treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_crtc.c
blobbf513411b243a10b820706056a4352d58fec3b97
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/sort.h>
10 #include <linux/debugfs.h>
11 #include <linux/ktime.h>
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_flip_work.h>
15 #include <drm/drm_mode.h>
16 #include <drm/drm_probe_helper.h>
17 #include <drm/drm_rect.h>
18 #include <drm/drm_vblank.h>
20 #include "dpu_kms.h"
21 #include "dpu_hw_lm.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_crtc.h"
24 #include "dpu_plane.h"
25 #include "dpu_encoder.h"
26 #include "dpu_vbif.h"
27 #include "dpu_core_perf.h"
28 #include "dpu_trace.h"
30 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0
31 #define DPU_DRM_BLEND_OP_OPAQUE 1
32 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2
33 #define DPU_DRM_BLEND_OP_COVERAGE 3
34 #define DPU_DRM_BLEND_OP_MAX 4
36 /* layer mixer index on dpu_crtc */
37 #define LEFT_MIXER 0
38 #define RIGHT_MIXER 1
40 /* timeout in ms waiting for frame done */
41 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
43 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
45 struct msm_drm_private *priv = crtc->dev->dev_private;
47 return to_dpu_kms(priv->kms);
50 static void dpu_crtc_destroy(struct drm_crtc *crtc)
52 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
54 DPU_DEBUG("\n");
56 if (!crtc)
57 return;
59 drm_crtc_cleanup(crtc);
60 kfree(dpu_crtc);
63 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
64 struct dpu_plane_state *pstate, struct dpu_format *format)
66 struct dpu_hw_mixer *lm = mixer->hw_lm;
67 uint32_t blend_op;
68 struct drm_format_name_buf format_name;
70 /* default to opaque blending */
71 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
72 DPU_BLEND_BG_ALPHA_BG_CONST;
74 if (format->alpha_enable) {
75 /* coverage blending */
76 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
77 DPU_BLEND_BG_ALPHA_FG_PIXEL |
78 DPU_BLEND_BG_INV_ALPHA;
81 lm->ops.setup_blend_config(lm, pstate->stage,
82 0xFF, 0, blend_op);
84 DPU_DEBUG("format:%s, alpha_en:%u blend_op:0x%x\n",
85 drm_get_format_name(format->base.pixel_format, &format_name),
86 format->alpha_enable, blend_op);
89 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
91 struct dpu_crtc *dpu_crtc;
92 struct dpu_crtc_state *crtc_state;
93 int lm_idx, lm_horiz_position;
95 dpu_crtc = to_dpu_crtc(crtc);
96 crtc_state = to_dpu_crtc_state(crtc->state);
98 lm_horiz_position = 0;
99 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
100 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
101 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
102 struct dpu_hw_mixer_cfg cfg;
104 if (!lm_roi || !drm_rect_visible(lm_roi))
105 continue;
107 cfg.out_width = drm_rect_width(lm_roi);
108 cfg.out_height = drm_rect_height(lm_roi);
109 cfg.right_mixer = lm_horiz_position++;
110 cfg.flags = 0;
111 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
115 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
116 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer)
118 struct drm_plane *plane;
119 struct drm_framebuffer *fb;
120 struct drm_plane_state *state;
121 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
122 struct dpu_plane_state *pstate = NULL;
123 struct dpu_format *format;
124 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
125 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg;
127 u32 flush_mask;
128 uint32_t stage_idx, lm_idx;
129 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
130 bool bg_alpha_enable = false;
132 drm_atomic_crtc_for_each_plane(plane, crtc) {
133 state = plane->state;
134 if (!state)
135 continue;
137 pstate = to_dpu_plane_state(state);
138 fb = state->fb;
140 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
142 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n",
143 crtc->base.id,
144 pstate->stage,
145 plane->base.id,
146 dpu_plane_pipe(plane) - SSPP_VIG0,
147 state->fb ? state->fb->base.id : -1);
149 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
151 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
152 bg_alpha_enable = true;
154 stage_idx = zpos_cnt[pstate->stage]++;
155 stage_cfg->stage[pstate->stage][stage_idx] =
156 dpu_plane_pipe(plane);
157 stage_cfg->multirect_index[pstate->stage][stage_idx] =
158 pstate->multirect_index;
160 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
161 state, pstate, stage_idx,
162 dpu_plane_pipe(plane) - SSPP_VIG0,
163 format->base.pixel_format,
164 fb ? fb->modifier : 0);
166 /* blend config update */
167 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
168 _dpu_crtc_setup_blend_cfg(mixer + lm_idx,
169 pstate, format);
171 mixer[lm_idx].flush_mask |= flush_mask;
173 if (bg_alpha_enable && !format->alpha_enable)
174 mixer[lm_idx].mixer_op_mode = 0;
175 else
176 mixer[lm_idx].mixer_op_mode |=
177 1 << pstate->stage;
181 _dpu_crtc_program_lm_output_roi(crtc);
185 * _dpu_crtc_blend_setup - configure crtc mixers
186 * @crtc: Pointer to drm crtc structure
188 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
190 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
191 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
192 struct dpu_crtc_mixer *mixer = cstate->mixers;
193 struct dpu_hw_ctl *ctl;
194 struct dpu_hw_mixer *lm;
195 int i;
197 DPU_DEBUG("%s\n", dpu_crtc->name);
199 for (i = 0; i < cstate->num_mixers; i++) {
