treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem.c
blob94f993e4c12f5cb687513efee0a2822afd20d734
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <drm/drm_vma_manager.h>
29 #include <drm/i915_drm.h>
30 #include <linux/dma-fence-array.h>
31 #include <linux/kthread.h>
32 #include <linux/dma-resv.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/stop_machine.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 #include <linux/mman.h>
41 #include "display/intel_display.h"
42 #include "display/intel_frontbuffer.h"
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_mman.h"
48 #include "gem/i915_gem_region.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_workarounds.h"
54 #include "i915_drv.h"
55 #include "i915_trace.h"
56 #include "i915_vgpu.h"
58 #include "intel_pm.h"
60 static int
61 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
63 int err;
65 err = mutex_lock_interruptible(&ggtt->vm.mutex);
66 if (err)
67 return err;
69 memset(node, 0, sizeof(*node));
70 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
71 size, 0, I915_COLOR_UNEVICTABLE,
72 0, ggtt->mappable_end,
73 DRM_MM_INSERT_LOW);
75 mutex_unlock(&ggtt->vm.mutex);
77 return err;
80 static void
81 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
83 mutex_lock(&ggtt->vm.mutex);
84 drm_mm_remove_node(node);
85 mutex_unlock(&ggtt->vm.mutex);
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file)
92 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
93 struct drm_i915_gem_get_aperture *args = data;
94 struct i915_vma *vma;
95 u64 pinned;
97 if (mutex_lock_interruptible(&ggtt->vm.mutex))
98 return -EINTR;
100 pinned = ggtt->vm.reserved;
101 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
102 if (i915_vma_is_pinned(vma))
103 pinned += vma->node.size;
105 mutex_unlock(&ggtt->vm.mutex);
107 args->aper_size = ggtt->vm.total;
108 args->aper_available_size = args->aper_size - pinned;
110 return 0;
113 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
114 unsigned long flags)
116 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
117 LIST_HEAD(still_in_list);
118 intel_wakeref_t wakeref;
119 struct i915_vma *vma;
120 int ret;
122 if (!atomic_read(&obj->bind_count))
123 return 0;
126 * As some machines use ACPI to handle runtime-resume callbacks, and
127 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
128 * as they are required by the shrinker. Ergo, we wake the device up
129 * first just in case.
131 wakeref = intel_runtime_pm_get(rpm);
133 try_again:
134 ret = 0;
135 spin_lock(&obj->vma.lock);
136 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
137 struct i915_vma,
138 obj_link))) {
139 struct i915_address_space *vm = vma->vm;
141 list_move_tail(&vma->obj_link, &still_in_list);
142 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
143 continue;
145 ret = -EAGAIN;
146 if (!i915_vm_tryopen(vm))
147 break;
149 /* Prevent vma being freed by i915_vma_parked as we unbind */
150 vma = __i915_vma_get(vma);
151 spin_unlock(&obj->vma.lock);
153 if (vma) {
154 ret = -EBUSY;
155 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
156 !i915_vma_is_active(vma))
157 ret = i915_vma_unbind(vma);
159 __i915_vma_put(vma);
162 i915_vm_close(vm);
163 spin_lock(&obj->vma.lock);
165 list_splice_init(&still_in_list, &obj->vma.list);
166 spin_unlock(&obj->vma.lock);
168 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
169 rcu_barrier(); /* flush the i915_vm_release() */
170 goto try_again;
173 intel_runtime_pm_put(rpm, wakeref);
175 return ret;
178 static int
179 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
180 struct drm_i915_gem_pwrite *args,
181 struct drm_file *file)
183 void *vaddr = obj->phys_handle->vaddr + args->offset;
184 char __user *user_data = u64_to_user_ptr(args->data_ptr);
187 * We manually control the domain here and pretend that it
188 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
190 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
192 if (copy_from_user(vaddr, user_data, args->size))
193 return -EFAULT;
195 drm_clflush_virt_range(vaddr, args->size);
196 intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
198 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
199 return 0;
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct intel_memory_region *mr,
205 u64 *size_p,
