treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_perf.c
blob0f556d80ba36577c8c190066a3e18a9f99f670c0
1 /*
2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
28 /**
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 #include "oa/i915_oa_hsw.h"
208 #include "oa/i915_oa_bdw.h"
209 #include "oa/i915_oa_chv.h"
210 #include "oa/i915_oa_sklgt2.h"
211 #include "oa/i915_oa_sklgt3.h"
212 #include "oa/i915_oa_sklgt4.h"
213 #include "oa/i915_oa_bxt.h"
214 #include "oa/i915_oa_kblgt2.h"
215 #include "oa/i915_oa_kblgt3.h"
216 #include "oa/i915_oa_glk.h"
217 #include "oa/i915_oa_cflgt2.h"
218 #include "oa/i915_oa_cflgt3.h"
219 #include "oa/i915_oa_cnl.h"
220 #include "oa/i915_oa_icl.h"
221 #include "oa/i915_oa_tgl.h"
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
227 #define OA_BUFFER_SIZE SZ_16M
229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
232 * DOC: OA Tail Pointer Race
234 * There's a HW race condition between OA unit tail pointer register updates and
235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 * been written out to the OA buffer so far (in terms of what's visible to the
237 * CPU).
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
242 * read() attempts.
244 * In effect we define a tail pointer for reading that lags the real tail
245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
246 * time for the corresponding reports to become visible to the CPU.
248 * To manage this we actually track two tail pointers:
249 * 1) An 'aging' tail with an associated timestamp that is tracked until we
250 * can trust the corresponding data is visible to the CPU; at which point
251 * it is considered 'aged'.
252 * 2) An 'aged' tail that can be used for read()ing.
254 * The two separate pointers let us decouple read()s from tail pointer aging.
256 * The tail pointers are checked and updated at a limited rate within a hrtimer
257 * callback (the same callback that is used for delivering EPOLLIN events)
259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
260 * indicates that an updated tail pointer is needed.
262 * Most of the implementation details for this workaround are in
263 * oa_buffer_check_unlocked() and _append_oa_reports()
265 * Note for posterity: previously the driver used to define an effective tail
266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
268 * This was flawed considering that the OA unit may also automatically generate
269 * non-periodic reports (such as on context switch) or the OA unit may be
270 * enabled without any periodic sampling.
272 #define OA_TAIL_MARGIN_NSEC 100000ULL
273 #define INVALID_TAIL_PTR 0xffffffff
275 /* frequency for checking whether the OA unit has written new reports to the
276 * circular OA buffer...
278 #define POLL_FREQUENCY 200
279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
282 static u32 i915_perf_stream_paranoid = true;
284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
285 * of the 64bit timestamp bits to trigger reports from) but there's currently
286 * no known use case for sampling as infrequently as once per 47 thousand years.
288 * Since the timestamps included in OA reports are only 32bits it seems
289 * reasonable to limit the OA exponent where it's still possible to account for
290 * overflow in OA report timestamps.
292 #define OA_EXPONENT_MAX 31
294 #define INVALID_CTX_ID 0xffffffff
296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
297 #define OAREPORT_REASON_MASK 0x3f
298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
299 #define OAREPORT_REASON_SHIFT 19
300 #define OAREPORT_REASON_TIMER (1<<0)
301 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
302 #define OAREPORT_REASON_CLK_RATIO (1<<5)
305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
307 * The highest sampling frequency we can theoretically program the OA unit
308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
310 * Initialized just before we register the sysctl parameter.
312 static int oa_sample_rate_hard_limit;
314 /* Theoretically we can program the OA unit to sample every 160ns but don't
315 * allow that by default unless root...
317 * The default threshold of 100000Hz is based on perf's similar
318 * kernel.perf_event_max_sample_rate sysctl parameter.
320 static u32 i915_oa_max_sample_rate = 100000;
322 /* XXX: beware if future OA HW adds new report formats that the current
323 * code assumes all reports have a power-of-two size and ~(size - 1) can
324 * be used as a mask to align the OA tail pointer.
326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
327 [I915_OA_FORMAT_A13] = { 0, 64 },
328 [I915_OA_FORMAT_A29] = { 1, 128 },
329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
331 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
334 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
338 [I915_OA_FORMAT_A12] = { 0, 64 },
339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
341 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
348 #define SAMPLE_OA_REPORT (1<<0)
351 * struct perf_open_properties - for validated properties given to open a stream
352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
353 * @single_context: Whether a single or all gpu contexts should be monitored
354 * @hold_preemption: Whether the preemption is disabled for the filtered
355 * context
356 * @ctx_handle: A gem ctx handle for use with @single_context
357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
358 * @oa_format: An OA unit HW report format
359 * @oa_periodic: Whether to enable periodic OA unit sampling
360 * @oa_period_exponent: The OA unit sampling period is derived from this
361 * @engine: The engine (typically rcs0) being monitored by the OA unit
363 * As read_properties_unlocked() enumerates and validates the properties given
364 * to open a stream of metrics the configuration is built up in the structure
365 * which starts out zero initialized.
367 struct perf_open_properties {
368 u32 sample_flags;
370 u64 single_context:1;
371 u64 hold_preemption:1;
372 u64 ctx_handle;
374 /* OA sampling state */
375 int metrics_set;
376 int oa_format;
377 bool oa_periodic;
378 int oa_period_exponent;
380 struct intel_engine_cs *engine;
383 struct i915_oa_config_bo {
384 struct llist_node node;
386 struct i915_oa_config *oa_config;
387 struct i915_vma *vma;
390 static struct ctl_table_header *sysctl_header;
392 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
394 void i915_oa_config_release(struct kref *ref)
396 struct i915_oa_config *oa_config =
397 container_of(ref, typeof(*oa_config), ref);
399 kfree(oa_config->flex_regs);
400 kfree(oa_config->b_counter_regs);
401 kfree(oa_config->mux_regs);
403 kfree_rcu(oa_config, rcu);
406 struct i915_oa_config *
407 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
409 struct i915_oa_config *oa_config;
411 rcu_read_lock();
412 if (metrics_set == 1)
413 oa_config = &perf->test_config;
414 else
415 oa_config = idr_find(&perf->metrics_idr, metrics_set);
416 if (oa_config)
417 oa_config = i915_oa_config_get(oa_config);
418 rcu_read_unlock();
420 return oa_config;
423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
425 i915_oa_config_put(oa_bo->oa_config);
426 i915_vma_put(oa_bo->vma);
427 kfree(oa_bo);
430 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
432 struct intel_uncore *uncore = stream->uncore;
434 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
435 GEN12_OAG_OATAILPTR_MASK;
438 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
440 struct intel_uncore *uncore = stream->uncore;
442 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
445 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
447 struct intel_uncore *uncore = stream->uncore;
448 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
450 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
454 * oa_buffer_check_unlocked - check for data and update tail ptr state
455 * @stream: i915 stream instance
457 * This is either called via fops (for blocking reads in user ctx) or the poll
458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
459 * if there is data available for userspace to read.
461 * This function is central to providing a workaround for the OA unit tail
462 * pointer having a race with respect to what data is visible to the CPU.
463 * It is responsible for reading tail pointers from the hardware and giving
464 * the pointers time to 'age' before they are made available for reading.
465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
467 * Besides returning true when there is data available to read() this function
468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
469 * and .aged_tail_idx state used for reading.
471 * Note: It's safe to read OA config state here unlocked, assuming that this is
472 * only called while the stream is enabled, while the global OA configuration
473 * can't be modified.
475 * Returns: %true if the OA buffer contains data, else %false
477 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
479 int report_size = stream->oa_buffer.format_size;
480 unsigned long flags;
481 unsigned int aged_idx;
482 u32 head, hw_tail, aged_tail, aging_tail;
483 u64 now;
485 /* We have to consider the (unlikely) possibility that read() errors
486 * could result in an OA buffer reset which might reset the head,
487 * tails[] and aged_tail state.
489 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
491 /* NB: The head we observe here might effectively be a little out of
492 * date (between head and tails[aged_idx].offset if there is currently
493 * a read() in progress.
495 head = stream->oa_buffer.head;
497 aged_idx = stream->oa_buffer.aged_tail_idx;
498 aged_tail = stream->oa_buffer.tails[aged_idx].offset;
499 aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
501 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
503 /* The tail pointer increases in 64 byte increments,
504 * not in report_size steps...
506 hw_tail &= ~(report_size - 1);
508 now = ktime_get_mono_fast_ns();
510 /* Update the aged tail
512 * Flip the tail pointer available for read()s once the aging tail is
513 * old enough to trust that the corresponding data will be visible to
514 * the CPU...
516 * Do this before updating the aging pointer in case we may be able to
517 * immediately start aging a new pointer too (if new data has become
518 * available) without needing to wait for a later hrtimer callback.
520 if (aging_tail != INVALID_TAIL_PTR &&
521 ((now - stream->oa_buffer.aging_timestamp) >
522 OA_TAIL_MARGIN_NSEC)) {
524 aged_idx ^= 1;
525 stream->oa_buffer.aged_tail_idx = aged_idx;
527 aged_tail = aging_tail;
529 /* Mark that we need a new pointer to start aging... */
530 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
531 aging_tail = INVALID_TAIL_PTR;
534 /* Update the aging tail
536 * We throttle aging tail updates until we have a new tail that
537 * represents >= one report more data than is already available for
538 * reading. This ensures there will be enough data for a successful
539 * read once this new pointer has aged and ensures we will give the new
540 * pointer time to age.
542 if (aging_tail == INVALID_TAIL_PTR &&
543 (aged_tail == INVALID_TAIL_PTR ||
544 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
545 struct i915_vma *vma = stream->oa_buffer.vma;
546 u32 gtt_offset = i915_ggtt_offset(vma);
548 /* Be paranoid and do a bounds check on the pointer read back
549 * from hardware, just in case some spurious hardware condition
550 * could put the tail out of bounds...
552 if (hw_tail >= gtt_offset &&
553 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
554 stream->oa_buffer.tails[!aged_idx].offset =
555 aging_tail = hw_tail;
556 stream->oa_buffer.aging_timestamp = now;
557 } else {
558 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n",
559 hw_tail);
563 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
565 return aged_tail == INVALID_TAIL_PTR ?
566 false : OA_TAKEN(aged_tail, head) >= report_size;
570 * append_oa_status - Appends a status record to a userspace read() buffer.
571 * @stream: An i915-perf stream opened for OA metrics
572 * @buf: destination buffer given by userspace
573 * @count: the number of bytes userspace wants to read
574 * @offset: (inout): the current position for writing into @buf
575 * @type: The kind of status to report to userspace
577 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
578 * into the userspace read() buffer.
580 * The @buf @offset will only be updated on success.
582 * Returns: 0 on success, negative error code on failure.
584 static int append_oa_status(struct i915_perf_stream *stream,
585 char __user *buf,
586 size_t count,
587 size_t *offset,
588 enum drm_i915_perf_record_type type)
590 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
592 if ((count - *offset) < header.size)
593 return -ENOSPC;
595 if (copy_to_user(buf + *offset, &header, sizeof(header)))
596 return -EFAULT;
598 (*offset) += header.size;
600 return 0;
604 * append_oa_sample - Copies single OA report into userspace read() buffer.
605 * @stream: An i915-perf stream opened for OA metrics
606 * @buf: destination buffer given by userspace
607 * @count: the number of bytes userspace wants to read
608 * @offset: (inout): the current position for writing into @buf
609 * @report: A single OA report to (optionally) include as part of the sample
611 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
612 * properties when opening a stream, tracked as `stream->sample_flags`. This
613 * function copies the requested components of a single sample to the given
614 * read() @buf.
616 * The @buf @offset will only be updated on success.
618 * Returns: 0 on success, negative error code on failure.
620 static int append_oa_sample(struct i915_perf_stream *stream,
621 char __user *buf,
622 size_t count,
623 size_t *offset,
624 const u8 *report)
626 int report_size = stream->oa_buffer.format_size;
627 struct drm_i915_perf_record_header header;
628 u32 sample_flags = stream->sample_flags;
630 header.type = DRM_I915_PERF_RECORD_SAMPLE;
631 header.pad = 0;
632 header.size = stream->sample_size;
634 if ((count - *offset) < header.size)
635 return -ENOSPC;
637 buf += *offset;
638 if (copy_to_user(buf, &header, sizeof(header)))
639 return -EFAULT;
640 buf += sizeof(header);
642 if (sample_flags & SAMPLE_OA_REPORT) {
643 if (copy_to_user(buf, report, report_size))
644 return -EFAULT;
647 (*offset) += header.size;
649 return 0;
653 * Copies all buffered OA reports into userspace read() buffer.
654 * @stream: An i915-perf stream opened for OA metrics
655 * @buf: destination buffer given by userspace
656 * @count: the number of bytes userspace wants to read
657 * @offset: (inout): the current position for writing into @buf
659 * Notably any error condition resulting in a short read (-%ENOSPC or
660 * -%EFAULT) will be returned even though one or more records may
661 * have been successfully copied. In this case it's up to the caller
662 * to decide if the error should be squashed before returning to
663 * userspace.
665 * Note: reports are consumed from the head, and appended to the
666 * tail, so the tail chases the head?... If you think that's mad
667 * and back-to-front you're not alone, but this follows the
668 * Gen PRM naming convention.
670 * Returns: 0 on success, negative error code on failure.
672 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
673 char __user *buf,
674 size_t count,
675 size_t *offset)
677 struct intel_uncore *uncore = stream->uncore;
678 int report_size = stream->oa_buffer.format_size;
679 u8 *oa_buf_base = stream->oa_buffer.vaddr;
680 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
681 u32 mask = (OA_BUFFER_SIZE - 1);
682 size_t start_offset = *offset;
683 unsigned long flags;
684 unsigned int aged_tail_idx;
685 u32 head, tail;
686 u32 taken;
687 int ret = 0;
689 if (WARN_ON(!stream->enabled))
690 return -EIO;
692 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
694 head = stream->oa_buffer.head;
695 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
696 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
698 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
701 * An invalid tail pointer here means we're still waiting for the poll
702 * hrtimer callback to give us a pointer
704 if (tail == INVALID_TAIL_PTR)
705 return -EAGAIN;
708 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
709 * while indexing relative to oa_buf_base.
711 head -= gtt_offset;
712 tail -= gtt_offset;
715 * An out of bounds or misaligned head or tail pointer implies a driver
716 * bug since we validate + align the tail pointers we read from the
717 * hardware and we are in full control of the head pointer which should
718 * only be incremented by multiples of the report size (notably also
719 * all a power of two).
