
1312 ce->timeline = intel_timeline_get(engine->legacy.timeline);
1314 GEM_BUG_ON(ce->state);
1315 if (engine->context_size) {
1316 struct i915_vma *vma;
1318 vma = alloc_context_vma(engine);
1319 if (IS_ERR(vma))
1320 return PTR_ERR(vma);
1322 ce->state = vma;
1323 if (engine->default_state)
1324 __set_bit(CONTEXT_VALID_BIT, &ce->flags);
1327 return 0;
1330 static int ring_context_pin(struct intel_context *ce)
1332 return __context_pin_ppgtt(ce);
1335 static void ring_context_reset(struct intel_context *ce)
1337 intel_ring_reset(ce->ring, ce->ring->emit);
1340 static const struct intel_context_ops ring_context_ops = {
1341 .alloc = ring_context_alloc,
1343 .pin = ring_context_pin,
1344 .unpin = ring_context_unpin,
1346 .enter = intel_context_enter_engine,
1347 .exit = intel_context_exit_engine,
1349 .reset = ring_context_reset,
1350 .destroy = ring_context_destroy,
1353 static int load_pd_dir(struct i915_request *rq,
1354 const struct i915_ppgtt *ppgtt,
1355 u32 valid)
1357 const struct intel_engine_cs * const engine = rq->engine;
1358 u32 *cs;
1360 cs = intel_ring_begin(rq, 12);
1361 if (IS_ERR(cs))
1362 return PTR_ERR(cs);
1364 *cs++ = MI_LOAD_REGISTER_IMM(1);
1365 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1366 *cs++ = valid;
1368 *cs++ = MI_LOAD_REGISTER_IMM(1);
1369 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1370 *cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1372 /* Stall until the page table load is complete? */
1373 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1374 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1375 *cs++ = intel_gt_scratch_offset(engine->gt,
1376 INTEL_GT_SCRATCH_FIELD_DEFAULT);
1378 *cs++ = MI_LOAD_REGISTER_IMM(1);
1379 *cs++ = i915_mmio_reg_offset(RING_INSTPM(engine->mmio_base));
1380 *cs++ = _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE);
1382 intel_ring_advance(rq, cs);
1384 return rq->engine->emit_flush(rq, EMIT_FLUSH);
1387 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1389 struct drm_i915_private *i915 = rq->i915;
1390 struct intel_engine_cs *engine = rq->engine;
1391 enum intel_engine_id id;
1392 const int num_engines =
1393 IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1394 bool force_restore = false;
1395 int len;
1396 u32 *cs;
1398 len = 4;
1399 if (IS_GEN(i915, 7))
1400 len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1401 else if (IS_GEN(i915, 5))
1402 len += 2;
1403 if (flags & MI_FORCE_RESTORE) {
1404 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1405 flags &= ~MI_FORCE_RESTORE;
1406 force_restore = true;
1407 len += 2;
1410 cs = intel_ring_begin(rq, len);
1411 if (IS_ERR(cs))
1412 return PTR_ERR(cs);
1414 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1415 if (IS_GEN(i915, 7)) {
1416 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1417 if (num_engines) {
1418 struct intel_engine_cs *signaller;
1420 *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1421 for_each_engine(signaller, engine->gt, id) {
1422 if (signaller == engine)
1423 continue;
1425 *cs++ = i915_mmio_reg_offset(
1426 RING_PSMI_CTL(signaller->mmio_base));
1427 *cs++ = _MASKED_BIT_ENABLE(
1428 GEN6_PSMI_SLEEP_MSG_DISABLE);
1431 } else if (IS_GEN(i915, 5)) {
1433 * This w/a is only listed for pre-production ilk a/b steppings,
1434 * but is also mentioned for programming the powerctx. To be
1435 * safe, just apply the workaround; we do not use SyncFlush so
1436 * this should never take effect and so be a no-op!
1438 *cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1441 if (force_restore) {
1443 * The HW doesn't handle being told to restore the current
1444 * context very well. Quite often it likes goes to go off and
1445 * sulk, especially when it is meant to be reloading PP_DIR.
