treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / msm / dsi / dsi_host.c
blob11ae5b8444c329f17b3193a22631e0df875fe707
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4 */
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/of_irq.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/spinlock.h>
21 #include <video/mipi_display.h>
23 #include "dsi.h"
24 #include "dsi.xml.h"
25 #include "sfpb.xml.h"
26 #include "dsi_cfg.h"
27 #include "msm_kms.h"
29 #define DSI_RESET_TOGGLE_DELAY_MS 20
31 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
33 u32 ver;
35 if (!major || !minor)
36 return -EINVAL;
39 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
40 * makes all other registers 4-byte shifted down.
42 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
43 * older, we read the DSI_VERSION register without any shift(offset
44 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
45 * the case of DSI6G, this has to be zero (the offset points to a
46 * scratch register which we never touch)
49 ver = msm_readl(base + REG_DSI_VERSION);
50 if (ver) {
51 /* older dsi host, there is no register shift */
52 ver = FIELD(ver, DSI_VERSION_MAJOR);
53 if (ver <= MSM_DSI_VER_MAJOR_V2) {
54 /* old versions */
55 *major = ver;
56 *minor = 0;
57 return 0;
58 } else {
59 return -EINVAL;
61 } else {
63 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
64 * registers are shifted down, read DSI_VERSION again with
65 * the shifted offset
67 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
68 ver = FIELD(ver, DSI_VERSION_MAJOR);
69 if (ver == MSM_DSI_VER_MAJOR_6G) {
70 /* 6G version */
71 *major = ver;
72 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
73 return 0;
74 } else {
75 return -EINVAL;
80 #define DSI_ERR_STATE_ACK 0x0000
81 #define DSI_ERR_STATE_TIMEOUT 0x0001
82 #define DSI_ERR_STATE_DLN0_PHY 0x0002
83 #define DSI_ERR_STATE_FIFO 0x0004
84 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008
85 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010
86 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020
88 #define DSI_CLK_CTRL_ENABLE_CLKS \
89 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
90 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
91 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
92 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
94 struct msm_dsi_host {
95 struct mipi_dsi_host base;
97 struct platform_device *pdev;
98 struct drm_device *dev;
100 int id;
102 void __iomem *ctrl_base;
103 struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
105 struct clk *bus_clks[DSI_BUS_CLK_MAX];
107 struct clk *byte_clk;
108 struct clk *esc_clk;
109 struct clk *pixel_clk;
110 struct clk *byte_clk_src;
111 struct clk *pixel_clk_src;
112 struct clk *byte_intf_clk;
114 u32 byte_clk_rate;
115 u32 pixel_clk_rate;
116 u32 esc_clk_rate;
118 /* DSI v2 specific clocks */
119 struct clk *src_clk;
120 struct clk *esc_clk_src;
121 struct clk *dsi_clk_src;
123 u32 src_clk_rate;
125 struct gpio_desc *disp_en_gpio;
126 struct gpio_desc *te_gpio;
128 const struct msm_dsi_cfg_handler *cfg_hnd;
130 struct completion dma_comp;
131 struct completion video_comp;
132 struct mutex dev_mutex;
133 struct mutex cmd_mutex;
134 spinlock_t intr_lock; /* Protect interrupt ctrl register */
136 u32 err_work_state;
137 struct work_struct err_work;
138 struct work_struct hpd_work;
139 struct workqueue_struct *workqueue;
141 /* DSI 6G TX buffer*/
142 struct drm_gem_object *tx_gem_obj;
144 /* DSI v2 TX buffer */
145 void *tx_buf;
146 dma_addr_t tx_buf_paddr;
148 int tx_size;
150 u8 *rx_buf;
152 struct regmap *sfpb;
154 struct drm_display_mode *mode;
156 /* connected device info */
157 struct device_node *device_node;
158 unsigned int channel;
159 unsigned int lanes;
160 enum mipi_dsi_pixel_format format;
161 unsigned long mode_flags;
163 /* lane data parsed via DT */
164 int dlane_swap;
165 int num_data_lanes;
167 u32 dma_cmd_ctrl_restore;
169 bool registered;
170 bool power_on;
171 bool enabled;
172 int irq;
175 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
177 switch (fmt) {
178 case MIPI_DSI_FMT_RGB565: return 16;
179 case MIPI_DSI_FMT_RGB666_PACKED: return 18;
180 case MIPI_DSI_FMT_RGB666:
181 case MIPI_DSI_FMT_RGB888:
182 default: return 24;
186 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
188 return msm_readl(msm_host->ctrl_base + reg);
190 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
192 msm_writel(data, msm_host->ctrl_base + reg);
195 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
196 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
198 static const struct msm_dsi_cfg_handler *dsi_get_config(
199 struct msm_dsi_host *msm_host)
201 const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
202 struct device *dev = &msm_host->pdev->dev;
203 struct regulator *gdsc_reg;
204 struct clk *ahb_clk;
205 int ret;
206 u32 major = 0, minor = 0;
208 gdsc_reg = regulator_get(dev, "gdsc");
209 if (IS_ERR(gdsc_reg)) {
210 pr_err("%s: cannot get gdsc\n", __func__);
211 goto exit;
214 ahb_clk = msm_clk_get(msm_host->pdev, "iface");
215 if (IS_ERR(ahb_clk)) {
216 pr_err("%s: cannot get interface clock\n", __func__);
217 goto put_gdsc;
220 pm_runtime_get_sync(dev);
222 ret = regulator_enable(gdsc_reg);
223 if (ret) {
224 pr_err("%s: unable to enable gdsc\n", __func__);
225 goto put_gdsc;
228 ret = clk_prepare_enable(ahb_clk);
229 if (ret) {
230 pr_err("%s: unable to enable ahb_clk\n", __func__);
231 goto disable_gdsc;
234 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
235 if (ret) {
236 pr_err("%s: Invalid version\n", __func__);
237 goto disable_clks;
240 cfg_hnd = msm_dsi_cfg_get(major, minor);
242 DBG("%s: Version %x:%x\n", __func__, major, minor);
244 disable_clks:
245 clk_disable_unprepare(ahb_clk);
246 disable_gdsc:
247 regulator_disable(gdsc_reg);
248 pm_runtime_put_sync(dev);
249 put_gdsc:
250 regulator_put(gdsc_reg);
251 exit:
252 return cfg_hnd;
255 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
257 return container_of(host, struct msm_dsi_host, base);
260 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
262 struct regulator_bulk_data *s = msm_host->supplies;
263 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