206 u32 *handle_p)
208 struct drm_i915_gem_object *obj;
209 u32 handle;
210 u64 size;
211 int ret;
213 GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
214 size = round_up(*size_p, mr->min_page_size);
215 if (size == 0)
216 return -EINVAL;
218 /* For most of the ABI (e.g. mmap) we think in system pages */
219 GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
221 /* Allocate the new object */
222 obj = i915_gem_object_create_region(mr, size, 0);
223 if (IS_ERR(obj))
224 return PTR_ERR(obj);
226 ret = drm_gem_handle_create(file, &obj->base, &handle);
227 /* drop reference from allocate - handle holds it now */
228 i915_gem_object_put(obj);
229 if (ret)
230 return ret;
232 *handle_p = handle;
233 *size_p = size;
234 return 0;
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
242 enum intel_memory_type mem_type;
243 int cpp = DIV_ROUND_UP(args->bpp, 8);
244 u32 format;
246 switch (cpp) {
247 case 1:
248 format = DRM_FORMAT_C8;
249 break;
250 case 2:
251 format = DRM_FORMAT_RGB565;
252 break;
253 case 4:
254 format = DRM_FORMAT_XRGB8888;
255 break;
256 default:
257 return -EINVAL;
260 /* have to work out size/pitch and return them */
261 args->pitch = ALIGN(args->width * cpp, 64);
263 /* align stride to page size so that we can remap */
264 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
265 DRM_FORMAT_MOD_LINEAR))
266 args->pitch = ALIGN(args->pitch, 4096);
268 args->size = args->pitch * args->height;
270 mem_type = INTEL_MEMORY_SYSTEM;
271 if (HAS_LMEM(to_i915(dev)))
272 mem_type = INTEL_MEMORY_LOCAL;
274 return i915_gem_create(file,
275 intel_memory_region_by_type(to_i915(dev),
276 mem_type),
277 &args->size, &args->handle);
281 * Creates a new mm object and returns a handle to it.
282 * @dev: drm device pointer
283 * @data: ioctl data blob
284 * @file: drm file pointer
287 i915_gem_create_ioctl(struct drm_device *dev, void *data,
288 struct drm_file *file)
290 struct drm_i915_private *i915 = to_i915(dev);
291 struct drm_i915_gem_create *args = data;
293 i915_gem_flush_free_objects(i915);
295 return i915_gem_create(file,
296 intel_memory_region_by_type(i915,
297 INTEL_MEMORY_SYSTEM),
298 &args->size, &args->handle);
301 static int
302 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
303 bool needs_clflush)
305 char *vaddr;
306 int ret;
308 vaddr = kmap(page);
310 if (needs_clflush)
311 drm_clflush_virt_range(vaddr + offset, len);
313 ret = __copy_to_user(user_data, vaddr + offset, len);
315 kunmap(page);
317 return ret ? -EFAULT : 0;
320 static int
321 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pread *args)
324 unsigned int needs_clflush;
325 unsigned int idx, offset;
326 struct dma_fence *fence;
327 char __user *user_data;
328 u64 remain;
329 int ret;
331 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
332 if (ret)
333 return ret;
335 fence = i915_gem_object_lock_fence(obj);
336 i915_gem_object_finish_access(obj);
337 if (!fence)
338 return -ENOMEM;
340 remain = args->size;
341 user_data = u64_to_user_ptr(args->data_ptr);
342 offset = offset_in_page(args->offset);
343 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
344 struct page *page = i915_gem_object_get_page(obj, idx);
345 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
347 ret = shmem_pread(page, offset, length, user_data,
348 needs_clflush);
349 if (ret)
350 break;
352 remain -= length;
353 user_data += length;
354 offset = 0;
357 i915_gem_object_unlock_fence(obj, fence);
358 return ret;
361 static inline bool
362 gtt_user_read(struct io_mapping *mapping,
363 loff_t base, int offset,
364 char __user *user_data, int length)
366 void __iomem *vaddr;
367 unsigned long unwritten;
369 /* We can use the cpu mem copy function because this is X86. */
370 vaddr = io_mapping_map_atomic_wc(mapping, base);
371 unwritten = __copy_to_user_inatomic(user_data,
372 (void __force *)vaddr + offset,
373 length);
374 io_mapping_unmap_atomic(vaddr);
375 if (unwritten) {
376 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
377 unwritten = copy_to_user(user_data,
378 (void __force *)vaddr + offset,
379 length);
380 io_mapping_unmap(vaddr);
382 return unwritten;
385 static int
386 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
387 const struct drm_i915_gem_pread *args)
389 struct drm_i915_private *i915 = to_i915(obj->base.dev);