1446 * A very simple fix to force the reload is to simply switch
1447 * away from the current context and back again.
1449 * Note that the kernel_context will contain random state
1450 * following the INHIBIT_RESTORE. We accept this since we
1451 * never use the kernel_context state; it is merely a
1452 * placeholder we use to flush other contexts.
1454 *cs++ = MI_SET_CONTEXT;
1455 *cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1456 MI_MM_SPACE_GTT |
1457 MI_RESTORE_INHIBIT;
1460 *cs++ = MI_NOOP;
1461 *cs++ = MI_SET_CONTEXT;
1462 *cs++ = i915_ggtt_offset(rq->context->state) | flags;
1464 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1465 * WaMiSetContext_Hang:snb,ivb,vlv
1467 *cs++ = MI_NOOP;
1469 if (IS_GEN(i915, 7)) {
1470 if (num_engines) {
1471 struct intel_engine_cs *signaller;
1472 i915_reg_t last_reg = {}; /* keep gcc quiet */
1474 *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1475 for_each_engine(signaller, engine->gt, id) {
1476 if (signaller == engine)
1477 continue;
1479 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1480 *cs++ = i915_mmio_reg_offset(last_reg);
1481 *cs++ = _MASKED_BIT_DISABLE(
1482 GEN6_PSMI_SLEEP_MSG_DISABLE);
1485 /* Insert a delay before the next switch! */
1486 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1487 *cs++ = i915_mmio_reg_offset(last_reg);
1488 *cs++ = intel_gt_scratch_offset(engine->gt,
1489 INTEL_GT_SCRATCH_FIELD_DEFAULT);
1490 *cs++ = MI_NOOP;
1492 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1493 } else if (IS_GEN(i915, 5)) {
1494 *cs++ = MI_SUSPEND_FLUSH;
1497 intel_ring_advance(rq, cs);
1499 return 0;
1502 static int remap_l3_slice(struct i915_request *rq, int slice)
1504 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1505 int i;
1507 if (!remap_info)
1508 return 0;
1510 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1511 if (IS_ERR(cs))
1512 return PTR_ERR(cs);
1515 * Note: We do not worry about the concurrent register cacheline hang
1516 * here because no other code should access these registers other than
1517 * at initialization time.
1519 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1520 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1521 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1522 *cs++ = remap_info[i];
1524 *cs++ = MI_NOOP;
1525 intel_ring_advance(rq, cs);
1527 return 0;
1530 static int remap_l3(struct i915_request *rq)
1532 struct i915_gem_context *ctx = i915_request_gem_context(rq);
1533 int i, err;
1535 if (!ctx || !ctx->remap_slice)
1536 return 0;
1538 for (i = 0; i < MAX_L3_SLICES; i++) {
1539 if (!(ctx->remap_slice & BIT(i)))
1540 continue;
1542 err = remap_l3_slice(rq, i);
1543 if (err)
1544 return err;
1547 ctx->remap_slice = 0;
1548 return 0;
1551 static int switch_mm(struct i915_request *rq, struct i915_address_space *vm)
1553 int ret;
1555 if (!vm)
1556 return 0;
1558 ret = rq->engine->emit_flush(rq, EMIT_FLUSH);
1559 if (ret)
1560 return ret;
1563 * Not only do we need a full barrier (post-sync write) after
1564 * invalidating the TLBs, but we need to wait a little bit
1565 * longer. Whether this is merely delaying us, or the
1566 * subsequent flush is a key part of serialising with the
1567 * post-sync op, this extra pass appears vital before a
1568 * mm switch!