200 mixer[i].mixer_op_mode = 0;
201 mixer[i].flush_mask = 0;
202 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
203 mixer[i].lm_ctl->ops.clear_all_blendstages(
204 mixer[i].lm_ctl);
207 /* initialize stage cfg */
208 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
210 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer);
212 for (i = 0; i < cstate->num_mixers; i++) {
213 ctl = mixer[i].lm_ctl;
214 lm = mixer[i].hw_lm;
216 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
218 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
219 mixer[i].hw_lm->idx);
221 /* stage config flush mask */
222 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
224 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
225 mixer[i].hw_lm->idx - LM_0,
226 mixer[i].mixer_op_mode,
227 ctl->idx - CTL_0,
228 mixer[i].flush_mask);
230 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
231 &dpu_crtc->stage_cfg);
236 * _dpu_crtc_complete_flip - signal pending page_flip events
237 * Any pending vblank events are added to the vblank_event_list
238 * so that the next vblank interrupt shall signal them.
239 * However PAGE_FLIP events are not handled through the vblank_event_list.
240 * This API signals any pending PAGE_FLIP events requested through
241 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
242 * @crtc: Pointer to drm crtc structure
244 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
246 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
247 struct drm_device *dev = crtc->dev;
248 unsigned long flags;
250 spin_lock_irqsave(&dev->event_lock, flags);
251 if (dpu_crtc->event) {
252 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
253 dpu_crtc->event);
254 trace_dpu_crtc_complete_flip(DRMID(crtc));
255 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
256 dpu_crtc->event = NULL;
258 spin_unlock_irqrestore(&dev->event_lock, flags);
261 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
263 struct drm_encoder *encoder;
265 if (!crtc) {
266 DPU_ERROR("invalid crtc\n");
267 return INTF_MODE_NONE;
271 * TODO: This function is called from dpu debugfs and as part of atomic
272 * check. When called from debugfs, the crtc->mutex must be held to
273 * read crtc->state. However reading crtc->state from atomic check isn't
274 * allowed (unless you have a good reason, a big comment, and a deep
275 * understanding of how the atomic/modeset locks work (<- and this is
276 * probably not possible)). So we'll keep the WARN_ON here for now, but
277 * really we need to figure out a better way to track our operating mode
279 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
281 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
282 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
283 return dpu_encoder_get_intf_mode(encoder);
285 return INTF_MODE_NONE;
288 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
290 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
292 /* keep statistics on vblank callback - with auto reset via debugfs */
293 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
294 dpu_crtc->vblank_cb_time = ktime_get();
295 else
296 dpu_crtc->vblank_cb_count++;
297 _dpu_crtc_complete_flip(crtc);
298 drm_crtc_handle_vblank(crtc);
299 trace_dpu_crtc_vblank_cb(DRMID(crtc));
302 static void dpu_crtc_frame_event_work(struct kthread_work *work)
304 struct dpu_crtc_frame_event *fevent = container_of(work,
305 struct dpu_crtc_frame_event, work);
306 struct drm_crtc *crtc = fevent->crtc;
307 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
308 unsigned long flags;
309 bool frame_done = false;
311 DPU_ATRACE_BEGIN("crtc_frame_event");
313 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
314 ktime_to_ns(fevent->ts));
316 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
317 | DPU_ENCODER_FRAME_EVENT_ERROR
318 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
320 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
321 /* ignore vblank when not pending */
322 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
323 /* release bandwidth and other resources */
324 trace_dpu_crtc_frame_event_done(DRMID(crtc),
325 fevent->event);
326 dpu_core_perf_crtc_release_bw(crtc);
327 } else {
328 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
329 fevent->event);
332 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE)
333 dpu_core_perf_crtc_update(crtc, 0, false);
335 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
336 | DPU_ENCODER_FRAME_EVENT_ERROR))
337 frame_done = true;
340 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
341 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
342 crtc->base.id, ktime_to_ns(fevent->ts));
344 if (frame_done)
345 complete_all(&dpu_crtc->frame_done_comp);
347 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
348 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
349 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
350 DPU_ATRACE_END("crtc_frame_event");
354 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
355 * registers this API to encoder for all frame event callbacks like
356 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
357 * from different context - IRQ, user thread, commit_thread, etc. Each event
358 * should be carefully reviewed and should be processed in proper task context
359 * to avoid schedulin delay or properly manage the irq context's bottom half
360 * processing.