390 struct i915_ggtt *ggtt = &i915->ggtt;
391 intel_wakeref_t wakeref;
392 struct drm_mm_node node;
393 struct dma_fence *fence;
394 void __user *user_data;
395 struct i915_vma *vma;
396 u64 remain, offset;
397 int ret;
399 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
400 vma = ERR_PTR(-ENODEV);
401 if (!i915_gem_object_is_tiled(obj))
402 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
403 PIN_MAPPABLE |
404 PIN_NONBLOCK /* NOWARN */ |
405 PIN_NOEVICT);
406 if (!IS_ERR(vma)) {
407 node.start = i915_ggtt_offset(vma);
408 node.flags = 0;
409 } else {
410 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
411 if (ret)
412 goto out_rpm;
413 GEM_BUG_ON(!drm_mm_node_allocated(&node));
416 ret = i915_gem_object_lock_interruptible(obj);
417 if (ret)
418 goto out_unpin;
420 ret = i915_gem_object_set_to_gtt_domain(obj, false);
421 if (ret) {
422 i915_gem_object_unlock(obj);
423 goto out_unpin;
426 fence = i915_gem_object_lock_fence(obj);
427 i915_gem_object_unlock(obj);
428 if (!fence) {
429 ret = -ENOMEM;
430 goto out_unpin;
433 user_data = u64_to_user_ptr(args->data_ptr);
434 remain = args->size;
435 offset = args->offset;
437 while (remain > 0) {
438 /* Operation in this page
440 * page_base = page offset within aperture
441 * page_offset = offset within page
442 * page_length = bytes to copy for this page
444 u32 page_base = node.start;
445 unsigned page_offset = offset_in_page(offset);
446 unsigned page_length = PAGE_SIZE - page_offset;
447 page_length = remain < page_length ? remain : page_length;
448 if (drm_mm_node_allocated(&node)) {
449 ggtt->vm.insert_page(&ggtt->vm,
450 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
451 node.start, I915_CACHE_NONE, 0);
452 } else {
453 page_base += offset & PAGE_MASK;
456 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
457 user_data, page_length)) {
458 ret = -EFAULT;
459 break;
462 remain -= page_length;
463 user_data += page_length;
464 offset += page_length;
467 i915_gem_object_unlock_fence(obj, fence);
468 out_unpin:
469 if (drm_mm_node_allocated(&node)) {
470 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
471 remove_mappable_node(ggtt, &node);
472 } else {
473 i915_vma_unpin(vma);
475 out_rpm:
476 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
477 return ret;
481 * Reads data from the object referenced by handle.
482 * @dev: drm device pointer
483 * @data: ioctl data blob
484 * @file: drm file pointer
486 * On error, the contents of *data are undefined.
489 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
490 struct drm_file *file)
492 struct drm_i915_gem_pread *args = data;
493 struct drm_i915_gem_object *obj;
494 int ret;
496 if (args->size == 0)
497 return 0;
499 if (!access_ok(u64_to_user_ptr(args->data_ptr),
500 args->size))
501 return -EFAULT;
503 obj = i915_gem_object_lookup(file, args->handle);
504 if (!obj)
505 return -ENOENT;
507 /* Bounds check source. */
508 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
509 ret = -EINVAL;
510 goto out;
513 trace_i915_gem_object_pread(obj, args->offset, args->size);
515 ret = i915_gem_object_wait(obj,
516 I915_WAIT_INTERRUPTIBLE,
517 MAX_SCHEDULE_TIMEOUT);
518 if (ret)
519 goto out;
521 ret = i915_gem_object_pin_pages(obj);
522 if (ret)
523 goto out;
525 ret = i915_gem_shmem_pread(obj, args);
526 if (ret == -EFAULT || ret == -ENODEV)
527 ret = i915_gem_gtt_pread(obj, args);
529 i915_gem_object_unpin_pages(obj);
530 out:
531 i915_gem_object_put(obj);
532 return ret;
535 /* This is the fast write path which cannot handle
536 * page faults in the source data
539 static inline bool
540 ggtt_write(struct io_mapping *mapping,
541 loff_t base, int offset,
542 char __user *user_data, int length)
544 void __iomem *vaddr;
545 unsigned long unwritten;
547 /* We can use the cpu mem copy function because this is X86. */
548 vaddr = io_mapping_map_atomic_wc(mapping, base);
549 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
550 user_data, length);
551 io_mapping_unmap_atomic(vaddr);
552 if (unwritten) {
553 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
554 unwritten = copy_from_user((void __force *)vaddr + offset,
555 user_data, length);
556 io_mapping_unmap(vaddr);
559 return unwritten;
563 * This is the fast pwrite path, where we copy the data directly from the
564 * user into the GTT, uncached.
