treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_irq.c
blobafc6aad9bf8c57c83c4a9e33b5d25aa36c62e574
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 #include <drm/i915_drm.h>
39 #include "display/intel_display_types.h"
40 #include "display/intel_fifo_underrun.h"
41 #include "display/intel_hotplug.h"
42 #include "display/intel_lpe_audio.h"
43 #include "display/intel_psr.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
55 /**
56 * DOC: interrupt handling
58 * These functions provide the basic support for enabling and disabling the
59 * interrupt handling support. There's a lot more functionality in i915_irq.c
60 * and related files, but that will be described in separate chapters.
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
65 static const u32 hpd_ilk[HPD_NUM_PINS] = {
66 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
69 static const u32 hpd_ivb[HPD_NUM_PINS] = {
70 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
73 static const u32 hpd_bdw[HPD_NUM_PINS] = {
74 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
77 static const u32 hpd_ibx[HPD_NUM_PINS] = {
78 [HPD_CRT] = SDE_CRT_HOTPLUG,
79 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
80 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
81 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
82 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
85 static const u32 hpd_cpt[HPD_NUM_PINS] = {
86 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
87 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
88 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
89 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
90 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
93 static const u32 hpd_spt[HPD_NUM_PINS] = {
94 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
95 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
96 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
97 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
98 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
101 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
102 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
103 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
104 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
105 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
106 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
107 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
110 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
111 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
112 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
113 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
114 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
115 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
116 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
119 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
120 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
121 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
122 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
123 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
124 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
125 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
128 /* BXT hpd list */
129 static const u32 hpd_bxt[HPD_NUM_PINS] = {
130 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
131 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
132 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
135 static const u32 hpd_gen11[HPD_NUM_PINS] = {
136 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
137 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
138 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
139 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
142 static const u32 hpd_gen12[HPD_NUM_PINS] = {
143 [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
144 [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
145 [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
146 [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
147 [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
148 [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
151 static const u32 hpd_icp[HPD_NUM_PINS] = {
152 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
153 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
154 [HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
155 [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
156 [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
157 [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
160 static const u32 hpd_tgp[HPD_NUM_PINS] = {
161 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
162 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
163 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
164 [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
165 [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
166 [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
167 [HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
168 [HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
169 [HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
172 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
173 i915_reg_t iir, i915_reg_t ier)
175 intel_uncore_write(uncore, imr, 0xffffffff);
176 intel_uncore_posting_read(uncore, imr);
178 intel_uncore_write(uncore, ier, 0);
180 /* IIR can theoretically queue up two events. Be paranoid. */
181 intel_uncore_write(uncore, iir, 0xffffffff);
182 intel_uncore_posting_read(uncore, iir);
183 intel_uncore_write(uncore, iir, 0xffffffff);
184 intel_uncore_posting_read(uncore, iir);
187 void gen2_irq_reset(struct intel_uncore *uncore)
189 intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
190 intel_uncore_posting_read16(uncore, GEN2_IMR);
192 intel_uncore_write16(uncore, GEN2_IER, 0);
194 /* IIR can theoretically queue up two events. Be paranoid. */
195 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
196 intel_uncore_posting_read16(uncore, GEN2_IIR);
197 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
198 intel_uncore_posting_read16(uncore, GEN2_IIR);
202 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
204 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
206 u32 val = intel_uncore_read(uncore, reg);
208 if (val == 0)
209 return;
211 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
212 i915_mmio_reg_offset(reg), val);
213 intel_uncore_write(uncore, reg, 0xffffffff);
214 intel_uncore_posting_read(uncore, reg);
215 intel_uncore_write(uncore, reg, 0xffffffff);
216 intel_uncore_posting_read(uncore, reg);
219 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
221 u16 val = intel_uncore_read16(uncore, GEN2_IIR);
223 if (val == 0)
224 return;
226 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
227 i915_mmio_reg_offset(GEN2_IIR), val);
228 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
229 intel_uncore_posting_read16(uncore, GEN2_IIR);
230 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
231 intel_uncore_posting_read16(uncore, GEN2_IIR);
234 void gen3_irq_init(struct intel_uncore *uncore,
235 i915_reg_t imr, u32 imr_val,
236 i915_reg_t ier, u32 ier_val,
237 i915_reg_t iir)
239 gen3_assert_iir_is_zero(uncore, iir);
241 intel_uncore_write(uncore, ier, ier_val);
242 intel_uncore_write(uncore, imr, imr_val);
243 intel_uncore_posting_read(uncore, imr);
246 void gen2_irq_init(struct intel_uncore *uncore,
247 u32 imr_val, u32 ier_val)
249 gen2_assert_iir_is_zero(uncore);
251 intel_uncore_write16(uncore, GEN2_IER, ier_val);
252 intel_uncore_write16(uncore, GEN2_IMR, imr_val);
253 intel_uncore_posting_read16(uncore, GEN2_IMR);
256 /* For display hotplug interrupt */
257 static inline void
258 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
259 u32 mask,
260 u32 bits)
262 u32 val;
264 lockdep_assert_held(&dev_priv->irq_lock);
265 WARN_ON(bits & ~mask);
267 val = I915_READ(PORT_HOTPLUG_EN);
268 val &= ~mask;
269 val |= bits;
270 I915_WRITE(PORT_HOTPLUG_EN, val);
274 * i915_hotplug_interrupt_update - update hotplug interrupt enable
275 * @dev_priv: driver private
276 * @mask: bits to update
277 * @bits: bits to enable
278 * NOTE: the HPD enable bits are modified both inside and outside
279 * of an interrupt context. To avoid that read-modify-write cycles
280 * interfer, these bits are protected by a spinlock. Since this
281 * function is usually not called from a context where the lock is
282 * held already, this function acquires the lock itself. A non-locking
283 * version is also available.
285 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
286 u32 mask,
287 u32 bits)
289 spin_lock_irq(&dev_priv->irq_lock);
290 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
291 spin_unlock_irq(&dev_priv->irq_lock);
295 * ilk_update_display_irq - update DEIMR
296 * @dev_priv: driver private
297 * @interrupt_mask: mask of interrupt bits to update
298 * @enabled_irq_mask: mask of interrupt bits to enable
300 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
301 u32 interrupt_mask,
302 u32 enabled_irq_mask)
304 u32 new_val;
306 lockdep_assert_held(&dev_priv->irq_lock);
308 WARN_ON(enabled_irq_mask & ~interrupt_mask);
310 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
311 return;
313 new_val = dev_priv->irq_mask;
314 new_val &= ~interrupt_mask;
315 new_val |= (~enabled_irq_mask & interrupt_mask);
317 if (new_val != dev_priv->irq_mask) {
318 dev_priv->irq_mask = new_val;
319 I915_WRITE(DEIMR, dev_priv->irq_mask);
320 POSTING_READ(DEIMR);
325 * bdw_update_port_irq - update DE port interrupt
326 * @dev_priv: driver private
327 * @interrupt_mask: mask of interrupt bits to update
328 * @enabled_irq_mask: mask of interrupt bits to enable
330 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
331 u32 interrupt_mask,
332 u32 enabled_irq_mask)
334 u32 new_val;
335 u32 old_val;
337 lockdep_assert_held(&dev_priv->irq_lock);
339 WARN_ON(enabled_irq_mask & ~interrupt_mask);
341 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342 return;
344 old_val = I915_READ(GEN8_DE_PORT_IMR);
346 new_val = old_val;
347 new_val &= ~interrupt_mask;
348 new_val |= (~enabled_irq_mask & interrupt_mask);
350 if (new_val != old_val) {
351 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
352 POSTING_READ(GEN8_DE_PORT_IMR);
357 * bdw_update_pipe_irq - update DE pipe interrupt
358 * @dev_priv: driver private
359 * @pipe: pipe whose interrupt to update
360 * @interrupt_mask: mask of interrupt bits to update
361 * @enabled_irq_mask: mask of interrupt bits to enable
363 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
364 enum pipe pipe,
365 u32 interrupt_mask,
366 u32 enabled_irq_mask)
368 u32 new_val;
370 lockdep_assert_held(&dev_priv->irq_lock);
372 WARN_ON(enabled_irq_mask & ~interrupt_mask);
374 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
375 return;
377 new_val = dev_priv->de_irq_mask[pipe];
378 new_val &= ~interrupt_mask;
379 new_val |= (~enabled_irq_mask & interrupt_mask);
381 if (new_val != dev_priv->de_irq_mask[pipe]) {
382 dev_priv->de_irq_mask[pipe] = new_val;
383 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
384 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
389 * ibx_display_interrupt_update - update SDEIMR
390 * @dev_priv: driver private
391 * @interrupt_mask: mask of interrupt bits to update
392 * @enabled_irq_mask: mask of interrupt bits to enable
394 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
395 u32 interrupt_mask,
396 u32 enabled_irq_mask)
398 u32 sdeimr = I915_READ(SDEIMR);
399 sdeimr &= ~interrupt_mask;
400 sdeimr |= (~enabled_irq_mask & interrupt_mask);
402 WARN_ON(enabled_irq_mask & ~interrupt_mask);
404 lockdep_assert_held(&dev_priv->irq_lock);
406 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
407 return;
409 I915_WRITE(SDEIMR, sdeimr);
410 POSTING_READ(SDEIMR);
413 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
414 enum pipe pipe)
416 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
417 u32 enable_mask = status_mask << 16;
419 lockdep_assert_held(&dev_priv->irq_lock);
421 if (INTEL_GEN(dev_priv) < 5)
422 goto out;
425 * On pipe A we don't support the PSR interrupt yet,
426 * on pipe B and C the same bit MBZ.
428 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
429 return 0;
431 * On pipe B and C we don't support the PSR interrupt yet, on pipe
432 * A the same bit is for perf counters which we don't use either.
434 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
435 return 0;
437 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
438 SPRITE0_FLIP_DONE_INT_EN_VLV |
439 SPRITE1_FLIP_DONE_INT_EN_VLV);
440 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
441 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
442 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
443 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
445 out:
446 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
447 status_mask & ~PIPESTAT_INT_STATUS_MASK,
448 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
449 pipe_name(pipe), enable_mask, status_mask);
451 return enable_mask;
454 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
455 enum pipe pipe, u32 status_mask)
457 i915_reg_t reg = PIPESTAT(pipe);
458 u32 enable_mask;
460 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
461 "pipe %c: status_mask=0x%x\n",
462 pipe_name(pipe), status_mask);
464 lockdep_assert_held(&dev_priv->irq_lock);
465 WARN_ON(!intel_irqs_enabled(dev_priv));
467 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
468 return;
470 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
471 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
473 I915_WRITE(reg, enable_mask | status_mask);
474 POSTING_READ(reg);
477 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
478 enum pipe pipe, u32 status_mask)
480 i915_reg_t reg = PIPESTAT(pipe);
481 u32 enable_mask;
483 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
484 "pipe %c: status_mask=0x%x\n",
485 pipe_name(pipe), status_mask);
487 lockdep_assert_held(&dev_priv->irq_lock);
488 WARN_ON(!intel_irqs_enabled(dev_priv));
490 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
491 return;
493 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
494 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
496 I915_WRITE(reg, enable_mask | status_mask);
497 POSTING_READ(reg);
500 static bool i915_has_asle(struct drm_i915_private *dev_priv)
502 if (!dev_priv->opregion.asle)
503 return false;
505 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
509 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
510 * @dev_priv: i915 device private
512 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
514 if (!i915_has_asle(dev_priv))
515 return;
517 spin_lock_irq(&dev_priv->irq_lock);
519 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
520 if (INTEL_GEN(dev_priv) >= 4)
521 i915_enable_pipestat(dev_priv, PIPE_A,
522 PIPE_LEGACY_BLC_EVENT_STATUS);
524 spin_unlock_irq(&dev_priv->irq_lock);
528 * This timing diagram depicts the video signal in and
529 * around the vertical blanking period.