362 static void dpu_crtc_frame_event_cb(void *data, u32 event)
364 struct drm_crtc *crtc = (struct drm_crtc *)data;
365 struct dpu_crtc *dpu_crtc;
366 struct msm_drm_private *priv;
367 struct dpu_crtc_frame_event *fevent;
368 unsigned long flags;
369 u32 crtc_id;
371 /* Nothing to do on idle event */
372 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
373 return;
375 dpu_crtc = to_dpu_crtc(crtc);
376 priv = crtc->dev->dev_private;
377 crtc_id = drm_crtc_index(crtc);
379 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
381 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
382 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
383 struct dpu_crtc_frame_event, list);
384 if (fevent)
385 list_del_init(&fevent->list);
386 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
388 if (!fevent) {
389 DRM_ERROR("crtc%d event %d overflow\n", crtc->base.id, event);
390 return;
393 fevent->event = event;
394 fevent->crtc = crtc;
395 fevent->ts = ktime_get();
396 kthread_queue_work(&priv->event_thread[crtc_id].worker, &fevent->work);
399 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
401 trace_dpu_crtc_complete_commit(DRMID(crtc));
404 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
405 struct drm_crtc_state *state)
407 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
408 struct drm_display_mode *adj_mode = &state->adjusted_mode;
409 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
410 int i;
412 for (i = 0; i < cstate->num_mixers; i++) {
413 struct drm_rect *r = &cstate->lm_bounds[i];
414 r->x1 = crtc_split_width * i;
415 r->y1 = 0;
416 r->x2 = r->x1 + crtc_split_width;
417 r->y2 = adj_mode->vdisplay;
419 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
422 drm_mode_debug_printmodeline(adj_mode);
425 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
426 struct drm_crtc_state *old_state)
428 struct dpu_crtc *dpu_crtc;
429 struct dpu_crtc_state *cstate;
430 struct drm_encoder *encoder;
431 struct drm_device *dev;
432 unsigned long flags;
433 struct dpu_crtc_smmu_state_data *smmu_state;
435 if (!crtc) {
436 DPU_ERROR("invalid crtc\n");
437 return;
440 if (!crtc->state->enable) {
441 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n",
442 crtc->base.id, crtc->state->enable);
443 return;
446 DPU_DEBUG("crtc%d\n", crtc->base.id);
448 dpu_crtc = to_dpu_crtc(crtc);
449 cstate = to_dpu_crtc_state(crtc->state);
450 dev = crtc->dev;
451 smmu_state = &dpu_crtc->smmu_state;
453 _dpu_crtc_setup_lm_bounds(crtc, crtc->state);
455 if (dpu_crtc->event) {
456 WARN_ON(dpu_crtc->event);
457 } else {
458 spin_lock_irqsave(&dev->event_lock, flags);
459 dpu_crtc->event = crtc->state->event;
460 crtc->state->event = NULL;
461 spin_unlock_irqrestore(&dev->event_lock, flags);
464 /* encoder will trigger pending mask now */
465 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
466 dpu_encoder_trigger_kickoff_pending(encoder);
469 * If no mixers have been allocated in dpu_crtc_atomic_check(),
470 * it means we are trying to flush a CRTC whose state is disabled:
471 * nothing else needs to be done.
473 if (unlikely(!cstate->num_mixers))
474 return;
476 _dpu_crtc_blend_setup(crtc);
479 * PP_DONE irq is only used by command mode for now.
480 * It is better to request pending before FLUSH and START trigger
481 * to make sure no pp_done irq missed.
482 * This is safe because no pp_done will happen before SW trigger
483 * in command mode.
487 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
488 struct drm_crtc_state *old_crtc_state)
490 struct dpu_crtc *dpu_crtc;
491 struct drm_device *dev;
492 struct drm_plane *plane;
493 struct msm_drm_private *priv;
494 struct msm_drm_thread *event_thread;
495 unsigned long flags;
496 struct dpu_crtc_state *cstate;
498 if (!crtc->state->enable) {
499 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n",
500 crtc->base.id, crtc->state->enable);
501 return;
504 DPU_DEBUG("crtc%d\n", crtc->base.id);
506 dpu_crtc = to_dpu_crtc(crtc);
507 cstate = to_dpu_crtc_state(crtc->state);
508 dev = crtc->dev;
509 priv = dev->dev_private;
511 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
512 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
513 return;
516 event_thread = &priv->event_thread[crtc->index];
518 if (dpu_crtc->event) {
519 DPU_DEBUG("already received dpu_crtc->event\n");
520 } else {
521 spin_lock_irqsave(&dev->event_lock, flags);
522 dpu_crtc->event = crtc->state->event;
523 crtc->state->event = NULL;
524 spin_unlock_irqrestore(&dev->event_lock, flags);
528 * If no mixers has been allocated in dpu_crtc_atomic_check(),
529 * it means we are trying to flush a CRTC whose state is disabled:
530 * nothing else needs to be done.
