treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_scheduler.c
blobbf87c70bfdd9630b50af237503e5389c478e2715
1 /*
2 * SPDX-License-Identifier: MIT
4 * Copyright © 2018 Intel Corporation
5 */
7 #include <linux/mutex.h>
9 #include "i915_drv.h"
10 #include "i915_globals.h"
11 #include "i915_request.h"
12 #include "i915_scheduler.h"
14 static struct i915_global_scheduler {
15 struct i915_global base;
16 struct kmem_cache *slab_dependencies;
17 struct kmem_cache *slab_priorities;
18 } global;
20 static DEFINE_SPINLOCK(schedule_lock);
22 static const struct i915_request *
23 node_to_request(const struct i915_sched_node *node)
25 return container_of(node, const struct i915_request, sched);
28 static inline bool node_started(const struct i915_sched_node *node)
30 return i915_request_started(node_to_request(node));
33 static inline bool node_signaled(const struct i915_sched_node *node)
35 return i915_request_completed(node_to_request(node));
38 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
40 return rb_entry(rb, struct i915_priolist, node);
43 static void assert_priolists(struct intel_engine_execlists * const execlists)
45 struct rb_node *rb;
46 long last_prio, i;
48 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
49 return;
51 GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
52 rb_first(&execlists->queue.rb_root));
54 last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
55 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
56 const struct i915_priolist *p = to_priolist(rb);
58 GEM_BUG_ON(p->priority >= last_prio);
59 last_prio = p->priority;
61 GEM_BUG_ON(!p->used);
62 for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
63 if (list_empty(&p->requests[i]))
64 continue;
66 GEM_BUG_ON(!(p->used & BIT(i)));
71 struct list_head *
72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
74 struct intel_engine_execlists * const execlists = &engine->execlists;
75 struct i915_priolist *p;
76 struct rb_node **parent, *rb;
77 bool first = true;
78 int idx, i;
80 lockdep_assert_held(&engine->active.lock);
81 assert_priolists(execlists);
83 /* buckets sorted from highest [in slot 0] to lowest priority */
84 idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
85 prio >>= I915_USER_PRIORITY_SHIFT;
86 if (unlikely(execlists->no_priolist))
87 prio = I915_PRIORITY_NORMAL;
89 find_priolist:
90 /* most positive priority is scheduled first, equal priorities fifo */
91 rb = NULL;
92 parent = &execlists->queue.rb_root.rb_node;
93 while (*parent) {
94 rb = *parent;
95 p = to_priolist(rb);
96 if (prio > p->priority) {
97 parent = &rb->rb_left;
98 } else if (prio < p->priority) {
99 parent = &rb->rb_right;
100 first = false;
101 } else {
102 goto out;
106 if (prio == I915_PRIORITY_NORMAL) {
107 p = &execlists->default_priolist;
108 } else {
109 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
110 /* Convert an allocation failure to a priority bump */
111 if (unlikely(!p)) {
112 prio = I915_PRIORITY_NORMAL; /* recurses just once */
114 /* To maintain ordering with all rendering, after an
115 * allocation failure we have to disable all scheduling.
116 * Requests will then be executed in fifo, and schedule
117 * will ensure that dependencies are emitted in fifo.
118 * There will be still some reordering with existing
119 * requests, so if userspace lied about their
120 * dependencies that reordering may be visible.
122 execlists->no_priolist = true;
123 goto find_priolist;
127 p->priority = prio;
128 for (i = 0; i < ARRAY_SIZE(p->requests); i++)
129 INIT_LIST_HEAD(&p->requests[i]);
130 rb_link_node(&p->node, rb, parent);
131 rb_insert_color_cached(&p->node, &execlists->queue, first);
132 p->used = 0;
134 out:
135 p->used |= BIT(idx);
136 return &p->requests[idx];
139 void __i915_priolist_free(struct i915_priolist *p)
141 kmem_cache_free(global.slab_priorities, p);
144 struct sched_cache {
145 struct list_head *priolist;
148 static struct intel_engine_cs *
149 sched_lock_engine(const struct i915_sched_node *node,
150 struct intel_engine_cs *locked,
151 struct sched_cache *cache)
153 const struct i915_request *rq = node_to_request(node);
154 struct intel_engine_cs *engine;
156 GEM_BUG_ON(!locked);
159 * Virtual engines complicate acquiring the engine timeline lock,
160 * as their rq->engine pointer is not stable until under that
161 * engine lock. The simple ploy we use is to take the lock then
162 * check that the rq still belongs to the newly locked engine.