264 int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
265 int i;
267 DBG("");
268 for (i = num - 1; i >= 0; i--)
269 if (regs[i].disable_load >= 0)
270 regulator_set_load(s[i].consumer,
271 regs[i].disable_load);
273 regulator_bulk_disable(num, s);
276 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
278 struct regulator_bulk_data *s = msm_host->supplies;
279 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
280 int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
281 int ret, i;
283 DBG("");
284 for (i = 0; i < num; i++) {
285 if (regs[i].enable_load >= 0) {
286 ret = regulator_set_load(s[i].consumer,
287 regs[i].enable_load);
288 if (ret < 0) {
289 pr_err("regulator %d set op mode failed, %d\n",
290 i, ret);
291 goto fail;
296 ret = regulator_bulk_enable(num, s);
297 if (ret < 0) {
298 pr_err("regulator enable failed, %d\n", ret);
299 goto fail;
302 return 0;
304 fail:
305 for (i--; i >= 0; i--)
306 regulator_set_load(s[i].consumer, regs[i].disable_load);
307 return ret;
310 static int dsi_regulator_init(struct msm_dsi_host *msm_host)
312 struct regulator_bulk_data *s = msm_host->supplies;
313 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
314 int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
315 int i, ret;
317 for (i = 0; i < num; i++)
318 s[i].supply = regs[i].name;
320 ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
321 if (ret < 0) {
322 pr_err("%s: failed to init regulator, ret=%d\n",
323 __func__, ret);
324 return ret;
327 return 0;
330 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
332 struct platform_device *pdev = msm_host->pdev;
333 int ret = 0;
335 msm_host->src_clk = msm_clk_get(pdev, "src");
337 if (IS_ERR(msm_host->src_clk)) {
338 ret = PTR_ERR(msm_host->src_clk);
339 pr_err("%s: can't find src clock. ret=%d\n",
340 __func__, ret);
341 msm_host->src_clk = NULL;
342 return ret;
345 msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
346 if (!msm_host->esc_clk_src) {
347 ret = -ENODEV;
348 pr_err("%s: can't get esc clock parent. ret=%d\n",
349 __func__, ret);
350 return ret;
353 msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
354 if (!msm_host->dsi_clk_src) {
355 ret = -ENODEV;
356 pr_err("%s: can't get src clock parent. ret=%d\n",
357 __func__, ret);
360 return ret;
363 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
365 struct platform_device *pdev = msm_host->pdev;
366 int ret = 0;
368 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
369 if (IS_ERR(msm_host->byte_intf_clk)) {
370 ret = PTR_ERR(msm_host->byte_intf_clk);
371 pr_err("%s: can't find byte_intf clock. ret=%d\n",
372 __func__, ret);
375 return ret;
378 static int dsi_clk_init(struct msm_dsi_host *msm_host)
380 struct platform_device *pdev = msm_host->pdev;
381 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
382 const struct msm_dsi_config *cfg = cfg_hnd->cfg;
383 int i, ret = 0;
385 /* get bus clocks */
386 for (i = 0; i < cfg->num_bus_clks; i++) {
387 msm_host->bus_clks[i] = msm_clk_get(pdev,
388 cfg->bus_clk_names[i]);
389 if (IS_ERR(msm_host->bus_clks[i])) {
390 ret = PTR_ERR(msm_host->bus_clks[i]);
391 pr_err("%s: Unable to get %s clock, ret = %d\n",
392 __func__, cfg->bus_clk_names[i], ret);
393 goto exit;
397 /* get link and source clocks */
398 msm_host->byte_clk = msm_clk_get(pdev, "byte");
399 if (IS_ERR(msm_host->byte_clk)) {
400 ret = PTR_ERR(msm_host->byte_clk);
401 pr_err("%s: can't find dsi_byte clock. ret=%d\n",
402 __func__, ret);
403 msm_host->byte_clk = NULL;
404 goto exit;
407 msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
408 if (IS_ERR(msm_host->pixel_clk)) {
409 ret = PTR_ERR(msm_host->pixel_clk);
410 pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
411 __func__, ret);
412 msm_host->pixel_clk = NULL;
413 goto exit;
416 msm_host->esc_clk = msm_clk_get(pdev, "core");
417 if (IS_ERR(msm_host->esc_clk)) {
418 ret = PTR_ERR(msm_host->esc_clk);
419 pr_err("%s: can't find dsi_esc clock. ret=%d\n",
420 __func__, ret);
421 msm_host->esc_clk = NULL;
422 goto exit;
425 msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
426 if (IS_ERR(msm_host->byte_clk_src)) {
427 ret = PTR_ERR(msm_host->byte_clk_src);
428 pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
429 goto exit;
432 msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
433 if (IS_ERR(msm_host->pixel_clk_src)) {
434 ret = PTR_ERR(msm_host->pixel_clk_src);
435 pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
436 goto exit;
439 if (cfg_hnd->ops->clk_init_ver)
440 ret = cfg_hnd->ops->clk_init_ver(msm_host);
441 exit:
442 return ret;
445 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
447 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
448 int i, ret;
450 DBG("id=%d", msm_host->id);
452 for (i = 0; i < cfg->num_bus_clks; i++) {
453 ret = clk_prepare_enable(msm_host->bus_clks[i]);
454 if (ret) {
455 pr_err("%s: failed to enable bus clock %d ret %d\n",
456 __func__, i, ret);
457 goto err;
461 return 0;
462 err:
463 for (; i > 0; i--)
464 clk_disable_unprepare(msm_host->bus_clks[i]);
466 return ret;
469 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
471 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
472 int i;
474 DBG("");
476 for (i = cfg->num_bus_clks - 1; i >= 0; i--)
477 clk_disable_unprepare(msm_host->bus_clks[i]);
480 int msm_dsi_runtime_suspend(struct device *dev)
482 struct platform_device *pdev = to_platform_device(dev);
483 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
484 struct mipi_dsi_host *host = msm_dsi->host;
485 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
487 if (!msm_host->cfg_hnd)
488 return 0;
490 dsi_bus_clk_disable(msm_host);
492 return 0;
495 int msm_dsi_runtime_resume(struct device *dev)
497 struct platform_device *pdev = to_platform_device(dev);
498 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
499 struct mipi_dsi_host *host = msm_dsi->host;
500 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
502 if (!msm_host->cfg_hnd)
503 return 0;
505 return dsi_bus_clk_enable(msm_host);
508 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host)
510 int ret;
512 DBG("Set clk rates: pclk=%d, byteclk=%d",