721 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
722 tail > OA_BUFFER_SIZE || tail % report_size,
723 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
724 head, tail))
725 return -EIO;
728 for (/* none */;
729 (taken = OA_TAKEN(tail, head));
730 head = (head + report_size) & mask) {
731 u8 *report = oa_buf_base + head;
732 u32 *report32 = (void *)report;
733 u32 ctx_id;
734 u32 reason;
737 * All the report sizes factor neatly into the buffer
738 * size so we never expect to see a report split
739 * between the beginning and end of the buffer.
741 * Given the initial alignment check a misalignment
742 * here would imply a driver bug that would result
743 * in an overrun.
745 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
746 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
747 break;
751 * The reason field includes flags identifying what
752 * triggered this specific report (mostly timer
753 * triggered or e.g. due to a context switch).
755 * This field is never expected to be zero so we can
756 * check that the report isn't invalid before copying
757 * it to userspace...
759 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
760 (IS_GEN(stream->perf->i915, 12) ?
761 OAREPORT_REASON_MASK_EXTENDED :
762 OAREPORT_REASON_MASK));
763 if (reason == 0) {
764 if (__ratelimit(&stream->perf->spurious_report_rs))
765 DRM_NOTE("Skipping spurious, invalid OA report\n");
766 continue;
769 ctx_id = report32[2] & stream->specific_ctx_id_mask;
772 * Squash whatever is in the CTX_ID field if it's marked as
773 * invalid to be sure we avoid false-positive, single-context
774 * filtering below...
776 * Note: that we don't clear the valid_ctx_bit so userspace can
777 * understand that the ID has been squashed by the kernel.
779 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
780 INTEL_GEN(stream->perf->i915) <= 11)
781 ctx_id = report32[2] = INVALID_CTX_ID;
784 * NB: For Gen 8 the OA unit no longer supports clock gating
785 * off for a specific context and the kernel can't securely
786 * stop the counters from updating as system-wide / global
787 * values.
789 * Automatic reports now include a context ID so reports can be
790 * filtered on the cpu but it's not worth trying to
791 * automatically subtract/hide counter progress for other
792 * contexts while filtering since we can't stop userspace
793 * issuing MI_REPORT_PERF_COUNT commands which would still
794 * provide a side-band view of the real values.
796 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
797 * to normalize counters for a single filtered context then it
798 * needs be forwarded bookend context-switch reports so that it
799 * can track switches in between MI_REPORT_PERF_COUNT commands
800 * and can itself subtract/ignore the progress of counters
801 * associated with other contexts. Note that the hardware
802 * automatically triggers reports when switching to a new
803 * context which are tagged with the ID of the newly active
804 * context. To avoid the complexity (and likely fragility) of
805 * reading ahead while parsing reports to try and minimize
806 * forwarding redundant context switch reports (i.e. between
807 * other, unrelated contexts) we simply elect to forward them
808 * all.
810 * We don't rely solely on the reason field to identify context
811 * switches since it's not-uncommon for periodic samples to
812 * identify a switch before any 'context switch' report.
814 if (!stream->perf->exclusive_stream->ctx ||
815 stream->specific_ctx_id == ctx_id ||
816 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
817 reason & OAREPORT_REASON_CTX_SWITCH) {
820 * While filtering for a single context we avoid
821 * leaking the IDs of other contexts.
823 if (stream->perf->exclusive_stream->ctx &&
824 stream->specific_ctx_id != ctx_id) {
825 report32[2] = INVALID_CTX_ID;
828 ret = append_oa_sample(stream, buf, count, offset,
829 report);
830 if (ret)
831 break;
833 stream->oa_buffer.last_ctx_id = ctx_id;
837 * The above reason field sanity check is based on
838 * the assumption that the OA buffer is initially
839 * zeroed and we reset the field after copying so the
840 * check is still meaningful once old reports start
841 * being overwritten.
843 report32[0] = 0;
846 if (start_offset != *offset) {
847 i915_reg_t oaheadptr;
849 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
850 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
852 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
855 * We removed the gtt_offset for the copy loop above, indexing
856 * relative to oa_buf_base so put back here...
858 head += gtt_offset;
859 intel_uncore_write(uncore, oaheadptr,
860 head & GEN12_OAG_OAHEADPTR_MASK);
861 stream->oa_buffer.head = head;
863 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
866 return ret;
870 * gen8_oa_read - copy status records then buffered OA reports
871 * @stream: An i915-perf stream opened for OA metrics
872 * @buf: destination buffer given by userspace
873 * @count: the number of bytes userspace wants to read
874 * @offset: (inout): the current position for writing into @buf
876 * Checks OA unit status registers and if necessary appends corresponding
877 * status records for userspace (such as for a buffer full condition) and then
878 * initiate appending any buffered OA reports.
880 * Updates @offset according to the number of bytes successfully copied into
881 * the userspace buffer.
883 * NB: some data may be successfully copied to the userspace buffer
884 * even if an error is returned, and this is reflected in the
885 * updated @offset.
887 * Returns: zero on success or a negative error code
889 static int gen8_oa_read(struct i915_perf_stream *stream,
890 char __user *buf,
891 size_t count,
892 size_t *offset)
894 struct intel_uncore *uncore = stream->uncore;
895 u32 oastatus;
896 i915_reg_t oastatus_reg;
897 int ret;
899 if (WARN_ON(!stream->oa_buffer.vaddr))
900 return -EIO;
902 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
903 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
905 oastatus = intel_uncore_read(uncore, oastatus_reg);
908 * We treat OABUFFER_OVERFLOW as a significant error:
910 * Although theoretically we could handle this more gracefully
911 * sometimes, some Gens don't correctly suppress certain
912 * automatically triggered reports in this condition and so we
913 * have to assume that old reports are now being trampled
914 * over.
916 * Considering how we don't currently give userspace control
917 * over the OA buffer size and always configure a large 16MB
918 * buffer, then a buffer overflow does anyway likely indicate
919 * that something has gone quite badly wrong.
921 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
922 ret = append_oa_status(stream, buf, count, offset,
923 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
924 if (ret)
925 return ret;
927 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
928 stream->period_exponent);
930 stream->perf->ops.oa_disable(stream);
931 stream->perf->ops.oa_enable(stream);
934 * Note: .oa_enable() is expected to re-init the oabuffer and
935 * reset GEN8_OASTATUS for us
937 oastatus = intel_uncore_read(uncore, oastatus_reg);
940 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
941 ret = append_oa_status(stream, buf, count, offset,
942 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
943 if (ret)
944 return ret;
945 intel_uncore_write(uncore, oastatus_reg,
946 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
949 return gen8_append_oa_reports(stream, buf, count, offset);
953 * Copies all buffered OA reports into userspace read() buffer.
954 * @stream: An i915-perf stream opened for OA metrics
955 * @buf: destination buffer given by userspace
956 * @count: the number of bytes userspace wants to read
957 * @offset: (inout): the current position for writing into @buf
959 * Notably any error condition resulting in a short read (-%ENOSPC or
960 * -%EFAULT) will be returned even though one or more records may
961 * have been successfully copied. In this case it's up to the caller
962 * to decide if the error should be squashed before returning to
963 * userspace.
965 * Note: reports are consumed from the head, and appended to the
966 * tail, so the tail chases the head?... If you think that's mad
967 * and back-to-front you're not alone, but this follows the
968 * Gen PRM naming convention.
970 * Returns: 0 on success, negative error code on failure.
972 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
973 char __user *buf,
974 size_t count,
975 size_t *offset)
977 struct intel_uncore *uncore = stream->uncore;
978 int report_size = stream->oa_buffer.format_size;
979 u8 *oa_buf_base = stream->oa_buffer.vaddr;
980 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
981 u32 mask = (OA_BUFFER_SIZE - 1);
982 size_t start_offset = *offset;
983 unsigned long flags;
984 unsigned int aged_tail_idx;
985 u32 head, tail;
986 u32 taken;
987 int ret = 0;
989 if (WARN_ON(!stream->enabled))
990 return -EIO;
992 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
994 head = stream->oa_buffer.head;
995 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
996 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
998 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1000 /* An invalid tail pointer here means we're still waiting for the poll
1001 * hrtimer callback to give us a pointer
1003 if (tail == INVALID_TAIL_PTR)
1004 return -EAGAIN;
1006 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1007 * while indexing relative to oa_buf_base.
1009 head -= gtt_offset;
1010 tail -= gtt_offset;
1012 /* An out of bounds or misaligned head or tail pointer implies a driver
1013 * bug since we validate + align the tail pointers we read from the
1014 * hardware and we are in full control of the head pointer which should
1015 * only be incremented by multiples of the report size (notably also
1016 * all a power of two).
1018 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
1019 tail > OA_BUFFER_SIZE || tail % report_size,
1020 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1021 head, tail))
1022 return -EIO;
1025 for (/* none */;
1026 (taken = OA_TAKEN(tail, head));
1027 head = (head + report_size) & mask) {
1028 u8 *report = oa_buf_base + head;
1029 u32 *report32 = (void *)report;
1031 /* All the report sizes factor neatly into the buffer
1032 * size so we never expect to see a report split
1033 * between the beginning and end of the buffer.
1035 * Given the initial alignment check a misalignment
1036 * here would imply a driver bug that would result
1037 * in an overrun.
1039 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1040 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1041 break;
1044 /* The report-ID field for periodic samples includes
1045 * some undocumented flags related to what triggered
1046 * the report and is never expected to be zero so we
1047 * can check that the report isn't invalid before
1048 * copying it to userspace...
1050 if (report32[0] == 0) {
1051 if (__ratelimit(&stream->perf->spurious_report_rs))
1052 DRM_NOTE("Skipping spurious, invalid OA report\n");
1053 continue;
1056 ret = append_oa_sample(stream, buf, count, offset, report);
1057 if (ret)
1058 break;
1060 /* The above report-id field sanity check is based on
1061 * the assumption that the OA buffer is initially
1062 * zeroed and we reset the field after copying so the
1063 * check is still meaningful once old reports start
1064 * being overwritten.
1066 report32[0] = 0;
1069 if (start_offset != *offset) {
1070 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1072 /* We removed the gtt_offset for the copy loop above, indexing
1073 * relative to oa_buf_base so put back here...
1075 head += gtt_offset;
1077 intel_uncore_write(uncore, GEN7_OASTATUS2,
1078 (head & GEN7_OASTATUS2_HEAD_MASK) |
1079 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1080 stream->oa_buffer.head = head;
1082 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1085 return ret;
1089 * gen7_oa_read - copy status records then buffered OA reports
1090 * @stream: An i915-perf stream opened for OA metrics
1091 * @buf: destination buffer given by userspace
1092 * @count: the number of bytes userspace wants to read
1093 * @offset: (inout): the current position for writing into @buf
1095 * Checks Gen 7 specific OA unit status registers and if necessary appends
1096 * corresponding status records for userspace (such as for a buffer full
1097 * condition) and then initiate appending any buffered OA reports.
1099 * Updates @offset according to the number of bytes successfully copied into
1100 * the userspace buffer.
1102 * Returns: zero on success or a negative error code
1104 static int gen7_oa_read(struct i915_perf_stream *stream,
1105 char __user *buf,
1106 size_t count,
1107 size_t *offset)
1109 struct intel_uncore *uncore = stream->uncore;
1110 u32 oastatus1;
1111 int ret;
1113 if (WARN_ON(!stream->oa_buffer.vaddr))
1114 return -EIO;
1116 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1119 * bits while the OA unit is enabled (while the tail pointer
1120 * may be updated asynchronously) so we ignore status bits
1121 * that have already been reported to userspace.
1123 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1125 /* We treat OABUFFER_OVERFLOW as a significant error:
1127 * - The status can be interpreted to mean that the buffer is
1128 * currently full (with a higher precedence than OA_TAKEN()
1129 * which will start to report a near-empty buffer after an
1130 * overflow) but it's awkward that we can't clear the status
1131 * on Haswell, so without a reset we won't be able to catch
1132 * the state again.
1134 * - Since it also implies the HW has started overwriting old
1135 * reports it may also affect our sanity checks for invalid
1136 * reports when copying to userspace that assume new reports
1137 * are being written to cleared memory.
1139 * - In the future we may want to introduce a flight recorder
1140 * mode where the driver will automatically maintain a safe
1141 * guard band between head/tail, avoiding this overflow
1142 * condition, but we avoid the added driver complexity for
1143 * now.
1145 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1146 ret = append_oa_status(stream, buf, count, offset,
1147 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1148 if (ret)
1149 return ret;
1151 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1152 stream->period_exponent);
1154 stream->perf->ops.oa_disable(stream);
1155 stream->perf->ops.oa_enable(stream);
1157 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1160 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1161 ret = append_oa_status(stream, buf, count, offset,
1162 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1163 if (ret)
1164 return ret;
1165 stream->perf->gen7_latched_oastatus1 |=
1166 GEN7_OASTATUS1_REPORT_LOST;
1169 return gen7_append_oa_reports(stream, buf, count, offset);
1173 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1174 * @stream: An i915-perf stream opened for OA metrics
1176 * Called when userspace tries to read() from a blocking stream FD opened
1177 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1178 * OA buffer and wakes us.
1180 * Note: it's acceptable to have this return with some false positives
1181 * since any subsequent read handling will return -EAGAIN if there isn't
1182 * really data ready for userspace yet.
1184 * Returns: zero on success or a negative error code
1186 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1188 /* We would wait indefinitely if periodic sampling is not enabled */
1189 if (!stream->periodic)
1190 return -EIO;
1192 return wait_event_interruptible(stream->poll_wq,
1193 oa_buffer_check_unlocked(stream));
1197 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1198 * @stream: An i915-perf stream opened for OA metrics
1199 * @file: An i915 perf stream file
1200 * @wait: poll() state table
1202 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1203 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1204 * when it sees data ready to read in the circular OA buffer.
1206 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1207 struct file *file,
1208 poll_table *wait)
1210 poll_wait(file, &stream->poll_wq, wait);
1214 * i915_oa_read - just calls through to &i915_oa_ops->read
1215 * @stream: An i915-perf stream opened for OA metrics
1216 * @buf: destination buffer given by userspace
1217 * @count: the number of bytes userspace wants to read
1218 * @offset: (inout): the current position for writing into @buf
1220 * Updates @offset according to the number of bytes successfully copied into
1221 * the userspace buffer.