532 if (unlikely(!cstate->num_mixers))
533 return;
536 * For planes without commit update, drm framework will not add
537 * those planes to current state since hardware update is not
538 * required. However, if those planes were power collapsed since
539 * last commit cycle, driver has to restore the hardware state
540 * of those planes explicitly here prior to plane flush.
542 drm_atomic_crtc_for_each_plane(plane, crtc)
543 dpu_plane_restore(plane);
545 /* update performance setting before crtc kickoff */
546 dpu_core_perf_crtc_update(crtc, 1, false);
549 * Final plane updates: Give each plane a chance to complete all
550 * required writes/flushing before crtc's "flush
551 * everything" call below.
553 drm_atomic_crtc_for_each_plane(plane, crtc) {
554 if (dpu_crtc->smmu_state.transition_error)
555 dpu_plane_set_error(plane, true);
556 dpu_plane_flush(plane);
559 /* Kickoff will be scheduled by outer layer */
563 * dpu_crtc_destroy_state - state destroy hook
564 * @crtc: drm CRTC
565 * @state: CRTC state object to release
567 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
568 struct drm_crtc_state *state)
570 struct dpu_crtc *dpu_crtc;
571 struct dpu_crtc_state *cstate;
573 if (!crtc || !state) {
574 DPU_ERROR("invalid argument(s)\n");
575 return;
578 dpu_crtc = to_dpu_crtc(crtc);
579 cstate = to_dpu_crtc_state(state);
581 DPU_DEBUG("crtc%d\n", crtc->base.id);
583 __drm_atomic_helper_crtc_destroy_state(state);
585 kfree(cstate);
588 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
590 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
591 int ret, rc = 0;
593 if (!atomic_read(&dpu_crtc->frame_pending)) {
594 DPU_DEBUG("no frames pending\n");
595 return 0;
598 DPU_ATRACE_BEGIN("frame done completion wait");
599 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
600 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
601 if (!ret) {
602 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
603 rc = -ETIMEDOUT;
605 DPU_ATRACE_END("frame done completion wait");
607 return rc;
610 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
612 struct drm_encoder *encoder;
613 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
614 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
615 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
618 * If no mixers has been allocated in dpu_crtc_atomic_check(),
619 * it means we are trying to start a CRTC whose state is disabled:
620 * nothing else needs to be done.
622 if (unlikely(!cstate->num_mixers))
623 return;
625 DPU_ATRACE_BEGIN("crtc_commit");
628 * Encoder will flush/start now, unless it has a tx pending. If so, it
629 * may delay and flush at an irq event (e.g. ppdone)
631 drm_for_each_encoder_mask(encoder, crtc->dev,
632 crtc->state->encoder_mask)
633 dpu_encoder_prepare_for_kickoff(encoder);
635 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
636 /* acquire bandwidth and other resources */
637 DPU_DEBUG("crtc%d first commit\n", crtc->base.id);
638 } else
639 DPU_DEBUG("crtc%d commit\n", crtc->base.id);
641 dpu_crtc->play_count++;
643 dpu_vbif_clear_errors(dpu_kms);
645 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
646 dpu_encoder_kickoff(encoder);
648 reinit_completion(&dpu_crtc->frame_done_comp);
649 DPU_ATRACE_END("crtc_commit");
652 static void dpu_crtc_reset(struct drm_crtc *crtc)
654 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
656 if (crtc->state)
657 dpu_crtc_destroy_state(crtc, crtc->state);
659 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
663 * dpu_crtc_duplicate_state - state duplicate hook
664 * @crtc: Pointer to drm crtc structure
665 * @Returns: Pointer to new drm_crtc_state structure
667 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
669 struct dpu_crtc *dpu_crtc;
670 struct dpu_crtc_state *cstate, *old_cstate;
672 if (!crtc || !crtc->state) {
673 DPU_ERROR("invalid argument(s)\n");
674 return NULL;
677 dpu_crtc = to_dpu_crtc(crtc);
678 old_cstate = to_dpu_crtc_state(crtc->state);
679 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
680 if (!cstate) {
681 DPU_ERROR("failed to allocate state\n");
682 return NULL;
685 /* duplicate base helper */
686 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
688 return &cstate->base;
691 static void dpu_crtc_disable(struct drm_crtc *crtc,
692 struct drm_crtc_state *old_crtc_state)
694 struct dpu_crtc *dpu_crtc;
695 struct dpu_crtc_state *cstate;
696 struct drm_display_mode *mode;
697 struct drm_encoder *encoder;
698 struct msm_drm_private *priv;
699 unsigned long flags;
700 bool release_bandwidth = false;
702 if (!crtc || !crtc->state) {
703 DPU_ERROR("invalid crtc\n");
704 return;
706 dpu_crtc = to_dpu_crtc(crtc);
707 cstate = to_dpu_crtc_state(crtc->state);
708 mode = &cstate->base.adjusted_mode;
709 priv = crtc->dev->dev_private;
711 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
713 /* Disable/save vblank irq handling */
714 drm_crtc_vblank_off(crtc);
716 drm_for_each_encoder_mask(encoder, crtc->dev,
717 old_crtc_state->encoder_mask) {
718 /* in video mode, we hold an extra bandwidth reference
719 * as we cannot drop bandwidth at frame-done if any
720 * crtc is being used in video mode.