531 * Assumptions about the fictitious mode used in this example:
532 * vblank_start >= 3
533 * vsync_start = vblank_start + 1
534 * vsync_end = vblank_start + 2
535 * vtotal = vblank_start + 3
537 * start of vblank:
538 * latch double buffered registers
539 * increment frame counter (ctg+)
540 * generate start of vblank interrupt (gen4+)
542 * | frame start:
543 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
544 * | may be shifted forward 1-3 extra lines via PIPECONF
545 * | |
546 * | | start of vsync:
547 * | | generate vsync interrupt
548 * | | |
549 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
550 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
551 * ----va---> <-----------------vb--------------------> <--------va-------------
552 * | | <----vs-----> |
553 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
554 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
555 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
556 * | | |
557 * last visible pixel first visible pixel
558 * | increment frame counter (gen3/4)
559 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
561 * x = horizontal active
562 * _ = horizontal blanking
563 * hs = horizontal sync
564 * va = vertical active
565 * vb = vertical blanking
566 * vs = vertical sync
567 * vbs = vblank_start (number)
569 * Summary:
570 * - most events happen at the start of horizontal sync
571 * - frame start happens at the start of horizontal blank, 1-4 lines
572 * (depending on PIPECONF settings) after the start of vblank
573 * - gen3/4 pixel and frame counter are synchronized with the start
574 * of horizontal active on the first line of vertical active
577 /* Called from drm generic code, passed a 'crtc', which
578 * we use as a pipe index
580 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
582 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
583 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
584 const struct drm_display_mode *mode = &vblank->hwmode;
585 enum pipe pipe = to_intel_crtc(crtc)->pipe;
586 i915_reg_t high_frame, low_frame;
587 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
588 unsigned long irqflags;
591 * On i965gm TV output the frame counter only works up to
592 * the point when we enable the TV encoder. After that the
593 * frame counter ceases to work and reads zero. We need a
594 * vblank wait before enabling the TV encoder and so we
595 * have to enable vblank interrupts while the frame counter
596 * is still in a working state. However the core vblank code
597 * does not like us returning non-zero frame counter values
598 * when we've told it that we don't have a working frame
599 * counter. Thus we must stop non-zero values leaking out.
601 if (!vblank->max_vblank_count)
602 return 0;
604 htotal = mode->crtc_htotal;
605 hsync_start = mode->crtc_hsync_start;
606 vbl_start = mode->crtc_vblank_start;
607 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
608 vbl_start = DIV_ROUND_UP(vbl_start, 2);
610 /* Convert to pixel count */
611 vbl_start *= htotal;
613 /* Start of vblank event occurs at start of hsync */
614 vbl_start -= htotal - hsync_start;
616 high_frame = PIPEFRAME(pipe);
617 low_frame = PIPEFRAMEPIXEL(pipe);
619 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
622 * High & low register fields aren't synchronized, so make sure
623 * we get a low value that's stable across two reads of the high
624 * register.
626 do {
627 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
628 low = I915_READ_FW(low_frame);
629 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
630 } while (high1 != high2);
632 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
634 high1 >>= PIPE_FRAME_HIGH_SHIFT;
635 pixel = low & PIPE_PIXEL_MASK;
636 low >>= PIPE_FRAME_LOW_SHIFT;
639 * The frame counter increments at beginning of active.
640 * Cook up a vblank counter by also checking the pixel
641 * counter against vblank start.
643 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
646 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
648 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
649 enum pipe pipe = to_intel_crtc(crtc)->pipe;
651 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
655 * On certain encoders on certain platforms, pipe
656 * scanline register will not work to get the scanline,
657 * since the timings are driven from the PORT or issues
658 * with scanline register updates.
659 * This function will use Framestamp and current
660 * timestamp registers to calculate the scanline.
662 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
665 struct drm_vblank_crtc *vblank =
666 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
667 const struct drm_display_mode *mode = &vblank->hwmode;
668 u32 vblank_start = mode->crtc_vblank_start;
669 u32 vtotal = mode->crtc_vtotal;
670 u32 htotal = mode->crtc_htotal;
671 u32 clock = mode->crtc_clock;
672 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
675 * To avoid the race condition where we might cross into the
676 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
677 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
678 * during the same frame.
680 do {
682 * This field provides read back of the display
683 * pipe frame time stamp. The time stamp value
684 * is sampled at every start of vertical blank.
686 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
689 * The TIMESTAMP_CTR register has the current
690 * time stamp value.
692 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
694 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
695 } while (scan_post_time != scan_prev_time);
697 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
698 clock), 1000 * htotal);
699 scanline = min(scanline, vtotal - 1);
700 scanline = (scanline + vblank_start) % vtotal;
702 return scanline;
705 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
706 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
708 struct drm_device *dev = crtc->base.dev;
709 struct drm_i915_private *dev_priv = to_i915(dev);
710 const struct drm_display_mode *mode;
711 struct drm_vblank_crtc *vblank;
712 enum pipe pipe = crtc->pipe;
713 int position, vtotal;
715 if (!crtc->active)
716 return -1;
718 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
719 mode = &vblank->hwmode;
721 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
722 return __intel_get_crtc_scanline_from_timestamp(crtc);
724 vtotal = mode->crtc_vtotal;
725 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
726 vtotal /= 2;
728 if (IS_GEN(dev_priv, 2))
729 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
730 else
731 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
734 * On HSW, the DSL reg (0x70000) appears to return 0 if we
735 * read it just before the start of vblank. So try it again
736 * so we don't accidentally end up spanning a vblank frame
737 * increment, causing the pipe_update_end() code to squak at us.
739 * The nature of this problem means we can't simply check the ISR
740 * bit and return the vblank start value; nor can we use the scanline
741 * debug register in the transcoder as it appears to have the same
742 * problem. We may need to extend this to include other platforms,
743 * but so far testing only shows the problem on HSW.
745 if (HAS_DDI(dev_priv) && !position) {
746 int i, temp;
748 for (i = 0; i < 100; i++) {
749 udelay(1);
750 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
751 if (temp != position) {
752 position = temp;
753 break;
759 * See update_scanline_offset() for the details on the
760 * scanline_offset adjustment.
762 return (position + crtc->scanline_offset) % vtotal;
765 bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int index,
766 bool in_vblank_irq, int *vpos, int *hpos,
767 ktime_t *stime, ktime_t *etime,
768 const struct drm_display_mode *mode)
770 struct drm_i915_private *dev_priv = to_i915(dev);
771 struct intel_crtc *crtc = to_intel_crtc(drm_crtc_from_index(dev, index));
772 enum pipe pipe = crtc->pipe;
773 int position;
774 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
775 unsigned long irqflags;
776 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
777 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
778 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
780 if (WARN_ON(!mode->crtc_clock)) {
781 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
782 "pipe %c\n", pipe_name(pipe));
783 return false;
786 htotal = mode->crtc_htotal;
787 hsync_start = mode->crtc_hsync_start;
788 vtotal = mode->crtc_vtotal;
789 vbl_start = mode->crtc_vblank_start;
790 vbl_end = mode->crtc_vblank_end;
792 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
793 vbl_start = DIV_ROUND_UP(vbl_start, 2);
794 vbl_end /= 2;
795 vtotal /= 2;
799 * Lock uncore.lock, as we will do multiple timing critical raw
800 * register reads, potentially with preemption disabled, so the
801 * following code must not block on uncore.lock.
803 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
805 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
807 /* Get optional system timestamp before query. */
808 if (stime)
809 *stime = ktime_get();
811 if (use_scanline_counter) {
812 /* No obvious pixelcount register. Only query vertical
813 * scanout position from Display scan line register.
815 position = __intel_get_crtc_scanline(crtc);
816 } else {
817 /* Have access to pixelcount since start of frame.
818 * We can split this into vertical and horizontal
819 * scanout position.
821 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
823 /* convert to pixel counts */
824 vbl_start *= htotal;
825 vbl_end *= htotal;
826 vtotal *= htotal;
829 * In interlaced modes, the pixel counter counts all pixels,
830 * so one field will have htotal more pixels. In order to avoid
831 * the reported position from jumping backwards when the pixel
832 * counter is beyond the length of the shorter field, just
833 * clamp the position the length of the shorter field. This
834 * matches how the scanline counter based position works since
835 * the scanline counter doesn't count the two half lines.
837 if (position >= vtotal)
838 position = vtotal - 1;
841 * Start of vblank interrupt is triggered at start of hsync,
842 * just prior to the first active line of vblank. However we
843 * consider lines to start at the leading edge of horizontal
844 * active. So, should we get here before we've crossed into
845 * the horizontal active of the first line in vblank, we would
846 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
847 * always add htotal-hsync_start to the current pixel position.
849 position = (position + htotal - hsync_start) % vtotal;
852 /* Get optional system timestamp after query. */
853 if (etime)
854 *etime = ktime_get();
856 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
858 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
861 * While in vblank, position will be negative
862 * counting up towards 0 at vbl_end. And outside
863 * vblank, position will be positive counting
864 * up since vbl_end.
866 if (position >= vbl_start)
867 position -= vbl_end;
868 else
869 position += vtotal - vbl_end;
871 if (use_scanline_counter) {
872 *vpos = position;
873 *hpos = 0;
874 } else {
875 *vpos = position / htotal;
876 *hpos = position - (*vpos * htotal);
879 return true;
882 int intel_get_crtc_scanline(struct intel_crtc *crtc)
884 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
885 unsigned long irqflags;
886 int position;
888 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
889 position = __intel_get_crtc_scanline(crtc);
890 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
892 return position;
896 * ivb_parity_work - Workqueue called when a parity error interrupt
897 * occurred.
898 * @work: workqueue struct
900 * Doesn't actually do anything except notify userspace. As a consequence of
901 * this event, userspace should try to remap the bad rows since statistically
902 * it is likely the same row is more likely to go bad again.
904 static void ivb_parity_work(struct work_struct *work)
906 struct drm_i915_private *dev_priv =
907 container_of(work, typeof(*dev_priv), l3_parity.error_work);
908 struct intel_gt *gt = &dev_priv->gt;
909 u32 error_status, row, bank, subbank;
910 char *parity_event[6];
911 u32 misccpctl;
912 u8 slice = 0;
914 /* We must turn off DOP level clock gating to access the L3 registers.
915 * In order to prevent a get/put style interface, acquire struct mutex
916 * any time we access those registers.
918 mutex_lock(&dev_priv->drm.struct_mutex);
920 /* If we've screwed up tracking, just let the interrupt fire again */
921 if (WARN_ON(!dev_priv->l3_parity.which_slice))
922 goto out;
924 misccpctl = I915_READ(GEN7_MISCCPCTL);
925 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
926 POSTING_READ(GEN7_MISCCPCTL);
928 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
929 i915_reg_t reg;
931 slice--;
932 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
933 break;
935 dev_priv->l3_parity.which_slice &= ~(1<<slice);
937 reg = GEN7_L3CDERRST1(slice);
939 error_status = I915_READ(reg);
940 row = GEN7_PARITY_ERROR_ROW(error_status);
941 bank = GEN7_PARITY_ERROR_BANK(error_status);
942 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
944 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
945 POSTING_READ(reg);
947 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
948 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
949 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
950 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
951 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
952 parity_event[5] = NULL;
954 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
955 KOBJ_CHANGE, parity_event);
957 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
958 slice, row, bank, subbank);
960 kfree(parity_event[4]);
961 kfree(parity_event[3]);
962 kfree(parity_event[2]);
963 kfree(parity_event[1]);
966 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
968 out:
969 WARN_ON(dev_priv->l3_parity.which_slice);
970 spin_lock_irq(&gt->irq_lock);
971 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
972 spin_unlock_irq(&gt->irq_lock);
974 mutex_unlock(&dev_priv->drm.struct_mutex);
977 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
979 switch (pin) {
980 case HPD_PORT_C:
981 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
982 case HPD_PORT_D:
983 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
984 case HPD_PORT_E:
985 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
986 case HPD_PORT_F:
987 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
988 default:
989 return false;
993 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
995 switch (pin) {
996 case HPD_PORT_D:
997 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
998 case HPD_PORT_E:
999 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1000 case HPD_PORT_F:
1001 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1002 case HPD_PORT_G:
1003 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1004 case HPD_PORT_H:
1005 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1006 case HPD_PORT_I:
1007 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1008 default:
1009 return false;
1013 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1015 switch (pin) {
1016 case HPD_PORT_A:
1017 return val & PORTA_HOTPLUG_LONG_DETECT;
1018 case HPD_PORT_B:
1019 return val & PORTB_HOTPLUG_LONG_DETECT;
1020 case HPD_PORT_C:
1021 return val & PORTC_HOTPLUG_LONG_DETECT;
1022 default:
1023 return false;
1027 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1029 switch (pin) {
1030 case HPD_PORT_A:
1031 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1032 case HPD_PORT_B:
1033 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1034 case HPD_PORT_C:
1035 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1036 default:
1037 return false;
1041 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1043 switch (pin) {
1044 case HPD_PORT_C:
1045 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1046 case HPD_PORT_D:
1047 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1048 case HPD_PORT_E:
1049 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1050 case HPD_PORT_F:
1051 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1052 default:
1053 return false;
1057 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1059 switch (pin) {
1060 case HPD_PORT_D:
1061 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1062 case HPD_PORT_E:
1063 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1064 case HPD_PORT_F:
1065 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1066 case HPD_PORT_G:
1067 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1068 case HPD_PORT_H:
1069 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1070 case HPD_PORT_I:
1071 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1072 default:
1073 return false;
1077 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1079 switch (pin) {
1080 case HPD_PORT_E:
1081 return val & PORTE_HOTPLUG_LONG_DETECT;
1082 default:
1083 return false;
1087 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1089 switch (pin) {
1090 case HPD_PORT_A:
1091 return val & PORTA_HOTPLUG_LONG_DETECT;
1092 case HPD_PORT_B:
1093 return val & PORTB_HOTPLUG_LONG_DETECT;
1094 case HPD_PORT_C:
1095 return val & PORTC_HOTPLUG_LONG_DETECT;
1096 case HPD_PORT_D:
1097 return val & PORTD_HOTPLUG_LONG_DETECT;
1098 default:
1099 return false;
1103 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1105 switch (pin) {
1106 case HPD_PORT_A:
1107 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1108 default:
1109 return false;
1113 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1115 switch (pin) {
1116 case HPD_PORT_B:
1117 return val & PORTB_HOTPLUG_LONG_DETECT;
1118 case HPD_PORT_C:
1119 return val & PORTC_HOTPLUG_LONG_DETECT;
1120 case HPD_PORT_D:
1121 return val & PORTD_HOTPLUG_LONG_DETECT;
1122 default:
1123 return false;
1127 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1129 switch (pin) {
1130 case HPD_PORT_B:
1131 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1132 case HPD_PORT_C:
1133 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1134 case HPD_PORT_D:
1135 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1136 default:
1137 return false;
1142 * Get a bit mask of pins that have triggered, and which ones may be long.