513 msm_host->mode->clock, msm_host->byte_clk_rate);
515 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
516 if (ret) {
517 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
518 return ret;
521 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
522 if (ret) {
523 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
524 return ret;
527 if (msm_host->byte_intf_clk) {
528 ret = clk_set_rate(msm_host->byte_intf_clk,
529 msm_host->byte_clk_rate / 2);
530 if (ret) {
531 pr_err("%s: Failed to set rate byte intf clk, %d\n",
532 __func__, ret);
533 return ret;
537 return 0;
541 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
543 int ret;
545 ret = clk_prepare_enable(msm_host->esc_clk);
546 if (ret) {
547 pr_err("%s: Failed to enable dsi esc clk\n", __func__);
548 goto error;
551 ret = clk_prepare_enable(msm_host->byte_clk);
552 if (ret) {
553 pr_err("%s: Failed to enable dsi byte clk\n", __func__);
554 goto byte_clk_err;
557 ret = clk_prepare_enable(msm_host->pixel_clk);
558 if (ret) {
559 pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
560 goto pixel_clk_err;
563 if (msm_host->byte_intf_clk) {
564 ret = clk_prepare_enable(msm_host->byte_intf_clk);
565 if (ret) {
566 pr_err("%s: Failed to enable byte intf clk\n",
567 __func__);
568 goto byte_intf_clk_err;
572 return 0;
574 byte_intf_clk_err:
575 clk_disable_unprepare(msm_host->pixel_clk);
576 pixel_clk_err:
577 clk_disable_unprepare(msm_host->byte_clk);
578 byte_clk_err:
579 clk_disable_unprepare(msm_host->esc_clk);
580 error:
581 return ret;
584 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host)
586 int ret;
588 DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d",
589 msm_host->mode->clock, msm_host->byte_clk_rate,
590 msm_host->esc_clk_rate, msm_host->src_clk_rate);
592 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
593 if (ret) {
594 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
595 return ret;
598 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
599 if (ret) {
600 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
601 return ret;
604 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
605 if (ret) {
606 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
607 return ret;
610 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
611 if (ret) {
612 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
613 return ret;
616 return 0;
619 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
621 int ret;
623 ret = clk_prepare_enable(msm_host->byte_clk);
624 if (ret) {
625 pr_err("%s: Failed to enable dsi byte clk\n", __func__);
626 goto error;
629 ret = clk_prepare_enable(msm_host->esc_clk);
630 if (ret) {
631 pr_err("%s: Failed to enable dsi esc clk\n", __func__);
632 goto esc_clk_err;
635 ret = clk_prepare_enable(msm_host->src_clk);
636 if (ret) {
637 pr_err("%s: Failed to enable dsi src clk\n", __func__);
638 goto src_clk_err;
641 ret = clk_prepare_enable(msm_host->pixel_clk);
642 if (ret) {
643 pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
644 goto pixel_clk_err;
647 return 0;
649 pixel_clk_err:
650 clk_disable_unprepare(msm_host->src_clk);
651 src_clk_err:
652 clk_disable_unprepare(msm_host->esc_clk);
653 esc_clk_err:
654 clk_disable_unprepare(msm_host->byte_clk);
655 error:
656 return ret;
659 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
661 clk_disable_unprepare(msm_host->esc_clk);
662 clk_disable_unprepare(msm_host->pixel_clk);
663 if (msm_host->byte_intf_clk)
664 clk_disable_unprepare(msm_host->byte_intf_clk);
665 clk_disable_unprepare(msm_host->byte_clk);
668 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
670 clk_disable_unprepare(msm_host->pixel_clk);
671 clk_disable_unprepare(msm_host->src_clk);
672 clk_disable_unprepare(msm_host->esc_clk);
673 clk_disable_unprepare(msm_host->byte_clk);
676 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi)
678 struct drm_display_mode *mode = msm_host->mode;
679 u32 pclk_rate;
681 pclk_rate = mode->clock * 1000;
684 * For dual DSI mode, the current DRM mode has the complete width of the
685 * panel. Since, the complete panel is driven by two DSI controllers,
686 * the clock rates have to be split between the two dsi controllers.
687 * Adjust the byte and pixel clock rates for each dsi host accordingly.
689 if (is_dual_dsi)
690 pclk_rate /= 2;
692 return pclk_rate;
695 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi)
697 u8 lanes = msm_host->lanes;
698 u32 bpp = dsi_get_bpp(msm_host->format);
699 u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi);
700 u64 pclk_bpp = (u64)pclk_rate * bpp;
702 if (lanes == 0) {
703 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
704 lanes = 1;
707 do_div(pclk_bpp, (8 * lanes));
709 msm_host->pixel_clk_rate = pclk_rate;
710 msm_host->byte_clk_rate = pclk_bpp;
712 DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate,
713 msm_host->byte_clk_rate);
717 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi)
719 if (!msm_host->mode) {
720 pr_err("%s: mode not set\n", __func__);
721 return -EINVAL;
724 dsi_calc_pclk(msm_host, is_dual_dsi);
725 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
726 return 0;
729 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi)
731 u32 bpp = dsi_get_bpp(msm_host->format);
732 u64 pclk_bpp;
733 unsigned int esc_mhz, esc_div;
734 unsigned long byte_mhz;
736 dsi_calc_pclk(msm_host, is_dual_dsi);
738 pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp;
739 do_div(pclk_bpp, 8);
740 msm_host->src_clk_rate = pclk_bpp;
743 * esc clock is byte clock followed by a 4 bit divider,
744 * we need to find an escape clock frequency within the
745 * mipi DSI spec range within the maximum divider limit
746 * We iterate here between an escape clock frequencey
747 * between 20 Mhz to 5 Mhz and pick up the first one
748 * that can be supported by our divider
751 byte_mhz = msm_host->byte_clk_rate / 1000000;
753 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
754 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
757 * TODO: Ideally, we shouldn't know what sort of divider
758 * is available in mmss_cc, we're just assuming that
759 * it'll always be a 4 bit divider. Need to come up with
760 * a better way here.