164 while (locked != (engine = READ_ONCE(rq->engine))) {
165 spin_unlock(&locked->active.lock);
166 memset(cache, 0, sizeof(*cache));
167 spin_lock(&engine->active.lock);
168 locked = engine;
171 GEM_BUG_ON(locked != engine);
172 return locked;
175 static inline int rq_prio(const struct i915_request *rq)
177 return rq->sched.attr.priority | __NO_PREEMPTION;
180 static inline bool need_preempt(int prio, int active)
183 * Allow preemption of low -> normal -> high, but we do
184 * not allow low priority tasks to preempt other low priority
185 * tasks under the impression that latency for low priority
186 * tasks does not matter (as much as background throughput),
187 * so kiss.
189 return prio >= max(I915_PRIORITY_NORMAL, active);
192 static void kick_submission(struct intel_engine_cs *engine,
193 const struct i915_request *rq,
194 int prio)
196 const struct i915_request *inflight;
199 * We only need to kick the tasklet once for the high priority
200 * new context we add into the queue.
202 if (prio <= engine->execlists.queue_priority_hint)
203 return;
205 rcu_read_lock();
207 /* Nothing currently active? We're overdue for a submission! */
208 inflight = execlists_active(&engine->execlists);
209 if (!inflight)
210 goto unlock;
213 * If we are already the currently executing context, don't
214 * bother evaluating if we should preempt ourselves.
216 if (inflight->context == rq->context)
217 goto unlock;
219 engine->execlists.queue_priority_hint = prio;
220 if (need_preempt(prio, rq_prio(inflight)))
221 tasklet_hi_schedule(&engine->execlists.tasklet);
223 unlock:
224 rcu_read_unlock();
227 static void __i915_schedule(struct i915_sched_node *node,
228 const struct i915_sched_attr *attr)
230 struct intel_engine_cs *engine;
231 struct i915_dependency *dep, *p;
232 struct i915_dependency stack;
233 const int prio = attr->priority;
234 struct sched_cache cache;
235 LIST_HEAD(dfs);
237 /* Needed in order to use the temporary link inside i915_dependency */
238 lockdep_assert_held(&schedule_lock);
239 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
241 if (prio <= READ_ONCE(node->attr.priority))
242 return;
244 if (node_signaled(node))
245 return;
247 stack.signaler = node;
248 list_add(&stack.dfs_link, &dfs);
251 * Recursively bump all dependent priorities to match the new request.
253 * A naive approach would be to use recursion:
254 * static void update_priorities(struct i915_sched_node *node, prio) {
255 * list_for_each_entry(dep, &node->signalers_list, signal_link)
256 * update_priorities(dep->signal, prio)
257 * queue_request(node);
259 * but that may have unlimited recursion depth and so runs a very
260 * real risk of overunning the kernel stack. Instead, we build
261 * a flat list of all dependencies starting with the current request.
262 * As we walk the list of dependencies, we add all of its dependencies
263 * to the end of the list (this may include an already visited
264 * request) and continue to walk onwards onto the new dependencies. The
265 * end result is a topological list of requests in reverse order, the
266 * last element in the list is the request we must execute first.
268 list_for_each_entry(dep, &dfs, dfs_link) {
269 struct i915_sched_node *node = dep->signaler;
271 /* If we are already flying, we know we have no signalers */
272 if (node_started(node))
273 continue;
276 * Within an engine, there can be no cycle, but we may
277 * refer to the same dependency chain multiple times
278 * (redundant dependencies are not eliminated) and across
279 * engines.