1143 * This can be called multiple times with the same masks to accumulate
1144 * hotplug detection results from several registers.
1146 * Note that the caller is expected to zero out the masks initially.
1148 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1149 u32 *pin_mask, u32 *long_mask,
1150 u32 hotplug_trigger, u32 dig_hotplug_reg,
1151 const u32 hpd[HPD_NUM_PINS],
1152 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1154 enum hpd_pin pin;
1156 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1158 for_each_hpd_pin(pin) {
1159 if ((hpd[pin] & hotplug_trigger) == 0)
1160 continue;
1162 *pin_mask |= BIT(pin);
1164 if (long_pulse_detect(pin, dig_hotplug_reg))
1165 *long_mask |= BIT(pin);
1168 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1169 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1173 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1175 wake_up_all(&dev_priv->gmbus_wait_queue);
1178 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1180 wake_up_all(&dev_priv->gmbus_wait_queue);
1183 #if defined(CONFIG_DEBUG_FS)
1184 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1185 enum pipe pipe,
1186 u32 crc0, u32 crc1,
1187 u32 crc2, u32 crc3,
1188 u32 crc4)
1190 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1191 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1192 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1194 trace_intel_pipe_crc(crtc, crcs);
1196 spin_lock(&pipe_crc->lock);
1198 * For some not yet identified reason, the first CRC is
1199 * bonkers. So let's just wait for the next vblank and read
1200 * out the buggy result.
1202 * On GEN8+ sometimes the second CRC is bonkers as well, so
1203 * don't trust that one either.
1205 if (pipe_crc->skipped <= 0 ||
1206 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1207 pipe_crc->skipped++;
1208 spin_unlock(&pipe_crc->lock);
1209 return;
1211 spin_unlock(&pipe_crc->lock);
1213 drm_crtc_add_crc_entry(&crtc->base, true,
1214 drm_crtc_accurate_vblank_count(&crtc->base),
1215 crcs);
1217 #else
1218 static inline void
1219 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1220 enum pipe pipe,
1221 u32 crc0, u32 crc1,
1222 u32 crc2, u32 crc3,
1223 u32 crc4) {}
1224 #endif
1227 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1228 enum pipe pipe)
1230 display_pipe_crc_irq_handler(dev_priv, pipe,
1231 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1232 0, 0, 0, 0);
1235 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1236 enum pipe pipe)
1238 display_pipe_crc_irq_handler(dev_priv, pipe,
1239 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1240 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1241 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1242 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1243 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1246 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1249 u32 res1, res2;
1251 if (INTEL_GEN(dev_priv) >= 3)
1252 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1253 else
1254 res1 = 0;
1256 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1257 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1258 else
1259 res2 = 0;
1261 display_pipe_crc_irq_handler(dev_priv, pipe,
1262 I915_READ(PIPE_CRC_RES_RED(pipe)),
1263 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1264 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1265 res1, res2);
1268 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1270 enum pipe pipe;
1272 for_each_pipe(dev_priv, pipe) {
1273 I915_WRITE(PIPESTAT(pipe),
1274 PIPESTAT_INT_STATUS_MASK |
1275 PIPE_FIFO_UNDERRUN_STATUS);
1277 dev_priv->pipestat_irq_mask[pipe] = 0;
1281 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1282 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1284 enum pipe pipe;
1286 spin_lock(&dev_priv->irq_lock);
1288 if (!dev_priv->display_irqs_enabled) {
1289 spin_unlock(&dev_priv->irq_lock);
1290 return;
1293 for_each_pipe(dev_priv, pipe) {
1294 i915_reg_t reg;
1295 u32 status_mask, enable_mask, iir_bit = 0;
1298 * PIPESTAT bits get signalled even when the interrupt is
1299 * disabled with the mask bits, and some of the status bits do
1300 * not generate interrupts at all (like the underrun bit). Hence
1301 * we need to be careful that we only handle what we want to
1302 * handle.
1305 /* fifo underruns are filterered in the underrun handler. */
1306 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1308 switch (pipe) {
1309 default:
1310 case PIPE_A:
1311 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1312 break;
1313 case PIPE_B:
1314 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1315 break;
1316 case PIPE_C:
1317 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1318 break;
1320 if (iir & iir_bit)
1321 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1323 if (!status_mask)
1324 continue;
1326 reg = PIPESTAT(pipe);
1327 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1328 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1331 * Clear the PIPE*STAT regs before the IIR
1333 * Toggle the enable bits to make sure we get an
1334 * edge in the ISR pipe event bit if we don't clear
1335 * all the enabled status bits. Otherwise the edge
1336 * triggered IIR on i965/g4x wouldn't notice that
1337 * an interrupt is still pending.
1339 if (pipe_stats[pipe]) {
1340 I915_WRITE(reg, pipe_stats[pipe]);
1341 I915_WRITE(reg, enable_mask);
1344 spin_unlock(&dev_priv->irq_lock);
1347 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1348 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1350 enum pipe pipe;
1352 for_each_pipe(dev_priv, pipe) {
1353 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1354 drm_handle_vblank(&dev_priv->drm, pipe);
1356 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1357 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1359 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1360 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1364 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1365 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1367 bool blc_event = false;
1368 enum pipe pipe;
1370 for_each_pipe(dev_priv, pipe) {
1371 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1372 drm_handle_vblank(&dev_priv->drm, pipe);
1374 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1375 blc_event = true;
1377 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1378 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1380 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1381 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1384 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1385 intel_opregion_asle_intr(dev_priv);
1388 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1389 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1391 bool blc_event = false;
1392 enum pipe pipe;
1394 for_each_pipe(dev_priv, pipe) {
1395 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1396 drm_handle_vblank(&dev_priv->drm, pipe);
1398 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1399 blc_event = true;
1401 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1402 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1404 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1405 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1408 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1409 intel_opregion_asle_intr(dev_priv);
1411 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1412 gmbus_irq_handler(dev_priv);
1415 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1416 u32 pipe_stats[I915_MAX_PIPES])
1418 enum pipe pipe;
1420 for_each_pipe(dev_priv, pipe) {
1421 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1422 drm_handle_vblank(&dev_priv->drm, pipe);
1424 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1425 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1427 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1428 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1431 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1432 gmbus_irq_handler(dev_priv);
1435 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1437 u32 hotplug_status = 0, hotplug_status_mask;
1438 int i;
1440 if (IS_G4X(dev_priv) ||
1441 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1442 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1443 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1444 else
1445 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1448 * We absolutely have to clear all the pending interrupt
1449 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1450 * interrupt bit won't have an edge, and the i965/g4x
1451 * edge triggered IIR will not notice that an interrupt
1452 * is still pending. We can't use PORT_HOTPLUG_EN to
1453 * guarantee the edge as the act of toggling the enable
1454 * bits can itself generate a new hotplug interrupt :(
1456 for (i = 0; i < 10; i++) {
1457 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1459 if (tmp == 0)
1460 return hotplug_status;
1462 hotplug_status |= tmp;
1463 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1466 WARN_ONCE(1,
1467 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1468 I915_READ(PORT_HOTPLUG_STAT));
1470 return hotplug_status;
1473 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1474 u32 hotplug_status)
1476 u32 pin_mask = 0, long_mask = 0;
1478 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1479 IS_CHERRYVIEW(dev_priv)) {
1480 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1482 if (hotplug_trigger) {
1483 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1484 hotplug_trigger, hotplug_trigger,
1485 hpd_status_g4x,
1486 i9xx_port_hotplug_long_detect);
1488 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1491 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1492 dp_aux_irq_handler(dev_priv);
1493 } else {
1494 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1496 if (hotplug_trigger) {
1497 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1498 hotplug_trigger, hotplug_trigger,
1499 hpd_status_i915,
1500 i9xx_port_hotplug_long_detect);
1501 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1506 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1508 struct drm_i915_private *dev_priv = arg;
1509 irqreturn_t ret = IRQ_NONE;
1511 if (!intel_irqs_enabled(dev_priv))
1512 return IRQ_NONE;
1514 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1515 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1517 do {
1518 u32 iir, gt_iir, pm_iir;
1519 u32 pipe_stats[I915_MAX_PIPES] = {};
1520 u32 hotplug_status = 0;
1521 u32 ier = 0;
1523 gt_iir = I915_READ(GTIIR);
1524 pm_iir = I915_READ(GEN6_PMIIR);
1525 iir = I915_READ(VLV_IIR);
1527 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1528 break;
1530 ret = IRQ_HANDLED;
1533 * Theory on interrupt generation, based on empirical evidence:
1535 * x = ((VLV_IIR & VLV_IER) ||
1536 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1537 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1539 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1540 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1541 * guarantee the CPU interrupt will be raised again even if we
1542 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1543 * bits this time around.
1545 I915_WRITE(VLV_MASTER_IER, 0);
1546 ier = I915_READ(VLV_IER);
1547 I915_WRITE(VLV_IER, 0);
1549 if (gt_iir)
1550 I915_WRITE(GTIIR, gt_iir);
1551 if (pm_iir)
1552 I915_WRITE(GEN6_PMIIR, pm_iir);
1554 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1555 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1557 /* Call regardless, as some status bits might not be
1558 * signalled in iir */
1559 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1561 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1562 I915_LPE_PIPE_B_INTERRUPT))
1563 intel_lpe_audio_irq_handler(dev_priv);
1566 * VLV_IIR is single buffered, and reflects the level
1567 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1569 if (iir)
1570 I915_WRITE(VLV_IIR, iir);
1572 I915_WRITE(VLV_IER, ier);
1573 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1575 if (gt_iir)
1576 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1577 if (pm_iir)
1578 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1580 if (hotplug_status)
1581 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1583 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1584 } while (0);
1586 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1588 return ret;
1591 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1593 struct drm_i915_private *dev_priv = arg;
1594 irqreturn_t ret = IRQ_NONE;
1596 if (!intel_irqs_enabled(dev_priv))
1597 return IRQ_NONE;
1599 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1600 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1602 do {
1603 u32 master_ctl, iir;
1604 u32 pipe_stats[I915_MAX_PIPES] = {};
1605 u32 hotplug_status = 0;
1606 u32 gt_iir[4];
1607 u32 ier = 0;
1609 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1610 iir = I915_READ(VLV_IIR);
1612 if (master_ctl == 0 && iir == 0)
1613 break;
1615 ret = IRQ_HANDLED;
1618 * Theory on interrupt generation, based on empirical evidence:
1620 * x = ((VLV_IIR & VLV_IER) ||
1621 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1622 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1624 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1625 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1626 * guarantee the CPU interrupt will be raised again even if we
1627 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1628 * bits this time around.