762 if (esc_div >= 1 && esc_div <= 16)
763 break;
766 if (esc_mhz < 5)
767 return -EINVAL;
769 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
771 DBG("esc=%d, src=%d", msm_host->esc_clk_rate,
772 msm_host->src_clk_rate);
774 return 0;
777 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
779 u32 intr;
780 unsigned long flags;
782 spin_lock_irqsave(&msm_host->intr_lock, flags);
783 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
785 if (enable)
786 intr |= mask;
787 else
788 intr &= ~mask;
790 DBG("intr=%x enable=%d", intr, enable);
792 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
793 spin_unlock_irqrestore(&msm_host->intr_lock, flags);
796 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
798 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
799 return BURST_MODE;
800 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
801 return NON_BURST_SYNCH_PULSE;
803 return NON_BURST_SYNCH_EVENT;
806 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
807 const enum mipi_dsi_pixel_format mipi_fmt)
809 switch (mipi_fmt) {
810 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888;
811 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE;
812 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666;
813 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565;
814 default: return VID_DST_FORMAT_RGB888;
818 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
819 const enum mipi_dsi_pixel_format mipi_fmt)
821 switch (mipi_fmt) {
822 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888;
823 case MIPI_DSI_FMT_RGB666_PACKED:
824 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666;
825 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565;
826 default: return CMD_DST_FORMAT_RGB888;
830 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
831 struct msm_dsi_phy_shared_timings *phy_shared_timings)
833 u32 flags = msm_host->mode_flags;
834 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
835 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
836 u32 data = 0, lane_ctrl = 0;
838 if (!enable) {
839 dsi_write(msm_host, REG_DSI_CTRL, 0);
840 return;
843 if (flags & MIPI_DSI_MODE_VIDEO) {
844 if (flags & MIPI_DSI_MODE_VIDEO_HSE)
845 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
846 if (flags & MIPI_DSI_MODE_VIDEO_HFP)
847 data |= DSI_VID_CFG0_HFP_POWER_STOP;
848 if (flags & MIPI_DSI_MODE_VIDEO_HBP)
849 data |= DSI_VID_CFG0_HBP_POWER_STOP;
850 if (flags & MIPI_DSI_MODE_VIDEO_HSA)
851 data |= DSI_VID_CFG0_HSA_POWER_STOP;
852 /* Always set low power stop mode for BLLP
853 * to let command engine send packets
855 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
856 DSI_VID_CFG0_BLLP_POWER_STOP;
857 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
858 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
859 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
860 dsi_write(msm_host, REG_DSI_VID_CFG0, data);
862 /* Do not swap RGB colors */
863 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
864 dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
865 } else {
866 /* Do not swap RGB colors */
867 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
868 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
869 dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
871 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
872 DSI_CMD_CFG1_WR_MEM_CONTINUE(
873 MIPI_DCS_WRITE_MEMORY_CONTINUE);
874 /* Always insert DCS command */
875 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
876 dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
879 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
880 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
881 DSI_CMD_DMA_CTRL_LOW_POWER);
883 data = 0;
884 /* Always assume dedicated TE pin */
885 data |= DSI_TRIG_CTRL_TE;
886 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
887 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
888 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
889 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
890 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
891 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
892 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
894 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
895 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
896 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
898 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
899 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
900 phy_shared_timings->clk_pre_inc_by_2)
901 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
902 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
904 data = 0;
905 if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
906 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
907 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
909 /* allow only ack-err-status to generate interrupt */
910 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
912 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
914 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
916 data = DSI_CTRL_CLK_EN;
918 DBG("lane number=%d", msm_host->lanes);
919 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
921 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
922 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
924 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) {
925 lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL);
926 dsi_write(msm_host, REG_DSI_LANE_CTRL,
927 lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
930 data |= DSI_CTRL_ENABLE;
932 dsi_write(msm_host, REG_DSI_CTRL, data);
935 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi)
937 struct drm_display_mode *mode = msm_host->mode;
938 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
939 u32 h_total = mode->htotal;
940 u32 v_total = mode->vtotal;
941 u32 hs_end = mode->hsync_end - mode->hsync_start;
942 u32 vs_end = mode->vsync_end - mode->vsync_start;
943 u32 ha_start = h_total - mode->hsync_start;
944 u32 ha_end = ha_start + mode->hdisplay;
945 u32 va_start = v_total - mode->vsync_start;
946 u32 va_end = va_start + mode->vdisplay;
947 u32 hdisplay = mode->hdisplay;
948 u32 wc;
950 DBG("");
953 * For dual DSI mode, the current DRM mode has
954 * the complete width of the panel. Since, the complete
955 * panel is driven by two DSI controllers, the horizontal
956 * timings have to be split between the two dsi controllers.
957 * Adjust the DSI host timing values accordingly.
959 if (is_dual_dsi) {
960 h_total /= 2;
961 hs_end /= 2;
962 ha_start /= 2;
963 ha_end /= 2;
964 hdisplay /= 2;
967 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
968 dsi_write(msm_host, REG_DSI_ACTIVE_H,
969 DSI_ACTIVE_H_START(ha_start) |
970 DSI_ACTIVE_H_END(ha_end));
971 dsi_write(msm_host, REG_DSI_ACTIVE_V,
972 DSI_ACTIVE_V_START(va_start) |
973 DSI_ACTIVE_V_END(va_end));
974 dsi_write(msm_host, REG_DSI_TOTAL,
975 DSI_TOTAL_H_TOTAL(h_total - 1) |
976 DSI_TOTAL_V_TOTAL(v_total - 1));
978 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
979 DSI_ACTIVE_HSYNC_START(hs_start) |
980 DSI_ACTIVE_HSYNC_END(hs_end));
981 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
982 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
983 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
984 DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
985 } else { /* command mode */
986 /* image data and 1 byte write_memory_start cmd */
987 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
989 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL,
990 DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) |
991 DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(
992 msm_host->channel) |
993 DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(
994 MIPI_DSI_DCS_LONG_WRITE));
996 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL,
997 DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) |
998 DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay));
1002 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
1004 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1005 wmb(); /* clocks need to be enabled before reset */
1007 dsi_write(msm_host, REG_DSI_RESET, 1);
1008 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1009 dsi_write(msm_host, REG_DSI_RESET, 0);
1012 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
1013 bool video_mode, bool enable)
1015 u32 dsi_ctrl;
1017 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
1019 if (!enable) {
1020 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
1021 DSI_CTRL_CMD_MODE_EN);
1022 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
1023 DSI_IRQ_MASK_VIDEO_DONE, 0);
1024 } else {
1025 if (video_mode) {
1026 dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1027 } else { /* command mode */
1028 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1029 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1031 dsi_ctrl |= DSI_CTRL_ENABLE;
1034 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1037 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1039 u32 data;
1041 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1043 if (mode == 0)
1044 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1045 else
1046 data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1048 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1051 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1053 u32 ret = 0;
1054 struct device *dev = &msm_host->pdev->dev;
1056 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1058 reinit_completion(&msm_host->video_comp);
1060 ret = wait_for_completion_timeout(&msm_host->video_comp,
1061 msecs_to_jiffies(70));
1063 if (ret == 0)
1064 DRM_DEV_ERROR(dev, "wait for video done timed out\n");
1066 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1069 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1071 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1072 return;
1074 if (msm_host->power_on && msm_host->enabled) {
1075 dsi_wait4video_done(msm_host);
1076 /* delay 4 ms to skip BLLP */
1077 usleep_range(2000, 4000);
1081 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1083 struct drm_device *dev = msm_host->dev;
1084 struct msm_drm_private *priv = dev->dev_private;
1085 uint64_t iova;
1086 u8 *data;
1088 data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED,
1089 priv->kms->aspace,
1090 &msm_host->tx_gem_obj, &iova);
1092 if (IS_ERR(data)) {
1093 msm_host->tx_gem_obj = NULL;
1094 return PTR_ERR(data);
1097 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem");
1099 msm_host->tx_size = msm_host->tx_gem_obj->size;
1101 return 0;
1104 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1106 struct drm_device *dev = msm_host->dev;
1108 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1109 &msm_host->tx_buf_paddr, GFP_KERNEL);
1110 if (!msm_host->tx_buf)
1111 return -ENOMEM;
1113 msm_host->tx_size = size;
1115 return 0;
1118 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1120 struct drm_device *dev = msm_host->dev;
1121 struct msm_drm_private *priv;
1124 * This is possible if we're tearing down before we've had a chance to
1125 * fully initialize. A very real possibility if our probe is deferred,
1126 * in which case we'll hit msm_dsi_host_destroy() without having run
1127 * through the dsi_tx_buf_alloc().