722 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
723 release_bandwidth = true;
724 dpu_encoder_assign_crtc(encoder, NULL);
727 /* wait for frame_event_done completion */
728 if (_dpu_crtc_wait_for_frame_done(crtc))
729 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
730 crtc->base.id,
731 atomic_read(&dpu_crtc->frame_pending));
733 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
734 dpu_crtc->enabled = false;
736 if (atomic_read(&dpu_crtc->frame_pending)) {
737 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
738 atomic_read(&dpu_crtc->frame_pending));
739 if (release_bandwidth)
740 dpu_core_perf_crtc_release_bw(crtc);
741 atomic_set(&dpu_crtc->frame_pending, 0);
744 dpu_core_perf_crtc_update(crtc, 0, true);
746 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
747 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
749 memset(cstate->mixers, 0, sizeof(cstate->mixers));
750 cstate->num_mixers = 0;
752 /* disable clk & bw control until clk & bw properties are set */
753 cstate->bw_control = false;
754 cstate->bw_split_vote = false;
756 if (crtc->state->event && !crtc->state->active) {
757 spin_lock_irqsave(&crtc->dev->event_lock, flags);
758 drm_crtc_send_vblank_event(crtc, crtc->state->event);
759 crtc->state->event = NULL;
760 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
763 pm_runtime_put_sync(crtc->dev->dev);
766 static void dpu_crtc_enable(struct drm_crtc *crtc,
767 struct drm_crtc_state *old_crtc_state)
769 struct dpu_crtc *dpu_crtc;
770 struct drm_encoder *encoder;
771 struct msm_drm_private *priv;
772 bool request_bandwidth;
774 if (!crtc) {
775 DPU_ERROR("invalid crtc\n");
776 return;
778 priv = crtc->dev->dev_private;
780 pm_runtime_get_sync(crtc->dev->dev);
782 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
783 dpu_crtc = to_dpu_crtc(crtc);
785 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
786 /* in video mode, we hold an extra bandwidth reference
787 * as we cannot drop bandwidth at frame-done if any
788 * crtc is being used in video mode.