1630 I915_WRITE(GEN8_MASTER_IRQ, 0);
1631 ier = I915_READ(VLV_IER);
1632 I915_WRITE(VLV_IER, 0);
1634 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
1636 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1637 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1639 /* Call regardless, as some status bits might not be
1640 * signalled in iir */
1641 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1643 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1644 I915_LPE_PIPE_B_INTERRUPT |
1645 I915_LPE_PIPE_C_INTERRUPT))
1646 intel_lpe_audio_irq_handler(dev_priv);
1649 * VLV_IIR is single buffered, and reflects the level
1650 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1652 if (iir)
1653 I915_WRITE(VLV_IIR, iir);
1655 I915_WRITE(VLV_IER, ier);
1656 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1658 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
1660 if (hotplug_status)
1661 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1663 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1664 } while (0);
1666 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1668 return ret;
1671 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1672 u32 hotplug_trigger,
1673 const u32 hpd[HPD_NUM_PINS])
1675 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1678 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1679 * unless we touch the hotplug register, even if hotplug_trigger is
1680 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1681 * errors.
1683 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1684 if (!hotplug_trigger) {
1685 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1686 PORTD_HOTPLUG_STATUS_MASK |
1687 PORTC_HOTPLUG_STATUS_MASK |
1688 PORTB_HOTPLUG_STATUS_MASK;
1689 dig_hotplug_reg &= ~mask;
1692 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1693 if (!hotplug_trigger)
1694 return;
1696 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1697 dig_hotplug_reg, hpd,
1698 pch_port_hotplug_long_detect);
1700 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1703 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1705 enum pipe pipe;
1706 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1708 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1710 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1711 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1712 SDE_AUDIO_POWER_SHIFT);
1713 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1714 port_name(port));
1717 if (pch_iir & SDE_AUX_MASK)
1718 dp_aux_irq_handler(dev_priv);
1720 if (pch_iir & SDE_GMBUS)
1721 gmbus_irq_handler(dev_priv);
1723 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1724 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1726 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1727 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1729 if (pch_iir & SDE_POISON)
1730 DRM_ERROR("PCH poison interrupt\n");
1732 if (pch_iir & SDE_FDI_MASK)
1733 for_each_pipe(dev_priv, pipe)
1734 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1735 pipe_name(pipe),
1736 I915_READ(FDI_RX_IIR(pipe)));
1738 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1739 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1741 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1742 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1744 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1745 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1747 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1748 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1751 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1753 u32 err_int = I915_READ(GEN7_ERR_INT);
1754 enum pipe pipe;
1756 if (err_int & ERR_INT_POISON)
1757 DRM_ERROR("Poison interrupt\n");
1759 for_each_pipe(dev_priv, pipe) {
1760 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1761 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1763 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1764 if (IS_IVYBRIDGE(dev_priv))
1765 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1766 else
1767 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1771 I915_WRITE(GEN7_ERR_INT, err_int);
1774 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1776 u32 serr_int = I915_READ(SERR_INT);
1777 enum pipe pipe;
1779 if (serr_int & SERR_INT_POISON)
1780 DRM_ERROR("PCH poison interrupt\n");
1782 for_each_pipe(dev_priv, pipe)
1783 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1784 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1786 I915_WRITE(SERR_INT, serr_int);
1789 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1791 enum pipe pipe;
1792 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1794 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
1796 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1797 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1798 SDE_AUDIO_POWER_SHIFT_CPT);
1799 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1800 port_name(port));
1803 if (pch_iir & SDE_AUX_MASK_CPT)
1804 dp_aux_irq_handler(dev_priv);
1806 if (pch_iir & SDE_GMBUS_CPT)
1807 gmbus_irq_handler(dev_priv);
1809 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1810 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1812 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1813 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1815 if (pch_iir & SDE_FDI_MASK_CPT)
1816 for_each_pipe(dev_priv, pipe)
1817 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1818 pipe_name(pipe),
1819 I915_READ(FDI_RX_IIR(pipe)));
1821 if (pch_iir & SDE_ERROR_CPT)
1822 cpt_serr_int_handler(dev_priv);
1825 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1827 u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1828 u32 pin_mask = 0, long_mask = 0;
1829 bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1830 const u32 *pins;
1832 if (HAS_PCH_TGP(dev_priv)) {
1833 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1834 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1835 tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1836 pins = hpd_tgp;
1837 } else if (HAS_PCH_JSP(dev_priv)) {
1838 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1839 tc_hotplug_trigger = 0;
1840 pins = hpd_tgp;
1841 } else if (HAS_PCH_MCC(dev_priv)) {
1842 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1843 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1844 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1845 pins = hpd_icp;
1846 } else {
1847 WARN(!HAS_PCH_ICP(dev_priv),
1848 "Unrecognized PCH type 0x%x\n", INTEL_PCH_TYPE(dev_priv));
1850 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1851 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1852 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1853 pins = hpd_icp;
1856 if (ddi_hotplug_trigger) {
1857 u32 dig_hotplug_reg;
1859 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1860 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1862 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1863 ddi_hotplug_trigger,
1864 dig_hotplug_reg, pins,
1865 icp_ddi_port_hotplug_long_detect);
1868 if (tc_hotplug_trigger) {
1869 u32 dig_hotplug_reg;
1871 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1872 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1874 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1875 tc_hotplug_trigger,
1876 dig_hotplug_reg, pins,
1877 tc_port_hotplug_long_detect);
1880 if (pin_mask)
1881 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1883 if (pch_iir & SDE_GMBUS_ICP)
1884 gmbus_irq_handler(dev_priv);
1887 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1889 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1890 ~SDE_PORTE_HOTPLUG_SPT;
1891 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1892 u32 pin_mask = 0, long_mask = 0;
1894 if (hotplug_trigger) {
1895 u32 dig_hotplug_reg;
1897 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1898 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1900 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1901 hotplug_trigger, dig_hotplug_reg, hpd_spt,
1902 spt_port_hotplug_long_detect);
1905 if (hotplug2_trigger) {
1906 u32 dig_hotplug_reg;
1908 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1909 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1911 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1912 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
1913 spt_port_hotplug2_long_detect);
1916 if (pin_mask)
1917 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1919 if (pch_iir & SDE_GMBUS_CPT)
1920 gmbus_irq_handler(dev_priv);
1923 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1924 u32 hotplug_trigger,
1925 const u32 hpd[HPD_NUM_PINS])
1927 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1929 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1930 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1932 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1933 dig_hotplug_reg, hpd,
1934 ilk_port_hotplug_long_detect);
1936 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1939 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
1940 u32 de_iir)
1942 enum pipe pipe;
1943 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
1945 if (hotplug_trigger)
1946 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
1948 if (de_iir & DE_AUX_CHANNEL_A)
1949 dp_aux_irq_handler(dev_priv);
1951 if (de_iir & DE_GSE)
1952 intel_opregion_asle_intr(dev_priv);
1954 if (de_iir & DE_POISON)
1955 DRM_ERROR("Poison interrupt\n");
1957 for_each_pipe(dev_priv, pipe) {
1958 if (de_iir & DE_PIPE_VBLANK(pipe))
1959 drm_handle_vblank(&dev_priv->drm, pipe);
1961 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1962 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1964 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1965 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1968 /* check event from PCH */
1969 if (de_iir & DE_PCH_EVENT) {
1970 u32 pch_iir = I915_READ(SDEIIR);
1972 if (HAS_PCH_CPT(dev_priv))
1973 cpt_irq_handler(dev_priv, pch_iir);
1974 else
1975 ibx_irq_handler(dev_priv, pch_iir);
1977 /* should clear PCH hotplug event before clear CPU irq */
1978 I915_WRITE(SDEIIR, pch_iir);
1981 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
1982 gen5_rps_irq_handler(&dev_priv->gt.rps);
1985 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
1986 u32 de_iir)
1988 enum pipe pipe;
1989 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
1991 if (hotplug_trigger)
1992 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
1994 if (de_iir & DE_ERR_INT_IVB)
1995 ivb_err_int_handler(dev_priv);
1997 if (de_iir & DE_EDP_PSR_INT_HSW) {
1998 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2000 intel_psr_irq_handler(dev_priv, psr_iir);
2001 I915_WRITE(EDP_PSR_IIR, psr_iir);
2004 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2005 dp_aux_irq_handler(dev_priv);
2007 if (de_iir & DE_GSE_IVB)
2008 intel_opregion_asle_intr(dev_priv);
2010 for_each_pipe(dev_priv, pipe) {
2011 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2012 drm_handle_vblank(&dev_priv->drm, pipe);
2015 /* check event from PCH */
2016 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2017 u32 pch_iir = I915_READ(SDEIIR);
2019 cpt_irq_handler(dev_priv, pch_iir);
2021 /* clear PCH hotplug event before clear CPU irq */
2022 I915_WRITE(SDEIIR, pch_iir);
2027 * To handle irqs with the minimum potential races with fresh interrupts, we:
2028 * 1 - Disable Master Interrupt Control.
2029 * 2 - Find the source(s) of the interrupt.
2030 * 3 - Clear the Interrupt Identity bits (IIR).
2031 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2032 * 5 - Re-enable Master Interrupt Control.