1129 if (!dev)
1130 return;
1132 priv = dev->dev_private;
1133 if (msm_host->tx_gem_obj) {
1134 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1135 drm_gem_object_put_unlocked(msm_host->tx_gem_obj);
1136 msm_host->tx_gem_obj = NULL;
1139 if (msm_host->tx_buf)
1140 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1141 msm_host->tx_buf_paddr);
1144 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1146 return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1149 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1151 return msm_host->tx_buf;
1154 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1156 msm_gem_put_vaddr(msm_host->tx_gem_obj);
1160 * prepare cmd buffer to be txed
1162 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1163 const struct mipi_dsi_msg *msg)
1165 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1166 struct mipi_dsi_packet packet;
1167 int len;
1168 int ret;
1169 u8 *data;
1171 ret = mipi_dsi_create_packet(&packet, msg);
1172 if (ret) {
1173 pr_err("%s: create packet failed, %d\n", __func__, ret);
1174 return ret;
1176 len = (packet.size + 3) & (~0x3);
1178 if (len > msm_host->tx_size) {
1179 pr_err("%s: packet size is too big\n", __func__);
1180 return -EINVAL;
1183 data = cfg_hnd->ops->tx_buf_get(msm_host);
1184 if (IS_ERR(data)) {
1185 ret = PTR_ERR(data);
1186 pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1187 return ret;
1190 /* MSM specific command format in memory */
1191 data[0] = packet.header[1];
1192 data[1] = packet.header[2];
1193 data[2] = packet.header[0];
1194 data[3] = BIT(7); /* Last packet */
1195 if (mipi_dsi_packet_format_is_long(msg->type))
1196 data[3] |= BIT(6);
1197 if (msg->rx_buf && msg->rx_len)
1198 data[3] |= BIT(5);
1200 /* Long packet */
1201 if (packet.payload && packet.payload_length)
1202 memcpy(data + 4, packet.payload, packet.payload_length);
1204 /* Append 0xff to the end */
1205 if (packet.size < len)
1206 memset(data + packet.size, 0xff, len - packet.size);
1208 if (cfg_hnd->ops->tx_buf_put)
1209 cfg_hnd->ops->tx_buf_put(msm_host);
1211 return len;
1215 * dsi_short_read1_resp: 1 parameter
1217 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1219 u8 *data = msg->rx_buf;
1220 if (data && (msg->rx_len >= 1)) {
1221 *data = buf[1]; /* strip out dcs type */
1222 return 1;
1223 } else {
1224 pr_err("%s: read data does not match with rx_buf len %zu\n",
1225 __func__, msg->rx_len);
1226 return -EINVAL;
1231 * dsi_short_read2_resp: 2 parameter
1233 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1235 u8 *data = msg->rx_buf;
1236 if (data && (msg->rx_len >= 2)) {
1237 data[0] = buf[1]; /* strip out dcs type */
1238 data[1] = buf[2];
1239 return 2;
1240 } else {
1241 pr_err("%s: read data does not match with rx_buf len %zu\n",
1242 __func__, msg->rx_len);
1243 return -EINVAL;
1247 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1249 /* strip out 4 byte dcs header */
1250 if (msg->rx_buf && msg->rx_len)
1251 memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1253 return msg->rx_len;
1256 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1258 struct drm_device *dev = msm_host->dev;
1259 struct msm_drm_private *priv = dev->dev_private;
1261 if (!dma_base)
1262 return -EINVAL;
1264 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj,
1265 priv->kms->aspace, dma_base);
1268 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1270 if (!dma_base)
1271 return -EINVAL;
1273 *dma_base = msm_host->tx_buf_paddr;
1274 return 0;
1277 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1279 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1280 int ret;
1281 uint64_t dma_base;
1282 bool triggered;
1284 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1285 if (ret) {
1286 pr_err("%s: failed to get iova: %d\n", __func__, ret);
1287 return ret;
1290 reinit_completion(&msm_host->dma_comp);
1292 dsi_wait4video_eng_busy(msm_host);
1294 triggered = msm_dsi_manager_cmd_xfer_trigger(
1295 msm_host->id, dma_base, len);
1296 if (triggered) {
1297 ret = wait_for_completion_timeout(&msm_host->dma_comp,
1298 msecs_to_jiffies(200));
1299 DBG("ret=%d", ret);
1300 if (ret == 0)
1301 ret = -ETIMEDOUT;
1302 else
1303 ret = len;
1304 } else
1305 ret = len;
1307 return ret;
1310 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1311 u8 *buf, int rx_byte, int pkt_size)
1313 u32 *temp, data;
1314 int i, j = 0, cnt;
1315 u32 read_cnt;
1316 u8 reg[16];
1317 int repeated_bytes = 0;
1318 int buf_offset = buf - msm_host->rx_buf;
1320 temp = (u32 *)reg;
1321 cnt = (rx_byte + 3) >> 2;
1322 if (cnt > 4)
1323 cnt = 4; /* 4 x 32 bits registers only */
1325 if (rx_byte == 4)
1326 read_cnt = 4;
1327 else
1328 read_cnt = pkt_size + 6;
1331 * In case of multiple reads from the panel, after the first read, there
1332 * is possibility that there are some bytes in the payload repeating in
1333 * the RDBK_DATA registers. Since we read all the parameters from the
1334 * panel right from the first byte for every pass. We need to skip the
1335 * repeating bytes and then append the new parameters to the rx buffer.
1337 if (read_cnt > 16) {
1338 int bytes_shifted;
1339 /* Any data more than 16 bytes will be shifted out.
1340 * The temp read buffer should already contain these bytes.
1341 * The remaining bytes in read buffer are the repeated bytes.