281 list_for_each_entry(p, &node->signalers_list, signal_link) {
282 GEM_BUG_ON(p == dep); /* no cycles! */
284 if (node_signaled(p->signaler))
285 continue;
287 if (prio > READ_ONCE(p->signaler->attr.priority))
288 list_move_tail(&p->dfs_link, &dfs);
293 * If we didn't need to bump any existing priorities, and we haven't
294 * yet submitted this request (i.e. there is no potential race with
295 * execlists_submit_request()), we can set our own priority and skip
296 * acquiring the engine locks.
298 if (node->attr.priority == I915_PRIORITY_INVALID) {
299 GEM_BUG_ON(!list_empty(&node->link));
300 node->attr = *attr;
302 if (stack.dfs_link.next == stack.dfs_link.prev)
303 return;
305 __list_del_entry(&stack.dfs_link);
308 memset(&cache, 0, sizeof(cache));
309 engine = node_to_request(node)->engine;
310 spin_lock(&engine->active.lock);
312 /* Fifo and depth-first replacement ensure our deps execute before us */
313 engine = sched_lock_engine(node, engine, &cache);
314 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
315 INIT_LIST_HEAD(&dep->dfs_link);
317 node = dep->signaler;
318 engine = sched_lock_engine(node, engine, &cache);
319 lockdep_assert_held(&engine->active.lock);
321 /* Recheck after acquiring the engine->timeline.lock */
322 if (prio <= node->attr.priority || node_signaled(node))
323 continue;
325 GEM_BUG_ON(node_to_request(node)->engine != engine);
327 node->attr.priority = prio;
329 if (list_empty(&node->link)) {
331 * If the request is not in the priolist queue because
332 * it is not yet runnable, then it doesn't contribute
333 * to our preemption decisions. On the other hand,
334 * if the request is on the HW, it too is not in the
335 * queue; but in that case we may still need to reorder
336 * the inflight requests.
338 continue;
341 if (!intel_engine_is_virtual(engine) &&
342 !i915_request_is_active(node_to_request(node))) {
343 if (!cache.priolist)
344 cache.priolist =
345 i915_sched_lookup_priolist(engine,
346 prio);
347 list_move_tail(&node->link, cache.priolist);
350 /* Defer (tasklet) submission until after all of our updates. */
351 kick_submission(engine, node_to_request(node), prio);
354 spin_unlock(&engine->active.lock);
357 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
359 spin_lock_irq(&schedule_lock);
360 __i915_schedule(&rq->sched, attr);
361 spin_unlock_irq(&schedule_lock);
364 static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
366 struct i915_sched_attr attr = node->attr;
368 attr.priority |= bump;
369 __i915_schedule(node, &attr);
372 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
374 unsigned long flags;
376 GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
377 if (READ_ONCE(rq->sched.attr.priority) & bump)
378 return;
380 spin_lock_irqsave(&schedule_lock, flags);
381 __bump_priority(&rq->sched, bump);
382 spin_unlock_irqrestore(&schedule_lock, flags);
385 void i915_sched_node_init(struct i915_sched_node *node)
387 INIT_LIST_HEAD(&node->signalers_list);
388 INIT_LIST_HEAD(&node->waiters_list);
389 INIT_LIST_HEAD(&node->link);
391 i915_sched_node_reinit(node);
394 void i915_sched_node_reinit(struct i915_sched_node *node)
396 node->attr.priority = I915_PRIORITY_INVALID;
397 node->semaphores = 0;
398 node->flags = 0;
400 GEM_BUG_ON(!list_empty(&node->signalers_list));
401 GEM_BUG_ON(!list_empty(&node->waiters_list));
402 GEM_BUG_ON(!list_empty(&node->link));
405 static struct i915_dependency *
406 i915_dependency_alloc(void)
408 return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
411 static void
412 i915_dependency_free(struct i915_dependency *dep)
414 kmem_cache_free(global.slab_dependencies, dep);
417 bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
418 struct i915_sched_node *signal,
419 struct i915_dependency *dep,
420 unsigned long flags)
422 bool ret = false;
424 spin_lock_irq(&schedule_lock);
426 if (!node_signaled(signal)) {
427 INIT_LIST_HEAD(&dep->dfs_link);
428 list_add(&dep->wait_link, &signal->waiters_list);
429 list_add(&dep->signal_link, &node->signalers_list);
430 dep->signaler = signal;
431 dep->waiter = node;
432 dep->flags = flags;
434 /* Keep track of whether anyone on this chain has a semaphore */
435 if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
436 !node_started(signal))
437 node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
440 * As we do not allow WAIT to preempt inflight requests,
441 * once we have executed a request, along with triggering
442 * any execution callbacks, we must preserve its ordering
443 * within the non-preemptible FIFO.