790 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
791 request_bandwidth = true;
792 dpu_encoder_register_frame_event_callback(encoder,
793 dpu_crtc_frame_event_cb, (void *)crtc);
796 if (request_bandwidth)
797 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
799 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
800 dpu_crtc->enabled = true;
802 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
803 dpu_encoder_assign_crtc(encoder, crtc);
805 /* Enable/restore vblank irq handling */
806 drm_crtc_vblank_on(crtc);
809 struct plane_state {
810 struct dpu_plane_state *dpu_pstate;
811 const struct drm_plane_state *drm_pstate;
812 int stage;
813 u32 pipe_id;
816 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
817 struct drm_crtc_state *state)
819 struct dpu_crtc *dpu_crtc;
820 struct plane_state *pstates;
821 struct dpu_crtc_state *cstate;
823 const struct drm_plane_state *pstate;
824 struct drm_plane *plane;
825 struct drm_display_mode *mode;
827 int cnt = 0, rc = 0, mixer_width, i, z_pos;
829 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
830 int multirect_count = 0;
831 const struct drm_plane_state *pipe_staged[SSPP_MAX];
832 int left_zpos_cnt = 0, right_zpos_cnt = 0;
833 struct drm_rect crtc_rect = { 0 };
835 if (!crtc) {
836 DPU_ERROR("invalid crtc\n");
837 return -EINVAL;
840 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
842 dpu_crtc = to_dpu_crtc(crtc);
843 cstate = to_dpu_crtc_state(state);
845 if (!state->enable || !state->active) {
846 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n",
847 crtc->base.id, state->enable, state->active);
848 goto end;
851 mode = &state->adjusted_mode;
852 DPU_DEBUG("%s: check", dpu_crtc->name);
854 /* force a full mode set if active state changed */
855 if (state->active_changed)
856 state->mode_changed = true;
858 memset(pipe_staged, 0, sizeof(pipe_staged));
860 mixer_width = mode->hdisplay / cstate->num_mixers;
862 _dpu_crtc_setup_lm_bounds(crtc, state);
864 crtc_rect.x2 = mode->hdisplay;
865 crtc_rect.y2 = mode->vdisplay;
867 /* get plane state for all drm planes associated with crtc state */
868 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
869 struct drm_rect dst, clip = crtc_rect;
871 if (IS_ERR_OR_NULL(pstate)) {
872 rc = PTR_ERR(pstate);
873 DPU_ERROR("%s: failed to get plane%d state, %d\n",
874 dpu_crtc->name, plane->base.id, rc);
875 goto end;
877 if (cnt >= DPU_STAGE_MAX * 4)
878 continue;
880 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate);
881 pstates[cnt].drm_pstate = pstate;
882 pstates[cnt].stage = pstate->normalized_zpos;
883 pstates[cnt].pipe_id = dpu_plane_pipe(plane);
885 if (pipe_staged[pstates[cnt].pipe_id]) {
886 multirect_plane[multirect_count].r0 =
887 pipe_staged[pstates[cnt].pipe_id];
888 multirect_plane[multirect_count].r1 = pstate;
889 multirect_count++;
891 pipe_staged[pstates[cnt].pipe_id] = NULL;
892 } else {
893 pipe_staged[pstates[cnt].pipe_id] = pstate;
896 cnt++;
898 dst = drm_plane_state_dest(pstate);
899 if (!drm_rect_intersect(&clip, &dst)) {
900 DPU_ERROR("invalid vertical/horizontal destination\n");
901 DPU_ERROR("display: " DRM_RECT_FMT " plane: "
902 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
903 DRM_RECT_ARG(&dst));
904 rc = -E2BIG;
905 goto end;
909 for (i = 1; i < SSPP_MAX; i++) {
910 if (pipe_staged[i]) {
911 dpu_plane_clear_multirect(pipe_staged[i]);
913 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
914 DPU_ERROR(
915 "r1 only virt plane:%d not supported\n",
916 pipe_staged[i]->plane->base.id);
917 rc = -EINVAL;
918 goto end;
923 z_pos = -1;
924 for (i = 0; i < cnt; i++) {
925 /* reset counts at every new blend stage */
926 if (pstates[i].stage != z_pos) {
927 left_zpos_cnt = 0;
928 right_zpos_cnt = 0;
929 z_pos = pstates[i].stage;
932 /* verify z_pos setting before using it */
933 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
934 DPU_ERROR("> %d plane stages assigned\n",
935 DPU_STAGE_MAX - DPU_STAGE_0);
936 rc = -EINVAL;
937 goto end;
938 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
939 if (left_zpos_cnt == 2) {
940 DPU_ERROR("> 2 planes @ stage %d on left\n",
941 z_pos);
942 rc = -EINVAL;
943 goto end;
945 left_zpos_cnt++;
947 } else {
948 if (right_zpos_cnt == 2) {
949 DPU_ERROR("> 2 planes @ stage %d on right\n",
950 z_pos);
951 rc = -EINVAL;
952 goto end;
954 right_zpos_cnt++;
957 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
958 DPU_DEBUG("%s: zpos %d", dpu_crtc->name, z_pos);
961 for (i = 0; i < multirect_count; i++) {
962 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
963 DPU_ERROR(
964 "multirect validation failed for planes (%d - %d)\n",
965 multirect_plane[i].r0->plane->base.id,
966 multirect_plane[i].r1->plane->base.id);
967 rc = -EINVAL;
968 goto end;
972 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
974 rc = dpu_core_perf_crtc_check(crtc, state);
975 if (rc) {
976 DPU_ERROR("crtc%d failed performance check %d\n",
977 crtc->base.id, rc);
978 goto end;
981 /* validate source split:
982 * use pstates sorted by stage to check planes on same stage
983 * we assume that all pipes are in source split so its valid to compare
984 * without taking into account left/right mixer placement
986 for (i = 1; i < cnt; i++) {
987 struct plane_state *prv_pstate, *cur_pstate;
988 struct drm_rect left_rect, right_rect;
989 int32_t left_pid, right_pid;
990 int32_t stage;
992 prv_pstate = &pstates[i - 1];
993 cur_pstate = &pstates[i];
994 if (prv_pstate->stage != cur_pstate->stage)
995 continue;
997 stage = cur_pstate->stage;
999 left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
1000 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
1002 right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
1003 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
1005 if (right_rect.x1 < left_rect.x1) {
1006 swap(left_pid, right_pid);
1007 swap(left_rect, right_rect);
1011 * - planes are enumerated in pipe-priority order such that
1012 * planes with lower drm_id must be left-most in a shared
1013 * blend-stage when using source split.