1570 ret = load_pd_dir(rq, i915_vm_to_ppgtt(vm), PP_DIR_DCLV_2G);
1571 if (ret)
1572 return ret;
1574 return rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1577 static int switch_context(struct i915_request *rq)
1579 struct intel_context *ce = rq->context;
1580 int ret;
1582 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1584 ret = switch_mm(rq, vm_alias(ce));
1585 if (ret)
1586 return ret;
1588 if (ce->state) {
1589 u32 flags;
1591 GEM_BUG_ON(rq->engine->id != RCS0);
1593 /* For resource streamer on HSW+ and power context elsewhere */
1594 BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN != MI_SAVE_EXT_STATE_EN);
1595 BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN != MI_RESTORE_EXT_STATE_EN);
1597 flags = MI_SAVE_EXT_STATE_EN | MI_MM_SPACE_GTT;
1598 if (test_bit(CONTEXT_VALID_BIT, &ce->flags))
1599 flags |= MI_RESTORE_EXT_STATE_EN;
1600 else
1601 flags |= MI_RESTORE_INHIBIT;
1603 ret = mi_set_context(rq, flags);
1604 if (ret)
1605 return ret;
1608 ret = remap_l3(rq);
1609 if (ret)
1610 return ret;
1612 return 0;
1615 static int ring_request_alloc(struct i915_request *request)
1617 int ret;
1619 GEM_BUG_ON(!intel_context_is_pinned(request->context));
1620 GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb);
1623 * Flush enough space to reduce the likelihood of waiting after
1624 * we start building the request - in which case we will just
1625 * have to repeat work.
1627 request->reserved_space += LEGACY_REQUEST_SIZE;
1629 /* Unconditionally invalidate GPU caches and TLBs. */
1630 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1631 if (ret)
1632 return ret;
1634 ret = switch_context(request);
1635 if (ret)
1636 return ret;
1638 request->reserved_space -= LEGACY_REQUEST_SIZE;
1639 return 0;
1642 static void gen6_bsd_submit_request(struct i915_request *request)
1644 struct intel_uncore *uncore = request->engine->uncore;
1646 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1648 /* Every tail move must follow the sequence below */
1650 /* Disable notification that the ring is IDLE. The GT
1651 * will then assume that it is busy and bring it out of rc6.
1653 intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1654 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1656 /* Clear the context id. Here be magic! */
1657 intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
1659 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1660 if (__intel_wait_for_register_fw(uncore,
1661 GEN6_BSD_SLEEP_PSMI_CONTROL,
1662 GEN6_BSD_SLEEP_INDICATOR,
1664 1000, 0, NULL))
1665 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1667 /* Now that the ring is fully powered up, update the tail */
1668 i9xx_submit_request(request);
1670 /* Let the ring send IDLE messages to the GT again,
1671 * and so let it sleep to conserve power when idle.
1673 intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1674 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1676 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1679 static int mi_flush_dw(struct i915_request *rq, u32 flags)
1681 u32 cmd, *cs;
1683 cs = intel_ring_begin(rq, 4);
1684 if (IS_ERR(cs))
1685 return PTR_ERR(cs);
1687 cmd = MI_FLUSH_DW;
1690 * We always require a command barrier so that subsequent
1691 * commands, such as breadcrumb interrupts, are strictly ordered
1692 * wrt the contents of the write cache being flushed to memory
1693 * (and thus being coherent from the CPU).
1695 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1698 * Bspec vol 1c.3 - blitter engine command streamer:
1699 * "If ENABLED, all TLBs will be invalidated once the flush
1700 * operation is complete. This bit is only valid when the
1701 * Post-Sync Operation field is a value of 1h or 3h."