1223 * Returns: zero on success or a negative error code
1225 static int i915_oa_read(struct i915_perf_stream *stream,
1226 char __user *buf,
1227 size_t count,
1228 size_t *offset)
1230 return stream->perf->ops.read(stream, buf, count, offset);
1233 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1235 struct i915_gem_engines_iter it;
1236 struct i915_gem_context *ctx = stream->ctx;
1237 struct intel_context *ce;
1238 int err;
1240 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1241 if (ce->engine != stream->engine) /* first match! */
1242 continue;
1245 * As the ID is the gtt offset of the context's vma we
1246 * pin the vma to ensure the ID remains fixed.
1248 err = intel_context_pin(ce);
1249 if (err == 0) {
1250 stream->pinned_ctx = ce;
1251 break;
1254 i915_gem_context_unlock_engines(ctx);
1256 return stream->pinned_ctx;
1260 * oa_get_render_ctx_id - determine and hold ctx hw id
1261 * @stream: An i915-perf stream opened for OA metrics
1263 * Determine the render context hw id, and ensure it remains fixed for the
1264 * lifetime of the stream. This ensures that we don't have to worry about
1265 * updating the context ID in OACONTROL on the fly.
1267 * Returns: zero on success or a negative error code
1269 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1271 struct intel_context *ce;
1273 ce = oa_pin_context(stream);
1274 if (IS_ERR(ce))
1275 return PTR_ERR(ce);
1277 switch (INTEL_GEN(ce->engine->i915)) {
1278 case 7: {
1280 * On Haswell we don't do any post processing of the reports
1281 * and don't need to use the mask.
1283 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1284 stream->specific_ctx_id_mask = 0;
1285 break;
1288 case 8:
1289 case 9:
1290 case 10:
1291 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1292 stream->specific_ctx_id_mask =
1293 (1U << GEN8_CTX_ID_WIDTH) - 1;
1294 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1295 } else {
1297 * When using GuC, the context descriptor we write in
1298 * i915 is read by GuC and rewritten before it's
1299 * actually written into the hardware. The LRCA is
1300 * what is put into the context id field of the
1301 * context descriptor by GuC. Because it's aligned to
1302 * a page, the lower 12bits are always at 0 and
1303 * dropped by GuC. They won't be part of the context
1304 * ID in the OA reports, so squash those lower bits.
1306 stream->specific_ctx_id =
1307 lower_32_bits(ce->lrc_desc) >> 12;
1310 * GuC uses the top bit to signal proxy submission, so
1311 * ignore that bit.
1313 stream->specific_ctx_id_mask =
1314 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1316 break;
1318 case 11:
1319 case 12: {
1320 stream->specific_ctx_id_mask =
1321 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1322 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1323 break;
1326 default:
1327 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1330 ce->tag = stream->specific_ctx_id_mask;
1332 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1333 stream->specific_ctx_id,
1334 stream->specific_ctx_id_mask);
1336 return 0;
1340 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1341 * @stream: An i915-perf stream opened for OA metrics
1343 * In case anything needed doing to ensure the context HW ID would remain valid
1344 * for the lifetime of the stream, then that can be undone here.
1346 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1348 struct intel_context *ce;
1350 ce = fetch_and_zero(&stream->pinned_ctx);
1351 if (ce) {
1352 ce->tag = 0; /* recomputed on next submission after parking */
1353 intel_context_unpin(ce);
1356 stream->specific_ctx_id = INVALID_CTX_ID;
1357 stream->specific_ctx_id_mask = 0;
1360 static void
1361 free_oa_buffer(struct i915_perf_stream *stream)
1363 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1364 I915_VMA_RELEASE_MAP);
1366 stream->oa_buffer.vaddr = NULL;
1369 static void
1370 free_oa_configs(struct i915_perf_stream *stream)
1372 struct i915_oa_config_bo *oa_bo, *tmp;
1374 i915_oa_config_put(stream->oa_config);
1375 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1376 free_oa_config_bo(oa_bo);
1379 static void
1380 free_noa_wait(struct i915_perf_stream *stream)
1382 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1385 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1387 struct i915_perf *perf = stream->perf;
1389 BUG_ON(stream != perf->exclusive_stream);
1392 * Unset exclusive_stream first, it will be checked while disabling
1393 * the metric set on gen8+.
1395 perf->exclusive_stream = NULL;
1396 perf->ops.disable_metric_set(stream);
1398 free_oa_buffer(stream);
1400 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1401 intel_engine_pm_put(stream->engine);
1403 if (stream->ctx)
1404 oa_put_render_ctx_id(stream);
1406 free_oa_configs(stream);
1407 free_noa_wait(stream);
1409 if (perf->spurious_report_rs.missed) {
1410 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1411 perf->spurious_report_rs.missed);
1415 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1417 struct intel_uncore *uncore = stream->uncore;
1418 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1419 unsigned long flags;
1421 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1423 /* Pre-DevBDW: OABUFFER must be set with counters off,
1424 * before OASTATUS1, but after OASTATUS2
1426 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1427 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1428 stream->oa_buffer.head = gtt_offset;
1430 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1432 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1433 gtt_offset | OABUFFER_SIZE_16M);
1435 /* Mark that we need updated tail pointers to read from... */
1436 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1437 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1439 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1441 /* On Haswell we have to track which OASTATUS1 flags we've
1442 * already seen since they can't be cleared while periodic
1443 * sampling is enabled.
1445 stream->perf->gen7_latched_oastatus1 = 0;
1447 /* NB: although the OA buffer will initially be allocated
1448 * zeroed via shmfs (and so this memset is redundant when
1449 * first allocating), we may re-init the OA buffer, either
1450 * when re-enabling a stream or in error/reset paths.
1452 * The reason we clear the buffer for each re-init is for the
1453 * sanity check in gen7_append_oa_reports() that looks at the
1454 * report-id field to make sure it's non-zero which relies on
1455 * the assumption that new reports are being written to zeroed
1456 * memory...
1458 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1460 stream->pollin = false;
1463 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1465 struct intel_uncore *uncore = stream->uncore;
1466 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1467 unsigned long flags;
1469 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1471 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1472 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1473 stream->oa_buffer.head = gtt_offset;
1475 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1478 * PRM says:
1480 * "This MMIO must be set before the OATAILPTR
1481 * register and after the OAHEADPTR register. This is
1482 * to enable proper functionality of the overflow
1483 * bit."
1485 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1486 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1487 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1489 /* Mark that we need updated tail pointers to read from... */
1490 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1491 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1494 * Reset state used to recognise context switches, affecting which
1495 * reports we will forward to userspace while filtering for a single
1496 * context.
1498 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1500 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1503 * NB: although the OA buffer will initially be allocated
1504 * zeroed via shmfs (and so this memset is redundant when
1505 * first allocating), we may re-init the OA buffer, either
1506 * when re-enabling a stream or in error/reset paths.
1508 * The reason we clear the buffer for each re-init is for the
1509 * sanity check in gen8_append_oa_reports() that looks at the
1510 * reason field to make sure it's non-zero which relies on
1511 * the assumption that new reports are being written to zeroed
1512 * memory...
1514 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1516 stream->pollin = false;
1519 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1521 struct intel_uncore *uncore = stream->uncore;
1522 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1523 unsigned long flags;
1525 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1527 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1528 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1529 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1530 stream->oa_buffer.head = gtt_offset;
1533 * PRM says:
1535 * "This MMIO must be set before the OATAILPTR
1536 * register and after the OAHEADPTR register. This is
1537 * to enable proper functionality of the overflow
1538 * bit."
1540 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1541 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1542 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1543 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1545 /* Mark that we need updated tail pointers to read from... */
1546 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1547 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1550 * Reset state used to recognise context switches, affecting which
1551 * reports we will forward to userspace while filtering for a single
1552 * context.
1554 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1556 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1559 * NB: although the OA buffer will initially be allocated
1560 * zeroed via shmfs (and so this memset is redundant when
1561 * first allocating), we may re-init the OA buffer, either
1562 * when re-enabling a stream or in error/reset paths.
1564 * The reason we clear the buffer for each re-init is for the
1565 * sanity check in gen8_append_oa_reports() that looks at the
1566 * reason field to make sure it's non-zero which relies on
1567 * the assumption that new reports are being written to zeroed
1568 * memory...
1570 memset(stream->oa_buffer.vaddr, 0,
1571 stream->oa_buffer.vma->size);
1573 stream->pollin = false;
1576 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1578 struct drm_i915_gem_object *bo;
1579 struct i915_vma *vma;
1580 int ret;
1582 if (WARN_ON(stream->oa_buffer.vma))
1583 return -ENODEV;
1585 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1586 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1588 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1589 if (IS_ERR(bo)) {
1590 DRM_ERROR("Failed to allocate OA buffer\n");
1591 return PTR_ERR(bo);
1594 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1596 /* PreHSW required 512K alignment, HSW requires 16M */
1597 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1598 if (IS_ERR(vma)) {
1599 ret = PTR_ERR(vma);
1600 goto err_unref;
1602 stream->oa_buffer.vma = vma;
1604 stream->oa_buffer.vaddr =
1605 i915_gem_object_pin_map(bo, I915_MAP_WB);
1606 if (IS_ERR(stream->oa_buffer.vaddr)) {
1607 ret = PTR_ERR(stream->oa_buffer.vaddr);
1608 goto err_unpin;
1611 return 0;
1613 err_unpin:
1614 __i915_vma_unpin(vma);
1616 err_unref:
1617 i915_gem_object_put(bo);
1619 stream->oa_buffer.vaddr = NULL;
1620 stream->oa_buffer.vma = NULL;
1622 return ret;
1625 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1626 bool save, i915_reg_t reg, u32 offset,
1627 u32 dword_count)
1629 u32 cmd;
1630 u32 d;
1632 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1633 if (INTEL_GEN(stream->perf->i915) >= 8)
1634 cmd++;
1636 for (d = 0; d < dword_count; d++) {
1637 *cs++ = cmd;
1638 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1639 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1640 offset) + 4 * d;
1641 *cs++ = 0;
1644 return cs;
1647 static int alloc_noa_wait(struct i915_perf_stream *stream)
1649 struct drm_i915_private *i915 = stream->perf->i915;
1650 struct drm_i915_gem_object *bo;
1651 struct i915_vma *vma;
1652 const u64 delay_ticks = 0xffffffffffffffff -
1653 DIV64_U64_ROUND_UP(
1654 atomic64_read(&stream->perf->noa_programming_delay) *
1655 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
1656 1000000ull);
1657 const u32 base = stream->engine->mmio_base;
1658 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1659 u32 *batch, *ts0, *cs, *jump;
1660 int ret, i;
1661 enum {
1662 START_TS,
1663 NOW_TS,
1664 DELTA_TS,
1665 JUMP_PREDICATE,
1666 DELTA_TARGET,
1667 N_CS_GPR
1670 bo = i915_gem_object_create_internal(i915, 4096);
1671 if (IS_ERR(bo)) {
1672 DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
1673 return PTR_ERR(bo);
1677 * We pin in GGTT because we jump into this buffer now because
1678 * multiple OA config BOs will have a jump to this address and it
1679 * needs to be fixed during the lifetime of the i915/perf stream.
1681 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1682 if (IS_ERR(vma)) {
1683 ret = PTR_ERR(vma);
1684 goto err_unref;
1687 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1688 if (IS_ERR(batch)) {
1689 ret = PTR_ERR(batch);
1690 goto err_unpin;
1693 /* Save registers. */
1694 for (i = 0; i < N_CS_GPR; i++)
1695 cs = save_restore_register(
1696 stream, cs, true /* save */, CS_GPR(i),
1697 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1698 cs = save_restore_register(
1699 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1700 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1702 /* First timestamp snapshot location. */
1703 ts0 = cs;
1706 * Initial snapshot of the timestamp register to implement the wait.
1707 * We work with 32b values, so clear out the top 32b bits of the
1708 * register because the ALU works 64bits.
1710 *cs++ = MI_LOAD_REGISTER_IMM(1);
1711 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1712 *cs++ = 0;
1713 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1714 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1715 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1718 * This is the location we're going to jump back into until the
1719 * required amount of time has passed.
1721 jump = cs;
1724 * Take another snapshot of the timestamp register. Take care to clear
1725 * up the top 32bits of CS_GPR(1) as we're using it for other
1726 * operations below.
1728 *cs++ = MI_LOAD_REGISTER_IMM(1);
1729 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1730 *cs++ = 0;
1731 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1732 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1733 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1736 * Do a diff between the 2 timestamps and store the result back into
1737 * CS_GPR(1).
1739 *cs++ = MI_MATH(5);
1740 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1741 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1742 *cs++ = MI_MATH_SUB;
1743 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1744 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1747 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1748 * timestamp have rolled over the 32bits) into the predicate register
1749 * to be used for the predicated jump.
1751 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1752 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1753 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1755 /* Restart from the beginning if we had timestamps roll over. */
1756 *cs++ = (INTEL_GEN(i915) < 8 ?
1757 MI_BATCH_BUFFER_START :
1758 MI_BATCH_BUFFER_START_GEN8) |
1759 MI_BATCH_PREDICATE;
1760 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1761 *cs++ = 0;
1764 * Now add the diff between to previous timestamps and add it to :
1765 * (((1 * << 64) - 1) - delay_ns)
1767 * When the Carry Flag contains 1 this means the elapsed time is
1768 * longer than the expected delay, and we can exit the wait loop.
1770 *cs++ = MI_LOAD_REGISTER_IMM(2);
1771 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1772 *cs++ = lower_32_bits(delay_ticks);
1773 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1774 *cs++ = upper_32_bits(delay_ticks);
1776 *cs++ = MI_MATH(4);
1777 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1778 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1779 *cs++ = MI_MATH_ADD;
1780 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1782 *cs++ = MI_ARB_CHECK;
1785 * Transfer the result into the predicate register to be used for the
1786 * predicated jump.
1788 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1789 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1790 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1792 /* Predicate the jump. */
1793 *cs++ = (INTEL_GEN(i915) < 8 ?
