treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / mgag200 / mgag200_mode.c
blob62a8e9ccb16dcc8ce226224c17030b4b170ebea9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2010 Matt Turner.
4 * Copyright 2012 Red Hat
6 * Authors: Matthew Garrett
7 * Matt Turner
8 * Dave Airlie
9 */
11 #include <linux/delay.h>
12 #include <linux/pci.h>
14 #include <drm/drm_crtc_helper.h>
15 #include <drm/drm_fourcc.h>
16 #include <drm/drm_plane_helper.h>
17 #include <drm/drm_probe_helper.h>
19 #include "mgag200_drv.h"
21 #define MGAG200_LUT_SIZE 256
24 * This file contains setup code for the CRTC.
27 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 struct drm_device *dev = crtc->dev;
30 struct mga_device *mdev = dev->dev_private;
31 struct drm_framebuffer *fb = crtc->primary->fb;
32 u16 *r_ptr, *g_ptr, *b_ptr;
33 int i;
35 if (!crtc->enabled)
36 return;
38 r_ptr = crtc->gamma_store;
39 g_ptr = r_ptr + crtc->gamma_size;
40 b_ptr = g_ptr + crtc->gamma_size;
42 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
44 if (fb && fb->format->cpp[0] * 8 == 16) {
45 int inc = (fb->format->depth == 15) ? 8 : 4;
46 u8 r, b;
47 for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
48 if (fb->format->depth == 16) {
49 if (i > (MGAG200_LUT_SIZE >> 1)) {
50 r = b = 0;
51 } else {
52 r = *r_ptr++ >> 8;
53 b = *b_ptr++ >> 8;
54 r_ptr++;
55 b_ptr++;
57 } else {
58 r = *r_ptr++ >> 8;
59 b = *b_ptr++ >> 8;
61 /* VGA registers */
62 WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
63 WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8);
64 WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
66 return;
68 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
69 /* VGA registers */
70 WREG8(DAC_INDEX + MGA1064_COL_PAL, *r_ptr++ >> 8);
71 WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8);
72 WREG8(DAC_INDEX + MGA1064_COL_PAL, *b_ptr++ >> 8);
76 static inline void mga_wait_vsync(struct mga_device *mdev)
78 unsigned long timeout = jiffies + HZ/10;
79 unsigned int status = 0;
81 do {
82 status = RREG32(MGAREG_Status);
83 } while ((status & 0x08) && time_before(jiffies, timeout));
84 timeout = jiffies + HZ/10;
85 status = 0;
86 do {
87 status = RREG32(MGAREG_Status);
88 } while (!(status & 0x08) && time_before(jiffies, timeout));
91 static inline void mga_wait_busy(struct mga_device *mdev)
93 unsigned long timeout = jiffies + HZ;
94 unsigned int status = 0;
95 do {
96 status = RREG8(MGAREG_Status + 2);
97 } while ((status & 0x01) && time_before(jiffies, timeout));
100 #define P_ARRAY_SIZE 9
102 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
104 unsigned int vcomax, vcomin, pllreffreq;
105 unsigned int delta, tmpdelta, permitteddelta;
106 unsigned int testp, testm, testn;
107 unsigned int p, m, n;
108 unsigned int computed;
109 unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
110 unsigned int fvv;
111 unsigned int i;
113 if (mdev->unique_rev_id <= 0x03) {
115 m = n = p = 0;
116 vcomax = 320000;
117 vcomin = 160000;
118 pllreffreq = 25000;
120 delta = 0xffffffff;
121 permitteddelta = clock * 5 / 1000;
123 for (testp = 8; testp > 0; testp /= 2) {
124 if (clock * testp > vcomax)
125 continue;
126 if (clock * testp < vcomin)
127 continue;
129 for (testn = 17; testn < 256; testn++) {
130 for (testm = 1; testm < 32; testm++) {
131 computed = (pllreffreq * testn) /
132 (testm * testp);
133 if (computed > clock)
134 tmpdelta = computed - clock;
135 else
136 tmpdelta = clock - computed;
137 if (tmpdelta < delta) {
138 delta = tmpdelta;
139 m = testm - 1;
140 n = testn - 1;
141 p = testp - 1;
146 } else {
149 m = n = p = 0;
150 vcomax = 1600000;
151 vcomin = 800000;
152 pllreffreq = 25000;
154 if (clock < 25000)
155 clock = 25000;
157 clock = clock * 2;
159 delta = 0xFFFFFFFF;
160 /* Permited delta is 0.5% as VESA Specification */
161 permitteddelta = clock * 5 / 1000;
163 for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
164 testp = pvalues_e4[i];
166 if ((clock * testp) > vcomax)
167 continue;
168 if ((clock * testp) < vcomin)
169 continue;
171 for (testn = 50; testn <= 256; testn++) {
172 for (testm = 1; testm <= 32; testm++) {
173 computed = (pllreffreq * testn) /
174 (testm * testp);
175 if (computed > clock)
176 tmpdelta = computed - clock;
177 else
178 tmpdelta = clock - computed;
180 if (tmpdelta < delta) {
181 delta = tmpdelta;
182 m = testm - 1;
183 n = testn - 1;
184 p = testp - 1;
190 fvv = pllreffreq * (n + 1) / (m + 1);
191 fvv = (fvv - 800000) / 50000;
193 if (fvv > 15)
194 fvv = 15;
196 p |= (fvv << 4);
197 m |= 0x80;
199 clock = clock / 2;
202 if (delta > permitteddelta) {
203 pr_warn("PLL delta too large\n");
204 return 1;
207 WREG_DAC(MGA1064_PIX_PLLC_M, m);
208 WREG_DAC(MGA1064_PIX_PLLC_N, n);
209 WREG_DAC(MGA1064_PIX_PLLC_P, p);
211 if (mdev->unique_rev_id >= 0x04) {
212 WREG_DAC(0x1a, 0x09);
213 msleep(20);
214 WREG_DAC(0x1a, 0x01);
218 return 0;
221 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
223 unsigned int vcomax, vcomin, pllreffreq;
224 unsigned int delta, tmpdelta;
225 unsigned int testp, testm, testn, testp2;
226 unsigned int p, m, n;
227 unsigned int computed;
228 int i, j, tmpcount, vcount;
229 bool pll_locked = false;
230 u8 tmp;
232 m = n = p = 0;
234 delta = 0xffffffff;
236 if (mdev->type == G200_EW3) {
238 vcomax = 800000;
239 vcomin = 400000;
240 pllreffreq = 25000;
242 for (testp = 1; testp < 8; testp++) {
243 for (testp2 = 1; testp2 < 8; testp2++) {
244 if (testp < testp2)
245 continue;
246 if ((clock * testp * testp2) > vcomax)
247 continue;
248 if ((clock * testp * testp2) < vcomin)
249 continue;
250 for (testm = 1; testm < 26; testm++) {
251 for (testn = 32; testn < 2048 ; testn++) {
252 computed = (pllreffreq * testn) /
253 (testm * testp * testp2);
254 if (computed > clock)
255 tmpdelta = computed - clock;
256 else
257 tmpdelta = clock - computed;