1343 bytes_shifted = read_cnt - 16;
1344 repeated_bytes = buf_offset - bytes_shifted;
1347 for (i = cnt - 1; i >= 0; i--) {
1348 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1349 *temp++ = ntohl(data); /* to host byte order */
1350 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1353 for (i = repeated_bytes; i < 16; i++)
1354 buf[j++] = reg[i];
1356 return j;
1359 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1360 const struct mipi_dsi_msg *msg)
1362 int len, ret;
1363 int bllp_len = msm_host->mode->hdisplay *
1364 dsi_get_bpp(msm_host->format) / 8;
1366 len = dsi_cmd_dma_add(msm_host, msg);
1367 if (!len) {
1368 pr_err("%s: failed to add cmd type = 0x%x\n",
1369 __func__, msg->type);
1370 return -EINVAL;
1373 /* for video mode, do not send cmds more than
1374 * one pixel line, since it only transmit it
1375 * during BLLP.
1377 /* TODO: if the command is sent in LP mode, the bit rate is only
1378 * half of esc clk rate. In this case, if the video is already
1379 * actively streaming, we need to check more carefully if the
1380 * command can be fit into one BLLP.
1382 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1383 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1384 __func__, len);
1385 return -EINVAL;
1388 ret = dsi_cmd_dma_tx(msm_host, len);
1389 if (ret < len) {
1390 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
1391 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
1392 return -ECOMM;
1395 return len;
1398 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
1400 u32 data0, data1;
1402 data0 = dsi_read(msm_host, REG_DSI_CTRL);
1403 data1 = data0;
1404 data1 &= ~DSI_CTRL_ENABLE;
1405 dsi_write(msm_host, REG_DSI_CTRL, data1);
1407 * dsi controller need to be disabled before
1408 * clocks turned on
1410 wmb();
1412 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1413 wmb(); /* make sure clocks enabled */
1415 /* dsi controller can only be reset while clocks are running */
1416 dsi_write(msm_host, REG_DSI_RESET, 1);
1417 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1418 dsi_write(msm_host, REG_DSI_RESET, 0);
1419 wmb(); /* controller out of reset */
1420 dsi_write(msm_host, REG_DSI_CTRL, data0);
1421 wmb(); /* make sure dsi controller enabled again */
1424 static void dsi_hpd_worker(struct work_struct *work)
1426 struct msm_dsi_host *msm_host =
1427 container_of(work, struct msm_dsi_host, hpd_work);
1429 drm_helper_hpd_irq_event(msm_host->dev);
1432 static void dsi_err_worker(struct work_struct *work)
1434 struct msm_dsi_host *msm_host =
1435 container_of(work, struct msm_dsi_host, err_work);
1436 u32 status = msm_host->err_work_state;
1438 pr_err_ratelimited("%s: status=%x\n", __func__, status);
1439 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1440 dsi_sw_reset_restore(msm_host);
1442 /* It is safe to clear here because error irq is disabled. */
1443 msm_host->err_work_state = 0;
1445 /* enable dsi error interrupt */
1446 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1449 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1451 u32 status;
1453 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1455 if (status) {
1456 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1457 /* Writing of an extra 0 needed to clear error bits */
1458 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1459 msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1463 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1465 u32 status;
1467 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1469 if (status) {
1470 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1471 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1475 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1477 u32 status;
1479 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1481 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1482 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1483 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1484 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1485 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1486 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1487 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1491 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1493 u32 status;
1495 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1497 /* fifo underflow, overflow */
1498 if (status) {
1499 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1500 msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1501 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1502 msm_host->err_work_state |=
1503 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1507 static void dsi_status(struct msm_dsi_host *msm_host)
1509 u32 status;
1511 status = dsi_read(msm_host, REG_DSI_STATUS0);
1513 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1514 dsi_write(msm_host, REG_DSI_STATUS0, status);
1515 msm_host->err_work_state |=
1516 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1520 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1522 u32 status;
1524 status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1526 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1527 dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1528 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1532 static void dsi_error(struct msm_dsi_host *msm_host)
1534 /* disable dsi error interrupt */
1535 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1537 dsi_clk_status(msm_host);
1538 dsi_fifo_status(msm_host);
1539 dsi_ack_err_status(msm_host);
1540 dsi_timeout_status(msm_host);
1541 dsi_status(msm_host);
1542 dsi_dln0_phy_err(msm_host);
1544 queue_work(msm_host->workqueue, &msm_host->err_work);
1547 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1549 struct msm_dsi_host *msm_host = ptr;
1550 u32 isr;
1551 unsigned long flags;
1553 if (!msm_host->ctrl_base)
1554 return IRQ_HANDLED;
1556 spin_lock_irqsave(&msm_host->intr_lock, flags);
1557 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1558 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1559 spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1561 DBG("isr=0x%x, id=%d", isr, msm_host->id);
1563 if (isr & DSI_IRQ_ERROR)
1564 dsi_error(msm_host);
1566 if (isr & DSI_IRQ_VIDEO_DONE)
1567 complete(&msm_host->video_comp);
1569 if (isr & DSI_IRQ_CMD_DMA_DONE)
1570 complete(&msm_host->dma_comp);
1572 return IRQ_HANDLED;
1575 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1576 struct device *panel_device)
1578 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1579 "disp-enable",
1580 GPIOD_OUT_LOW);
1581 if (IS_ERR(msm_host->disp_en_gpio)) {
1582 DBG("cannot get disp-enable-gpios %ld",
1583 PTR_ERR(msm_host->disp_en_gpio));
1584 return PTR_ERR(msm_host->disp_en_gpio);
1587 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1588 GPIOD_IN);
1589 if (IS_ERR(msm_host->te_gpio)) {
1590 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1591 return PTR_ERR(msm_host->te_gpio);
1594 return 0;
1597 static int dsi_host_attach(struct mipi_dsi_host *host,
1598 struct mipi_dsi_device *dsi)
1600 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1601 int ret;
1603 if (dsi->lanes > msm_host->num_data_lanes)
1604 return -EINVAL;
1606 msm_host->channel = dsi->channel;
1607 msm_host->lanes = dsi->lanes;
1608 msm_host->format = dsi->format;
1609 msm_host->mode_flags = dsi->mode_flags;
1611 /* Some gpios defined in panel DT need to be controlled by host */
1612 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1613 if (ret)
1614 return ret;
1616 DBG("id=%d", msm_host->id);
1617 if (msm_host->dev)
1618 queue_work(msm_host->workqueue, &msm_host->hpd_work);
1620 return 0;
1623 static int dsi_host_detach(struct mipi_dsi_host *host,
1624 struct mipi_dsi_device *dsi)
1626 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1628 msm_host->device_node = NULL;
1630 DBG("id=%d", msm_host->id);
1631 if (msm_host->dev)
1632 queue_work(msm_host->workqueue, &msm_host->hpd_work);
1634 return 0;
1637 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1638 const struct mipi_dsi_msg *msg)
1640 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1641 int ret;
1643 if (!msg || !msm_host->power_on)
1644 return -EINVAL;
1646 mutex_lock(&msm_host->cmd_mutex);
1647 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1648 mutex_unlock(&msm_host->cmd_mutex);
1650 return ret;
1653 static struct mipi_dsi_host_ops dsi_host_ops = {
1654 .attach = dsi_host_attach,
1655 .detach = dsi_host_detach,
1656 .transfer = dsi_host_transfer,
1660 * List of supported physical to logical lane mappings.