1014 * - planes in source split must be contiguous in width
1015 * - planes in source split must have same dest yoff and height
1017 if (right_pid < left_pid) {
1018 DPU_ERROR(
1019 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1020 stage, left_pid, right_pid);
1021 rc = -EINVAL;
1022 goto end;
1023 } else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1024 DPU_ERROR("non-contiguous coordinates for src split. "
1025 "stage: %d left: " DRM_RECT_FMT " right: "
1026 DRM_RECT_FMT "\n", stage,
1027 DRM_RECT_ARG(&left_rect),
1028 DRM_RECT_ARG(&right_rect));
1029 rc = -EINVAL;
1030 goto end;
1031 } else if (left_rect.y1 != right_rect.y1 ||
1032 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1033 DPU_ERROR("source split at stage: %d. invalid "
1034 "yoff/height: left: " DRM_RECT_FMT " right: "
1035 DRM_RECT_FMT "\n", stage,
1036 DRM_RECT_ARG(&left_rect),
1037 DRM_RECT_ARG(&right_rect));
1038 rc = -EINVAL;
1039 goto end;
1043 end:
1044 kfree(pstates);
1045 return rc;
1048 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1050 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1051 struct drm_encoder *enc;
1053 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1056 * Normally we would iterate through encoder_mask in crtc state to find
1057 * attached encoders. In this case, we might be disabling vblank _after_
1058 * encoder_mask has been cleared.
1060 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1061 * disable (which is also after encoder_mask is cleared). So instead of
1062 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1063 * currently assigned to our crtc.
1065 * Note also that this function cannot be called while crtc is disabled
1066 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1067 * about the assigned crtcs being inconsistent with the current state
1068 * (which means no need to worry about modeset locks).
1070 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1071 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1072 dpu_crtc);
1074 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1077 return 0;
1080 #ifdef CONFIG_DEBUG_FS
1081 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1083 struct dpu_crtc *dpu_crtc;
1084 struct dpu_plane_state *pstate = NULL;
1085 struct dpu_crtc_mixer *m;
1087 struct drm_crtc *crtc;
1088 struct drm_plane *plane;
1089 struct drm_display_mode *mode;
1090 struct drm_framebuffer *fb;
1091 struct drm_plane_state *state;
1092 struct dpu_crtc_state *cstate;
1094 int i, out_width;
1096 dpu_crtc = s->private;
1097 crtc = &dpu_crtc->base;
1099 drm_modeset_lock_all(crtc->dev);
1100 cstate = to_dpu_crtc_state(crtc->state);
1102 mode = &crtc->state->adjusted_mode;
1103 out_width = mode->hdisplay / cstate->num_mixers;
1105 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1106 mode->hdisplay, mode->vdisplay);
1108 seq_puts(s, "\n");
1110 for (i = 0; i < cstate->num_mixers; ++i) {
1111 m = &cstate->mixers[i];
1112 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1113 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1114 out_width, mode->vdisplay);
1117 seq_puts(s, "\n");
1119 drm_atomic_crtc_for_each_plane(plane, crtc) {
1120 pstate = to_dpu_plane_state(plane->state);
1121 state = plane->state;
1123 if (!pstate || !state)
1124 continue;
1126 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1127 pstate->stage);
1129 if (plane->state->fb) {
1130 fb = plane->state->fb;
1132 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1133 fb->base.id, (char *) &fb->format->format,
1134 fb->width, fb->height);
1135 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1136 seq_printf(s, "cpp[%d]:%u ",
1137 i, fb->format->cpp[i]);
1138 seq_puts(s, "\n\t");
1140 seq_printf(s, "modifier:%8llu ", fb->modifier);
1141 seq_puts(s, "\n");
1143 seq_puts(s, "\t");
1144 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1145 seq_printf(s, "pitches[%d]:%8u ", i,
1146 fb->pitches[i]);
1147 seq_puts(s, "\n");
1149 seq_puts(s, "\t");
1150 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1151 seq_printf(s, "offsets[%d]:%8u ", i,
1152 fb->offsets[i]);
1153 seq_puts(s, "\n");
1156 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1157 state->src_x, state->src_y, state->src_w, state->src_h);
1159 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1160 state->crtc_x, state->crtc_y, state->crtc_w,
1161 state->crtc_h);
1162 seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1163 pstate->multirect_mode, pstate->multirect_index);
1165 seq_puts(s, "\n");
1167 if (dpu_crtc->vblank_cb_count) {
1168 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1169 s64 diff_ms = ktime_to_ms(diff);