258 if (tmpdelta < delta) {
259 delta = tmpdelta;
260 m = ((testn & 0x100) >> 1) |
261 (testm);
262 n = (testn & 0xFF);
263 p = ((testn & 0x600) >> 3) |
264 (testp2 << 3) |
265 (testp);
271 } else {
273 vcomax = 550000;
274 vcomin = 150000;
275 pllreffreq = 48000;
277 for (testp = 1; testp < 9; testp++) {
278 if (clock * testp > vcomax)
279 continue;
280 if (clock * testp < vcomin)
281 continue;
283 for (testm = 1; testm < 17; testm++) {
284 for (testn = 1; testn < 151; testn++) {
285 computed = (pllreffreq * testn) /
286 (testm * testp);
287 if (computed > clock)
288 tmpdelta = computed - clock;
289 else
290 tmpdelta = clock - computed;
291 if (tmpdelta < delta) {
292 delta = tmpdelta;
293 n = testn - 1;
294 m = (testm - 1) |
295 ((n >> 1) & 0x80);
296 p = testp - 1;
303 for (i = 0; i <= 32 && pll_locked == false; i++) {
304 if (i > 0) {
305 WREG8(MGAREG_CRTC_INDEX, 0x1e);
306 tmp = RREG8(MGAREG_CRTC_DATA);
307 if (tmp < 0xff)
308 WREG8(MGAREG_CRTC_DATA, tmp+1);
311 /* set pixclkdis to 1 */
312 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
313 tmp = RREG8(DAC_DATA);
314 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
315 WREG8(DAC_DATA, tmp);
317 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
318 tmp = RREG8(DAC_DATA);
319 tmp |= MGA1064_REMHEADCTL_CLKDIS;
320 WREG8(DAC_DATA, tmp);
322 /* select PLL Set C */
323 tmp = RREG8(MGAREG_MEM_MISC_READ);
324 tmp |= 0x3 << 2;
325 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
327 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
328 tmp = RREG8(DAC_DATA);
329 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
330 WREG8(DAC_DATA, tmp);
332 udelay(500);
334 /* reset the PLL */
335 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
336 tmp = RREG8(DAC_DATA);
337 tmp &= ~0x04;
338 WREG8(DAC_DATA, tmp);
340 udelay(50);
342 /* program pixel pll register */
343 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
344 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
345 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
347 udelay(50);
349 /* turn pll on */
350 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
351 tmp = RREG8(DAC_DATA);
352 tmp |= 0x04;
353 WREG_DAC(MGA1064_VREF_CTL, tmp);
355 udelay(500);
357 /* select the pixel pll */
358 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
359 tmp = RREG8(DAC_DATA);
360 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
361 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
362 WREG8(DAC_DATA, tmp);
364 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
365 tmp = RREG8(DAC_DATA);
366 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
367 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
368 WREG8(DAC_DATA, tmp);
370 /* reset dotclock rate bit */
371 WREG8(MGAREG_SEQ_INDEX, 1);
372 tmp = RREG8(MGAREG_SEQ_DATA);
373 tmp &= ~0x8;
374 WREG8(MGAREG_SEQ_DATA, tmp);
376 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
377 tmp = RREG8(DAC_DATA);
378 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
379 WREG8(DAC_DATA, tmp);
381 vcount = RREG8(MGAREG_VCOUNT);
383 for (j = 0; j < 30 && pll_locked == false; j++) {
384 tmpcount = RREG8(MGAREG_VCOUNT);
385 if (tmpcount < vcount)
386 vcount = 0;
387 if ((tmpcount - vcount) > 2)
388 pll_locked = true;
389 else
390 udelay(5);
393 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
394 tmp = RREG8(DAC_DATA);
395 tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
396 WREG_DAC(MGA1064_REMHEADCTL, tmp);
397 return 0;
400 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
402 unsigned int vcomax, vcomin, pllreffreq;
403 unsigned int delta, tmpdelta;
404 unsigned int testp, testm, testn;
405 unsigned int p, m, n;
406 unsigned int computed;
407 u8 tmp;
409 m = n = p = 0;
410 vcomax = 550000;
411 vcomin = 150000;
412 pllreffreq = 50000;
414 delta = 0xffffffff;
416 for (testp = 16; testp > 0; testp--) {
417 if (clock * testp > vcomax)
418 continue;
419 if (clock * testp < vcomin)
420 continue;
422 for (testn = 1; testn < 257; testn++) {
423 for (testm = 1; testm < 17; testm++) {
424 computed = (pllreffreq * testn) /
425 (testm * testp);
426 if (computed > clock)
427 tmpdelta = computed - clock;
428 else
429 tmpdelta = clock - computed;
430 if (tmpdelta < delta) {
431 delta = tmpdelta;
432 n = testn - 1;
433 m = testm - 1;
434 p = testp - 1;
440 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
441 tmp = RREG8(DAC_DATA);
442 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
443 WREG8(DAC_DATA, tmp);
445 tmp = RREG8(MGAREG_MEM_MISC_READ);
446 tmp |= 0x3 << 2;
447 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
449 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
450 tmp = RREG8(DAC_DATA);
451 WREG8(DAC_DATA, tmp & ~0x40);
453 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
454 tmp = RREG8(DAC_DATA);
455 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
456 WREG8(DAC_DATA, tmp);
458 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
459 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
460 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
462 udelay(50);
464 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
465 tmp = RREG8(DAC_DATA);
466 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
467 WREG8(DAC_DATA, tmp);
469 udelay(500);
471 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
472 tmp = RREG8(DAC_DATA);
473 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
474 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
475 WREG8(DAC_DATA, tmp);
477 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
478 tmp = RREG8(DAC_DATA);
479 WREG8(DAC_DATA, tmp | 0x40);
481 tmp = RREG8(MGAREG_MEM_MISC_READ);
482 tmp |= (0x3 << 2);
483 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
485 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
486 tmp = RREG8(DAC_DATA);