1794 MI_BATCH_BUFFER_START :
1795 MI_BATCH_BUFFER_START_GEN8) |
1796 MI_BATCH_PREDICATE;
1797 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1798 *cs++ = 0;
1800 /* Restore registers. */
1801 for (i = 0; i < N_CS_GPR; i++)
1802 cs = save_restore_register(
1803 stream, cs, false /* restore */, CS_GPR(i),
1804 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1805 cs = save_restore_register(
1806 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1807 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1809 /* And return to the ring. */
1810 *cs++ = MI_BATCH_BUFFER_END;
1812 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1814 i915_gem_object_flush_map(bo);
1815 i915_gem_object_unpin_map(bo);
1817 stream->noa_wait = vma;
1818 return 0;
1820 err_unpin:
1821 i915_vma_unpin_and_release(&vma, 0);
1822 err_unref:
1823 i915_gem_object_put(bo);
1824 return ret;
1827 static u32 *write_cs_mi_lri(u32 *cs,
1828 const struct i915_oa_reg *reg_data,
1829 u32 n_regs)
1831 u32 i;
1833 for (i = 0; i < n_regs; i++) {
1834 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1835 u32 n_lri = min_t(u32,
1836 n_regs - i,
1837 MI_LOAD_REGISTER_IMM_MAX_REGS);
1839 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1841 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1842 *cs++ = reg_data[i].value;
1845 return cs;
1848 static int num_lri_dwords(int num_regs)
1850 int count = 0;
1852 if (num_regs > 0) {
1853 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1854 count += num_regs * 2;
1857 return count;
1860 static struct i915_oa_config_bo *
1861 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1862 struct i915_oa_config *oa_config)
1864 struct drm_i915_gem_object *obj;
1865 struct i915_oa_config_bo *oa_bo;
1866 size_t config_length = 0;
1867 u32 *cs;
1868 int err;
1870 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1871 if (!oa_bo)
1872 return ERR_PTR(-ENOMEM);
1874 config_length += num_lri_dwords(oa_config->mux_regs_len);
1875 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1876 config_length += num_lri_dwords(oa_config->flex_regs_len);
1877 config_length += 3; /* MI_BATCH_BUFFER_START */
1878 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1880 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1881 if (IS_ERR(obj)) {
1882 err = PTR_ERR(obj);
1883 goto err_free;
1886 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1887 if (IS_ERR(cs)) {
1888 err = PTR_ERR(cs);
1889 goto err_oa_bo;
1892 cs = write_cs_mi_lri(cs,
1893 oa_config->mux_regs,
1894 oa_config->mux_regs_len);
1895 cs = write_cs_mi_lri(cs,
1896 oa_config->b_counter_regs,
1897 oa_config->b_counter_regs_len);
1898 cs = write_cs_mi_lri(cs,
1899 oa_config->flex_regs,
1900 oa_config->flex_regs_len);
1902 /* Jump into the active wait. */
1903 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1904 MI_BATCH_BUFFER_START :
1905 MI_BATCH_BUFFER_START_GEN8);
1906 *cs++ = i915_ggtt_offset(stream->noa_wait);
1907 *cs++ = 0;
1909 i915_gem_object_flush_map(obj);
1910 i915_gem_object_unpin_map(obj);
1912 oa_bo->vma = i915_vma_instance(obj,
1913 &stream->engine->gt->ggtt->vm,
1914 NULL);
1915 if (IS_ERR(oa_bo->vma)) {
1916 err = PTR_ERR(oa_bo->vma);
1917 goto err_oa_bo;
1920 oa_bo->oa_config = i915_oa_config_get(oa_config);
1921 llist_add(&oa_bo->node, &stream->oa_config_bos);
1923 return oa_bo;
1925 err_oa_bo:
1926 i915_gem_object_put(obj);
1927 err_free:
1928 kfree(oa_bo);
1929 return ERR_PTR(err);
1932 static struct i915_vma *
1933 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1935 struct i915_oa_config_bo *oa_bo;
1938 * Look for the buffer in the already allocated BOs attached
1939 * to the stream.
1941 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1942 if (oa_bo->oa_config == oa_config &&
1943 memcmp(oa_bo->oa_config->uuid,
1944 oa_config->uuid,
1945 sizeof(oa_config->uuid)) == 0)
1946 goto out;
1949 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1950 if (IS_ERR(oa_bo))
1951 return ERR_CAST(oa_bo);
1953 out:
1954 return i915_vma_get(oa_bo->vma);
1957 static int emit_oa_config(struct i915_perf_stream *stream,
1958 struct i915_oa_config *oa_config,
1959 struct intel_context *ce)
1961 struct i915_request *rq;
1962 struct i915_vma *vma;
1963 int err;
1965 vma = get_oa_vma(stream, oa_config);
1966 if (IS_ERR(vma))
1967 return PTR_ERR(vma);
1969 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1970 if (err)
1971 goto err_vma_put;
1973 intel_engine_pm_get(ce->engine);
1974 rq = i915_request_create(ce);
1975 intel_engine_pm_put(ce->engine);
1976 if (IS_ERR(rq)) {
1977 err = PTR_ERR(rq);
1978 goto err_vma_unpin;
1981 i915_vma_lock(vma);
1982 err = i915_request_await_object(rq, vma->obj, 0);
1983 if (!err)
1984 err = i915_vma_move_to_active(vma, rq, 0);
1985 i915_vma_unlock(vma);
1986 if (err)
1987 goto err_add_request;
1989 err = rq->engine->emit_bb_start(rq,
1990 vma->node.start, 0,
1991 I915_DISPATCH_SECURE);
1992 err_add_request:
1993 i915_request_add(rq);
1994 err_vma_unpin:
1995 i915_vma_unpin(vma);
1996 err_vma_put:
1997 i915_vma_put(vma);
1998 return err;
2001 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2003 return stream->pinned_ctx ?: stream->engine->kernel_context;
2006 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
2008 struct intel_uncore *uncore = stream->uncore;
2011 * PRM:
2013 * OA unit is using “crclk” for its functionality. When trunk
2014 * level clock gating takes place, OA clock would be gated,
2015 * unable to count the events from non-render clock domain.
2016 * Render clock gating must be disabled when OA is enabled to
2017 * count the events from non-render domain. Unit level clock
2018 * gating for RCS should also be disabled.
2020 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2021 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2022 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2023 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2025 return emit_oa_config(stream, stream->oa_config, oa_context(stream));
2028 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2030 struct intel_uncore *uncore = stream->uncore;
2032 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2033 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2034 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2035 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2037 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2040 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2041 i915_reg_t reg)
2043 u32 mmio = i915_mmio_reg_offset(reg);
2044 int i;
2047 * This arbitrary default will select the 'EU FPU0 Pipeline
2048 * Active' event. In the future it's anticipated that there
2049 * will be an explicit 'No Event' we can select, but not yet...
2051 if (!oa_config)
2052 return 0;
2054 for (i = 0; i < oa_config->flex_regs_len; i++) {
2055 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2056 return oa_config->flex_regs[i].value;
2059 return 0;
2062 * NB: It must always remain pointer safe to run this even if the OA unit
2063 * has been disabled.
2065 * It's fine to put out-of-date values into these per-context registers
2066 * in the case that the OA unit has been disabled.
2068 static void
2069 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2070 const struct i915_perf_stream *stream)
2072 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2073 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2074 /* The MMIO offsets for Flex EU registers aren't contiguous */
2075 i915_reg_t flex_regs[] = {
2076 EU_PERF_CNTL0,
2077 EU_PERF_CNTL1,
2078 EU_PERF_CNTL2,
2079 EU_PERF_CNTL3,
2080 EU_PERF_CNTL4,
2081 EU_PERF_CNTL5,
2082 EU_PERF_CNTL6,
2084 u32 *reg_state = ce->lrc_reg_state;
2085 int i;
2087 reg_state[ctx_oactxctrl + 1] =
2088 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2089 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2090 GEN8_OA_COUNTER_RESUME;
2092 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2093 reg_state[ctx_flexeu0 + i * 2 + 1] =
2094 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2096 reg_state[CTX_R_PWR_CLK_STATE] =
2097 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
2100 struct flex {
2101 i915_reg_t reg;
2102 u32 offset;
2103 u32 value;
2106 static int
2107 gen8_store_flex(struct i915_request *rq,
2108 struct intel_context *ce,
2109 const struct flex *flex, unsigned int count)
2111 u32 offset;
2112 u32 *cs;
2114 cs = intel_ring_begin(rq, 4 * count);
2115 if (IS_ERR(cs))
2116 return PTR_ERR(cs);
2118 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
2119 do {
2120 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2121 *cs++ = offset + flex->offset * sizeof(u32);
2122 *cs++ = 0;
2123 *cs++ = flex->value;
2124 } while (flex++, --count);
2126 intel_ring_advance(rq, cs);
2128 return 0;
2131 static int
2132 gen8_load_flex(struct i915_request *rq,
2133 struct intel_context *ce,
2134 const struct flex *flex, unsigned int count)
2136 u32 *cs;
2138 GEM_BUG_ON(!count || count > 63);
2140 cs = intel_ring_begin(rq, 2 * count + 2);
2141 if (IS_ERR(cs))
2142 return PTR_ERR(cs);
2144 *cs++ = MI_LOAD_REGISTER_IMM(count);
2145 do {
2146 *cs++ = i915_mmio_reg_offset(flex->reg);
2147 *cs++ = flex->value;
2148 } while (flex++, --count);
2149 *cs++ = MI_NOOP;
2151 intel_ring_advance(rq, cs);
2153 return 0;
2156 static int gen8_modify_context(struct intel_context *ce,
2157 const struct flex *flex, unsigned int count)
2159 struct i915_request *rq;
2160 int err;
2162 rq = intel_engine_create_kernel_request(ce->engine);
2163 if (IS_ERR(rq))
2164 return PTR_ERR(rq);
2166 /* Serialise with the remote context */
2167 err = intel_context_prepare_remote_request(ce, rq);
2168 if (err == 0)
2169 err = gen8_store_flex(rq, ce, flex, count);
2171 i915_request_add(rq);
2172 return err;
2175 static int gen8_modify_self(struct intel_context *ce,
2176 const struct flex *flex, unsigned int count)
2178 struct i915_request *rq;
2179 int err;
2181 rq = i915_request_create(ce);
2182 if (IS_ERR(rq))
2183 return PTR_ERR(rq);
2185 err = gen8_load_flex(rq, ce, flex, count);
2187 i915_request_add(rq);
2188 return err;
2191 static int gen8_configure_context(struct i915_gem_context *ctx,
2192 struct flex *flex, unsigned int count)
2194 struct i915_gem_engines_iter it;
2195 struct intel_context *ce;
2196 int err = 0;
2198 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2199 GEM_BUG_ON(ce == ce->engine->kernel_context);
2201 if (ce->engine->class != RENDER_CLASS)
2202 continue;
2204 /* Otherwise OA settings will be set upon first use */
2205 if (!intel_context_pin_if_active(ce))
2206 continue;
2208 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2209 err = gen8_modify_context(ce, flex, count);
2211 intel_context_unpin(ce);
2212 if (err)
2213 break;
2215 i915_gem_context_unlock_engines(ctx);
2217 return err;
2220 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable)
2222 int err;
2223 struct intel_context *ce = stream->pinned_ctx;
2224 u32 format = stream->oa_buffer.format;
2225 struct flex regs_context[] = {
2227 GEN8_OACTXCONTROL,
2228 stream->perf->ctx_oactxctrl_offset + 1,
2229 enable ? GEN8_OA_COUNTER_RESUME : 0,
2232 /* Offsets in regs_lri are not used since this configuration is only
2233 * applied using LRI. Initialize the correct offsets for posterity.
2235 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2236 struct flex regs_lri[] = {
2238 GEN12_OAR_OACONTROL,
2239 GEN12_OAR_OACONTROL_OFFSET + 1,
2240 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2241 (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2244 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2245 CTX_CONTEXT_CONTROL,
2246 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2247 enable ?
2248 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2253 /* Modify the context image of pinned context with regs_context*/
2254 err = intel_context_lock_pinned(ce);
2255 if (err)
2256 return err;
2258 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2259 intel_context_unlock_pinned(ce);
2260 if (err)
2261 return err;
2263 /* Apply regs_lri using LRI with pinned context */
2264 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri));
2268 * Manages updating the per-context aspects of the OA stream
2269 * configuration across all contexts.
2271 * The awkward consideration here is that OACTXCONTROL controls the
2272 * exponent for periodic sampling which is primarily used for system
2273 * wide profiling where we'd like a consistent sampling period even in
2274 * the face of context switches.
2276 * Our approach of updating the register state context (as opposed to
2277 * say using a workaround batch buffer) ensures that the hardware
2278 * won't automatically reload an out-of-date timer exponent even
2279 * transiently before a WA BB could be parsed.
2281 * This function needs to:
2282 * - Ensure the currently running context's per-context OA state is
2283 * updated
2284 * - Ensure that all existing contexts will have the correct per-context
2285 * OA state if they are scheduled for use.
2286 * - Ensure any new contexts will be initialized with the correct
2287 * per-context OA state.
2289 * Note: it's only the RCS/Render context that has any OA state.
2290 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2292 static int oa_configure_all_contexts(struct i915_perf_stream *stream,
2293 struct flex *regs,
2294 size_t num_regs)
2296 struct drm_i915_private *i915 = stream->perf->i915;
2297 struct intel_engine_cs *engine;
2298 struct i915_gem_context *ctx, *cn;
2299 int err;
2301 lockdep_assert_held(&stream->perf->lock);
2304 * The OA register config is setup through the context image. This image
2305 * might be written to by the GPU on context switch (in particular on
2306 * lite-restore). This means we can't safely update a context's image,
2307 * if this context is scheduled/submitted to run on the GPU.
2309 * We could emit the OA register config through the batch buffer but
2310 * this might leave small interval of time where the OA unit is
2311 * configured at an invalid sampling period.
2313 * Note that since we emit all requests from a single ring, there
2314 * is still an implicit global barrier here that may cause a high
2315 * priority context to wait for an otherwise independent low priority
2316 * context. Contexts idle at the time of reconfiguration are not
2317 * trapped behind the barrier.
2319 spin_lock(&i915->gem.contexts.lock);
2320 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2321 if (!kref_get_unless_zero(&ctx->ref))
2322 continue;
2324 spin_unlock(&i915->gem.contexts.lock);
2326 err = gen8_configure_context(ctx, regs, num_regs);
2327 if (err) {
2328 i915_gem_context_put(ctx);
2329 return err;
2332 spin_lock(&i915->gem.contexts.lock);
2333 list_safe_reset_next(ctx, cn, link);
2334 i915_gem_context_put(ctx);
2336 spin_unlock(&i915->gem.contexts.lock);
2339 * After updating all other contexts, we need to modify ourselves.
2340 * If we don't modify the kernel_context, we do not get events while
2341 * idle.