565 * @obj: i915 GEM object
566 * @args: pwrite arguments structure
568 static int
569 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
570 const struct drm_i915_gem_pwrite *args)
572 struct drm_i915_private *i915 = to_i915(obj->base.dev);
573 struct i915_ggtt *ggtt = &i915->ggtt;
574 struct intel_runtime_pm *rpm = &i915->runtime_pm;
575 intel_wakeref_t wakeref;
576 struct drm_mm_node node;
577 struct dma_fence *fence;
578 struct i915_vma *vma;
579 u64 remain, offset;
580 void __user *user_data;
581 int ret;
583 if (i915_gem_object_has_struct_page(obj)) {
585 * Avoid waking the device up if we can fallback, as
586 * waking/resuming is very slow (worst-case 10-100 ms
587 * depending on PCI sleeps and our own resume time).
588 * This easily dwarfs any performance advantage from
589 * using the cache bypass of indirect GGTT access.
591 wakeref = intel_runtime_pm_get_if_in_use(rpm);
592 if (!wakeref)
593 return -EFAULT;
594 } else {
595 /* No backing pages, no fallback, we must force GGTT access */
596 wakeref = intel_runtime_pm_get(rpm);
599 vma = ERR_PTR(-ENODEV);
600 if (!i915_gem_object_is_tiled(obj))
601 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
602 PIN_MAPPABLE |
603 PIN_NONBLOCK /* NOWARN */ |
604 PIN_NOEVICT);
605 if (!IS_ERR(vma)) {
606 node.start = i915_ggtt_offset(vma);
607 node.flags = 0;
608 } else {
609 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
610 if (ret)
611 goto out_rpm;
612 GEM_BUG_ON(!drm_mm_node_allocated(&node));
615 ret = i915_gem_object_lock_interruptible(obj);
616 if (ret)
617 goto out_unpin;
619 ret = i915_gem_object_set_to_gtt_domain(obj, true);
620 if (ret) {
621 i915_gem_object_unlock(obj);
622 goto out_unpin;
625 fence = i915_gem_object_lock_fence(obj);
626 i915_gem_object_unlock(obj);
627 if (!fence) {
628 ret = -ENOMEM;
629 goto out_unpin;
632 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
634 user_data = u64_to_user_ptr(args->data_ptr);
635 offset = args->offset;
636 remain = args->size;
637 while (remain) {
638 /* Operation in this page
640 * page_base = page offset within aperture
641 * page_offset = offset within page
642 * page_length = bytes to copy for this page
644 u32 page_base = node.start;
645 unsigned int page_offset = offset_in_page(offset);
646 unsigned int page_length = PAGE_SIZE - page_offset;
647 page_length = remain < page_length ? remain : page_length;
648 if (drm_mm_node_allocated(&node)) {
649 /* flush the write before we modify the GGTT */
650 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
651 ggtt->vm.insert_page(&ggtt->vm,
652 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
653 node.start, I915_CACHE_NONE, 0);
654 wmb(); /* flush modifications to the GGTT (insert_page) */
655 } else {
656 page_base += offset & PAGE_MASK;
658 /* If we get a fault while copying data, then (presumably) our
659 * source page isn't available. Return the error and we'll
660 * retry in the slow path.
661 * If the object is non-shmem backed, we retry again with the
662 * path that handles page fault.
664 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
665 user_data, page_length)) {
666 ret = -EFAULT;
667 break;
670 remain -= page_length;
671 user_data += page_length;
672 offset += page_length;
675 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
676 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
678 i915_gem_object_unlock_fence(obj, fence);
679 out_unpin:
680 if (drm_mm_node_allocated(&node)) {
681 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
682 remove_mappable_node(ggtt, &node);
683 } else {
684 i915_vma_unpin(vma);
686 out_rpm:
687 intel_runtime_pm_put(rpm, wakeref);
688 return ret;
691 /* Per-page copy function for the shmem pwrite fastpath.
692 * Flushes invalid cachelines before writing to the target if
693 * needs_clflush_before is set and flushes out any written cachelines after
694 * writing if needs_clflush is set.