487 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
488 WREG8(DAC_DATA, tmp);
490 return 0;
493 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
495 unsigned int vcomax, vcomin, pllreffreq;
496 unsigned int delta, tmpdelta;
497 unsigned int testp, testm, testn;
498 unsigned int p, m, n;
499 unsigned int computed;
500 int i, j, tmpcount, vcount;
501 u8 tmp;
502 bool pll_locked = false;
504 m = n = p = 0;
506 if (mdev->type == G200_EH3) {
507 vcomax = 3000000;
508 vcomin = 1500000;
509 pllreffreq = 25000;
511 delta = 0xffffffff;
513 testp = 0;
515 for (testm = 150; testm >= 6; testm--) {
516 if (clock * testm > vcomax)
517 continue;
518 if (clock * testm < vcomin)
519 continue;
520 for (testn = 120; testn >= 60; testn--) {
521 computed = (pllreffreq * testn) / testm;
522 if (computed > clock)
523 tmpdelta = computed - clock;
524 else
525 tmpdelta = clock - computed;
526 if (tmpdelta < delta) {
527 delta = tmpdelta;
528 n = testn;
529 m = testm;
530 p = testp;
532 if (delta == 0)
533 break;
535 if (delta == 0)
536 break;
538 } else {
540 vcomax = 800000;
541 vcomin = 400000;
542 pllreffreq = 33333;
544 delta = 0xffffffff;
546 for (testp = 16; testp > 0; testp >>= 1) {
547 if (clock * testp > vcomax)
548 continue;
549 if (clock * testp < vcomin)
550 continue;
552 for (testm = 1; testm < 33; testm++) {
553 for (testn = 17; testn < 257; testn++) {
554 computed = (pllreffreq * testn) /
555 (testm * testp);
556 if (computed > clock)
557 tmpdelta = computed - clock;
558 else
559 tmpdelta = clock - computed;
560 if (tmpdelta < delta) {
561 delta = tmpdelta;
562 n = testn - 1;
563 m = (testm - 1);
564 p = testp - 1;
566 if ((clock * testp) >= 600000)
567 p |= 0x80;
572 for (i = 0; i <= 32 && pll_locked == false; i++) {
573 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
574 tmp = RREG8(DAC_DATA);
575 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
576 WREG8(DAC_DATA, tmp);
578 tmp = RREG8(MGAREG_MEM_MISC_READ);
579 tmp |= 0x3 << 2;
580 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
582 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
583 tmp = RREG8(DAC_DATA);
584 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
585 WREG8(DAC_DATA, tmp);
587 udelay(500);
589 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
590 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
591 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
593 udelay(500);
595 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
596 tmp = RREG8(DAC_DATA);
597 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
598 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
599 WREG8(DAC_DATA, tmp);
601 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
602 tmp = RREG8(DAC_DATA);
603 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
604 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
605 WREG8(DAC_DATA, tmp);
607 vcount = RREG8(MGAREG_VCOUNT);
609 for (j = 0; j < 30 && pll_locked == false; j++) {
610 tmpcount = RREG8(MGAREG_VCOUNT);
611 if (tmpcount < vcount)
612 vcount = 0;
613 if ((tmpcount - vcount) > 2)
614 pll_locked = true;
615 else
616 udelay(5);
620 return 0;
623 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
625 unsigned int vcomax, vcomin, pllreffreq;
626 unsigned int delta, tmpdelta;
627 int testr, testn, testm, testo;
628 unsigned int p, m, n;
629 unsigned int computed, vco;
630 int tmp;
631 const unsigned int m_div_val[] = { 1, 2, 4, 8 };
633 m = n = p = 0;
634 vcomax = 1488000;
635 vcomin = 1056000;
636 pllreffreq = 48000;
638 delta = 0xffffffff;
640 for (testr = 0; testr < 4; testr++) {
641 if (delta == 0)
642 break;
643 for (testn = 5; testn < 129; testn++) {
644 if (delta == 0)
645 break;
646 for (testm = 3; testm >= 0; testm--) {
647 if (delta == 0)
648 break;
649 for (testo = 5; testo < 33; testo++) {
650 vco = pllreffreq * (testn + 1) /
651 (testr + 1);
652 if (vco < vcomin)
653 continue;
654 if (vco > vcomax)
655 continue;
656 computed = vco / (m_div_val[testm] * (testo + 1));
657 if (computed > clock)
658 tmpdelta = computed - clock;
659 else
660 tmpdelta = clock - computed;
661 if (tmpdelta < delta) {
662 delta = tmpdelta;
663 m = testm | (testo << 3);
664 n = testn;
665 p = testr | (testr << 3);
672 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
673 tmp = RREG8(DAC_DATA);
674 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
675 WREG8(DAC_DATA, tmp);
677 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
678 tmp = RREG8(DAC_DATA);
679 tmp |= MGA1064_REMHEADCTL_CLKDIS;
680 WREG8(DAC_DATA, tmp);
682 tmp = RREG8(MGAREG_MEM_MISC_READ);
683 tmp |= (0x3<<2) | 0xc0;
684 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
686 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
687 tmp = RREG8(DAC_DATA);
688 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
689 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
690 WREG8(DAC_DATA, tmp);
692 udelay(500);
694 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
695 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
696 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
698 udelay(50);
700 return 0;
703 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
705 switch(mdev->type) {
706 case G200_SE_A:
707 case G200_SE_B:
708 return mga_g200se_set_plls(mdev, clock);
709 break;
710 case G200_WB:
711 case G200_EW3:
712 return mga_g200wb_set_plls(mdev, clock);
713 break;
714 case G200_EV:
715 return mga_g200ev_set_plls(mdev, clock);
716 break;
717 case G200_EH:
718 case G200_EH3:
719 return mga_g200eh_set_plls(mdev, clock);
720 break;
721 case G200_ER:
722 return mga_g200er_set_plls(mdev, clock);
723 break;
725 return 0;
728 static void mga_g200wb_prepare(struct drm_crtc *crtc)
730 struct mga_device *mdev = crtc->dev->dev_private;
731 u8 tmp;
732 int iter_max;
734 /* 1- The first step is to warn the BMC of an upcoming mode change.