2343 for_each_uabi_engine(engine, i915) {
2344 struct intel_context *ce = engine->kernel_context;
2346 if (engine->class != RENDER_CLASS)
2347 continue;
2349 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
2351 err = gen8_modify_self(ce, regs, num_regs);
2352 if (err)
2353 return err;
2356 return 0;
2359 static int gen12_configure_all_contexts(struct i915_perf_stream *stream,
2360 const struct i915_oa_config *oa_config)
2362 struct flex regs[] = {
2364 GEN8_R_PWR_CLK_STATE,
2365 CTX_R_PWR_CLK_STATE,
2369 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2372 static int lrc_configure_all_contexts(struct i915_perf_stream *stream,
2373 const struct i915_oa_config *oa_config)
2375 /* The MMIO offsets for Flex EU registers aren't contiguous */
2376 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2377 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2378 struct flex regs[] = {
2380 GEN8_R_PWR_CLK_STATE,
2381 CTX_R_PWR_CLK_STATE,
2384 GEN8_OACTXCONTROL,
2385 stream->perf->ctx_oactxctrl_offset + 1,
2387 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2388 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2389 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2390 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2391 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2392 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2393 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2395 #undef ctx_flexeuN
2396 int i;
2398 regs[1].value =
2399 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2400 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2401 GEN8_OA_COUNTER_RESUME;
2403 for (i = 2; i < ARRAY_SIZE(regs); i++)
2404 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2406 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2409 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
2411 struct intel_uncore *uncore = stream->uncore;
2412 struct i915_oa_config *oa_config = stream->oa_config;
2413 int ret;
2416 * We disable slice/unslice clock ratio change reports on SKL since
2417 * they are too noisy. The HW generates a lot of redundant reports
2418 * where the ratio hasn't really changed causing a lot of redundant
2419 * work to processes and increasing the chances we'll hit buffer
2420 * overruns.
2422 * Although we don't currently use the 'disable overrun' OABUFFER
2423 * feature it's worth noting that clock ratio reports have to be
2424 * disabled before considering to use that feature since the HW doesn't
2425 * correctly block these reports.
2427 * Currently none of the high-level metrics we have depend on knowing
2428 * this ratio to normalize.
2430 * Note: This register is not power context saved and restored, but
2431 * that's OK considering that we disable RC6 while the OA unit is
2432 * enabled.
2434 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2435 * be read back from automatically triggered reports, as part of the
2436 * RPT_ID field.
2438 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2439 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2440 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2441 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2445 * Update all contexts prior writing the mux configurations as we need
2446 * to make sure all slices/subslices are ON before writing to NOA
2447 * registers.
2449 ret = lrc_configure_all_contexts(stream, oa_config);
2450 if (ret)
2451 return ret;
2453 return emit_oa_config(stream, oa_config, oa_context(stream));
2456 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2458 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2459 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2460 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2463 static int gen12_enable_metric_set(struct i915_perf_stream *stream)
2465 struct intel_uncore *uncore = stream->uncore;
2466 struct i915_oa_config *oa_config = stream->oa_config;
2467 bool periodic = stream->periodic;
2468 u32 period_exponent = stream->period_exponent;
2469 int ret;
2471 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2472 /* Disable clk ratio reports, like previous Gens. */
2473 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2474 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2476 * If the user didn't require OA reports, instruct
2477 * the hardware not to emit ctx switch reports.
2479 oag_report_ctx_switches(stream));
2481 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2482 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2483 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2484 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2485 : 0);
2488 * Update all contexts prior writing the mux configurations as we need
2489 * to make sure all slices/subslices are ON before writing to NOA
2490 * registers.
2492 ret = gen12_configure_all_contexts(stream, oa_config);
2493 if (ret)
2494 return ret;
2497 * For Gen12, performance counters are context
2498 * saved/restored. Only enable it for the context that
2499 * requested this.
2501 if (stream->ctx) {
2502 ret = gen12_configure_oar_context(stream, true);
2503 if (ret)
2504 return ret;
2507 return emit_oa_config(stream, oa_config, oa_context(stream));
2510 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2512 struct intel_uncore *uncore = stream->uncore;
2514 /* Reset all contexts' slices/subslices configurations. */
2515 lrc_configure_all_contexts(stream, NULL);
2517 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2520 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2522 struct intel_uncore *uncore = stream->uncore;
2524 /* Reset all contexts' slices/subslices configurations. */
2525 lrc_configure_all_contexts(stream, NULL);
2527 /* Make sure we disable noa to save power. */
2528 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2531 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2533 struct intel_uncore *uncore = stream->uncore;
2535 /* Reset all contexts' slices/subslices configurations. */
2536 gen12_configure_all_contexts(stream, NULL);
2538 /* disable the context save/restore or OAR counters */
2539 if (stream->ctx)
2540 gen12_configure_oar_context(stream, false);
2542 /* Make sure we disable noa to save power. */
2543 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2546 static void gen7_oa_enable(struct i915_perf_stream *stream)
2548 struct intel_uncore *uncore = stream->uncore;
2549 struct i915_gem_context *ctx = stream->ctx;
2550 u32 ctx_id = stream->specific_ctx_id;
2551 bool periodic = stream->periodic;
2552 u32 period_exponent = stream->period_exponent;
2553 u32 report_format = stream->oa_buffer.format;
2556 * Reset buf pointers so we don't forward reports from before now.
2558 * Think carefully if considering trying to avoid this, since it
2559 * also ensures status flags and the buffer itself are cleared
2560 * in error paths, and we have checks for invalid reports based
2561 * on the assumption that certain fields are written to zeroed
2562 * memory which this helps maintains.
2564 gen7_init_oa_buffer(stream);
2566 intel_uncore_write(uncore, GEN7_OACONTROL,
2567 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2568 (period_exponent <<
2569 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2570 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2571 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2572 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2573 GEN7_OACONTROL_ENABLE);
2576 static void gen8_oa_enable(struct i915_perf_stream *stream)
2578 struct intel_uncore *uncore = stream->uncore;
2579 u32 report_format = stream->oa_buffer.format;
2582 * Reset buf pointers so we don't forward reports from before now.
2584 * Think carefully if considering trying to avoid this, since it
2585 * also ensures status flags and the buffer itself are cleared
2586 * in error paths, and we have checks for invalid reports based
2587 * on the assumption that certain fields are written to zeroed
2588 * memory which this helps maintains.
2590 gen8_init_oa_buffer(stream);
2593 * Note: we don't rely on the hardware to perform single context
2594 * filtering and instead filter on the cpu based on the context-id
2595 * field of reports
2597 intel_uncore_write(uncore, GEN8_OACONTROL,
2598 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2599 GEN8_OA_COUNTER_ENABLE);
2602 static void gen12_oa_enable(struct i915_perf_stream *stream)
2604 struct intel_uncore *uncore = stream->uncore;
2605 u32 report_format = stream->oa_buffer.format;
2608 * If we don't want OA reports from the OA buffer, then we don't even
2609 * need to program the OAG unit.
2611 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2612 return;
2614 gen12_init_oa_buffer(stream);
2616 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2617 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2618 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2622 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2623 * @stream: An i915 perf stream opened for OA metrics
2625 * [Re]enables hardware periodic sampling according to the period configured
2626 * when opening the stream. This also starts a hrtimer that will periodically
2627 * check for data in the circular OA buffer for notifying userspace (e.g.
2628 * during a read() or poll()).
2630 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2632 stream->perf->ops.oa_enable(stream);
2634 if (stream->periodic)
2635 hrtimer_start(&stream->poll_check_timer,
2636 ns_to_ktime(POLL_PERIOD),
2637 HRTIMER_MODE_REL_PINNED);
2640 static void gen7_oa_disable(struct i915_perf_stream *stream)
2642 struct intel_uncore *uncore = stream->uncore;
2644 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2645 if (intel_wait_for_register(uncore,
2646 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2647 50))
2648 DRM_ERROR("wait for OA to be disabled timed out\n");
2651 static void gen8_oa_disable(struct i915_perf_stream *stream)
2653 struct intel_uncore *uncore = stream->uncore;
2655 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2656 if (intel_wait_for_register(uncore,
2657 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2658 50))
2659 DRM_ERROR("wait for OA to be disabled timed out\n");
2662 static void gen12_oa_disable(struct i915_perf_stream *stream)
2664 struct intel_uncore *uncore = stream->uncore;
2666 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2667 if (intel_wait_for_register(uncore,
2668 GEN12_OAG_OACONTROL,
2669 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2670 50))
2671 DRM_ERROR("wait for OA to be disabled timed out\n");
2675 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2676 * @stream: An i915 perf stream opened for OA metrics
2678 * Stops the OA unit from periodically writing counter reports into the
2679 * circular OA buffer. This also stops the hrtimer that periodically checks for
2680 * data in the circular OA buffer, for notifying userspace.
2682 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2684 stream->perf->ops.oa_disable(stream);
2686 if (stream->periodic)
2687 hrtimer_cancel(&stream->poll_check_timer);
2690 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2691 .destroy = i915_oa_stream_destroy,
2692 .enable = i915_oa_stream_enable,
2693 .disable = i915_oa_stream_disable,
2694 .wait_unlocked = i915_oa_wait_unlocked,
2695 .poll_wait = i915_oa_poll_wait,
2696 .read = i915_oa_read,
2700 * i915_oa_stream_init - validate combined props for OA stream and init
2701 * @stream: An i915 perf stream
2702 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2703 * @props: The property state that configures stream (individually validated)
2705 * While read_properties_unlocked() validates properties in isolation it
2706 * doesn't ensure that the combination necessarily makes sense.
2708 * At this point it has been determined that userspace wants a stream of
2709 * OA metrics, but still we need to further validate the combined
2710 * properties are OK.
2712 * If the configuration makes sense then we can allocate memory for
2713 * a circular OA buffer and apply the requested metric set configuration.
2715 * Returns: zero on success or a negative error code.
2717 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2718 struct drm_i915_perf_open_param *param,
2719 struct perf_open_properties *props)
2721 struct i915_perf *perf = stream->perf;
2722 int format_size;
2723 int ret;
2725 if (!props->engine) {
2726 DRM_DEBUG("OA engine not specified\n");
2727 return -EINVAL;
2731 * If the sysfs metrics/ directory wasn't registered for some
2732 * reason then don't let userspace try their luck with config
2733 * IDs
2735 if (!perf->metrics_kobj) {
2736 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2737 return -EINVAL;
2740 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2741 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2742 DRM_DEBUG("Only OA report sampling supported\n");
2743 return -EINVAL;
2746 if (!perf->ops.enable_metric_set) {
2747 DRM_DEBUG("OA unit not supported\n");
2748 return -ENODEV;
2752 * To avoid the complexity of having to accurately filter
2753 * counter reports and marshal to the appropriate client
2754 * we currently only allow exclusive access
2756 if (perf->exclusive_stream) {
2757 DRM_DEBUG("OA unit already in use\n");
2758 return -EBUSY;
2761 if (!props->oa_format) {
2762 DRM_DEBUG("OA report format not specified\n");
2763 return -EINVAL;
2766 stream->engine = props->engine;
2767 stream->uncore = stream->engine->gt->uncore;
2769 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2771 format_size = perf->oa_formats[props->oa_format].size;
2773 stream->sample_flags = props->sample_flags;
2774 stream->sample_size += format_size;
2776 stream->oa_buffer.format_size = format_size;
2777 if (WARN_ON(stream->oa_buffer.format_size == 0))
2778 return -EINVAL;
2780 stream->hold_preemption = props->hold_preemption;
2782 stream->oa_buffer.format =
2783 perf->oa_formats[props->oa_format].format;
2785 stream->periodic = props->oa_periodic;
2786 if (stream->periodic)
2787 stream->period_exponent = props->oa_period_exponent;
2789 if (stream->ctx) {
2790 ret = oa_get_render_ctx_id(stream);
2791 if (ret) {
2792 DRM_DEBUG("Invalid context id to filter with\n");
2793 return ret;
2797 ret = alloc_noa_wait(stream);
2798 if (ret) {
2799 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2800 goto err_noa_wait_alloc;
2803 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2804 if (!stream->oa_config) {
2805 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2806 ret = -EINVAL;
2807 goto err_config;
2810 /* PRM - observability performance counters:
2812 * OACONTROL, performance counter enable, note:
2814 * "When this bit is set, in order to have coherent counts,
2815 * RC6 power state and trunk clock gating must be disabled.
2816 * This can be achieved by programming MMIO registers as
2817 * 0xA094=0 and 0xA090[31]=1"
2819 * In our case we are expecting that taking pm + FORCEWAKE
2820 * references will effectively disable RC6.
2822 intel_engine_pm_get(stream->engine);
2823 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2825 ret = alloc_oa_buffer(stream);
2826 if (ret)
2827 goto err_oa_buf_alloc;
2829 stream->ops = &i915_oa_stream_ops;
2830 perf->exclusive_stream = stream;
2832 ret = perf->ops.enable_metric_set(stream);
2833 if (ret) {
2834 DRM_DEBUG("Unable to enable metric set\n");
2835 goto err_enable;
2838 DRM_DEBUG("opening stream oa config uuid=%s\n",
2839 stream->oa_config->uuid);
2841 hrtimer_init(&stream->poll_check_timer,
2842 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2843 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2844 init_waitqueue_head(&stream->poll_wq);
2845 spin_lock_init(&stream->oa_buffer.ptr_lock);
2847 return 0;
2849 err_enable:
2850 perf->exclusive_stream = NULL;
2851 perf->ops.disable_metric_set(stream);
2853 free_oa_buffer(stream);
2855 err_oa_buf_alloc:
2856 free_oa_configs(stream);
2858 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2859 intel_engine_pm_put(stream->engine);
2861 err_config:
2862 free_noa_wait(stream);
2864 err_noa_wait_alloc:
2865 if (stream->ctx)
2866 oa_put_render_ctx_id(stream);
2868 return ret;
2871 void i915_oa_init_reg_state(const struct intel_context *ce,
2872 const struct intel_engine_cs *engine)
2874 struct i915_perf_stream *stream;
2876 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2878 if (engine->class != RENDER_CLASS)
2879 return;
2881 stream = engine->i915->perf.exclusive_stream;
2883 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller
2884 * is already doing that, so nothing to be done for gen12 here.
2886 if (stream && INTEL_GEN(stream->perf->i915) < 12)
2887 gen8_update_reg_state_unlocked(ce, stream);
2891 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2892 * @stream: An i915 perf stream
2893 * @file: An i915 perf stream file
2894 * @buf: destination buffer given by userspace
2895 * @count: the number of bytes userspace wants to read
2896 * @ppos: (inout) file seek position (unused)
2898 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2899 * ensure that if we've successfully copied any data then reporting that takes
2900 * precedence over any internal error status, so the data isn't lost.