445 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK);
446 if (flags & I915_DEPENDENCY_EXTERNAL)
447 __bump_priority(signal, __NO_PREEMPTION);
449 ret = true;
452 spin_unlock_irq(&schedule_lock);
454 return ret;
457 int i915_sched_node_add_dependency(struct i915_sched_node *node,
458 struct i915_sched_node *signal)
460 struct i915_dependency *dep;
462 dep = i915_dependency_alloc();
463 if (!dep)
464 return -ENOMEM;
466 if (!__i915_sched_node_add_dependency(node, signal, dep,
467 I915_DEPENDENCY_EXTERNAL |
468 I915_DEPENDENCY_ALLOC))
469 i915_dependency_free(dep);
471 return 0;
474 void i915_sched_node_fini(struct i915_sched_node *node)
476 struct i915_dependency *dep, *tmp;
478 spin_lock_irq(&schedule_lock);
481 * Everyone we depended upon (the fences we wait to be signaled)
482 * should retire before us and remove themselves from our list.
483 * However, retirement is run independently on each timeline and
484 * so we may be called out-of-order.
486 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
487 GEM_BUG_ON(!list_empty(&dep->dfs_link));
489 list_del(&dep->wait_link);
490 if (dep->flags & I915_DEPENDENCY_ALLOC)
491 i915_dependency_free(dep);
493 INIT_LIST_HEAD(&node->signalers_list);
495 /* Remove ourselves from everyone who depends upon us */
496 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
497 GEM_BUG_ON(dep->signaler != node);
498 GEM_BUG_ON(!list_empty(&dep->dfs_link));
500 list_del(&dep->signal_link);
501 if (dep->flags & I915_DEPENDENCY_ALLOC)
502 i915_dependency_free(dep);
504 INIT_LIST_HEAD(&node->waiters_list);
506 spin_unlock_irq(&schedule_lock);
509 static void i915_global_scheduler_shrink(void)
511 kmem_cache_shrink(global.slab_dependencies);
512 kmem_cache_shrink(global.slab_priorities);
515 static void i915_global_scheduler_exit(void)
517 kmem_cache_destroy(global.slab_dependencies);
518 kmem_cache_destroy(global.slab_priorities);
521 static struct i915_global_scheduler global = { {
522 .shrink = i915_global_scheduler_shrink,
523 .exit = i915_global_scheduler_exit,
524 } };
526 int __init i915_global_scheduler_init(void)
528 global.slab_dependencies = KMEM_CACHE(i915_dependency,
529 SLAB_HWCACHE_ALIGN);
530 if (!global.slab_dependencies)
531 return -ENOMEM;
533 global.slab_priorities = KMEM_CACHE(i915_priolist,
534 SLAB_HWCACHE_ALIGN);
535 if (!global.slab_priorities)
536 goto err_priorities;
538 i915_global_register(&global.base);
539 return 0;
541 err_priorities:
542 kmem_cache_destroy(global.slab_priorities);
543 return -ENOMEM;