735 * We are putting the misc<0> to output.*/
737 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
738 tmp = RREG8(DAC_DATA);
739 tmp |= 0x10;
740 WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
742 /* we are putting a 1 on the misc<0> line */
743 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
744 tmp = RREG8(DAC_DATA);
745 tmp |= 0x10;
746 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
748 /* 2- Second step to mask and further scan request
749 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
751 WREG8(DAC_INDEX, MGA1064_SPAREREG);
752 tmp = RREG8(DAC_DATA);
753 tmp |= 0x80;
754 WREG_DAC(MGA1064_SPAREREG, tmp);
756 /* 3a- the third step is to verifu if there is an active scan
757 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
759 iter_max = 300;
760 while (!(tmp & 0x1) && iter_max) {
761 WREG8(DAC_INDEX, MGA1064_SPAREREG);
762 tmp = RREG8(DAC_DATA);
763 udelay(1000);
764 iter_max--;
767 /* 3b- this step occurs only if the remove is actually scanning
768 * we are waiting for the end of the frame which is a 1 on
769 * remvsyncsts (XSPAREREG<1>)
771 if (iter_max) {
772 iter_max = 300;
773 while ((tmp & 0x2) && iter_max) {
774 WREG8(DAC_INDEX, MGA1064_SPAREREG);
775 tmp = RREG8(DAC_DATA);
776 udelay(1000);
777 iter_max--;
782 static void mga_g200wb_commit(struct drm_crtc *crtc)
784 u8 tmp;
785 struct mga_device *mdev = crtc->dev->dev_private;
787 /* 1- The first step is to ensure that the vrsten and hrsten are set */
788 WREG8(MGAREG_CRTCEXT_INDEX, 1);
789 tmp = RREG8(MGAREG_CRTCEXT_DATA);
790 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
792 /* 2- second step is to assert the rstlvl2 */
793 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
794 tmp = RREG8(DAC_DATA);
795 tmp |= 0x8;
796 WREG8(DAC_DATA, tmp);
798 /* wait 10 us */
799 udelay(10);
801 /* 3- deassert rstlvl2 */
802 tmp &= ~0x08;
803 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
804 WREG8(DAC_DATA, tmp);
806 /* 4- remove mask of scan request */
807 WREG8(DAC_INDEX, MGA1064_SPAREREG);
808 tmp = RREG8(DAC_DATA);
809 tmp &= ~0x80;
810 WREG8(DAC_DATA, tmp);
812 /* 5- put back a 0 on the misc<0> line */
813 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
814 tmp = RREG8(DAC_DATA);
815 tmp &= ~0x10;
816 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
820 This is how the framebuffer base address is stored in g200 cards:
821 * Assume @offset is the gpu_addr variable of the framebuffer object
822 * Then addr is the number of _pixels_ (not bytes) from the start of
823 VRAM to the first pixel we want to display. (divided by 2 for 32bit
824 framebuffers)
825 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
826 addr<20> -> CRTCEXT0<6>
827 addr<19-16> -> CRTCEXT0<3-0>
828 addr<15-8> -> CRTCC<7-0>
829 addr<7-0> -> CRTCD<7-0>
830 CRTCEXT0 has to be programmed last to trigger an update and make the
831 new addr variable take effect.
833 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
835 struct mga_device *mdev = crtc->dev->dev_private;
836 u32 addr;
837 int count;
838 u8 crtcext0;
840 while (RREG8(0x1fda) & 0x08);
841 while (!(RREG8(0x1fda) & 0x08));
843 count = RREG8(MGAREG_VCOUNT) + 2;
844 while (RREG8(MGAREG_VCOUNT) < count);
846 WREG8(MGAREG_CRTCEXT_INDEX, 0);
847 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
848 crtcext0 &= 0xB0;
849 addr = offset / 8;
850 /* Can't store addresses any higher than that...