2902 * For example ret will be -ENOSPC whenever there is more buffered data than
2903 * can be copied to userspace, but that's only interesting if we weren't able
2904 * to copy some data because it implies the userspace buffer is too small to
2905 * receive a single record (and we never split records).
2907 * Another case with ret == -EFAULT is more of a grey area since it would seem
2908 * like bad form for userspace to ask us to overrun its buffer, but the user
2909 * knows best:
2911 * http://yarchive.net/comp/linux/partial_reads_writes.html
2913 * Returns: The number of bytes copied or a negative error code on failure.
2915 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2916 struct file *file,
2917 char __user *buf,
2918 size_t count,
2919 loff_t *ppos)
2921 /* Note we keep the offset (aka bytes read) separate from any
2922 * error status so that the final check for whether we return
2923 * the bytes read with a higher precedence than any error (see
2924 * comment below) doesn't need to be handled/duplicated in
2925 * stream->ops->read() implementations.
2927 size_t offset = 0;
2928 int ret = stream->ops->read(stream, buf, count, &offset);
2930 return offset ?: (ret ?: -EAGAIN);
2934 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2935 * @file: An i915 perf stream file
2936 * @buf: destination buffer given by userspace
2937 * @count: the number of bytes userspace wants to read
2938 * @ppos: (inout) file seek position (unused)
2940 * The entry point for handling a read() on a stream file descriptor from
2941 * userspace. Most of the work is left to the i915_perf_read_locked() and
2942 * &i915_perf_stream_ops->read but to save having stream implementations (of
2943 * which we might have multiple later) we handle blocking read here.
2945 * We can also consistently treat trying to read from a disabled stream
2946 * as an IO error so implementations can assume the stream is enabled
2947 * while reading.
2949 * Returns: The number of bytes copied or a negative error code on failure.
2951 static ssize_t i915_perf_read(struct file *file,
2952 char __user *buf,
2953 size_t count,
2954 loff_t *ppos)
2956 struct i915_perf_stream *stream = file->private_data;
2957 struct i915_perf *perf = stream->perf;
2958 ssize_t ret;
2960 /* To ensure it's handled consistently we simply treat all reads of a
2961 * disabled stream as an error. In particular it might otherwise lead
2962 * to a deadlock for blocking file descriptors...
2964 if (!stream->enabled)
2965 return -EIO;
2967 if (!(file->f_flags & O_NONBLOCK)) {
2968 /* There's the small chance of false positives from
2969 * stream->ops->wait_unlocked.
2971 * E.g. with single context filtering since we only wait until
2972 * oabuffer has >= 1 report we don't immediately know whether
2973 * any reports really belong to the current context
2975 do {
2976 ret = stream->ops->wait_unlocked(stream);
2977 if (ret)
2978 return ret;
2980 mutex_lock(&perf->lock);
2981 ret = i915_perf_read_locked(stream, file,
2982 buf, count, ppos);
2983 mutex_unlock(&perf->lock);
2984 } while (ret == -EAGAIN);
2985 } else {
2986 mutex_lock(&perf->lock);
2987 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2988 mutex_unlock(&perf->lock);
2991 /* We allow the poll checking to sometimes report false positive EPOLLIN
2992 * events where we might actually report EAGAIN on read() if there's
2993 * not really any data available. In this situation though we don't
2994 * want to enter a busy loop between poll() reporting a EPOLLIN event
2995 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2996 * effectively ensures we back off until the next hrtimer callback
2997 * before reporting another EPOLLIN event.
2999 if (ret >= 0 || ret == -EAGAIN) {
3000 /* Maybe make ->pollin per-stream state if we support multiple
3001 * concurrent streams in the future.
3003 stream->pollin = false;
3006 return ret;
3009 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3011 struct i915_perf_stream *stream =
3012 container_of(hrtimer, typeof(*stream), poll_check_timer);
3014 if (oa_buffer_check_unlocked(stream)) {
3015 stream->pollin = true;
3016 wake_up(&stream->poll_wq);
3019 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
3021 return HRTIMER_RESTART;
3025 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3026 * @stream: An i915 perf stream
3027 * @file: An i915 perf stream file
3028 * @wait: poll() state table
3030 * For handling userspace polling on an i915 perf stream, this calls through to
3031 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3032 * will be woken for new stream data.
3034 * Note: The &perf->lock mutex has been taken to serialize
3035 * with any non-file-operation driver hooks.
3037 * Returns: any poll events that are ready without sleeping
3039 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3040 struct file *file,
3041 poll_table *wait)
3043 __poll_t events = 0;
3045 stream->ops->poll_wait(stream, file, wait);
3047 /* Note: we don't explicitly check whether there's something to read
3048 * here since this path may be very hot depending on what else
3049 * userspace is polling, or on the timeout in use. We rely solely on
3050 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3051 * samples to read.
3053 if (stream->pollin)
3054 events |= EPOLLIN;
3056 return events;
3060 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3061 * @file: An i915 perf stream file
3062 * @wait: poll() state table
3064 * For handling userspace polling on an i915 perf stream, this ensures
3065 * poll_wait() gets called with a wait queue that will be woken for new stream
3066 * data.
3068 * Note: Implementation deferred to i915_perf_poll_locked()
3070 * Returns: any poll events that are ready without sleeping
3072 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3074 struct i915_perf_stream *stream = file->private_data;
3075 struct i915_perf *perf = stream->perf;
3076 __poll_t ret;
3078 mutex_lock(&perf->lock);
3079 ret = i915_perf_poll_locked(stream, file, wait);
3080 mutex_unlock(&perf->lock);
3082 return ret;
3086 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3087 * @stream: A disabled i915 perf stream
3089 * [Re]enables the associated capture of data for this stream.
3091 * If a stream was previously enabled then there's currently no intention
3092 * to provide userspace any guarantee about the preservation of previously
3093 * buffered data.
3095 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3097 if (stream->enabled)
3098 return;
3100 /* Allow stream->ops->enable() to refer to this */
3101 stream->enabled = true;
3103 if (stream->ops->enable)
3104 stream->ops->enable(stream);
3106 if (stream->hold_preemption)
3107 intel_context_set_nopreempt(stream->pinned_ctx);
3111 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3112 * @stream: An enabled i915 perf stream
3114 * Disables the associated capture of data for this stream.
3116 * The intention is that disabling an re-enabling a stream will ideally be
3117 * cheaper than destroying and re-opening a stream with the same configuration,
3118 * though there are no formal guarantees about what state or buffered data
3119 * must be retained between disabling and re-enabling a stream.
3121 * Note: while a stream is disabled it's considered an error for userspace
3122 * to attempt to read from the stream (-EIO).
3124 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3126 if (!stream->enabled)
3127 return;
3129 /* Allow stream->ops->disable() to refer to this */
3130 stream->enabled = false;
3132 if (stream->hold_preemption)
3133 intel_context_clear_nopreempt(stream->pinned_ctx);
3135 if (stream->ops->disable)
3136 stream->ops->disable(stream);
3139 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3140 unsigned long metrics_set)
3142 struct i915_oa_config *config;
3143 long ret = stream->oa_config->id;
3145 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3146 if (!config)
3147 return -EINVAL;
3149 if (config != stream->oa_config) {
3150 int err;
3153 * If OA is bound to a specific context, emit the
3154 * reconfiguration inline from that context. The update
3155 * will then be ordered with respect to submission on that
3156 * context.
3158 * When set globally, we use a low priority kernel context,
3159 * so it will effectively take effect when idle.
3161 err = emit_oa_config(stream, config, oa_context(stream));
3162 if (err == 0)
3163 config = xchg(&stream->oa_config, config);
3164 else
3165 ret = err;
3168 i915_oa_config_put(config);
3170 return ret;
3174 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3175 * @stream: An i915 perf stream
3176 * @cmd: the ioctl request
3177 * @arg: the ioctl data
3179 * Note: The &perf->lock mutex has been taken to serialize
3180 * with any non-file-operation driver hooks.
3182 * Returns: zero on success or a negative error code. Returns -EINVAL for
3183 * an unknown ioctl request.
3185 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3186 unsigned int cmd,
3187 unsigned long arg)
3189 switch (cmd) {
3190 case I915_PERF_IOCTL_ENABLE:
3191 i915_perf_enable_locked(stream);
3192 return 0;
3193 case I915_PERF_IOCTL_DISABLE:
3194 i915_perf_disable_locked(stream);
3195 return 0;
3196 case I915_PERF_IOCTL_CONFIG:
3197 return i915_perf_config_locked(stream, arg);
3200 return -EINVAL;
3204 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3205 * @file: An i915 perf stream file
3206 * @cmd: the ioctl request
3207 * @arg: the ioctl data
3209 * Implementation deferred to i915_perf_ioctl_locked().
3211 * Returns: zero on success or a negative error code. Returns -EINVAL for
3212 * an unknown ioctl request.
3214 static long i915_perf_ioctl(struct file *file,
3215 unsigned int cmd,
3216 unsigned long arg)
3218 struct i915_perf_stream *stream = file->private_data;
3219 struct i915_perf *perf = stream->perf;
3220 long ret;
3222 mutex_lock(&perf->lock);
3223 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3224 mutex_unlock(&perf->lock);
3226 return ret;
3230 * i915_perf_destroy_locked - destroy an i915 perf stream
3231 * @stream: An i915 perf stream
3233 * Frees all resources associated with the given i915 perf @stream, disabling
3234 * any associated data capture in the process.
3236 * Note: The &perf->lock mutex has been taken to serialize
3237 * with any non-file-operation driver hooks.
3239 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3241 if (stream->enabled)
3242 i915_perf_disable_locked(stream);
3244 if (stream->ops->destroy)
3245 stream->ops->destroy(stream);
3247 if (stream->ctx)
3248 i915_gem_context_put(stream->ctx);
3250 kfree(stream);
3254 * i915_perf_release - handles userspace close() of a stream file
3255 * @inode: anonymous inode associated with file
3256 * @file: An i915 perf stream file
3258 * Cleans up any resources associated with an open i915 perf stream file.
3260 * NB: close() can't really fail from the userspace point of view.
3262 * Returns: zero on success or a negative error code.
3264 static int i915_perf_release(struct inode *inode, struct file *file)
3266 struct i915_perf_stream *stream = file->private_data;
3267 struct i915_perf *perf = stream->perf;
3269 mutex_lock(&perf->lock);
3270 i915_perf_destroy_locked(stream);
3271 mutex_unlock(&perf->lock);
3273 /* Release the reference the perf stream kept on the driver. */
3274 drm_dev_put(&perf->i915->drm);
3276 return 0;
3280 static const struct file_operations fops = {
3281 .owner = THIS_MODULE,
3282 .llseek = no_llseek,
3283 .release = i915_perf_release,
3284 .poll = i915_perf_poll,
3285 .read = i915_perf_read,
3286 .unlocked_ioctl = i915_perf_ioctl,
3287 /* Our ioctl have no arguments, so it's safe to use the same function
3288 * to handle 32bits compatibility.
3290 .compat_ioctl = i915_perf_ioctl,
3295 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3296 * @perf: i915 perf instance
3297 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3298 * @props: individually validated u64 property value pairs
3299 * @file: drm file
3301 * See i915_perf_ioctl_open() for interface details.
3303 * Implements further stream config validation and stream initialization on
3304 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3305 * taken to serialize with any non-file-operation driver hooks.
3307 * Note: at this point the @props have only been validated in isolation and
3308 * it's still necessary to validate that the combination of properties makes
3309 * sense.
3311 * In the case where userspace is interested in OA unit metrics then further
3312 * config validation and stream initialization details will be handled by
3313 * i915_oa_stream_init(). The code here should only validate config state that
3314 * will be relevant to all stream types / backends.
3316 * Returns: zero on success or a negative error code.
3318 static int
3319 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3320 struct drm_i915_perf_open_param *param,
3321 struct perf_open_properties *props,
3322 struct drm_file *file)
3324 struct i915_gem_context *specific_ctx = NULL;
3325 struct i915_perf_stream *stream = NULL;
3326 unsigned long f_flags = 0;
3327 bool privileged_op = true;
3328 int stream_fd;
3329 int ret;
3331 if (props->single_context) {
3332 u32 ctx_handle = props->ctx_handle;
3333 struct drm_i915_file_private *file_priv = file->driver_priv;
3335 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3336 if (!specific_ctx) {
3337 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3338 ctx_handle);
3339 ret = -ENOENT;
3340 goto err;
3345 * On Haswell the OA unit supports clock gating off for a specific
3346 * context and in this mode there's no visibility of metrics for the
3347 * rest of the system, which we consider acceptable for a
3348 * non-privileged client.
3350 * For Gen8->11 the OA unit no longer supports clock gating off for a
3351 * specific context and the kernel can't securely stop the counters
3352 * from updating as system-wide / global values. Even though we can
3353 * filter reports based on the included context ID we can't block
3354 * clients from seeing the raw / global counter values via
3355 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3356 * enable the OA unit by default.
3358 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3359 * per context basis. So we can relax requirements there if the user
3360 * doesn't request global stream access (i.e. query based sampling
3361 * using MI_RECORD_PERF_COUNT.
3363 if (IS_HASWELL(perf->i915) && specific_ctx)
3364 privileged_op = false;
3365 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3366 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3367 privileged_op = false;
3369 if (props->hold_preemption) {
3370 if (!props->single_context) {
3371 DRM_DEBUG("preemption disable with no context\n");
3372 ret = -EINVAL;
3373 goto err;
3375 privileged_op = true;
3378 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3379 * we check a dev.i915.perf_stream_paranoid sysctl option
3380 * to determine if it's ok to access system wide OA counters
3381 * without CAP_SYS_ADMIN privileges.
3383 if (privileged_op &&
3384 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3385 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3386 ret = -EACCES;
3387 goto err_ctx;
3390 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3391 if (!stream) {
3392 ret = -ENOMEM;
3393 goto err_ctx;
3396 stream->perf = perf;
3397 stream->ctx = specific_ctx;
3399 ret = i915_oa_stream_init(stream, param, props);
3400 if (ret)
3401 goto err_alloc;
3403 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3404 * to have _stream_init check the combination of sample flags more
3405 * thoroughly, but still this is the expected result at this point.