1703 cmd |= flags;
1705 *cs++ = cmd;
1706 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1707 *cs++ = 0;
1708 *cs++ = MI_NOOP;
1710 intel_ring_advance(rq, cs);
1712 return 0;
1715 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
1717 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
1720 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1722 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
1725 static int
1726 hsw_emit_bb_start(struct i915_request *rq,
1727 u64 offset, u32 len,
1728 unsigned int dispatch_flags)
1730 u32 *cs;
1732 cs = intel_ring_begin(rq, 2);
1733 if (IS_ERR(cs))
1734 return PTR_ERR(cs);
1736 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1737 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
1738 /* bit0-7 is the length on GEN6+ */
1739 *cs++ = offset;
1740 intel_ring_advance(rq, cs);
1742 return 0;
1745 static int
1746 gen6_emit_bb_start(struct i915_request *rq,
1747 u64 offset, u32 len,
1748 unsigned int dispatch_flags)
1750 u32 *cs;
1752 cs = intel_ring_begin(rq, 2);
1753 if (IS_ERR(cs))
1754 return PTR_ERR(cs);
1756 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1757 0 : MI_BATCH_NON_SECURE_I965);
1758 /* bit0-7 is the length on GEN6+ */
1759 *cs++ = offset;
1760 intel_ring_advance(rq, cs);
1762 return 0;
1765 /* Blitter support (SandyBridge+) */
1767 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1769 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
1772 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1774 engine->submit_request = i9xx_submit_request;
1776 engine->park = NULL;
1777 engine->unpark = NULL;
1780 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1782 i9xx_set_default_submission(engine);
1783 engine->submit_request = gen6_bsd_submit_request;
1786 static void ring_release(struct intel_engine_cs *engine)
1788 struct drm_i915_private *dev_priv = engine->i915;
1790 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1791 (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1793 intel_engine_cleanup_common(engine);
1795 intel_ring_unpin(engine->legacy.ring);
1796 intel_ring_put(engine->legacy.ring);
1798 intel_timeline_unpin(engine->legacy.timeline);
1799 intel_timeline_put(engine->legacy.timeline);
1802 static void setup_irq(struct intel_engine_cs *engine)
1804 struct drm_i915_private *i915 = engine->i915;
1806 if (INTEL_GEN(i915) >= 6) {
1807 engine->irq_enable = gen6_irq_enable;
1808 engine->irq_disable = gen6_irq_disable;
1809 } else if (INTEL_GEN(i915) >= 5) {
1810 engine->irq_enable = gen5_irq_enable;
1811 engine->irq_disable = gen5_irq_disable;
1812 } else if (INTEL_GEN(i915) >= 3) {
1813 engine->irq_enable = i9xx_irq_enable;
1814 engine->irq_disable = i9xx_irq_disable;
1815 } else {
1816 engine->irq_enable = i8xx_irq_enable;
1817 engine->irq_disable = i8xx_irq_disable;
1821 static void setup_common(struct intel_engine_cs *engine)
1823 struct drm_i915_private *i915 = engine->i915;
1825 /* gen8+ are only supported with execlists */
1826 GEM_BUG_ON(INTEL_GEN(i915) >= 8);
1828 setup_irq(engine);
1830 engine->resume = xcs_resume;
1831 engine->reset.prepare = reset_prepare;
1832 engine->reset.rewind = reset_rewind;
1833 engine->reset.cancel = reset_cancel;
1834 engine->reset.finish = reset_finish;
1836 engine->cops = &ring_context_ops;
1837 engine->request_alloc = ring_request_alloc;
1840 * Using a global execution timeline; the previous final breadcrumb is
1841 * equivalent to our next initial bread so we can elide
1842 * engine->emit_init_breadcrumb().