851 but we also don't have more than 16MB of memory, so it should be fine. */
852 WARN_ON(addr > 0x1fffff);
853 crtcext0 |= (!!(addr & (1<<20)))<<6;
854 WREG_CRT(0x0d, (u8)(addr & 0xff));
855 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
856 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
859 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
860 struct drm_framebuffer *fb,
861 int x, int y, int atomic)
863 struct drm_gem_vram_object *gbo;
864 int ret;
865 s64 gpu_addr;
867 if (!atomic && fb) {
868 gbo = drm_gem_vram_of_gem(fb->obj[0]);
869 drm_gem_vram_unpin(gbo);
872 gbo = drm_gem_vram_of_gem(crtc->primary->fb->obj[0]);
874 ret = drm_gem_vram_pin(gbo, DRM_GEM_VRAM_PL_FLAG_VRAM);
875 if (ret)
876 return ret;
877 gpu_addr = drm_gem_vram_offset(gbo);
878 if (gpu_addr < 0) {
879 ret = (int)gpu_addr;
880 goto err_drm_gem_vram_unpin;
883 mga_set_start_address(crtc, (u32)gpu_addr);
885 return 0;
887 err_drm_gem_vram_unpin:
888 drm_gem_vram_unpin(gbo);
889 return ret;
892 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
893 struct drm_framebuffer *old_fb)
895 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
898 static int mga_crtc_mode_set(struct drm_crtc *crtc,
899 struct drm_display_mode *mode,
900 struct drm_display_mode *adjusted_mode,
901 int x, int y, struct drm_framebuffer *old_fb)
903 struct drm_device *dev = crtc->dev;
904 struct mga_device *mdev = dev->dev_private;
905 const struct drm_framebuffer *fb = crtc->primary->fb;
906 int hdisplay, hsyncstart, hsyncend, htotal;
907 int vdisplay, vsyncstart, vsyncend, vtotal;
908 int pitch;
909 int option = 0, option2 = 0;
910 int i;
911 unsigned char misc = 0;
912 unsigned char ext_vga[6];
913 u8 bppshift;
915 static unsigned char dacvalue[] = {
916 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
917 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
918 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
919 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
920 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
921 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
922 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
923 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
924 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
925 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
928 bppshift = mdev->bpp_shifts[fb->format->cpp[0] - 1];
930 switch (mdev->type) {
931 case G200_SE_A:
932 case G200_SE_B:
933 dacvalue[MGA1064_VREF_CTL] = 0x03;
934 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
935 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
936 MGA1064_MISC_CTL_VGA8 |
937 MGA1064_MISC_CTL_DAC_RAM_CS;
938 if (mdev->has_sdram)
939 option = 0x40049120;
940 else
941 option = 0x4004d120;
942 option2 = 0x00008000;
943 break;
944 case G200_WB:
945 case G200_EW3:
946 dacvalue[MGA1064_VREF_CTL] = 0x07;
947 option = 0x41049120;
948 option2 = 0x0000b000;
949 break;
950 case G200_EV:
951 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
952 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
953 MGA1064_MISC_CTL_DAC_RAM_CS;
954 option = 0x00000120;
955 option2 = 0x0000b000;
956 break;
957 case G200_EH:
958 case G200_EH3:
959 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
960 MGA1064_MISC_CTL_DAC_RAM_CS;
961 option = 0x00000120;
962 option2 = 0x0000b000;
963 break;
964 case G200_ER:
965 break;
968 switch (fb->format->cpp[0] * 8) {
969 case 8:
970 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
971 break;
972 case 16:
973 if (fb->format->depth == 15)
974 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
975 else
976 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
977 break;
978 case 24:
979 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
980 break;
981 case 32:
982 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
983 break;
986 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
987 misc |= 0x40;
988 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
989 misc |= 0x80;
992 for (i = 0; i < sizeof(dacvalue); i++) {
993 if ((i <= 0x17) ||
994 (i == 0x1b) ||
995 (i == 0x1c) ||
996 ((i >= 0x1f) && (i <= 0x29)) ||
997 ((i >= 0x30) && (i <= 0x37)))
998 continue;
999 if (IS_G200_SE(mdev) &&
1000 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
1001 continue;
1002 if ((mdev->type == G200_EV ||
1003 mdev->type == G200_WB ||
1004 mdev->type == G200_EH ||
1005 mdev->type == G200_EW3 ||
1006 mdev->type == G200_EH3) &&
1007 (i >= 0x44) && (i <= 0x4e))
1008 continue;
1010 WREG_DAC(i, dacvalue[i]);
1013 if (mdev->type == G200_ER)
1014 WREG_DAC(0x90, 0);
1016 if (option)
1017 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
1018 if (option2)
1019 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
1021 WREG_SEQ(2, 0xf);
1022 WREG_SEQ(3, 0);
1023 WREG_SEQ(4, 0xe);
1025 pitch = fb->pitches[0] / fb->format->cpp[0];
1026 if (fb->format->cpp[0] * 8 == 24)
1027 pitch = (pitch * 3) >> (4 - bppshift);
1028 else
1029 pitch = pitch >> (4 - bppshift);
1031 hdisplay = mode->hdisplay / 8 - 1;
1032 hsyncstart = mode->hsync_start / 8 - 1;
1033 hsyncend = mode->hsync_end / 8 - 1;
1034 htotal = mode->htotal / 8 - 1;
1036 /* Work around hardware quirk */
1037 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1038 htotal++;
1040 vdisplay = mode->vdisplay - 1;
1041 vsyncstart = mode->vsync_start - 1;
1042 vsyncend = mode->vsync_end - 1;
1043 vtotal = mode->vtotal - 2;
1045 WREG_GFX(0, 0);
1046 WREG_GFX(1, 0);
1047 WREG_GFX(2, 0);
1048 WREG_GFX(3, 0);
1049 WREG_GFX(4, 0);
1050 WREG_GFX(5, 0x40);
1051 WREG_GFX(6, 0x5);
1052 WREG_GFX(7, 0xf);
1053 WREG_GFX(8, 0xf);
1055 WREG_CRT(0, htotal - 4);
1056 WREG_CRT(1, hdisplay);
1057 WREG_CRT(2, hdisplay);
1058 WREG_CRT(3, (htotal & 0x1F) | 0x80);
1059 WREG_CRT(4, hsyncstart);
1060 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1061 WREG_CRT(6, vtotal & 0xFF);