1170 s64 fps = diff_ms ? div_s64(
1171 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1173 seq_printf(s,
1174 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1175 fps, dpu_crtc->vblank_cb_count,
1176 ktime_to_ms(diff), dpu_crtc->play_count);
1178 /* reset time & count for next measurement */
1179 dpu_crtc->vblank_cb_count = 0;
1180 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1183 drm_modeset_unlock_all(crtc->dev);
1185 return 0;
1188 static int _dpu_debugfs_status_open(struct inode *inode, struct file *file)
1190 return single_open(file, _dpu_debugfs_status_show, inode->i_private);
1193 #define DEFINE_DPU_DEBUGFS_SEQ_FOPS(__prefix) \
1194 static int __prefix ## _open(struct inode *inode, struct file *file) \
1196 return single_open(file, __prefix ## _show, inode->i_private); \
1198 static const struct file_operations __prefix ## _fops = { \
1199 .owner = THIS_MODULE, \
1200 .open = __prefix ## _open, \
1201 .release = single_release, \
1202 .read = seq_read, \
1203 .llseek = seq_lseek, \
1206 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1208 struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1209 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1211 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1212 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1213 seq_printf(s, "core_clk_rate: %llu\n",
1214 dpu_crtc->cur_perf.core_clk_rate);
1215 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1216 seq_printf(s, "max_per_pipe_ib: %llu\n",
1217 dpu_crtc->cur_perf.max_per_pipe_ib);
1219 return 0;
1221 DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_crtc_debugfs_state);
1223 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1225 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1227 static const struct file_operations debugfs_status_fops = {
1228 .open = _dpu_debugfs_status_open,
1229 .read = seq_read,
1230 .llseek = seq_lseek,
1231 .release = single_release,
1234 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name,
1235 crtc->dev->primary->debugfs_root);
1237 debugfs_create_file("status", 0400,
1238 dpu_crtc->debugfs_root,
1239 dpu_crtc, &debugfs_status_fops);
1240 debugfs_create_file("state", 0600,
1241 dpu_crtc->debugfs_root,
1242 &dpu_crtc->base,
1243 &dpu_crtc_debugfs_state_fops);
1245 return 0;
1247 #else
1248 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1250 return 0;
1252 #endif /* CONFIG_DEBUG_FS */
1254 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1256 return _dpu_crtc_init_debugfs(crtc);
1259 static void dpu_crtc_early_unregister(struct drm_crtc *crtc)
1261 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1263 debugfs_remove_recursive(dpu_crtc->debugfs_root);
1266 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1267 .set_config = drm_atomic_helper_set_config,
1268 .destroy = dpu_crtc_destroy,
1269 .page_flip = drm_atomic_helper_page_flip,
1270 .reset = dpu_crtc_reset,
1271 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1272 .atomic_destroy_state = dpu_crtc_destroy_state,
1273 .late_register = dpu_crtc_late_register,
1274 .early_unregister = dpu_crtc_early_unregister,
1277 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1278 .atomic_disable = dpu_crtc_disable,
1279 .atomic_enable = dpu_crtc_enable,
1280 .atomic_check = dpu_crtc_atomic_check,
1281 .atomic_begin = dpu_crtc_atomic_begin,
1282 .atomic_flush = dpu_crtc_atomic_flush,
1285 /* initialize crtc */
1286 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1287 struct drm_plane *cursor)
1289 struct drm_crtc *crtc = NULL;
1290 struct dpu_crtc *dpu_crtc = NULL;
1291 int i;
1293 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1294 if (!dpu_crtc)
1295 return ERR_PTR(-ENOMEM);
1297 crtc = &dpu_crtc->base;
1298 crtc->dev = dev;
1300 spin_lock_init(&dpu_crtc->spin_lock);
1301 atomic_set(&dpu_crtc->frame_pending, 0);
1303 init_completion(&dpu_crtc->frame_done_comp);
1305 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1307 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1308 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1309 list_add(&dpu_crtc->frame_events[i].list,
1310 &dpu_crtc->frame_event_list);
1311 kthread_init_work(&dpu_crtc->frame_events[i].work,
1312 dpu_crtc_frame_event_work);
1315 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1316 NULL);
1318 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1320 /* save user friendly CRTC name for later */
1321 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1323 /* initialize event handling */
1324 spin_lock_init(&dpu_crtc->event_lock);
1326 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name);
1327 return crtc;