3407 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3408 ret = -ENODEV;
3409 goto err_flags;
3412 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3413 f_flags |= O_CLOEXEC;
3414 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3415 f_flags |= O_NONBLOCK;
3417 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3418 if (stream_fd < 0) {
3419 ret = stream_fd;
3420 goto err_flags;
3423 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3424 i915_perf_enable_locked(stream);
3426 /* Take a reference on the driver that will be kept with stream_fd
3427 * until its release.
3429 drm_dev_get(&perf->i915->drm);
3431 return stream_fd;
3433 err_flags:
3434 if (stream->ops->destroy)
3435 stream->ops->destroy(stream);
3436 err_alloc:
3437 kfree(stream);
3438 err_ctx:
3439 if (specific_ctx)
3440 i915_gem_context_put(specific_ctx);
3441 err:
3442 return ret;
3445 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3447 return div64_u64(1000000000ULL * (2ULL << exponent),
3448 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3452 * read_properties_unlocked - validate + copy userspace stream open properties
3453 * @perf: i915 perf instance
3454 * @uprops: The array of u64 key value pairs given by userspace
3455 * @n_props: The number of key value pairs expected in @uprops
3456 * @props: The stream configuration built up while validating properties
3458 * Note this function only validates properties in isolation it doesn't
3459 * validate that the combination of properties makes sense or that all
3460 * properties necessary for a particular kind of stream have been set.
3462 * Note that there currently aren't any ordering requirements for properties so
3463 * we shouldn't validate or assume anything about ordering here. This doesn't
3464 * rule out defining new properties with ordering requirements in the future.
3466 static int read_properties_unlocked(struct i915_perf *perf,
3467 u64 __user *uprops,
3468 u32 n_props,
3469 struct perf_open_properties *props)
3471 u64 __user *uprop = uprops;
3472 u32 i;
3474 memset(props, 0, sizeof(struct perf_open_properties));
3476 if (!n_props) {
3477 DRM_DEBUG("No i915 perf properties given\n");
3478 return -EINVAL;
3481 /* At the moment we only support using i915-perf on the RCS. */
3482 props->engine = intel_engine_lookup_user(perf->i915,
3483 I915_ENGINE_CLASS_RENDER,
3485 if (!props->engine) {
3486 DRM_DEBUG("No RENDER-capable engines\n");
3487 return -EINVAL;
3490 /* Considering that ID = 0 is reserved and assuming that we don't
3491 * (currently) expect any configurations to ever specify duplicate
3492 * values for a particular property ID then the last _PROP_MAX value is
3493 * one greater than the maximum number of properties we expect to get
3494 * from userspace.
3496 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3497 DRM_DEBUG("More i915 perf properties specified than exist\n");
3498 return -EINVAL;
3501 for (i = 0; i < n_props; i++) {
3502 u64 oa_period, oa_freq_hz;
3503 u64 id, value;
3504 int ret;
3506 ret = get_user(id, uprop);
3507 if (ret)
3508 return ret;
3510 ret = get_user(value, uprop + 1);
3511 if (ret)
3512 return ret;
3514 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3515 DRM_DEBUG("Unknown i915 perf property ID\n");
3516 return -EINVAL;
3519 switch ((enum drm_i915_perf_property_id)id) {
3520 case DRM_I915_PERF_PROP_CTX_HANDLE:
3521 props->single_context = 1;
3522 props->ctx_handle = value;
3523 break;
3524 case DRM_I915_PERF_PROP_SAMPLE_OA:
3525 if (value)
3526 props->sample_flags |= SAMPLE_OA_REPORT;
3527 break;
3528 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3529 if (value == 0) {
3530 DRM_DEBUG("Unknown OA metric set ID\n");
3531 return -EINVAL;
3533 props->metrics_set = value;
3534 break;
3535 case DRM_I915_PERF_PROP_OA_FORMAT:
3536 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3537 DRM_DEBUG("Out-of-range OA report format %llu\n",
3538 value);
3539 return -EINVAL;
3541 if (!perf->oa_formats[value].size) {
3542 DRM_DEBUG("Unsupported OA report format %llu\n",
3543 value);
3544 return -EINVAL;
3546 props->oa_format = value;
3547 break;
3548 case DRM_I915_PERF_PROP_OA_EXPONENT:
3549 if (value > OA_EXPONENT_MAX) {
3550 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3551 OA_EXPONENT_MAX);
3552 return -EINVAL;
3555 /* Theoretically we can program the OA unit to sample
3556 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3557 * for BXT. We don't allow such high sampling
3558 * frequencies by default unless root.
3561 BUILD_BUG_ON(sizeof(oa_period) != 8);
3562 oa_period = oa_exponent_to_ns(perf, value);
3564 /* This check is primarily to ensure that oa_period <=
3565 * UINT32_MAX (before passing to do_div which only
3566 * accepts a u32 denominator), but we can also skip
3567 * checking anything < 1Hz which implicitly can't be
3568 * limited via an integer oa_max_sample_rate.
3570 if (oa_period <= NSEC_PER_SEC) {
3571 u64 tmp = NSEC_PER_SEC;
3572 do_div(tmp, oa_period);
3573 oa_freq_hz = tmp;
3574 } else
3575 oa_freq_hz = 0;
3577 if (oa_freq_hz > i915_oa_max_sample_rate &&
3578 !capable(CAP_SYS_ADMIN)) {
3579 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3580 i915_oa_max_sample_rate);
3581 return -EACCES;
3584 props->oa_periodic = true;
3585 props->oa_period_exponent = value;
3586 break;
3587 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3588 props->hold_preemption = !!value;
3589 break;
3590 case DRM_I915_PERF_PROP_MAX:
3591 MISSING_CASE(id);
3592 return -EINVAL;
3595 uprop += 2;
3598 return 0;
3602 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3603 * @dev: drm device
3604 * @data: ioctl data copied from userspace (unvalidated)
3605 * @file: drm file
3607 * Validates the stream open parameters given by userspace including flags
3608 * and an array of u64 key, value pair properties.
3610 * Very little is assumed up front about the nature of the stream being
3611 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3612 * i915-perf stream is expected to be a suitable interface for other forms of
3613 * buffered data written by the GPU besides periodic OA metrics.
3615 * Note we copy the properties from userspace outside of the i915 perf
3616 * mutex to avoid an awkward lockdep with mmap_sem.
3618 * Most of the implementation details are handled by
3619 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3620 * mutex for serializing with any non-file-operation driver hooks.
3622 * Return: A newly opened i915 Perf stream file descriptor or negative
3623 * error code on failure.
3625 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3626 struct drm_file *file)
3628 struct i915_perf *perf = &to_i915(dev)->perf;
3629 struct drm_i915_perf_open_param *param = data;
3630 struct perf_open_properties props;
3631 u32 known_open_flags;
3632 int ret;
3634 if (!perf->i915) {
3635 DRM_DEBUG("i915 perf interface not available for this system\n");
3636 return -ENOTSUPP;
3639 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3640 I915_PERF_FLAG_FD_NONBLOCK |
3641 I915_PERF_FLAG_DISABLED;
3642 if (param->flags & ~known_open_flags) {
3643 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3644 return -EINVAL;
3647 ret = read_properties_unlocked(perf,
3648 u64_to_user_ptr(param->properties_ptr),
3649 param->num_properties,
3650 &props);
3651 if (ret)
3652 return ret;
3654 mutex_lock(&perf->lock);
3655 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3656 mutex_unlock(&perf->lock);
3658 return ret;
3662 * i915_perf_register - exposes i915-perf to userspace
3663 * @i915: i915 device instance
3665 * In particular OA metric sets are advertised under a sysfs metrics/
3666 * directory allowing userspace to enumerate valid IDs that can be
3667 * used to open an i915-perf stream.
3669 void i915_perf_register(struct drm_i915_private *i915)
3671 struct i915_perf *perf = &i915->perf;
3672 int ret;
3674 if (!perf->i915)
3675 return;
3677 /* To be sure we're synchronized with an attempted
3678 * i915_perf_open_ioctl(); considering that we register after
3679 * being exposed to userspace.
3681 mutex_lock(&perf->lock);
3683 perf->metrics_kobj =
3684 kobject_create_and_add("metrics",
3685 &i915->drm.primary->kdev->kobj);
3686 if (!perf->metrics_kobj)
3687 goto exit;
3689 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);
3691 if (IS_TIGERLAKE(i915)) {
3692 i915_perf_load_test_config_tgl(i915);
3693 } else if (INTEL_GEN(i915) >= 11) {
3694 i915_perf_load_test_config_icl(i915);
3695 } else if (IS_CANNONLAKE(i915)) {
3696 i915_perf_load_test_config_cnl(i915);
3697 } else if (IS_COFFEELAKE(i915)) {
3698 if (IS_CFL_GT2(i915))
3699 i915_perf_load_test_config_cflgt2(i915);
3700 if (IS_CFL_GT3(i915))
3701 i915_perf_load_test_config_cflgt3(i915);
3702 } else if (IS_GEMINILAKE(i915)) {
3703 i915_perf_load_test_config_glk(i915);
3704 } else if (IS_KABYLAKE(i915)) {
3705 if (IS_KBL_GT2(i915))
3706 i915_perf_load_test_config_kblgt2(i915);
3707 else if (IS_KBL_GT3(i915))
3708 i915_perf_load_test_config_kblgt3(i915);
3709 } else if (IS_BROXTON(i915)) {
3710 i915_perf_load_test_config_bxt(i915);
3711 } else if (IS_SKYLAKE(i915)) {
3712 if (IS_SKL_GT2(i915))
3713 i915_perf_load_test_config_sklgt2(i915);
3714 else if (IS_SKL_GT3(i915))
3715 i915_perf_load_test_config_sklgt3(i915);
3716 else if (IS_SKL_GT4(i915))
3717 i915_perf_load_test_config_sklgt4(i915);
3718 } else if (IS_CHERRYVIEW(i915)) {
3719 i915_perf_load_test_config_chv(i915);
3720 } else if (IS_BROADWELL(i915)) {
3721 i915_perf_load_test_config_bdw(i915);
3722 } else if (IS_HASWELL(i915)) {
3723 i915_perf_load_test_config_hsw(i915);
3726 if (perf->test_config.id == 0)
3727 goto sysfs_error;
3729 ret = sysfs_create_group(perf->metrics_kobj,
3730 &perf->test_config.sysfs_metric);
3731 if (ret)
3732 goto sysfs_error;
3734 perf->test_config.perf = perf;
3735 kref_init(&perf->test_config.ref);
3737 goto exit;
3739 sysfs_error:
3740 kobject_put(perf->metrics_kobj);
3741 perf->metrics_kobj = NULL;
3743 exit:
3744 mutex_unlock(&perf->lock);
3748 * i915_perf_unregister - hide i915-perf from userspace
3749 * @i915: i915 device instance
3751 * i915-perf state cleanup is split up into an 'unregister' and
3752 * 'deinit' phase where the interface is first hidden from
3753 * userspace by i915_perf_unregister() before cleaning up
3754 * remaining state in i915_perf_fini().
3756 void i915_perf_unregister(struct drm_i915_private *i915)
3758 struct i915_perf *perf = &i915->perf;
3760 if (!perf->metrics_kobj)
3761 return;
3763 sysfs_remove_group(perf->metrics_kobj,
3764 &perf->test_config.sysfs_metric);
3766 kobject_put(perf->metrics_kobj);
3767 perf->metrics_kobj = NULL;
3770 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3772 static const i915_reg_t flex_eu_regs[] = {
3773 EU_PERF_CNTL0,
3774 EU_PERF_CNTL1,
3775 EU_PERF_CNTL2,
3776 EU_PERF_CNTL3,
3777 EU_PERF_CNTL4,
3778 EU_PERF_CNTL5,
3779 EU_PERF_CNTL6,
3781 int i;
3783 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3784 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3785 return true;
3787 return false;
3790 #define ADDR_IN_RANGE(addr, start, end) \
3791 ((addr) >= (start) && \
3792 (addr) <= (end))
3794 #define REG_IN_RANGE(addr, start, end) \
3795 ((addr) >= i915_mmio_reg_offset(start) && \
3796 (addr) <= i915_mmio_reg_offset(end))
3798 #define REG_EQUAL(addr, mmio) \
3799 ((addr) == i915_mmio_reg_offset(mmio))
3801 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3803 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3804 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3805 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3808 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3810 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3811 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3812 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3813 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3816 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3818 return gen7_is_valid_mux_addr(perf, addr) ||
3819 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3820 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3823 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3825 return gen8_is_valid_mux_addr(perf, addr) ||
3826 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3827 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3830 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3832 return gen7_is_valid_mux_addr(perf, addr) ||
3833 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3834 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3835 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3838 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3840 return gen7_is_valid_mux_addr(perf, addr) ||
3841 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3844 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3846 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3847 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3848 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3849 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3850 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3851 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3852 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3855 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3857 return REG_EQUAL(addr, NOA_WRITE) ||
3858 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3859 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3860 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3861 REG_EQUAL(addr, RPM_CONFIG0) ||
3862 REG_EQUAL(addr, RPM_CONFIG1) ||
3863 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3866 static u32 mask_reg_value(u32 reg, u32 val)
3868 /* HALF_SLICE_CHICKEN2 is programmed with a the
3869 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3870 * programmed by userspace doesn't change this.
3872 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3873 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3875 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3876 * indicated by its name and a bunch of selection fields used by OA
3877 * configs.