696 static int
697 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
698 bool needs_clflush_before,
699 bool needs_clflush_after)
701 char *vaddr;
702 int ret;
704 vaddr = kmap(page);
706 if (needs_clflush_before)
707 drm_clflush_virt_range(vaddr + offset, len);
709 ret = __copy_from_user(vaddr + offset, user_data, len);
710 if (!ret && needs_clflush_after)
711 drm_clflush_virt_range(vaddr + offset, len);
713 kunmap(page);
715 return ret ? -EFAULT : 0;
718 static int
719 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
720 const struct drm_i915_gem_pwrite *args)
722 unsigned int partial_cacheline_write;
723 unsigned int needs_clflush;
724 unsigned int offset, idx;
725 struct dma_fence *fence;
726 void __user *user_data;
727 u64 remain;
728 int ret;
730 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
731 if (ret)
732 return ret;
734 fence = i915_gem_object_lock_fence(obj);
735 i915_gem_object_finish_access(obj);
736 if (!fence)
737 return -ENOMEM;
739 /* If we don't overwrite a cacheline completely we need to be
740 * careful to have up-to-date data by first clflushing. Don't
741 * overcomplicate things and flush the entire patch.
743 partial_cacheline_write = 0;
744 if (needs_clflush & CLFLUSH_BEFORE)
745 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
747 user_data = u64_to_user_ptr(args->data_ptr);
748 remain = args->size;
749 offset = offset_in_page(args->offset);
750 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
751 struct page *page = i915_gem_object_get_page(obj, idx);
752 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
754 ret = shmem_pwrite(page, offset, length, user_data,
755 (offset | length) & partial_cacheline_write,
756 needs_clflush & CLFLUSH_AFTER);
757 if (ret)
758 break;
760 remain -= length;
761 user_data += length;
762 offset = 0;
765 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
766 i915_gem_object_unlock_fence(obj, fence);
768 return ret;
772 * Writes data to the object referenced by handle.
773 * @dev: drm device
774 * @data: ioctl data blob
775 * @file: drm file
777 * On error, the contents of the buffer that were to be modified are undefined.
780 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
781 struct drm_file *file)
783 struct drm_i915_gem_pwrite *args = data;
784 struct drm_i915_gem_object *obj;
785 int ret;
787 if (args->size == 0)
788 return 0;
790 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
791 return -EFAULT;
793 obj = i915_gem_object_lookup(file, args->handle);
794 if (!obj)
795 return -ENOENT;
797 /* Bounds check destination. */
798 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
799 ret = -EINVAL;
800 goto err;
803 /* Writes not allowed into this read-only object */
804 if (i915_gem_object_is_readonly(obj)) {
805 ret = -EINVAL;
806 goto err;
809 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
811 ret = -ENODEV;
812 if (obj->ops->pwrite)
813 ret = obj->ops->pwrite(obj, args);
814 if (ret != -ENODEV)
815 goto err;
817 ret = i915_gem_object_wait(obj,
818 I915_WAIT_INTERRUPTIBLE |
819 I915_WAIT_ALL,
820 MAX_SCHEDULE_TIMEOUT);
821 if (ret)
822 goto err;
824 ret = i915_gem_object_pin_pages(obj);
825 if (ret)
826 goto err;
828 ret = -EFAULT;
829 /* We can only do the GTT pwrite on untiled buffers, as otherwise
830 * it would end up going through the fenced access, and we'll get
831 * different detiling behavior between reading and writing.
832 * pread/pwrite currently are reading and writing from the CPU
833 * perspective, requiring manual detiling by the client.
835 if (!i915_gem_object_has_struct_page(obj) ||
836 cpu_write_needs_clflush(obj))
837 /* Note that the gtt paths might fail with non-page-backed user
838 * pointers (e.g. gtt mappings when moving data between
839 * textures). Fallback to the shmem path in that case.
841 ret = i915_gem_gtt_pwrite_fast(obj, args);
843 if (ret == -EFAULT || ret == -ENOSPC) {
844 if (obj->phys_handle)
845 ret = i915_gem_phys_pwrite(obj, args, file);
846 else
847 ret = i915_gem_shmem_pwrite(obj, args);
850 i915_gem_object_unpin_pages(obj);
851 err:
852 i915_gem_object_put(obj);
853 return ret;
857 * Called when user space has done writes to this buffer
858 * @dev: drm device
859 * @data: ioctl data blob
860 * @file: drm file
863 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
864 struct drm_file *file)
866 struct drm_i915_gem_sw_finish *args = data;
867 struct drm_i915_gem_object *obj;
869 obj = i915_gem_object_lookup(file, args->handle);
870 if (!obj)
871 return -ENOENT;
874 * Proxy objects are barred from CPU access, so there is no
875 * need to ban sw_finish as it is a nop.