1661 * For example, the 2nd entry represents the following mapping:
1663 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1665 static const int supported_data_lane_swaps[][4] = {
1666 { 0, 1, 2, 3 },
1667 { 3, 0, 1, 2 },
1668 { 2, 3, 0, 1 },
1669 { 1, 2, 3, 0 },
1670 { 0, 3, 2, 1 },
1671 { 1, 0, 3, 2 },
1672 { 2, 1, 0, 3 },
1673 { 3, 2, 1, 0 },
1676 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1677 struct device_node *ep)
1679 struct device *dev = &msm_host->pdev->dev;
1680 struct property *prop;
1681 u32 lane_map[4];
1682 int ret, i, len, num_lanes;
1684 prop = of_find_property(ep, "data-lanes", &len);
1685 if (!prop) {
1686 DRM_DEV_DEBUG(dev,
1687 "failed to find data lane mapping, using default\n");
1688 return 0;
1691 num_lanes = len / sizeof(u32);
1693 if (num_lanes < 1 || num_lanes > 4) {
1694 DRM_DEV_ERROR(dev, "bad number of data lanes\n");
1695 return -EINVAL;
1698 msm_host->num_data_lanes = num_lanes;
1700 ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1701 num_lanes);
1702 if (ret) {
1703 DRM_DEV_ERROR(dev, "failed to read lane data\n");
1704 return ret;
1708 * compare DT specified physical-logical lane mappings with the ones
1709 * supported by hardware
1711 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1712 const int *swap = supported_data_lane_swaps[i];
1713 int j;
1716 * the data-lanes array we get from DT has a logical->physical
1717 * mapping. The "data lane swap" register field represents
1718 * supported configurations in a physical->logical mapping.
1719 * Translate the DT mapping to what we understand and find a
1720 * configuration that works.
1722 for (j = 0; j < num_lanes; j++) {
1723 if (lane_map[j] < 0 || lane_map[j] > 3)
1724 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n",
1725 lane_map[j]);
1727 if (swap[lane_map[j]] != j)
1728 break;
1731 if (j == num_lanes) {
1732 msm_host->dlane_swap = i;
1733 return 0;
1737 return -EINVAL;
1740 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1742 struct device *dev = &msm_host->pdev->dev;
1743 struct device_node *np = dev->of_node;
1744 struct device_node *endpoint, *device_node;
1745 int ret = 0;
1748 * Get the endpoint of the output port of the DSI host. In our case,
1749 * this is mapped to port number with reg = 1. Don't return an error if
1750 * the remote endpoint isn't defined. It's possible that there is
1751 * nothing connected to the dsi output.
1753 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1754 if (!endpoint) {
1755 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__);
1756 return 0;
1759 ret = dsi_host_parse_lane_data(msm_host, endpoint);
1760 if (ret) {
1761 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n",
1762 __func__, ret);
1763 ret = -EINVAL;
1764 goto err;
1767 /* Get panel node from the output port's endpoint data */
1768 device_node = of_graph_get_remote_node(np, 1, 0);
1769 if (!device_node) {
1770 DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__);
1771 ret = -ENODEV;
1772 goto err;
1775 msm_host->device_node = device_node;
1777 if (of_property_read_bool(np, "syscon-sfpb")) {
1778 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1779 "syscon-sfpb");
1780 if (IS_ERR(msm_host->sfpb)) {
1781 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n",
1782 __func__);
1783 ret = PTR_ERR(msm_host->sfpb);
1787 of_node_put(device_node);
1789 err:
1790 of_node_put(endpoint);
1792 return ret;
1795 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1797 struct platform_device *pdev = msm_host->pdev;
1798 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1799 struct resource *res;
1800 int i;
1802 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1803 if (!res)
1804 return -EINVAL;
1806 for (i = 0; i < cfg->num_dsi; i++) {
1807 if (cfg->io_start[i] == res->start)
1808 return i;
1811 return -EINVAL;
1814 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1816 struct msm_dsi_host *msm_host = NULL;
1817 struct platform_device *pdev = msm_dsi->pdev;
1818 int ret;
1820 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1821 if (!msm_host) {
1822 pr_err("%s: FAILED: cannot alloc dsi host\n",
1823 __func__);
1824 ret = -ENOMEM;
1825 goto fail;
1828 msm_host->pdev = pdev;
1829 msm_dsi->host = &msm_host->base;
1831 ret = dsi_host_parse_dt(msm_host);
1832 if (ret) {
1833 pr_err("%s: failed to parse dt\n", __func__);
1834 goto fail;
1837 msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
1838 if (IS_ERR(msm_host->ctrl_base)) {
1839 pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1840 ret = PTR_ERR(msm_host->ctrl_base);
1841 goto fail;
1844 pm_runtime_enable(&pdev->dev);
1846 msm_host->cfg_hnd = dsi_get_config(msm_host);
1847 if (!msm_host->cfg_hnd) {
1848 ret = -EINVAL;
1849 pr_err("%s: get config failed\n", __func__);
1850 goto fail;
1853 msm_host->id = dsi_host_get_id(msm_host);
1854 if (msm_host->id < 0) {
1855 ret = msm_host->id;
1856 pr_err("%s: unable to identify DSI host index\n", __func__);
1857 goto fail;
1860 /* fixup base address by io offset */
1861 msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
1863 ret = dsi_regulator_init(msm_host);
1864 if (ret) {
1865 pr_err("%s: regulator init failed\n", __func__);
1866 goto fail;
1869 ret = dsi_clk_init(msm_host);
1870 if (ret) {
1871 pr_err("%s: unable to initialize dsi clks\n", __func__);
1872 goto fail;
1875 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1876 if (!msm_host->rx_buf) {
1877 ret = -ENOMEM;
1878 pr_err("%s: alloc rx temp buf failed\n", __func__);
1879 goto fail;
1882 init_completion(&msm_host->dma_comp);
1883 init_completion(&msm_host->video_comp);
1884 mutex_init(&msm_host->dev_mutex);
1885 mutex_init(&msm_host->cmd_mutex);
1886 spin_lock_init(&msm_host->intr_lock);
1888 /* setup workqueue */
1889 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
1890 INIT_WORK(&msm_host->err_work, dsi_err_worker);
1891 INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
1893 msm_dsi->id = msm_host->id;
1895 DBG("Dsi Host %d initialized", msm_host->id);
1896 return 0;
1898 fail:
1899 return ret;
1902 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
1904 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1906 DBG("");
1907 dsi_tx_buf_free(msm_host);
1908 if (msm_host->workqueue) {
1909 flush_workqueue(msm_host->workqueue);
1910 destroy_workqueue(msm_host->workqueue);
1911 msm_host->workqueue = NULL;
1914 mutex_destroy(&msm_host->cmd_mutex);
1915 mutex_destroy(&msm_host->dev_mutex);
1917 pm_runtime_disable(&msm_host->pdev->dev);
1920 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
1921 struct drm_device *dev)
1923 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1924 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1925 struct platform_device *pdev = msm_host->pdev;
1926 int ret;
1928 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1929 if (msm_host->irq < 0) {
1930 ret = msm_host->irq;
1931 DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret);
1932 return ret;
1935 ret = devm_request_irq(&pdev->dev, msm_host->irq,
1936 dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1937 "dsi_isr", msm_host);
1938 if (ret < 0) {
1939 DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n",
1940 msm_host->irq, ret);
1941 return ret;
1944 msm_host->dev = dev;
1945 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
1946 if (ret) {
1947 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
1948 return ret;
1951 return 0;
1954 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
1956 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1957 int ret;
1959 /* Register mipi dsi host */
1960 if (!msm_host->registered) {
1961 host->dev = &msm_host->pdev->dev;
1962 host->ops = &dsi_host_ops;
1963 ret = mipi_dsi_host_register(host);
1964 if (ret)
1965 return ret;
1967 msm_host->registered = true;
1969 /* If the panel driver has not been probed after host register,
1970 * we should defer the host's probe.