2034 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2036 struct drm_i915_private *dev_priv = arg;
2037 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2038 irqreturn_t ret = IRQ_NONE;
2040 if (!intel_irqs_enabled(dev_priv))
2041 return IRQ_NONE;
2043 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2044 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2046 /* disable master interrupt before clearing iir */
2047 de_ier = I915_READ(DEIER);
2048 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2050 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2051 * interrupts will will be stored on its back queue, and then we'll be
2052 * able to process them after we restore SDEIER (as soon as we restore
2053 * it, we'll get an interrupt if SDEIIR still has something to process
2054 * due to its back queue). */
2055 if (!HAS_PCH_NOP(dev_priv)) {
2056 sde_ier = I915_READ(SDEIER);
2057 I915_WRITE(SDEIER, 0);
2060 /* Find, clear, then process each source of interrupt */
2062 gt_iir = I915_READ(GTIIR);
2063 if (gt_iir) {
2064 I915_WRITE(GTIIR, gt_iir);
2065 ret = IRQ_HANDLED;
2066 if (INTEL_GEN(dev_priv) >= 6)
2067 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2068 else
2069 gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2072 de_iir = I915_READ(DEIIR);
2073 if (de_iir) {
2074 I915_WRITE(DEIIR, de_iir);
2075 ret = IRQ_HANDLED;
2076 if (INTEL_GEN(dev_priv) >= 7)
2077 ivb_display_irq_handler(dev_priv, de_iir);
2078 else
2079 ilk_display_irq_handler(dev_priv, de_iir);
2082 if (INTEL_GEN(dev_priv) >= 6) {
2083 u32 pm_iir = I915_READ(GEN6_PMIIR);
2084 if (pm_iir) {
2085 I915_WRITE(GEN6_PMIIR, pm_iir);
2086 ret = IRQ_HANDLED;
2087 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
2091 I915_WRITE(DEIER, de_ier);
2092 if (!HAS_PCH_NOP(dev_priv))
2093 I915_WRITE(SDEIER, sde_ier);
2095 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2096 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2098 return ret;
2101 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2102 u32 hotplug_trigger,
2103 const u32 hpd[HPD_NUM_PINS])
2105 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2107 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2108 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2110 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2111 dig_hotplug_reg, hpd,
2112 bxt_port_hotplug_long_detect);
2114 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2117 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2119 u32 pin_mask = 0, long_mask = 0;
2120 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2121 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2122 long_pulse_detect_func long_pulse_detect;
2123 const u32 *hpd;
2125 if (INTEL_GEN(dev_priv) >= 12) {
2126 long_pulse_detect = gen12_port_hotplug_long_detect;
2127 hpd = hpd_gen12;
2128 } else {
2129 long_pulse_detect = gen11_port_hotplug_long_detect;
2130 hpd = hpd_gen11;
2133 if (trigger_tc) {
2134 u32 dig_hotplug_reg;
2136 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2137 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2139 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2140 dig_hotplug_reg, hpd, long_pulse_detect);
2143 if (trigger_tbt) {
2144 u32 dig_hotplug_reg;
2146 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2147 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2149 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2150 dig_hotplug_reg, hpd, long_pulse_detect);
2153 if (pin_mask)
2154 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2155 else
2156 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2159 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2161 u32 mask;
2163 if (INTEL_GEN(dev_priv) >= 12)
2164 return TGL_DE_PORT_AUX_DDIA |
2165 TGL_DE_PORT_AUX_DDIB |
2166 TGL_DE_PORT_AUX_DDIC |
2167 TGL_DE_PORT_AUX_USBC1 |
2168 TGL_DE_PORT_AUX_USBC2 |
2169 TGL_DE_PORT_AUX_USBC3 |
2170 TGL_DE_PORT_AUX_USBC4 |
2171 TGL_DE_PORT_AUX_USBC5 |
2172 TGL_DE_PORT_AUX_USBC6;
2175 mask = GEN8_AUX_CHANNEL_A;
2176 if (INTEL_GEN(dev_priv) >= 9)
2177 mask |= GEN9_AUX_CHANNEL_B |
2178 GEN9_AUX_CHANNEL_C |
2179 GEN9_AUX_CHANNEL_D;
2181 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2182 mask |= CNL_AUX_CHANNEL_F;
2184 if (IS_GEN(dev_priv, 11))
2185 mask |= ICL_AUX_CHANNEL_E;
2187 return mask;
2190 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2192 if (INTEL_GEN(dev_priv) >= 11)
2193 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2194 else if (INTEL_GEN(dev_priv) >= 9)
2195 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2196 else
2197 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2200 static void
2201 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2203 bool found = false;
2205 if (iir & GEN8_DE_MISC_GSE) {
2206 intel_opregion_asle_intr(dev_priv);
2207 found = true;
2210 if (iir & GEN8_DE_EDP_PSR) {
2211 u32 psr_iir;
2212 i915_reg_t iir_reg;
2214 if (INTEL_GEN(dev_priv) >= 12)
2215 iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2216 else
2217 iir_reg = EDP_PSR_IIR;
2219 psr_iir = I915_READ(iir_reg);
2220 I915_WRITE(iir_reg, psr_iir);
2222 if (psr_iir)
2223 found = true;
2225 intel_psr_irq_handler(dev_priv, psr_iir);
2228 if (!found)
2229 DRM_ERROR("Unexpected DE Misc interrupt\n");
2232 static irqreturn_t
2233 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2235 irqreturn_t ret = IRQ_NONE;
2236 u32 iir;
2237 enum pipe pipe;
2239 if (master_ctl & GEN8_DE_MISC_IRQ) {
2240 iir = I915_READ(GEN8_DE_MISC_IIR);
2241 if (iir) {
2242 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2243 ret = IRQ_HANDLED;
2244 gen8_de_misc_irq_handler(dev_priv, iir);
2245 } else {
2246 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2250 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2251 iir = I915_READ(GEN11_DE_HPD_IIR);
2252 if (iir) {
2253 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2254 ret = IRQ_HANDLED;
2255 gen11_hpd_irq_handler(dev_priv, iir);
2256 } else {
2257 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2261 if (master_ctl & GEN8_DE_PORT_IRQ) {
2262 iir = I915_READ(GEN8_DE_PORT_IIR);
2263 if (iir) {
2264 u32 tmp_mask;
2265 bool found = false;
2267 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2268 ret = IRQ_HANDLED;
2270 if (iir & gen8_de_port_aux_mask(dev_priv)) {
2271 dp_aux_irq_handler(dev_priv);
2272 found = true;
2275 if (IS_GEN9_LP(dev_priv)) {
2276 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2277 if (tmp_mask) {
2278 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2279 hpd_bxt);
2280 found = true;
2282 } else if (IS_BROADWELL(dev_priv)) {
2283 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2284 if (tmp_mask) {
2285 ilk_hpd_irq_handler(dev_priv,
2286 tmp_mask, hpd_bdw);
2287 found = true;
2291 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2292 gmbus_irq_handler(dev_priv);
2293 found = true;
2296 if (!found)
2297 DRM_ERROR("Unexpected DE Port interrupt\n");
2299 else
2300 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2303 for_each_pipe(dev_priv, pipe) {
2304 u32 fault_errors;
2306 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2307 continue;
2309 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2310 if (!iir) {
2311 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2312 continue;
2315 ret = IRQ_HANDLED;
2316 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2318 if (iir & GEN8_PIPE_VBLANK)
2319 drm_handle_vblank(&dev_priv->drm, pipe);
2321 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2322 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2324 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2325 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2327 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2328 if (fault_errors)
2329 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2330 pipe_name(pipe),
2331 fault_errors);
2334 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2335 master_ctl & GEN8_DE_PCH_IRQ) {
2337 * FIXME(BDW): Assume for now that the new interrupt handling
2338 * scheme also closed the SDE interrupt handling race we've seen
2339 * on older pch-split platforms. But this needs testing.
2341 iir = I915_READ(SDEIIR);
2342 if (iir) {
2343 I915_WRITE(SDEIIR, iir);
2344 ret = IRQ_HANDLED;
2346 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2347 icp_irq_handler(dev_priv, iir);
2348 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2349 spt_irq_handler(dev_priv, iir);
2350 else
2351 cpt_irq_handler(dev_priv, iir);
2352 } else {
2354 * Like on previous PCH there seems to be something
2355 * fishy going on with forwarding PCH interrupts.
2357 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2361 return ret;
2364 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2366 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2369 * Now with master disabled, get a sample of level indications
2370 * for this interrupt. Indications will be cleared on related acks.
2371 * New indications can and will light up during processing,
2372 * and will generate new interrupt after enabling master.
2374 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2377 static inline void gen8_master_intr_enable(void __iomem * const regs)
2379 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2382 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2384 struct drm_i915_private *dev_priv = arg;
2385 void __iomem * const regs = dev_priv->uncore.regs;
2386 u32 master_ctl;
2387 u32 gt_iir[4];
2389 if (!intel_irqs_enabled(dev_priv))
2390 return IRQ_NONE;
2392 master_ctl = gen8_master_intr_disable(regs);
2393 if (!master_ctl) {
2394 gen8_master_intr_enable(regs);
2395 return IRQ_NONE;
2398 /* Find, clear, then process each source of interrupt */
2399 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2401 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2402 if (master_ctl & ~GEN8_GT_IRQS) {
2403 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2404 gen8_de_irq_handler(dev_priv, master_ctl);
2405 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2408 gen8_master_intr_enable(regs);
2410 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2412 return IRQ_HANDLED;
2415 static u32
2416 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2418 void __iomem * const regs = gt->uncore->regs;
2419 u32 iir;
2421 if (!(master_ctl & GEN11_GU_MISC_IRQ))
2422 return 0;
2424 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2425 if (likely(iir))
2426 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2428 return iir;
2431 static void
2432 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2434 if (iir & GEN11_GU_MISC_GSE)
2435 intel_opregion_asle_intr(gt->i915);
2438 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2440 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2443 * Now with master disabled, get a sample of level indications
2444 * for this interrupt. Indications will be cleared on related acks.
2445 * New indications can and will light up during processing,
2446 * and will generate new interrupt after enabling master.
2448 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2451 static inline void gen11_master_intr_enable(void __iomem * const regs)
2453 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2456 static void
2457 gen11_display_irq_handler(struct drm_i915_private *i915)
2459 void __iomem * const regs = i915->uncore.regs;
2460 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2462 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2464 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2465 * for the display related bits.
2467 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2468 gen8_de_irq_handler(i915, disp_ctl);
2469 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2470 GEN11_DISPLAY_IRQ_ENABLE);
2472 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2475 static __always_inline irqreturn_t
2476 __gen11_irq_handler(struct drm_i915_private * const i915,
2477 u32 (*intr_disable)(void __iomem * const regs),
2478 void (*intr_enable)(void __iomem * const regs))
2480 void __iomem * const regs = i915->uncore.regs;
2481 struct intel_gt *gt = &i915->gt;
2482 u32 master_ctl;
2483 u32 gu_misc_iir;
2485 if (!intel_irqs_enabled(i915))
2486 return IRQ_NONE;
2488 master_ctl = intr_disable(regs);
2489 if (!master_ctl) {
2490 intr_enable(regs);
2491 return IRQ_NONE;
2494 /* Find, clear, then process each source of interrupt. */
2495 gen11_gt_irq_handler(gt, master_ctl);
2497 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2498 if (master_ctl & GEN11_DISPLAY_IRQ)
2499 gen11_display_irq_handler(i915);
2501 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2503 intr_enable(regs);
2505 gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2507 return IRQ_HANDLED;
2510 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2512 return __gen11_irq_handler(arg,
2513 gen11_master_intr_disable,
2514 gen11_master_intr_enable);
2517 /* Called from drm generic code, passed 'crtc' which
2518 * we use as a pipe index
2520 int i8xx_enable_vblank(struct drm_crtc *crtc)
2522 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2523 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2524 unsigned long irqflags;
2526 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2527 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2528 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2530 return 0;
2533 int i915gm_enable_vblank(struct drm_crtc *crtc)
2535 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2538 * Vblank interrupts fail to wake the device up from C2+.
2539 * Disabling render clock gating during C-states avoids
2540 * the problem. There is a small power cost so we do this
2541 * only when vblank interrupts are actually enabled.
2543 if (dev_priv->vblank_enabled++ == 0)
2544 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2546 return i8xx_enable_vblank(crtc);
2549 int i965_enable_vblank(struct drm_crtc *crtc)
2551 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2552 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2553 unsigned long irqflags;
2555 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2556 i915_enable_pipestat(dev_priv, pipe,
2557 PIPE_START_VBLANK_INTERRUPT_STATUS);
2558 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2560 return 0;
2563 int ilk_enable_vblank(struct drm_crtc *crtc)
2565 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2566 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2567 unsigned long irqflags;
2568 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2569 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2571 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2572 ilk_enable_display_irq(dev_priv, bit);
2573 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2575 /* Even though there is no DMC, frame counter can get stuck when
2576 * PSR is active as no frames are generated.
2578 if (HAS_PSR(dev_priv))
2579 drm_crtc_vblank_restore(crtc);
2581 return 0;
2584 int bdw_enable_vblank(struct drm_crtc *crtc)
2586 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2587 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2588 unsigned long irqflags;
2590 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2591 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2592 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2594 /* Even if there is no DMC, frame counter can get stuck when
2595 * PSR is active as no frames are generated, so check only for PSR.
2597 if (HAS_PSR(dev_priv))
2598 drm_crtc_vblank_restore(crtc);
2600 return 0;
2603 /* Called from drm generic code, passed 'crtc' which
2604 * we use as a pipe index
2606 void i8xx_disable_vblank(struct drm_crtc *crtc)
2608 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2609 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2610 unsigned long irqflags;
2612 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2613 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2614 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2617 void i915gm_disable_vblank(struct drm_crtc *crtc)
2619 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2621 i8xx_disable_vblank(crtc);
2623 if (--dev_priv->vblank_enabled == 0)
2624 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2627 void i965_disable_vblank(struct drm_crtc *crtc)
2629 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2630 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2631 unsigned long irqflags;
2633 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2634 i915_disable_pipestat(dev_priv, pipe,
2635 PIPE_START_VBLANK_INTERRUPT_STATUS);
2636 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639 void ilk_disable_vblank(struct drm_crtc *crtc)
2641 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2642 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2643 unsigned long irqflags;
2644 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2645 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2647 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2648 ilk_disable_display_irq(dev_priv, bit);
2649 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2652 void bdw_disable_vblank(struct drm_crtc *crtc)
2654 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2655 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2656 unsigned long irqflags;
2658 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2659 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2660 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2663 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2665 struct intel_uncore *uncore = &dev_priv->uncore;
2667 if (HAS_PCH_NOP(dev_priv))
2668 return;
2670 GEN3_IRQ_RESET(uncore, SDE);
2672 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2673 I915_WRITE(SERR_INT, 0xffffffff);
2677 * SDEIER is also touched by the interrupt handler to work around missed PCH
2678 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2679 * instead we unconditionally enable all PCH interrupt sources here, but then
2680 * only unmask them as needed with SDEIMR.
2682 * This function needs to be called before interrupts are enabled.