878 /* Pinned buffers may be scanout, so flush the cache */
879 i915_gem_object_flush_if_display(obj);
880 i915_gem_object_put(obj);
882 return 0;
885 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
887 struct drm_i915_gem_object *obj, *on;
888 int i;
891 * Only called during RPM suspend. All users of the userfault_list
892 * must be holding an RPM wakeref to ensure that this can not
893 * run concurrently with themselves (and use the struct_mutex for
894 * protection between themselves).
897 list_for_each_entry_safe(obj, on,
898 &i915->ggtt.userfault_list, userfault_link)
899 __i915_gem_object_release_mmap_gtt(obj);
902 * The fence will be lost when the device powers down. If any were
903 * in use by hardware (i.e. they are pinned), we should not be powering
904 * down! All other fences will be reacquired by the user upon waking.
906 for (i = 0; i < i915->ggtt.num_fences; i++) {
907 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
910 * Ideally we want to assert that the fence register is not
911 * live at this point (i.e. that no piece of code will be
912 * trying to write through fence + GTT, as that both violates
913 * our tracking of activity and associated locking/barriers,
914 * but also is illegal given that the hw is powered down).
916 * Previously we used reg->pin_count as a "liveness" indicator.
917 * That is not sufficient, and we need a more fine-grained
918 * tool if we want to have a sanity check here.
921 if (!reg->vma)
922 continue;
924 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
925 reg->dirty = true;
929 struct i915_vma *
930 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
931 const struct i915_ggtt_view *view,
932 u64 size,
933 u64 alignment,
934 u64 flags)
936 struct drm_i915_private *i915 = to_i915(obj->base.dev);
937 struct i915_ggtt *ggtt = &i915->ggtt;
938 struct i915_vma *vma;
939 int ret;
941 if (i915_gem_object_never_bind_ggtt(obj))
942 return ERR_PTR(-ENODEV);
944 if (flags & PIN_MAPPABLE &&
945 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
947 * If the required space is larger than the available
948 * aperture, we will not able to find a slot for the
949 * object and unbinding the object now will be in
950 * vain. Worse, doing so may cause us to ping-pong
951 * the object in and out of the Global GTT and
952 * waste a lot of cycles under the mutex.
954 if (obj->base.size > ggtt->mappable_end)
955 return ERR_PTR(-E2BIG);
958 * If NONBLOCK is set the caller is optimistically
959 * trying to cache the full object within the mappable
960 * aperture, and *must* have a fallback in place for
961 * situations where we cannot bind the object. We
962 * can be a little more lax here and use the fallback
963 * more often to avoid costly migrations of ourselves
964 * and other objects within the aperture.
966 * Half-the-aperture is used as a simple heuristic.
967 * More interesting would to do search for a free
968 * block prior to making the commitment to unbind.
969 * That caters for the self-harm case, and with a
970 * little more heuristics (e.g. NOFAULT, NOEVICT)
971 * we could try to minimise harm to others.