1844 engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
1845 if (IS_GEN(i915, 5))
1846 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
1848 engine->set_default_submission = i9xx_set_default_submission;
1850 if (INTEL_GEN(i915) >= 6)
1851 engine->emit_bb_start = gen6_emit_bb_start;
1852 else if (INTEL_GEN(i915) >= 4)
1853 engine->emit_bb_start = i965_emit_bb_start;
1854 else if (IS_I830(i915) || IS_I845G(i915))
1855 engine->emit_bb_start = i830_emit_bb_start;
1856 else
1857 engine->emit_bb_start = i915_emit_bb_start;
1860 static void setup_rcs(struct intel_engine_cs *engine)
1862 struct drm_i915_private *i915 = engine->i915;
1864 if (HAS_L3_DPF(i915))
1865 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1867 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1869 if (INTEL_GEN(i915) >= 7) {
1870 engine->emit_flush = gen7_render_ring_flush;
1871 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
1872 } else if (IS_GEN(i915, 6)) {
1873 engine->emit_flush = gen6_render_ring_flush;
1874 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
1875 } else if (IS_GEN(i915, 5)) {
1876 engine->emit_flush = gen4_render_ring_flush;
1877 } else {
1878 if (INTEL_GEN(i915) < 4)
1879 engine->emit_flush = gen2_render_ring_flush;
1880 else
1881 engine->emit_flush = gen4_render_ring_flush;
1882 engine->irq_enable_mask = I915_USER_INTERRUPT;
1885 if (IS_HASWELL(i915))
1886 engine->emit_bb_start = hsw_emit_bb_start;
1888 engine->resume = rcs_resume;
1891 static void setup_vcs(struct intel_engine_cs *engine)
1893 struct drm_i915_private *i915 = engine->i915;
1895 if (INTEL_GEN(i915) >= 6) {
1896 /* gen6 bsd needs a special wa for tail updates */
1897 if (IS_GEN(i915, 6))
1898 engine->set_default_submission = gen6_bsd_set_default_submission;
1899 engine->emit_flush = gen6_bsd_ring_flush;
1900 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1902 if (IS_GEN(i915, 6))
1903 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1904 else
1905 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1906 } else {
1907 engine->emit_flush = bsd_ring_flush;
1908 if (IS_GEN(i915, 5))
1909 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1910 else
1911 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1915 static void setup_bcs(struct intel_engine_cs *engine)
1917 struct drm_i915_private *i915 = engine->i915;
1919 engine->emit_flush = gen6_ring_flush;
1920 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1922 if (IS_GEN(i915, 6))
1923 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1924 else
1925 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1928 static void setup_vecs(struct intel_engine_cs *engine)
1930 struct drm_i915_private *i915 = engine->i915;
1932 GEM_BUG_ON(INTEL_GEN(i915) < 7);
1934 engine->emit_flush = gen6_ring_flush;
1935 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1936 engine->irq_enable = hsw_vebox_irq_enable;
1937 engine->irq_disable = hsw_vebox_irq_disable;
1939 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1942 int intel_ring_submission_setup(struct intel_engine_cs *engine)
1944 struct intel_timeline *timeline;
1945 struct intel_ring *ring;
1946 int err;
1948 setup_common(engine);
1950 switch (engine->class) {
1951 case RENDER_CLASS:
1952 setup_rcs(engine);
1953 break;
1954 case VIDEO_DECODE_CLASS:
1955 setup_vcs(engine);
1956 break;
1957 case COPY_ENGINE_CLASS:
1958 setup_bcs(engine);
1959 break;
1960 case VIDEO_ENHANCEMENT_CLASS:
1961 setup_vecs(engine);
1962 break;
1963 default:
1964 MISSING_CASE(engine->class);
1965 return -ENODEV;
1968 timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
1969 if (IS_ERR(timeline)) {
1970 err = PTR_ERR(timeline);
1971 goto err;
1973 GEM_BUG_ON(timeline->has_initial_breadcrumb);
1975 err = intel_timeline_pin(timeline);
1976 if (err)
1977 goto err_timeline;
1979 ring = intel_engine_create_ring(engine, SZ_16K);
1980 if (IS_ERR(ring)) {
1981 err = PTR_ERR(ring);
1982 goto err_timeline_unpin;
1985 err = intel_ring_pin(ring);
1986 if (err)
1987 goto err_ring;
1989 GEM_BUG_ON(engine->legacy.ring);
1990 engine->legacy.ring = ring;
1991 engine->legacy.timeline = timeline;
1993 GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
1995 /* Finally, take ownership and responsibility for cleanup! */
1996 engine->release = ring_release;
1998 return 0;
2000 err_ring:
2001 intel_ring_put(ring);
2002 err_timeline_unpin:
2003 intel_timeline_unpin(timeline);
2004 err_timeline:
2005 intel_timeline_put(timeline);
2006 err:
2007 intel_engine_cleanup_common(engine);
2008 return err;