1062 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1063 ((vdisplay & 0x100) >> 7) |
1064 ((vsyncstart & 0x100) >> 6) |
1065 ((vdisplay & 0x100) >> 5) |
1066 ((vdisplay & 0x100) >> 4) | /* linecomp */
1067 ((vtotal & 0x200) >> 4)|
1068 ((vdisplay & 0x200) >> 3) |
1069 ((vsyncstart & 0x200) >> 2));
1070 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1071 ((vdisplay & 0x200) >> 3));
1072 WREG_CRT(10, 0);
1073 WREG_CRT(11, 0);
1074 WREG_CRT(12, 0);
1075 WREG_CRT(13, 0);
1076 WREG_CRT(14, 0);
1077 WREG_CRT(15, 0);
1078 WREG_CRT(16, vsyncstart & 0xFF);
1079 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1080 WREG_CRT(18, vdisplay & 0xFF);
1081 WREG_CRT(19, pitch & 0xFF);
1082 WREG_CRT(20, 0);
1083 WREG_CRT(21, vdisplay & 0xFF);
1084 WREG_CRT(22, (vtotal + 1) & 0xFF);
1085 WREG_CRT(23, 0xc3);
1086 WREG_CRT(24, vdisplay & 0xFF);
1088 ext_vga[0] = 0;
1089 ext_vga[5] = 0;
1091 /* TODO interlace */
1093 ext_vga[0] |= (pitch & 0x300) >> 4;
1094 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1095 ((hdisplay & 0x100) >> 7) |
1096 ((hsyncstart & 0x100) >> 6) |
1097 (htotal & 0x40);
1098 ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1099 ((vdisplay & 0x400) >> 8) |
1100 ((vdisplay & 0xc00) >> 7) |
1101 ((vsyncstart & 0xc00) >> 5) |
1102 ((vdisplay & 0x400) >> 3);
1103 if (fb->format->cpp[0] * 8 == 24)
1104 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1105 else
1106 ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1107 ext_vga[4] = 0;
1108 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1109 ext_vga[1] |= 0x88;
1111 /* Set pixel clocks */
1112 misc = 0x2d;
1113 WREG8(MGA_MISC_OUT, misc);
1115 mga_crtc_set_plls(mdev, mode->clock);
1117 for (i = 0; i < 6; i++) {
1118 WREG_ECRT(i, ext_vga[i]);
1121 if (mdev->type == G200_ER)
1122 WREG_ECRT(0x24, 0x5);
1124 if (mdev->type == G200_EW3)
1125 WREG_ECRT(0x34, 0x5);
1127 if (mdev->type == G200_EV) {
1128 WREG_ECRT(6, 0);
1131 WREG_ECRT(0, ext_vga[0]);
1132 /* Enable mga pixel clock */
1133 misc = 0x2d;
1135 WREG8(MGA_MISC_OUT, misc);
1137 if (adjusted_mode)
1138 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1140 mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1142 /* reset tagfifo */
1143 if (mdev->type == G200_ER) {
1144 u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1145 u8 seq1;
1147 /* screen off */
1148 WREG8(MGAREG_SEQ_INDEX, 0x01);
1149 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1150 WREG8(MGAREG_SEQ_DATA, seq1);
1152 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1153 udelay(1000);
1154 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1156 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1160 if (IS_G200_SE(mdev)) {
1161 if (mdev->unique_rev_id >= 0x04) {
1162 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1163 WREG8(MGAREG_CRTCEXT_DATA, 0);
1164 } else if (mdev->unique_rev_id >= 0x02) {
1165 u8 hi_pri_lvl;
1166 u32 bpp;
1167 u32 mb;
1169 if (fb->format->cpp[0] * 8 > 16)
1170 bpp = 32;
1171 else if (fb->format->cpp[0] * 8 > 8)
1172 bpp = 16;
1173 else
1174 bpp = 8;
1176 mb = (mode->clock * bpp) / 1000;
1177 if (mb > 3100)
1178 hi_pri_lvl = 0;
1179 else if (mb > 2600)
1180 hi_pri_lvl = 1;
1181 else if (mb > 1900)
1182 hi_pri_lvl = 2;
1183 else if (mb > 1160)
1184 hi_pri_lvl = 3;
1185 else if (mb > 440)
1186 hi_pri_lvl = 4;
1187 else
1188 hi_pri_lvl = 5;
1190 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1191 WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1192 } else {
1193 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1194 if (mdev->unique_rev_id >= 0x01)
1195 WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1196 else
1197 WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1200 return 0;
1203 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1204 static int mga_suspend(struct drm_crtc *crtc)
1206 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1207 struct drm_device *dev = crtc->dev;
1208 struct mga_device *mdev = dev->dev_private;
1209 struct pci_dev *pdev = dev->pdev;
1210 int option;
1212 if (mdev->suspended)
1213 return 0;
1215 WREG_SEQ(1, 0x20);
1216 WREG_ECRT(1, 0x30);
1217 /* Disable the pixel clock */
1218 WREG_DAC(0x1a, 0x05);
1219 /* Power down the DAC */
1220 WREG_DAC(0x1e, 0x18);
1221 /* Power down the pixel PLL */
1222 WREG_DAC(0x1a, 0x0d);
1224 /* Disable PLLs and clocks */
1225 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1226 option &= ~(0x1F8024);
1227 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1228 pci_set_power_state(pdev, PCI_D3hot);
1229 pci_disable_device(pdev);
1231 mdev->suspended = true;
1233 return 0;
1236 static int mga_resume(struct drm_crtc *crtc)
1238 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1239 struct drm_device *dev = crtc->dev;
1240 struct mga_device *mdev = dev->dev_private;
1241 struct pci_dev *pdev = dev->pdev;
1242 int option;
1244 if (!mdev->suspended)
1245 return 0;
1247 pci_set_power_state(pdev, PCI_D0);
1248 pci_enable_device(pdev);
1250 /* Disable sysclk */
1251 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1252 option &= ~(0x4);
1253 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1255 mdev->suspended = false;
1257 return 0;
1260 #endif
1262 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1264 struct drm_device *dev = crtc->dev;
1265 struct mga_device *mdev = dev->dev_private;
1266 u8 seq1 = 0, crtcext1 = 0;
1268 switch (mode) {
1269 case DRM_MODE_DPMS_ON:
1270 seq1 = 0;
1271 crtcext1 = 0;
1272 mga_crtc_load_lut(crtc);
1273 break;
1274 case DRM_MODE_DPMS_STANDBY:
1275 seq1 = 0x20;
1276 crtcext1 = 0x10;
1277 break;
1278 case DRM_MODE_DPMS_SUSPEND:
1279 seq1 = 0x20;
1280 crtcext1 = 0x20;
1281 break;
1282 case DRM_MODE_DPMS_OFF:
1283 seq1 = 0x20;
1284 crtcext1 = 0x30;
1285 break;
1288 #if 0
1289 if (mode == DRM_MODE_DPMS_OFF) {