973 if (flags & PIN_NONBLOCK &&
974 obj->base.size > ggtt->mappable_end / 2)
975 return ERR_PTR(-ENOSPC);
978 vma = i915_vma_instance(obj, &ggtt->vm, view);
979 if (IS_ERR(vma))
980 return vma;
982 if (i915_vma_misplaced(vma, size, alignment, flags)) {
983 if (flags & PIN_NONBLOCK) {
984 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
985 return ERR_PTR(-ENOSPC);
987 if (flags & PIN_MAPPABLE &&
988 vma->fence_size > ggtt->mappable_end / 2)
989 return ERR_PTR(-ENOSPC);
992 ret = i915_vma_unbind(vma);
993 if (ret)
994 return ERR_PTR(ret);
997 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
998 mutex_lock(&ggtt->vm.mutex);
999 ret = i915_vma_revoke_fence(vma);
1000 mutex_unlock(&ggtt->vm.mutex);
1001 if (ret)
1002 return ERR_PTR(ret);
1005 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
1006 if (ret)
1007 return ERR_PTR(ret);
1009 return vma;
1013 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1014 struct drm_file *file_priv)
1016 struct drm_i915_private *i915 = to_i915(dev);
1017 struct drm_i915_gem_madvise *args = data;
1018 struct drm_i915_gem_object *obj;
1019 int err;
1021 switch (args->madv) {
1022 case I915_MADV_DONTNEED:
1023 case I915_MADV_WILLNEED:
1024 break;
1025 default:
1026 return -EINVAL;
1029 obj = i915_gem_object_lookup(file_priv, args->handle);
1030 if (!obj)
1031 return -ENOENT;
1033 err = mutex_lock_interruptible(&obj->mm.lock);
1034 if (err)
1035 goto out;
1037 if (i915_gem_object_has_pages(obj) &&
1038 i915_gem_object_is_tiled(obj) &&
1039 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1040 if (obj->mm.madv == I915_MADV_WILLNEED) {
1041 GEM_BUG_ON(!obj->mm.quirked);
1042 __i915_gem_object_unpin_pages(obj);
1043 obj->mm.quirked = false;
1045 if (args->madv == I915_MADV_WILLNEED) {
1046 GEM_BUG_ON(obj->mm.quirked);
1047 __i915_gem_object_pin_pages(obj);
1048 obj->mm.quirked = true;
1052 if (obj->mm.madv != __I915_MADV_PURGED)
1053 obj->mm.madv = args->madv;
1055 if (i915_gem_object_has_pages(obj)) {
1056 struct list_head *list;
1058 if (i915_gem_object_is_shrinkable(obj)) {
1059 unsigned long flags;
1061 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1063 if (obj->mm.madv != I915_MADV_WILLNEED)
1064 list = &i915->mm.purge_list;
1065 else
1066 list = &i915->mm.shrink_list;
1067 list_move_tail(&obj->mm.link, list);
1069 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1073 /* if the object is no longer attached, discard its backing storage */
1074 if (obj->mm.madv == I915_MADV_DONTNEED &&
1075 !i915_gem_object_has_pages(obj))
1076 i915_gem_object_truncate(obj);
1078 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1079 mutex_unlock(&obj->mm.lock);
1081 out:
1082 i915_gem_object_put(obj);
1083 return err;
1086 int i915_gem_init(struct drm_i915_private *dev_priv)
1088 int ret;
1090 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1091 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1092 mkwrite_device_info(dev_priv)->page_sizes =
1093 I915_GTT_PAGE_SIZE_4K;
1095 ret = i915_gem_init_userptr(dev_priv);
1096 if (ret)
1097 return ret;
1099 intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1100 intel_wopcm_init(&dev_priv->wopcm);
1102 ret = i915_init_ggtt(dev_priv);
1103 if (ret) {
1104 GEM_BUG_ON(ret == -EIO);
1105 goto err_unlock;
1109 * Despite its name intel_init_clock_gating applies both display
1110 * clock gating workarounds; GT mmio workarounds and the occasional
1111 * GT power context workaround. Worse, sometimes it includes a context
1112 * register workaround which we need to apply before we record the
1113 * default HW state for all contexts.
1115 * FIXME: break up the workarounds and apply them at the right time!
1117 intel_init_clock_gating(dev_priv);
1119 ret = intel_gt_init(&dev_priv->gt);
1120 if (ret)
1121 goto err_unlock;
1123 return 0;
1126 * Unwinding is complicated by that we want to handle -EIO to mean
1127 * disable GPU submission but keep KMS alive. We want to mark the
1128 * HW as irrevisibly wedged, but keep enough state around that the
1129 * driver doesn't explode during runtime.
1131 err_unlock:
1132 i915_gem_drain_workqueue(dev_priv);
1134 if (ret != -EIO) {
1135 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1136 i915_gem_cleanup_userptr(dev_priv);
1139 if (ret == -EIO) {
1141 * Allow engines or uC initialisation to fail by marking the GPU
1142 * as wedged. But we only want to do this when the GPU is angry,
1143 * for all other failure, such as an allocation failure, bail.