2684 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2686 if (HAS_PCH_NOP(dev_priv))
2687 return;
2689 WARN_ON(I915_READ(SDEIER) != 0);
2690 I915_WRITE(SDEIER, 0xffffffff);
2691 POSTING_READ(SDEIER);
2694 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2696 struct intel_uncore *uncore = &dev_priv->uncore;
2698 if (IS_CHERRYVIEW(dev_priv))
2699 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2700 else
2701 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2703 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2704 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2706 i9xx_pipestat_irq_reset(dev_priv);
2708 GEN3_IRQ_RESET(uncore, VLV_);
2709 dev_priv->irq_mask = ~0u;
2712 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2714 struct intel_uncore *uncore = &dev_priv->uncore;
2716 u32 pipestat_mask;
2717 u32 enable_mask;
2718 enum pipe pipe;
2720 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2722 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2723 for_each_pipe(dev_priv, pipe)
2724 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2726 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2727 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2728 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2729 I915_LPE_PIPE_A_INTERRUPT |
2730 I915_LPE_PIPE_B_INTERRUPT;
2732 if (IS_CHERRYVIEW(dev_priv))
2733 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2734 I915_LPE_PIPE_C_INTERRUPT;
2736 WARN_ON(dev_priv->irq_mask != ~0u);
2738 dev_priv->irq_mask = ~enable_mask;
2740 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2743 /* drm_dma.h hooks
2745 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2747 struct intel_uncore *uncore = &dev_priv->uncore;
2749 GEN3_IRQ_RESET(uncore, DE);
2750 if (IS_GEN(dev_priv, 7))
2751 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2753 if (IS_HASWELL(dev_priv)) {
2754 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2755 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2758 gen5_gt_irq_reset(&dev_priv->gt);
2760 ibx_irq_reset(dev_priv);
2763 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2765 I915_WRITE(VLV_MASTER_IER, 0);
2766 POSTING_READ(VLV_MASTER_IER);
2768 gen5_gt_irq_reset(&dev_priv->gt);
2770 spin_lock_irq(&dev_priv->irq_lock);
2771 if (dev_priv->display_irqs_enabled)
2772 vlv_display_irq_reset(dev_priv);
2773 spin_unlock_irq(&dev_priv->irq_lock);
2776 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2778 struct intel_uncore *uncore = &dev_priv->uncore;
2779 enum pipe pipe;
2781 gen8_master_intr_disable(dev_priv->uncore.regs);
2783 gen8_gt_irq_reset(&dev_priv->gt);
2785 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2786 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2788 for_each_pipe(dev_priv, pipe)
2789 if (intel_display_power_is_enabled(dev_priv,
2790 POWER_DOMAIN_PIPE(pipe)))
2791 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2793 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2794 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2795 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2797 if (HAS_PCH_SPLIT(dev_priv))
2798 ibx_irq_reset(dev_priv);
2801 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2803 struct intel_uncore *uncore = &dev_priv->uncore;
2804 enum pipe pipe;
2806 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2808 if (INTEL_GEN(dev_priv) >= 12) {
2809 enum transcoder trans;
2811 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
2812 enum intel_display_power_domain domain;
2814 domain = POWER_DOMAIN_TRANSCODER(trans);
2815 if (!intel_display_power_is_enabled(dev_priv, domain))
2816 continue;
2818 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2819 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2821 } else {
2822 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2823 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2826 for_each_pipe(dev_priv, pipe)
2827 if (intel_display_power_is_enabled(dev_priv,
2828 POWER_DOMAIN_PIPE(pipe)))
2829 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2831 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2832 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2833 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2835 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2836 GEN3_IRQ_RESET(uncore, SDE);
2839 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2841 struct intel_uncore *uncore = &dev_priv->uncore;
2843 gen11_master_intr_disable(dev_priv->uncore.regs);
2845 gen11_gt_irq_reset(&dev_priv->gt);
2846 gen11_display_irq_reset(dev_priv);
2848 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2849 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2852 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2853 u8 pipe_mask)
2855 struct intel_uncore *uncore = &dev_priv->uncore;
2857 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2858 enum pipe pipe;
2860 spin_lock_irq(&dev_priv->irq_lock);
2862 if (!intel_irqs_enabled(dev_priv)) {
2863 spin_unlock_irq(&dev_priv->irq_lock);
2864 return;
2867 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2868 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2869 dev_priv->de_irq_mask[pipe],
2870 ~dev_priv->de_irq_mask[pipe] | extra_ier);
2872 spin_unlock_irq(&dev_priv->irq_lock);
2875 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2876 u8 pipe_mask)
2878 struct intel_uncore *uncore = &dev_priv->uncore;
2879 enum pipe pipe;
2881 spin_lock_irq(&dev_priv->irq_lock);
2883 if (!intel_irqs_enabled(dev_priv)) {
2884 spin_unlock_irq(&dev_priv->irq_lock);
2885 return;
2888 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2889 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2891 spin_unlock_irq(&dev_priv->irq_lock);
2893 /* make sure we're done processing display irqs */
2894 intel_synchronize_irq(dev_priv);
2897 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2899 struct intel_uncore *uncore = &dev_priv->uncore;
2901 I915_WRITE(GEN8_MASTER_IRQ, 0);
2902 POSTING_READ(GEN8_MASTER_IRQ);
2904 gen8_gt_irq_reset(&dev_priv->gt);
2906 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2908 spin_lock_irq(&dev_priv->irq_lock);
2909 if (dev_priv->display_irqs_enabled)
2910 vlv_display_irq_reset(dev_priv);
2911 spin_unlock_irq(&dev_priv->irq_lock);
2914 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2915 const u32 hpd[HPD_NUM_PINS])
2917 struct intel_encoder *encoder;
2918 u32 enabled_irqs = 0;
2920 for_each_intel_encoder(&dev_priv->drm, encoder)
2921 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2922 enabled_irqs |= hpd[encoder->hpd_pin];
2924 return enabled_irqs;
2927 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
2929 u32 hotplug;
2932 * Enable digital hotplug on the PCH, and configure the DP short pulse
2933 * duration to 2ms (which is the minimum in the Display Port spec).
2934 * The pulse duration bits are reserved on LPT+.
2936 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2937 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
2938 PORTC_PULSE_DURATION_MASK |
2939 PORTD_PULSE_DURATION_MASK);
2940 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2941 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2942 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2944 * When CPU and PCH are on the same package, port A
2945 * HPD must be enabled in both north and south.
2947 if (HAS_PCH_LPT_LP(dev_priv))
2948 hotplug |= PORTA_HOTPLUG_ENABLE;
2949 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2952 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
2954 u32 hotplug_irqs, enabled_irqs;
2956 if (HAS_PCH_IBX(dev_priv)) {
2957 hotplug_irqs = SDE_HOTPLUG_MASK;
2958 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
2959 } else {
2960 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2961 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
2964 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2966 ibx_hpd_detection_setup(dev_priv);
2969 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
2970 u32 ddi_hotplug_enable_mask,
2971 u32 tc_hotplug_enable_mask)
2973 u32 hotplug;
2975 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
2976 hotplug |= ddi_hotplug_enable_mask;
2977 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
2979 if (tc_hotplug_enable_mask) {
2980 hotplug = I915_READ(SHOTPLUG_CTL_TC);
2981 hotplug |= tc_hotplug_enable_mask;
2982 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
2986 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
2987 u32 sde_ddi_mask, u32 sde_tc_mask,
2988 u32 ddi_enable_mask, u32 tc_enable_mask,
2989 const u32 *pins)
2991 u32 hotplug_irqs, enabled_irqs;
2993 hotplug_irqs = sde_ddi_mask | sde_tc_mask;
2994 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, pins);
2996 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
2998 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3000 icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3004 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3005 * equivalent of SDE.
3007 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3009 icp_hpd_irq_setup(dev_priv,
3010 SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3011 ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1),
3012 hpd_icp);
3016 * JSP behaves exactly the same as MCC above except that port C is mapped to
3017 * the DDI-C pins instead of the TC1 pins. This means we should follow TGP's
3018 * masks & tables rather than ICP's masks & tables.
3020 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3022 icp_hpd_irq_setup(dev_priv,
3023 SDE_DDI_MASK_TGP, 0,
3024 TGP_DDI_HPD_ENABLE_MASK, 0,
3025 hpd_tgp);
3028 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3030 u32 hotplug;
3032 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3033 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3034 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3035 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3036 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3037 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3039 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3040 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3041 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3042 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3043 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3044 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3047 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3049 u32 hotplug_irqs, enabled_irqs;
3050 const u32 *hpd;
3051 u32 val;
3053 hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3054 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3055 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3057 val = I915_READ(GEN11_DE_HPD_IMR);
3058 val &= ~hotplug_irqs;
3059 I915_WRITE(GEN11_DE_HPD_IMR, val);
3060 POSTING_READ(GEN11_DE_HPD_IMR);
3062 gen11_hpd_detection_setup(dev_priv);
3064 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3065 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3066 TGP_DDI_HPD_ENABLE_MASK,
3067 TGP_TC_HPD_ENABLE_MASK, hpd_tgp);
3068 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3069 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3070 ICP_DDI_HPD_ENABLE_MASK,
3071 ICP_TC_HPD_ENABLE_MASK, hpd_icp);
3074 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3076 u32 val, hotplug;
3078 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3079 if (HAS_PCH_CNP(dev_priv)) {
3080 val = I915_READ(SOUTH_CHICKEN1);
3081 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3082 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3083 I915_WRITE(SOUTH_CHICKEN1, val);
3086 /* Enable digital hotplug on the PCH */
3087 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3088 hotplug |= PORTA_HOTPLUG_ENABLE |
3089 PORTB_HOTPLUG_ENABLE |
3090 PORTC_HOTPLUG_ENABLE |
3091 PORTD_HOTPLUG_ENABLE;
3092 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3094 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3095 hotplug |= PORTE_HOTPLUG_ENABLE;
3096 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3099 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3101 u32 hotplug_irqs, enabled_irqs;
3103 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3104 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3106 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3107 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3109 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3111 spt_hpd_detection_setup(dev_priv);
3114 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3116 u32 hotplug;
3119 * Enable digital hotplug on the CPU, and configure the DP short pulse
3120 * duration to 2ms (which is the minimum in the Display Port spec)
3121 * The pulse duration bits are reserved on HSW+.
3123 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3124 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3125 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3126 DIGITAL_PORTA_PULSE_DURATION_2ms;
3127 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3130 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3132 u32 hotplug_irqs, enabled_irqs;
3134 if (INTEL_GEN(dev_priv) >= 8) {
3135 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3136 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3138 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3139 } else if (INTEL_GEN(dev_priv) >= 7) {
3140 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3141 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3143 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3144 } else {
3145 hotplug_irqs = DE_DP_A_HOTPLUG;
3146 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3148 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3151 ilk_hpd_detection_setup(dev_priv);
3153 ibx_hpd_irq_setup(dev_priv);
3156 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3157 u32 enabled_irqs)
3159 u32 hotplug;
3161 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3162 hotplug |= PORTA_HOTPLUG_ENABLE |
3163 PORTB_HOTPLUG_ENABLE |
3164 PORTC_HOTPLUG_ENABLE;
3166 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3167 hotplug, enabled_irqs);
3168 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3171 * For BXT invert bit has to be set based on AOB design
3172 * for HPD detection logic, update it based on VBT fields.