3879 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3880 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3882 return val;
3885 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3886 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3887 u32 __user *regs,
3888 u32 n_regs)
3890 struct i915_oa_reg *oa_regs;
3891 int err;
3892 u32 i;
3894 if (!n_regs)
3895 return NULL;
3897 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3898 return ERR_PTR(-EFAULT);
3900 /* No is_valid function means we're not allowing any register to be programmed. */
3901 GEM_BUG_ON(!is_valid);
3902 if (!is_valid)
3903 return ERR_PTR(-EINVAL);
3905 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3906 if (!oa_regs)
3907 return ERR_PTR(-ENOMEM);
3909 for (i = 0; i < n_regs; i++) {
3910 u32 addr, value;
3912 err = get_user(addr, regs);
3913 if (err)
3914 goto addr_err;
3916 if (!is_valid(perf, addr)) {
3917 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3918 err = -EINVAL;
3919 goto addr_err;
3922 err = get_user(value, regs + 1);
3923 if (err)
3924 goto addr_err;
3926 oa_regs[i].addr = _MMIO(addr);
3927 oa_regs[i].value = mask_reg_value(addr, value);
3929 regs += 2;
3932 return oa_regs;
3934 addr_err:
3935 kfree(oa_regs);
3936 return ERR_PTR(err);
3939 static ssize_t show_dynamic_id(struct device *dev,
3940 struct device_attribute *attr,
3941 char *buf)
3943 struct i915_oa_config *oa_config =
3944 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3946 return sprintf(buf, "%d\n", oa_config->id);
3949 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3950 struct i915_oa_config *oa_config)
3952 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3953 oa_config->sysfs_metric_id.attr.name = "id";
3954 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3955 oa_config->sysfs_metric_id.show = show_dynamic_id;
3956 oa_config->sysfs_metric_id.store = NULL;
3958 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3959 oa_config->attrs[1] = NULL;
3961 oa_config->sysfs_metric.name = oa_config->uuid;
3962 oa_config->sysfs_metric.attrs = oa_config->attrs;
3964 return sysfs_create_group(perf->metrics_kobj,
3965 &oa_config->sysfs_metric);
3969 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3970 * @dev: drm device
3971 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3972 * userspace (unvalidated)
3973 * @file: drm file
3975 * Validates the submitted OA register to be saved into a new OA config that
3976 * can then be used for programming the OA unit and its NOA network.
3978 * Returns: A new allocated config number to be used with the perf open ioctl
3979 * or a negative error code on failure.
3981 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3982 struct drm_file *file)
3984 struct i915_perf *perf = &to_i915(dev)->perf;
3985 struct drm_i915_perf_oa_config *args = data;
3986 struct i915_oa_config *oa_config, *tmp;
3987 struct i915_oa_reg *regs;
3988 int err, id;
3990 if (!perf->i915) {
3991 DRM_DEBUG("i915 perf interface not available for this system\n");
3992 return -ENOTSUPP;
3995 if (!perf->metrics_kobj) {
3996 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3997 return -EINVAL;
4000 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4001 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4002 return -EACCES;
4005 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4006 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4007 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4008 DRM_DEBUG("No OA registers given\n");
4009 return -EINVAL;
4012 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4013 if (!oa_config) {
4014 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4015 return -ENOMEM;
4018 oa_config->perf = perf;
4019 kref_init(&oa_config->ref);
4021 if (!uuid_is_valid(args->uuid)) {
4022 DRM_DEBUG("Invalid uuid format for OA config\n");
4023 err = -EINVAL;
4024 goto reg_err;
4027 /* Last character in oa_config->uuid will be 0 because oa_config is
4028 * kzalloc.
4030 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4032 oa_config->mux_regs_len = args->n_mux_regs;
4033 regs = alloc_oa_regs(perf,
4034 perf->ops.is_valid_mux_reg,
4035 u64_to_user_ptr(args->mux_regs_ptr),
4036 args->n_mux_regs);
4038 if (IS_ERR(regs)) {
4039 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4040 err = PTR_ERR(regs);
4041 goto reg_err;
4043 oa_config->mux_regs = regs;
4045 oa_config->b_counter_regs_len = args->n_boolean_regs;
4046 regs = alloc_oa_regs(perf,
4047 perf->ops.is_valid_b_counter_reg,
4048 u64_to_user_ptr(args->boolean_regs_ptr),
4049 args->n_boolean_regs);
4051 if (IS_ERR(regs)) {
4052 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4053 err = PTR_ERR(regs);
4054 goto reg_err;
4056 oa_config->b_counter_regs = regs;
4058 if (INTEL_GEN(perf->i915) < 8) {
4059 if (args->n_flex_regs != 0) {
4060 err = -EINVAL;
4061 goto reg_err;
4063 } else {
4064 oa_config->flex_regs_len = args->n_flex_regs;
4065 regs = alloc_oa_regs(perf,
4066 perf->ops.is_valid_flex_reg,
4067 u64_to_user_ptr(args->flex_regs_ptr),
4068 args->n_flex_regs);
4070 if (IS_ERR(regs)) {
4071 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4072 err = PTR_ERR(regs);
4073 goto reg_err;
4075 oa_config->flex_regs = regs;
4078 err = mutex_lock_interruptible(&perf->metrics_lock);
4079 if (err)
4080 goto reg_err;
4082 /* We shouldn't have too many configs, so this iteration shouldn't be
4083 * too costly.
4085 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4086 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4087 DRM_DEBUG("OA config already exists with this uuid\n");
4088 err = -EADDRINUSE;
4089 goto sysfs_err;
4093 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4094 if (err) {
4095 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4096 goto sysfs_err;
4099 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4100 oa_config->id = idr_alloc(&perf->metrics_idr,
4101 oa_config, 2,
4102 0, GFP_KERNEL);
4103 if (oa_config->id < 0) {
4104 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4105 err = oa_config->id;
4106 goto sysfs_err;
4109 mutex_unlock(&perf->metrics_lock);
4111 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4113 return oa_config->id;
4115 sysfs_err:
4116 mutex_unlock(&perf->metrics_lock);
4117 reg_err:
4118 i915_oa_config_put(oa_config);
4119 DRM_DEBUG("Failed to add new OA config\n");
4120 return err;
4124 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4125 * @dev: drm device
4126 * @data: ioctl data (pointer to u64 integer) copied from userspace
4127 * @file: drm file
4129 * Configs can be removed while being used, the will stop appearing in sysfs
4130 * and their content will be freed when the stream using the config is closed.
4132 * Returns: 0 on success or a negative error code on failure.
4134 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4135 struct drm_file *file)
4137 struct i915_perf *perf = &to_i915(dev)->perf;
4138 u64 *arg = data;
4139 struct i915_oa_config *oa_config;
4140 int ret;
4142 if (!perf->i915) {
4143 DRM_DEBUG("i915 perf interface not available for this system\n");
4144 return -ENOTSUPP;
4147 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4148 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4149 return -EACCES;
4152 ret = mutex_lock_interruptible(&perf->metrics_lock);
4153 if (ret)
4154 return ret;
4156 oa_config = idr_find(&perf->metrics_idr, *arg);
4157 if (!oa_config) {
4158 DRM_DEBUG("Failed to remove unknown OA config\n");
4159 ret = -ENOENT;
4160 goto err_unlock;
4163 GEM_BUG_ON(*arg != oa_config->id);
4165 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4167 idr_remove(&perf->metrics_idr, *arg);
4169 mutex_unlock(&perf->metrics_lock);
4171 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4173 i915_oa_config_put(oa_config);
4175 return 0;
4177 err_unlock:
4178 mutex_unlock(&perf->metrics_lock);
4179 return ret;
4182 static struct ctl_table oa_table[] = {
4184 .procname = "perf_stream_paranoid",
4185 .data = &i915_perf_stream_paranoid,
4186 .maxlen = sizeof(i915_perf_stream_paranoid),
4187 .mode = 0644,
4188 .proc_handler = proc_dointvec_minmax,
4189 .extra1 = SYSCTL_ZERO,
4190 .extra2 = SYSCTL_ONE,
4193 .procname = "oa_max_sample_rate",
4194 .data = &i915_oa_max_sample_rate,
4195 .maxlen = sizeof(i915_oa_max_sample_rate),
4196 .mode = 0644,
4197 .proc_handler = proc_dointvec_minmax,
4198 .extra1 = SYSCTL_ZERO,
4199 .extra2 = &oa_sample_rate_hard_limit,
4204 static struct ctl_table i915_root[] = {
4206 .procname = "i915",
4207 .maxlen = 0,
4208 .mode = 0555,
4209 .child = oa_table,
4214 static struct ctl_table dev_root[] = {
4216 .procname = "dev",
4217 .maxlen = 0,
4218 .mode = 0555,
4219 .child = i915_root,
4225 * i915_perf_init - initialize i915-perf state on module bind
4226 * @i915: i915 device instance
4228 * Initializes i915-perf state without exposing anything to userspace.
4230 * Note: i915-perf initialization is split into an 'init' and 'register'
4231 * phase with the i915_perf_register() exposing state to userspace.
4233 void i915_perf_init(struct drm_i915_private *i915)
4235 struct i915_perf *perf = &i915->perf;
4237 /* XXX const struct i915_perf_ops! */
4239 if (IS_HASWELL(i915)) {
4240 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4241 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4242 perf->ops.is_valid_flex_reg = NULL;
4243 perf->ops.enable_metric_set = hsw_enable_metric_set;
4244 perf->ops.disable_metric_set = hsw_disable_metric_set;
4245 perf->ops.oa_enable = gen7_oa_enable;
4246 perf->ops.oa_disable = gen7_oa_disable;
4247 perf->ops.read = gen7_oa_read;
4248 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4250 perf->oa_formats = hsw_oa_formats;
4251 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4252 /* Note: that although we could theoretically also support the
4253 * legacy ringbuffer mode on BDW (and earlier iterations of
4254 * this driver, before upstreaming did this) it didn't seem
4255 * worth the complexity to maintain now that BDW+ enable
4256 * execlist mode by default.
4258 perf->ops.read = gen8_oa_read;
4260 if (IS_GEN_RANGE(i915, 8, 9)) {
4261 perf->oa_formats = gen8_plus_oa_formats;
4263 perf->ops.is_valid_b_counter_reg =
4264 gen7_is_valid_b_counter_addr;
4265 perf->ops.is_valid_mux_reg =
4266 gen8_is_valid_mux_addr;
4267 perf->ops.is_valid_flex_reg =
4268 gen8_is_valid_flex_addr;
4270 if (IS_CHERRYVIEW(i915)) {
4271 perf->ops.is_valid_mux_reg =
4272 chv_is_valid_mux_addr;
4275 perf->ops.oa_enable = gen8_oa_enable;
4276 perf->ops.oa_disable = gen8_oa_disable;
4277 perf->ops.enable_metric_set = gen8_enable_metric_set;
4278 perf->ops.disable_metric_set = gen8_disable_metric_set;
4279 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4281 if (IS_GEN(i915, 8)) {
4282 perf->ctx_oactxctrl_offset = 0x120;
4283 perf->ctx_flexeu0_offset = 0x2ce;
4285 perf->gen8_valid_ctx_bit = BIT(25);
4286 } else {
4287 perf->ctx_oactxctrl_offset = 0x128;
4288 perf->ctx_flexeu0_offset = 0x3de;
4290 perf->gen8_valid_ctx_bit = BIT(16);
4292 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4293 perf->oa_formats = gen8_plus_oa_formats;
4295 perf->ops.is_valid_b_counter_reg =
4296 gen7_is_valid_b_counter_addr;
4297 perf->ops.is_valid_mux_reg =
4298 gen10_is_valid_mux_addr;
4299 perf->ops.is_valid_flex_reg =
4300 gen8_is_valid_flex_addr;
4302 perf->ops.oa_enable = gen8_oa_enable;
4303 perf->ops.oa_disable = gen8_oa_disable;
4304 perf->ops.enable_metric_set = gen8_enable_metric_set;
4305 perf->ops.disable_metric_set = gen10_disable_metric_set;
4306 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4308 if (IS_GEN(i915, 10)) {
4309 perf->ctx_oactxctrl_offset = 0x128;
4310 perf->ctx_flexeu0_offset = 0x3de;
4311 } else {
4312 perf->ctx_oactxctrl_offset = 0x124;
4313 perf->ctx_flexeu0_offset = 0x78e;
4315 perf->gen8_valid_ctx_bit = BIT(16);
4316 } else if (IS_GEN(i915, 12)) {
4317 perf->oa_formats = gen12_oa_formats;
4319 perf->ops.is_valid_b_counter_reg =
4320 gen12_is_valid_b_counter_addr;
4321 perf->ops.is_valid_mux_reg =
4322 gen12_is_valid_mux_addr;
4323 perf->ops.is_valid_flex_reg =
4324 gen8_is_valid_flex_addr;
4326 perf->ops.oa_enable = gen12_oa_enable;
4327 perf->ops.oa_disable = gen12_oa_disable;
4328 perf->ops.enable_metric_set = gen12_enable_metric_set;
4329 perf->ops.disable_metric_set = gen12_disable_metric_set;
4330 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4332 perf->ctx_flexeu0_offset = 0;
4333 perf->ctx_oactxctrl_offset = 0x144;
4337 if (perf->ops.enable_metric_set) {
4338 mutex_init(&perf->lock);
4340 oa_sample_rate_hard_limit = 1000 *
4341 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4343 mutex_init(&perf->metrics_lock);
4344 idr_init(&perf->metrics_idr);
4346 /* We set up some ratelimit state to potentially throttle any
4347 * _NOTES about spurious, invalid OA reports which we don't
4348 * forward to userspace.
4350 * We print a _NOTE about any throttling when closing the
4351 * stream instead of waiting until driver _fini which no one
4352 * would ever see.
4354 * Using the same limiting factors as printk_ratelimit()
4356 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4357 /* Since we use a DRM_NOTE for spurious reports it would be
4358 * inconsistent to let __ratelimit() automatically print a
4359 * warning for throttling.
4361 ratelimit_set_flags(&perf->spurious_report_rs,
4362 RATELIMIT_MSG_ON_RELEASE);
4364 atomic64_set(&perf->noa_programming_delay,
4365 500 * 1000 /* 500us */);
4367 perf->i915 = i915;
4371 static int destroy_config(int id, void *p, void *data)
4373 i915_oa_config_put(p);
4374 return 0;
4377 void i915_perf_sysctl_register(void)
4379 sysctl_header = register_sysctl_table(dev_root);
4382 void i915_perf_sysctl_unregister(void)
4384 unregister_sysctl_table(sysctl_header);
4388 * i915_perf_fini - Counter part to i915_perf_init()
4389 * @i915: i915 device instance
4391 void i915_perf_fini(struct drm_i915_private *i915)
4393 struct i915_perf *perf = &i915->perf;
4395 if (!perf->i915)
4396 return;
4398 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4399 idr_destroy(&perf->metrics_idr);
4401 memset(&perf->ops, 0, sizeof(perf->ops));
4402 perf->i915 = NULL;
4406 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4408 * This version number is used by userspace to detect available features.
4410 int i915_perf_ioctl_version(void)
4413 * 1: Initial version
4414 * I915_PERF_IOCTL_ENABLE
4415 * I915_PERF_IOCTL_DISABLE
4417 * 2: Added runtime modification of OA config.
4418 * I915_PERF_IOCTL_CONFIG
4420 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4421 * preemption on a particular context so that performance data is
4422 * accessible from a delta of MI_RPC reports without looking at the
4423 * OA buffer.
4425 return 3;
4428 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4429 #include "selftests/i915_perf.c"
4430 #endif