1145 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1146 i915_probe_error(dev_priv,
1147 "Failed to initialize GPU, declaring it wedged!\n");
1148 intel_gt_set_wedged(&dev_priv->gt);
1151 /* Minimal basic recovery for KMS */
1152 ret = i915_ggtt_enable_hw(dev_priv);
1153 i915_gem_restore_gtt_mappings(dev_priv);
1154 i915_gem_restore_fences(&dev_priv->ggtt);
1155 intel_init_clock_gating(dev_priv);
1158 i915_gem_drain_freed_objects(dev_priv);
1159 return ret;
1162 void i915_gem_driver_register(struct drm_i915_private *i915)
1164 i915_gem_driver_register__shrinker(i915);
1166 intel_engines_driver_register(i915);
1169 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1171 i915_gem_driver_unregister__shrinker(i915);
1174 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1176 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1178 i915_gem_suspend_late(dev_priv);
1179 intel_gt_driver_remove(&dev_priv->gt);
1180 dev_priv->uabi_engines = RB_ROOT;
1182 /* Flush any outstanding unpin_work. */
1183 i915_gem_drain_workqueue(dev_priv);
1185 i915_gem_drain_freed_objects(dev_priv);
1188 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1190 i915_gem_driver_release__contexts(dev_priv);
1192 intel_gt_driver_release(&dev_priv->gt);
1194 intel_wa_list_free(&dev_priv->gt_wa_list);
1196 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1197 i915_gem_cleanup_userptr(dev_priv);
1199 i915_gem_drain_freed_objects(dev_priv);
1201 WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
1204 static void i915_gem_init__mm(struct drm_i915_private *i915)
1206 spin_lock_init(&i915->mm.obj_lock);
1208 init_llist_head(&i915->mm.free_list);
1210 INIT_LIST_HEAD(&i915->mm.purge_list);
1211 INIT_LIST_HEAD(&i915->mm.shrink_list);
1213 i915_gem_init__objects(i915);
1216 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1218 i915_gem_init__mm(dev_priv);
1219 i915_gem_init__contexts(dev_priv);
1221 spin_lock_init(&dev_priv->fb_tracking.lock);
1224 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1226 i915_gem_drain_freed_objects(dev_priv);
1227 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1228 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1229 WARN_ON(dev_priv->mm.shrink_count);
1232 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1234 /* Discard all purgeable objects, let userspace recover those as
1235 * required after resuming.
1237 i915_gem_shrink_all(dev_priv);
1239 return 0;
1242 int i915_gem_freeze_late(struct drm_i915_private *i915)
1244 struct drm_i915_gem_object *obj;
1245 intel_wakeref_t wakeref;
1248 * Called just before we write the hibernation image.
1250 * We need to update the domain tracking to reflect that the CPU
1251 * will be accessing all the pages to create and restore from the
1252 * hibernation, and so upon restoration those pages will be in the
1253 * CPU domain.
1255 * To make sure the hibernation image contains the latest state,
1256 * we update that state just before writing out the image.
1258 * To try and reduce the hibernation image, we manually shrink
1259 * the objects as well, see i915_gem_freeze()
1262 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1264 i915_gem_shrink(i915, -1UL, NULL, ~0);
1265 i915_gem_drain_freed_objects(i915);
1267 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1268 i915_gem_object_lock(obj);
1269 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1270 i915_gem_object_unlock(obj);
1273 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1275 return 0;
1278 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1280 struct drm_i915_file_private *file_priv = file->driver_priv;
1281 struct i915_request *request;
1283 /* Clean up our request list when the client is going away, so that
1284 * later retire_requests won't dereference our soon-to-be-gone
1285 * file_priv.
1287 spin_lock(&file_priv->mm.lock);
1288 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1289 request->file_priv = NULL;
1290 spin_unlock(&file_priv->mm.lock);
1293 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1295 struct drm_i915_file_private *file_priv;
1296 int ret;
1298 DRM_DEBUG("\n");
1300 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1301 if (!file_priv)
1302 return -ENOMEM;
1304 file->driver_priv = file_priv;
1305 file_priv->dev_priv = i915;
1306 file_priv->file = file;
1308 spin_lock_init(&file_priv->mm.lock);
1309 INIT_LIST_HEAD(&file_priv->mm.request_list);
1311 file_priv->bsd_engine = -1;
1312 file_priv->hang_timestamp = jiffies;
1314 ret = i915_gem_context_open(i915, file);
1315 if (ret)
1316 kfree(file_priv);
1318 return ret;
1321 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1322 #include "selftests/mock_gem_device.c"
1323 #include "selftests/i915_gem.c"
1324 #endif