3174 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3175 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3176 hotplug |= BXT_DDIA_HPD_INVERT;
3177 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3178 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3179 hotplug |= BXT_DDIB_HPD_INVERT;
3180 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3181 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3182 hotplug |= BXT_DDIC_HPD_INVERT;
3184 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3187 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3189 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3192 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3194 u32 hotplug_irqs, enabled_irqs;
3196 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3197 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3199 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3201 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3204 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3206 u32 mask;
3208 if (HAS_PCH_NOP(dev_priv))
3209 return;
3211 if (HAS_PCH_IBX(dev_priv))
3212 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3213 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3214 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3215 else
3216 mask = SDE_GMBUS_CPT;
3218 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3219 I915_WRITE(SDEIMR, ~mask);
3221 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3222 HAS_PCH_LPT(dev_priv))
3223 ibx_hpd_detection_setup(dev_priv);
3224 else
3225 spt_hpd_detection_setup(dev_priv);
3228 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3230 struct intel_uncore *uncore = &dev_priv->uncore;
3231 u32 display_mask, extra_mask;
3233 if (INTEL_GEN(dev_priv) >= 7) {
3234 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3235 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3236 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3237 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3238 DE_DP_A_HOTPLUG_IVB);
3239 } else {
3240 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3241 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3242 DE_PIPEA_CRC_DONE | DE_POISON);
3243 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3244 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3245 DE_DP_A_HOTPLUG);
3248 if (IS_HASWELL(dev_priv)) {
3249 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3250 display_mask |= DE_EDP_PSR_INT_HSW;
3253 dev_priv->irq_mask = ~display_mask;
3255 ibx_irq_pre_postinstall(dev_priv);
3257 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3258 display_mask | extra_mask);
3260 gen5_gt_irq_postinstall(&dev_priv->gt);
3262 ilk_hpd_detection_setup(dev_priv);
3264 ibx_irq_postinstall(dev_priv);
3266 if (IS_IRONLAKE_M(dev_priv)) {
3267 /* Enable PCU event interrupts
3269 * spinlocking not required here for correctness since interrupt
3270 * setup is guaranteed to run in single-threaded context. But we
3271 * need it to make the assert_spin_locked happy. */
3272 spin_lock_irq(&dev_priv->irq_lock);
3273 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3274 spin_unlock_irq(&dev_priv->irq_lock);
3278 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3280 lockdep_assert_held(&dev_priv->irq_lock);
3282 if (dev_priv->display_irqs_enabled)
3283 return;
3285 dev_priv->display_irqs_enabled = true;
3287 if (intel_irqs_enabled(dev_priv)) {
3288 vlv_display_irq_reset(dev_priv);
3289 vlv_display_irq_postinstall(dev_priv);
3293 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3295 lockdep_assert_held(&dev_priv->irq_lock);
3297 if (!dev_priv->display_irqs_enabled)
3298 return;
3300 dev_priv->display_irqs_enabled = false;
3302 if (intel_irqs_enabled(dev_priv))
3303 vlv_display_irq_reset(dev_priv);
3307 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3309 gen5_gt_irq_postinstall(&dev_priv->gt);
3311 spin_lock_irq(&dev_priv->irq_lock);
3312 if (dev_priv->display_irqs_enabled)
3313 vlv_display_irq_postinstall(dev_priv);
3314 spin_unlock_irq(&dev_priv->irq_lock);
3316 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3317 POSTING_READ(VLV_MASTER_IER);
3320 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3322 struct intel_uncore *uncore = &dev_priv->uncore;
3324 u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3325 u32 de_pipe_enables;
3326 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3327 u32 de_port_enables;
3328 u32 de_misc_masked = GEN8_DE_EDP_PSR;
3329 enum pipe pipe;
3331 if (INTEL_GEN(dev_priv) <= 10)
3332 de_misc_masked |= GEN8_DE_MISC_GSE;
3334 if (INTEL_GEN(dev_priv) >= 9) {
3335 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3336 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3337 GEN9_AUX_CHANNEL_D;
3338 if (IS_GEN9_LP(dev_priv))
3339 de_port_masked |= BXT_DE_PORT_GMBUS;
3340 } else {
3341 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3344 if (INTEL_GEN(dev_priv) >= 11)
3345 de_port_masked |= ICL_AUX_CHANNEL_E;
3347 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3348 de_port_masked |= CNL_AUX_CHANNEL_F;
3350 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3351 GEN8_PIPE_FIFO_UNDERRUN;
3353 de_port_enables = de_port_masked;
3354 if (IS_GEN9_LP(dev_priv))
3355 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3356 else if (IS_BROADWELL(dev_priv))
3357 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3359 if (INTEL_GEN(dev_priv) >= 12) {
3360 enum transcoder trans;
3362 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
3363 enum intel_display_power_domain domain;
3365 domain = POWER_DOMAIN_TRANSCODER(trans);
3366 if (!intel_display_power_is_enabled(dev_priv, domain))
3367 continue;
3369 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3371 } else {
3372 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3375 for_each_pipe(dev_priv, pipe) {
3376 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3378 if (intel_display_power_is_enabled(dev_priv,
3379 POWER_DOMAIN_PIPE(pipe)))
3380 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3381 dev_priv->de_irq_mask[pipe],
3382 de_pipe_enables);
3385 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3386 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3388 if (INTEL_GEN(dev_priv) >= 11) {
3389 u32 de_hpd_masked = 0;
3390 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3391 GEN11_DE_TBT_HOTPLUG_MASK;
3393 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3394 de_hpd_enables);
3395 gen11_hpd_detection_setup(dev_priv);
3396 } else if (IS_GEN9_LP(dev_priv)) {
3397 bxt_hpd_detection_setup(dev_priv);
3398 } else if (IS_BROADWELL(dev_priv)) {
3399 ilk_hpd_detection_setup(dev_priv);
3403 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3405 if (HAS_PCH_SPLIT(dev_priv))
3406 ibx_irq_pre_postinstall(dev_priv);
3408 gen8_gt_irq_postinstall(&dev_priv->gt);
3409 gen8_de_irq_postinstall(dev_priv);
3411 if (HAS_PCH_SPLIT(dev_priv))
3412 ibx_irq_postinstall(dev_priv);
3414 gen8_master_intr_enable(dev_priv->uncore.regs);
3417 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3419 u32 mask = SDE_GMBUS_ICP;
3421 WARN_ON(I915_READ(SDEIER) != 0);
3422 I915_WRITE(SDEIER, 0xffffffff);
3423 POSTING_READ(SDEIER);
3425 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3426 I915_WRITE(SDEIMR, ~mask);
3428 if (HAS_PCH_TGP(dev_priv))
3429 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3430 TGP_TC_HPD_ENABLE_MASK);
3431 else if (HAS_PCH_JSP(dev_priv))
3432 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3433 else if (HAS_PCH_MCC(dev_priv))
3434 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3435 ICP_TC_HPD_ENABLE(PORT_TC1));
3436 else
3437 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3438 ICP_TC_HPD_ENABLE_MASK);
3441 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3443 struct intel_uncore *uncore = &dev_priv->uncore;
3444 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3446 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3447 icp_irq_postinstall(dev_priv);
3449 gen11_gt_irq_postinstall(&dev_priv->gt);
3450 gen8_de_irq_postinstall(dev_priv);
3452 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3454 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3456 gen11_master_intr_enable(uncore->regs);
3457 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3460 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3462 gen8_gt_irq_postinstall(&dev_priv->gt);
3464 spin_lock_irq(&dev_priv->irq_lock);
3465 if (dev_priv->display_irqs_enabled)
3466 vlv_display_irq_postinstall(dev_priv);
3467 spin_unlock_irq(&dev_priv->irq_lock);
3469 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3470 POSTING_READ(GEN8_MASTER_IRQ);
3473 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3475 struct intel_uncore *uncore = &dev_priv->uncore;
3477 i9xx_pipestat_irq_reset(dev_priv);
3479 GEN2_IRQ_RESET(uncore);
3482 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3484 struct intel_uncore *uncore = &dev_priv->uncore;
3485 u16 enable_mask;
3487 intel_uncore_write16(uncore,
3488 EMR,
3489 ~(I915_ERROR_PAGE_TABLE |
3490 I915_ERROR_MEMORY_REFRESH));
3492 /* Unmask the interrupts that we always want on. */
3493 dev_priv->irq_mask =
3494 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3495 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3496 I915_MASTER_ERROR_INTERRUPT);
3498 enable_mask =
3499 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3500 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3501 I915_MASTER_ERROR_INTERRUPT |
3502 I915_USER_INTERRUPT;
3504 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3506 /* Interrupt setup is already guaranteed to be single-threaded, this is
3507 * just to make the assert_spin_locked check happy. */
3508 spin_lock_irq(&dev_priv->irq_lock);
3509 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3510 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3511 spin_unlock_irq(&dev_priv->irq_lock);
3514 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3515 u16 *eir, u16 *eir_stuck)
3517 struct intel_uncore *uncore = &i915->uncore;
3518 u16 emr;
3520 *eir = intel_uncore_read16(uncore, EIR);
3522 if (*eir)
3523 intel_uncore_write16(uncore, EIR, *eir);
3525 *eir_stuck = intel_uncore_read16(uncore, EIR);
3526 if (*eir_stuck == 0)
3527 return;
3530 * Toggle all EMR bits to make sure we get an edge
3531 * in the ISR master error bit if we don't clear
3532 * all the EIR bits. Otherwise the edge triggered
3533 * IIR on i965/g4x wouldn't notice that an interrupt
3534 * is still pending. Also some EIR bits can't be
3535 * cleared except by handling the underlying error
3536 * (or by a GPU reset) so we mask any bit that
3537 * remains set.
3539 emr = intel_uncore_read16(uncore, EMR);
3540 intel_uncore_write16(uncore, EMR, 0xffff);
3541 intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3544 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3545 u16 eir, u16 eir_stuck)
3547 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3549 if (eir_stuck)
3550 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3553 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3554 u32 *eir, u32 *eir_stuck)
3556 u32 emr;
3558 *eir = I915_READ(EIR);
3560 I915_WRITE(EIR, *eir);
3562 *eir_stuck = I915_READ(EIR);
3563 if (*eir_stuck == 0)
3564 return;
3567 * Toggle all EMR bits to make sure we get an edge
3568 * in the ISR master error bit if we don't clear
3569 * all the EIR bits. Otherwise the edge triggered
3570 * IIR on i965/g4x wouldn't notice that an interrupt
3571 * is still pending. Also some EIR bits can't be
3572 * cleared except by handling the underlying error
3573 * (or by a GPU reset) so we mask any bit that
3574 * remains set.
3576 emr = I915_READ(EMR);
3577 I915_WRITE(EMR, 0xffffffff);
3578 I915_WRITE(EMR, emr | *eir_stuck);
3581 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3582 u32 eir, u32 eir_stuck)
3584 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3586 if (eir_stuck)
3587 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
3590 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3592 struct drm_i915_private *dev_priv = arg;
3593 irqreturn_t ret = IRQ_NONE;
3595 if (!intel_irqs_enabled(dev_priv))
3596 return IRQ_NONE;
3598 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3599 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3601 do {
3602 u32 pipe_stats[I915_MAX_PIPES] = {};
3603 u16 eir = 0, eir_stuck = 0;
3604 u16 iir;
3606 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3607 if (iir == 0)
3608 break;
3610 ret = IRQ_HANDLED;
3612 /* Call regardless, as some status bits might not be
3613 * signalled in iir */
3614 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3616 if (iir & I915_MASTER_ERROR_INTERRUPT)
3617 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3619 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3621 if (iir & I915_USER_INTERRUPT)
3622 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3624 if (iir & I915_MASTER_ERROR_INTERRUPT)
3625 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3627 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3628 } while (0);
3630 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3632 return ret;
3635 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3637 struct intel_uncore *uncore = &dev_priv->uncore;
3639 if (I915_HAS_HOTPLUG(dev_priv)) {
3640 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3641 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3644 i9xx_pipestat_irq_reset(dev_priv);
3646 GEN3_IRQ_RESET(uncore, GEN2_);
3649 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3651 struct intel_uncore *uncore = &dev_priv->uncore;
3652 u32 enable_mask;
3654 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3655 I915_ERROR_MEMORY_REFRESH));
3657 /* Unmask the interrupts that we always want on. */
3658 dev_priv->irq_mask =
3659 ~(I915_ASLE_INTERRUPT |
3660 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3661 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3662 I915_MASTER_ERROR_INTERRUPT);
3664 enable_mask =
3665 I915_ASLE_INTERRUPT |
3666 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3667 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3668 I915_MASTER_ERROR_INTERRUPT |
3669 I915_USER_INTERRUPT;
3671 if (I915_HAS_HOTPLUG(dev_priv)) {
3672 /* Enable in IER... */
3673 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3674 /* and unmask in IMR */
3675 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3678 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3680 /* Interrupt setup is already guaranteed to be single-threaded, this is
3681 * just to make the assert_spin_locked check happy. */
3682 spin_lock_irq(&dev_priv->irq_lock);
3683 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3684 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3685 spin_unlock_irq(&dev_priv->irq_lock);
3687 i915_enable_asle_pipestat(dev_priv);
3690 static irqreturn_t i915_irq_handler(int irq, void *arg)
3692 struct drm_i915_private *dev_priv = arg;
3693 irqreturn_t ret = IRQ_NONE;
3695 if (!intel_irqs_enabled(dev_priv))
3696 return IRQ_NONE;
3698 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3699 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3701 do {
3702 u32 pipe_stats[I915_MAX_PIPES] = {};
3703 u32 eir = 0, eir_stuck = 0;
3704 u32 hotplug_status = 0;
3705 u32 iir;
3707 iir = I915_READ(GEN2_IIR);
3708 if (iir == 0)
3709 break;
3711 ret = IRQ_HANDLED;
3713 if (I915_HAS_HOTPLUG(dev_priv) &&
3714 iir & I915_DISPLAY_PORT_INTERRUPT)
3715 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3717 /* Call regardless, as some status bits might not be
3718 * signalled in iir */
3719 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3721 if (iir & I915_MASTER_ERROR_INTERRUPT)
3722 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3724 I915_WRITE(GEN2_IIR, iir);
3726 if (iir & I915_USER_INTERRUPT)
3727 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3729 if (iir & I915_MASTER_ERROR_INTERRUPT)
3730 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3732 if (hotplug_status)
3733 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3735 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3736 } while (0);
3738 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3740 return ret;
3743 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3745 struct intel_uncore *uncore = &dev_priv->uncore;
3747 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3748 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3750 i9xx_pipestat_irq_reset(dev_priv);
3752 GEN3_IRQ_RESET(uncore, GEN2_);
3755 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3757 struct intel_uncore *uncore = &dev_priv->uncore;
3758 u32 enable_mask;
3759 u32 error_mask;
3762 * Enable some error detection, note the instruction error mask
3763 * bit is reserved, so we leave it masked.