1290 mga_suspend(crtc);
1292 #endif
1293 WREG8(MGAREG_SEQ_INDEX, 0x01);
1294 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1295 mga_wait_vsync(mdev);
1296 mga_wait_busy(mdev);
1297 WREG8(MGAREG_SEQ_DATA, seq1);
1298 msleep(20);
1299 WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1300 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1301 WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1303 #if 0
1304 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1305 mga_resume(crtc);
1306 drm_helper_resume_force_mode(dev);
1308 #endif
1312 * This is called before a mode is programmed. A typical use might be to
1313 * enable DPMS during the programming to avoid seeing intermediate stages,
1314 * but that's not relevant to us
1316 static void mga_crtc_prepare(struct drm_crtc *crtc)
1318 struct drm_device *dev = crtc->dev;
1319 struct mga_device *mdev = dev->dev_private;
1320 u8 tmp;
1322 /* mga_resume(crtc);*/
1324 WREG8(MGAREG_CRTC_INDEX, 0x11);
1325 tmp = RREG8(MGAREG_CRTC_DATA);
1326 WREG_CRT(0x11, tmp | 0x80);
1328 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1329 WREG_SEQ(0, 1);
1330 msleep(50);
1331 WREG_SEQ(1, 0x20);
1332 msleep(20);
1333 } else {
1334 WREG8(MGAREG_SEQ_INDEX, 0x1);
1335 tmp = RREG8(MGAREG_SEQ_DATA);
1337 /* start sync reset */
1338 WREG_SEQ(0, 1);
1339 WREG_SEQ(1, tmp | 0x20);
1342 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1343 mga_g200wb_prepare(crtc);
1345 WREG_CRT(17, 0);
1349 * This is called after a mode is programmed. It should reverse anything done
1350 * by the prepare function
1352 static void mga_crtc_commit(struct drm_crtc *crtc)
1354 struct drm_device *dev = crtc->dev;
1355 struct mga_device *mdev = dev->dev_private;
1356 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1357 u8 tmp;
1359 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1360 mga_g200wb_commit(crtc);
1362 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1363 msleep(50);
1364 WREG_SEQ(1, 0x0);
1365 msleep(20);
1366 WREG_SEQ(0, 0x3);
1367 } else {
1368 WREG8(MGAREG_SEQ_INDEX, 0x1);
1369 tmp = RREG8(MGAREG_SEQ_DATA);
1371 tmp &= ~0x20;
1372 WREG_SEQ(0x1, tmp);
1373 WREG_SEQ(0, 3);
1375 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1379 * The core can pass us a set of gamma values to program. We actually only
1380 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1381 * but it's a requirement that we provide the function
1383 static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1384 u16 *blue, uint32_t size,
1385 struct drm_modeset_acquire_ctx *ctx)
1387 mga_crtc_load_lut(crtc);
1389 return 0;
1392 /* Simple cleanup function */
1393 static void mga_crtc_destroy(struct drm_crtc *crtc)
1395 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1397 drm_crtc_cleanup(crtc);
1398 kfree(mga_crtc);
1401 static void mga_crtc_disable(struct drm_crtc *crtc)
1403 DRM_DEBUG_KMS("\n");
1404 mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1405 if (crtc->primary->fb) {
1406 struct drm_framebuffer *fb = crtc->primary->fb;
1407 struct drm_gem_vram_object *gbo =
1408 drm_gem_vram_of_gem(fb->obj[0]);
1409 drm_gem_vram_unpin(gbo);
1411 crtc->primary->fb = NULL;
1414 /* These provide the minimum set of functions required to handle a CRTC */
1415 static const struct drm_crtc_funcs mga_crtc_funcs = {
1416 .cursor_set = mgag200_crtc_cursor_set,
1417 .cursor_move = mgag200_crtc_cursor_move,
1418 .gamma_set = mga_crtc_gamma_set,
1419 .set_config = drm_crtc_helper_set_config,
1420 .destroy = mga_crtc_destroy,
1423 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1424 .disable = mga_crtc_disable,
1425 .dpms = mga_crtc_dpms,
1426 .mode_set = mga_crtc_mode_set,
1427 .mode_set_base = mga_crtc_mode_set_base,
1428 .prepare = mga_crtc_prepare,
1429 .commit = mga_crtc_commit,
1432 /* CRTC setup */
1433 static void mga_crtc_init(struct mga_device *mdev)
1435 struct mga_crtc *mga_crtc;
1437 mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1438 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1439 GFP_KERNEL);
1441 if (mga_crtc == NULL)
1442 return;
1444 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1446 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1447 mdev->mode_info.crtc = mga_crtc;
1449 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1453 * The encoder comes after the CRTC in the output pipeline, but before
1454 * the connector. It's responsible for ensuring that the digital
1455 * stream is appropriately converted into the output format. Setup is
1456 * very simple in this case - all we have to do is inform qemu of the
1457 * colour depth in order to ensure that it displays appropriately
1461 * These functions are analagous to those in the CRTC code, but are intended
1462 * to handle any encoder-specific limitations
1464 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1465 struct drm_display_mode *mode,
1466 struct drm_display_mode *adjusted_mode)
1471 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1473 return;
1476 static void mga_encoder_prepare(struct drm_encoder *encoder)
1480 static void mga_encoder_commit(struct drm_encoder *encoder)
1484 static void mga_encoder_destroy(struct drm_encoder *encoder)
1486 struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1487 drm_encoder_cleanup(encoder);
1488 kfree(mga_encoder);
1491 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1492 .dpms = mga_encoder_dpms,
1493 .mode_set = mga_encoder_mode_set,
1494 .prepare = mga_encoder_prepare,
1495 .commit = mga_encoder_commit,
1498 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1499 .destroy = mga_encoder_destroy,
1502 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1504 struct drm_encoder *encoder;
1505 struct mga_encoder *mga_encoder;
1507 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1508 if (!mga_encoder)
1509 return NULL;