3765 if (IS_G4X(dev_priv)) {
3766 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3767 GM45_ERROR_MEM_PRIV |
3768 GM45_ERROR_CP_PRIV |
3769 I915_ERROR_MEMORY_REFRESH);
3770 } else {
3771 error_mask = ~(I915_ERROR_PAGE_TABLE |
3772 I915_ERROR_MEMORY_REFRESH);
3774 I915_WRITE(EMR, error_mask);
3776 /* Unmask the interrupts that we always want on. */
3777 dev_priv->irq_mask =
3778 ~(I915_ASLE_INTERRUPT |
3779 I915_DISPLAY_PORT_INTERRUPT |
3780 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3781 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3782 I915_MASTER_ERROR_INTERRUPT);
3784 enable_mask =
3785 I915_ASLE_INTERRUPT |
3786 I915_DISPLAY_PORT_INTERRUPT |
3787 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3788 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3789 I915_MASTER_ERROR_INTERRUPT |
3790 I915_USER_INTERRUPT;
3792 if (IS_G4X(dev_priv))
3793 enable_mask |= I915_BSD_USER_INTERRUPT;
3795 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3797 /* Interrupt setup is already guaranteed to be single-threaded, this is
3798 * just to make the assert_spin_locked check happy. */
3799 spin_lock_irq(&dev_priv->irq_lock);
3800 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3801 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3802 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3803 spin_unlock_irq(&dev_priv->irq_lock);
3805 i915_enable_asle_pipestat(dev_priv);
3808 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3810 u32 hotplug_en;
3812 lockdep_assert_held(&dev_priv->irq_lock);
3814 /* Note HDMI and DP share hotplug bits */
3815 /* enable bits are the same for all generations */
3816 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3817 /* Programming the CRT detection parameters tends
3818 to generate a spurious hotplug event about three
3819 seconds later. So just do it once.
3821 if (IS_G4X(dev_priv))
3822 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3823 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3825 /* Ignore TV since it's buggy */
3826 i915_hotplug_interrupt_update_locked(dev_priv,
3827 HOTPLUG_INT_EN_MASK |
3828 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3829 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3830 hotplug_en);
3833 static irqreturn_t i965_irq_handler(int irq, void *arg)
3835 struct drm_i915_private *dev_priv = arg;
3836 irqreturn_t ret = IRQ_NONE;
3838 if (!intel_irqs_enabled(dev_priv))
3839 return IRQ_NONE;
3841 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3842 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3844 do {
3845 u32 pipe_stats[I915_MAX_PIPES] = {};
3846 u32 eir = 0, eir_stuck = 0;
3847 u32 hotplug_status = 0;
3848 u32 iir;
3850 iir = I915_READ(GEN2_IIR);
3851 if (iir == 0)
3852 break;
3854 ret = IRQ_HANDLED;
3856 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3857 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3859 /* Call regardless, as some status bits might not be
3860 * signalled in iir */
3861 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3863 if (iir & I915_MASTER_ERROR_INTERRUPT)
3864 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3866 I915_WRITE(GEN2_IIR, iir);
3868 if (iir & I915_USER_INTERRUPT)
3869 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3871 if (iir & I915_BSD_USER_INTERRUPT)
3872 intel_engine_signal_breadcrumbs(dev_priv->engine[VCS0]);
3874 if (iir & I915_MASTER_ERROR_INTERRUPT)
3875 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3877 if (hotplug_status)
3878 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3880 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3881 } while (0);
3883 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3885 return ret;
3889 * intel_irq_init - initializes irq support
3890 * @dev_priv: i915 device instance
3892 * This function initializes all the irq support including work items, timers
3893 * and all the vtables. It does not setup the interrupt itself though.
3895 void intel_irq_init(struct drm_i915_private *dev_priv)
3897 struct drm_device *dev = &dev_priv->drm;
3898 int i;
3900 intel_hpd_init_work(dev_priv);
3902 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3903 for (i = 0; i < MAX_L3_SLICES; ++i)
3904 dev_priv->l3_parity.remap_info[i] = NULL;
3906 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3907 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3908 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3910 dev->vblank_disable_immediate = true;
3912 /* Most platforms treat the display irq block as an always-on
3913 * power domain. vlv/chv can disable it at runtime and need
3914 * special care to avoid writing any of the display block registers
3915 * outside of the power domain. We defer setting up the display irqs
3916 * in this case to the runtime pm.
3918 dev_priv->display_irqs_enabled = true;
3919 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3920 dev_priv->display_irqs_enabled = false;
3922 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3923 /* If we have MST support, we want to avoid doing short HPD IRQ storm
3924 * detection, as short HPD storms will occur as a natural part of
3925 * sideband messaging with MST.
3926 * On older platforms however, IRQ storms can occur with both long and
3927 * short pulses, as seen on some G4x systems.
3929 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3931 if (HAS_GMCH(dev_priv)) {
3932 if (I915_HAS_HOTPLUG(dev_priv))
3933 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3934 } else {
3935 if (HAS_PCH_JSP(dev_priv))
3936 dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
3937 else if (HAS_PCH_MCC(dev_priv))
3938 dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
3939 else if (INTEL_GEN(dev_priv) >= 11)
3940 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
3941 else if (IS_GEN9_LP(dev_priv))
3942 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
3943 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
3944 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
3945 else
3946 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
3951 * intel_irq_fini - deinitializes IRQ support
3952 * @i915: i915 device instance
3954 * This function deinitializes all the IRQ support.
3956 void intel_irq_fini(struct drm_i915_private *i915)
3958 int i;
3960 for (i = 0; i < MAX_L3_SLICES; ++i)
3961 kfree(i915->l3_parity.remap_info[i]);
3964 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
3966 if (HAS_GMCH(dev_priv)) {
3967 if (IS_CHERRYVIEW(dev_priv))
3968 return cherryview_irq_handler;
3969 else if (IS_VALLEYVIEW(dev_priv))
3970 return valleyview_irq_handler;
3971 else if (IS_GEN(dev_priv, 4))
3972 return i965_irq_handler;
3973 else if (IS_GEN(dev_priv, 3))
3974 return i915_irq_handler;
3975 else
3976 return i8xx_irq_handler;
3977 } else {
3978 if (INTEL_GEN(dev_priv) >= 11)
3979 return gen11_irq_handler;
3980 else if (INTEL_GEN(dev_priv) >= 8)
3981 return gen8_irq_handler;
3982 else
3983 return ilk_irq_handler;
3987 static void intel_irq_reset(struct drm_i915_private *dev_priv)
3989 if (HAS_GMCH(dev_priv)) {
3990 if (IS_CHERRYVIEW(dev_priv))
3991 cherryview_irq_reset(dev_priv);
3992 else if (IS_VALLEYVIEW(dev_priv))
3993 valleyview_irq_reset(dev_priv);
3994 else if (IS_GEN(dev_priv, 4))
3995 i965_irq_reset(dev_priv);
3996 else if (IS_GEN(dev_priv, 3))
3997 i915_irq_reset(dev_priv);
3998 else
3999 i8xx_irq_reset(dev_priv);
4000 } else {
4001 if (INTEL_GEN(dev_priv) >= 11)
4002 gen11_irq_reset(dev_priv);
4003 else if (INTEL_GEN(dev_priv) >= 8)
4004 gen8_irq_reset(dev_priv);
4005 else
4006 ilk_irq_reset(dev_priv);
4010 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4012 if (HAS_GMCH(dev_priv)) {
4013 if (IS_CHERRYVIEW(dev_priv))
4014 cherryview_irq_postinstall(dev_priv);
4015 else if (IS_VALLEYVIEW(dev_priv))
4016 valleyview_irq_postinstall(dev_priv);
4017 else if (IS_GEN(dev_priv, 4))
4018 i965_irq_postinstall(dev_priv);
4019 else if (IS_GEN(dev_priv, 3))
4020 i915_irq_postinstall(dev_priv);
4021 else
4022 i8xx_irq_postinstall(dev_priv);
4023 } else {
4024 if (INTEL_GEN(dev_priv) >= 11)
4025 gen11_irq_postinstall(dev_priv);
4026 else if (INTEL_GEN(dev_priv) >= 8)
4027 gen8_irq_postinstall(dev_priv);
4028 else
4029 ilk_irq_postinstall(dev_priv);
4034 * intel_irq_install - enables the hardware interrupt
4035 * @dev_priv: i915 device instance
4037 * This function enables the hardware interrupt handling, but leaves the hotplug
4038 * handling still disabled. It is called after intel_irq_init().
4040 * In the driver load and resume code we need working interrupts in a few places
4041 * but don't want to deal with the hassle of concurrent probe and hotplug
4042 * workers. Hence the split into this two-stage approach.
4044 int intel_irq_install(struct drm_i915_private *dev_priv)
4046 int irq = dev_priv->drm.pdev->irq;
4047 int ret;
4050 * We enable some interrupt sources in our postinstall hooks, so mark
4051 * interrupts as enabled _before_ actually enabling them to avoid
4052 * special cases in our ordering checks.
4054 dev_priv->runtime_pm.irqs_enabled = true;
4056 dev_priv->drm.irq_enabled = true;
4058 intel_irq_reset(dev_priv);
4060 ret = request_irq(irq, intel_irq_handler(dev_priv),
4061 IRQF_SHARED, DRIVER_NAME, dev_priv);
4062 if (ret < 0) {
4063 dev_priv->drm.irq_enabled = false;
4064 return ret;
4067 intel_irq_postinstall(dev_priv);
4069 return ret;
4073 * intel_irq_uninstall - finilizes all irq handling
4074 * @dev_priv: i915 device instance
4076 * This stops interrupt and hotplug handling and unregisters and frees all
4077 * resources acquired in the init functions.
4079 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4081 int irq = dev_priv->drm.pdev->irq;
4084 * FIXME we can get called twice during driver probe
4085 * error handling as well as during driver remove due to
4086 * intel_modeset_driver_remove() calling us out of sequence.
4087 * Would be nice if it didn't do that...
4089 if (!dev_priv->drm.irq_enabled)
4090 return;
4092 dev_priv->drm.irq_enabled = false;
4094 intel_irq_reset(dev_priv);
4096 free_irq(irq, dev_priv);
4098 intel_hpd_cancel_work(dev_priv);
4099 dev_priv->runtime_pm.irqs_enabled = false;
4103 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4104 * @dev_priv: i915 device instance
4106 * This function is used to disable interrupts at runtime, both in the runtime
4107 * pm and the system suspend/resume code.
4109 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4111 intel_irq_reset(dev_priv);
4112 dev_priv->runtime_pm.irqs_enabled = false;
4113 intel_synchronize_irq(dev_priv);
4117 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4118 * @dev_priv: i915 device instance
4120 * This function is used to enable interrupts at runtime, both in the runtime
4121 * pm and the system suspend/resume code.
4123 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4125 dev_priv->runtime_pm.irqs_enabled = true;
4126 intel_irq_reset(dev_priv);
4127 intel_irq_postinstall(dev_priv);
4130 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4133 * We only use drm_irq_uninstall() at unload and VT switch, so
4134 * this is the only thing we need to check.
4136 return dev_priv->runtime_pm.irqs_enabled;
4139 void intel_synchronize_irq(struct drm_i915_private *i915)
4141 synchronize_irq(i915->drm.pdev->irq);