1511 encoder = &mga_encoder->base;
1512 encoder->possible_crtcs = 0x1;
1514 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1515 DRM_MODE_ENCODER_DAC, NULL);
1516 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1518 return encoder;
1522 static int mga_vga_get_modes(struct drm_connector *connector)
1524 struct mga_connector *mga_connector = to_mga_connector(connector);
1525 struct edid *edid;
1526 int ret = 0;
1528 edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1529 if (edid) {
1530 drm_connector_update_edid_property(connector, edid);
1531 ret = drm_add_edid_modes(connector, edid);
1532 kfree(edid);
1534 return ret;
1537 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1538 int bits_per_pixel)
1540 uint32_t total_area, divisor;
1541 uint64_t active_area, pixels_per_second, bandwidth;
1542 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1544 divisor = 1024;
1546 if (!mode->htotal || !mode->vtotal || !mode->clock)
1547 return 0;
1549 active_area = mode->hdisplay * mode->vdisplay;
1550 total_area = mode->htotal * mode->vtotal;
1552 pixels_per_second = active_area * mode->clock * 1000;
1553 do_div(pixels_per_second, total_area);
1555 bandwidth = pixels_per_second * bytes_per_pixel * 100;
1556 do_div(bandwidth, divisor);
1558 return (uint32_t)(bandwidth);
1561 #define MODE_BANDWIDTH MODE_BAD
1563 static enum drm_mode_status mga_vga_mode_valid(struct drm_connector *connector,
1564 struct drm_display_mode *mode)
1566 struct drm_device *dev = connector->dev;
1567 struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1568 int bpp = 32;
1570 if (IS_G200_SE(mdev)) {
1571 if (mdev->unique_rev_id == 0x01) {
1572 if (mode->hdisplay > 1600)
1573 return MODE_VIRTUAL_X;
1574 if (mode->vdisplay > 1200)
1575 return MODE_VIRTUAL_Y;
1576 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1577 > (24400 * 1024))
1578 return MODE_BANDWIDTH;
1579 } else if (mdev->unique_rev_id == 0x02) {
1580 if (mode->hdisplay > 1920)
1581 return MODE_VIRTUAL_X;
1582 if (mode->vdisplay > 1200)
1583 return MODE_VIRTUAL_Y;
1584 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1585 > (30100 * 1024))
1586 return MODE_BANDWIDTH;
1587 } else {
1588 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1589 > (55000 * 1024))
1590 return MODE_BANDWIDTH;
1592 } else if (mdev->type == G200_WB) {
1593 if (mode->hdisplay > 1280)
1594 return MODE_VIRTUAL_X;
1595 if (mode->vdisplay > 1024)
1596 return MODE_VIRTUAL_Y;
1597 if (mga_vga_calculate_mode_bandwidth(mode, bpp) >
1598 (31877 * 1024))
1599 return MODE_BANDWIDTH;
1600 } else if (mdev->type == G200_EV &&
1601 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1602 > (32700 * 1024))) {
1603 return MODE_BANDWIDTH;
1604 } else if (mdev->type == G200_EH &&
1605 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1606 > (37500 * 1024))) {
1607 return MODE_BANDWIDTH;
1608 } else if (mdev->type == G200_ER &&
1609 (mga_vga_calculate_mode_bandwidth(mode,
1610 bpp) > (55000 * 1024))) {
1611 return MODE_BANDWIDTH;
1614 if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1615 (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1616 return MODE_H_ILLEGAL;
1619 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1620 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1621 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1622 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1623 return MODE_BAD;
1626 /* Validate the mode input by the user */
1627 if (connector->cmdline_mode.specified) {
1628 if (connector->cmdline_mode.bpp_specified)
1629 bpp = connector->cmdline_mode.bpp;
1632 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->vram_fb_available) {
1633 if (connector->cmdline_mode.specified)
1634 connector->cmdline_mode.specified = false;
1635 return MODE_BAD;
1638 return MODE_OK;
1641 static void mga_connector_destroy(struct drm_connector *connector)
1643 struct mga_connector *mga_connector = to_mga_connector(connector);
1644 mgag200_i2c_destroy(mga_connector->i2c);
1645 drm_connector_cleanup(connector);
1646 kfree(connector);
1649 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1650 .get_modes = mga_vga_get_modes,
1651 .mode_valid = mga_vga_mode_valid,
1654 static const struct drm_connector_funcs mga_vga_connector_funcs = {
1655 .dpms = drm_helper_connector_dpms,
1656 .fill_modes = drm_helper_probe_single_connector_modes,
1657 .destroy = mga_connector_destroy,
1660 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1662 struct drm_connector *connector;
1663 struct mga_connector *mga_connector;
1665 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1666 if (!mga_connector)
1667 return NULL;
1669 connector = &mga_connector->base;
1670 mga_connector->i2c = mgag200_i2c_create(dev);
1671 if (!mga_connector->i2c)
1672 DRM_ERROR("failed to add ddc bus\n");
1674 drm_connector_init_with_ddc(dev, connector,
1675 &mga_vga_connector_funcs,
1676 DRM_MODE_CONNECTOR_VGA,
1677 &mga_connector->i2c->adapter);
1679 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1681 drm_connector_register(connector);
1683 return connector;
1687 int mgag200_modeset_init(struct mga_device *mdev)
1689 struct drm_encoder *encoder;
1690 struct drm_connector *connector;
1692 mdev->mode_info.mode_config_initialized = true;
1694 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1695 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1697 mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1699 mga_crtc_init(mdev);
1701 encoder = mga_encoder_init(mdev->dev);
1702 if (!encoder) {
1703 DRM_ERROR("mga_encoder_init failed\n");
1704 return -1;
1707 connector = mga_vga_init(mdev->dev);
1708 if (!connector) {
1709 DRM_ERROR("mga_vga_init failed\n");
1710 return -1;
1713 drm_connector_attach_encoder(connector, encoder);
1715 return 0;
1718 void mgag200_modeset_fini(struct mga_device *mdev)