1971 * It makes sure panel is connected when fbcon detects
1972 * connector status and gets the proper display mode to
1973 * create framebuffer.
1974 * Don't try to defer if there is nothing connected to the dsi
1975 * output
1977 if (check_defer && msm_host->device_node) {
1978 if (IS_ERR(of_drm_find_panel(msm_host->device_node)))
1979 if (!of_drm_find_bridge(msm_host->device_node))
1980 return -EPROBE_DEFER;
1984 return 0;
1987 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
1989 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1991 if (msm_host->registered) {
1992 mipi_dsi_host_unregister(host);
1993 host->dev = NULL;
1994 host->ops = NULL;
1995 msm_host->registered = false;
1999 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
2000 const struct mipi_dsi_msg *msg)
2002 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2003 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2005 /* TODO: make sure dsi_cmd_mdp is idle.
2006 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
2007 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
2008 * How to handle the old versions? Wait for mdp cmd done?
2012 * mdss interrupt is generated in mdp core clock domain
2013 * mdp clock need to be enabled to receive dsi interrupt
2015 pm_runtime_get_sync(&msm_host->pdev->dev);
2016 cfg_hnd->ops->link_clk_set_rate(msm_host);
2017 cfg_hnd->ops->link_clk_enable(msm_host);
2019 /* TODO: vote for bus bandwidth */
2021 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2022 dsi_set_tx_power_mode(0, msm_host);
2024 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
2025 dsi_write(msm_host, REG_DSI_CTRL,
2026 msm_host->dma_cmd_ctrl_restore |
2027 DSI_CTRL_CMD_MODE_EN |
2028 DSI_CTRL_ENABLE);
2029 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2031 return 0;
2034 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2035 const struct mipi_dsi_msg *msg)
2037 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2038 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2040 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2041 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2043 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2044 dsi_set_tx_power_mode(1, msm_host);
2046 /* TODO: unvote for bus bandwidth */
2048 cfg_hnd->ops->link_clk_disable(msm_host);
2049 pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2052 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2053 const struct mipi_dsi_msg *msg)
2055 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2057 return dsi_cmds2buf_tx(msm_host, msg);
2060 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2061 const struct mipi_dsi_msg *msg)
2063 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2064 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2065 int data_byte, rx_byte, dlen, end;
2066 int short_response, diff, pkt_size, ret = 0;
2067 char cmd;
2068 int rlen = msg->rx_len;
2069 u8 *buf;
2071 if (rlen <= 2) {
2072 short_response = 1;
2073 pkt_size = rlen;
2074 rx_byte = 4;
2075 } else {
2076 short_response = 0;
2077 data_byte = 10; /* first read */
2078 if (rlen < data_byte)
2079 pkt_size = rlen;
2080 else
2081 pkt_size = data_byte;
2082 rx_byte = data_byte + 6; /* 4 header + 2 crc */
2085 buf = msm_host->rx_buf;
2086 end = 0;
2087 while (!end) {
2088 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2089 struct mipi_dsi_msg max_pkt_size_msg = {
2090 .channel = msg->channel,
2091 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2092 .tx_len = 2,
2093 .tx_buf = tx,
2096 DBG("rlen=%d pkt_size=%d rx_byte=%d",
2097 rlen, pkt_size, rx_byte);
2099 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2100 if (ret < 2) {
2101 pr_err("%s: Set max pkt size failed, %d\n",
2102 __func__, ret);
2103 return -EINVAL;
2106 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2107 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2108 /* Clear the RDBK_DATA registers */
2109 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2110 DSI_RDBK_DATA_CTRL_CLR);
2111 wmb(); /* make sure the RDBK registers are cleared */
2112 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2113 wmb(); /* release cleared status before transfer */
2116 ret = dsi_cmds2buf_tx(msm_host, msg);
2117 if (ret < msg->tx_len) {
2118 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2119 return ret;
2123 * once cmd_dma_done interrupt received,
2124 * return data from client is ready and stored
2125 * at RDBK_DATA register already
2126 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2127 * after that dcs header lost during shift into registers
2129 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2131 if (dlen <= 0)
2132 return 0;
2134 if (short_response)
2135 break;
2137 if (rlen <= data_byte) {
2138 diff = data_byte - rlen;
2139 end = 1;
2140 } else {
2141 diff = 0;
2142 rlen -= data_byte;
2145 if (!end) {
2146 dlen -= 2; /* 2 crc */
2147 dlen -= diff;
2148 buf += dlen; /* next start position */
2149 data_byte = 14; /* NOT first read */
2150 if (rlen < data_byte)
2151 pkt_size += rlen;
2152 else
2153 pkt_size += data_byte;
2154 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2159 * For single Long read, if the requested rlen < 10,
2160 * we need to shift the start position of rx
2161 * data buffer to skip the bytes which are not
2162 * updated.
2164 if (pkt_size < 10 && !short_response)
2165 buf = msm_host->rx_buf + (10 - rlen);
2166 else
2167 buf = msm_host->rx_buf;
2169 cmd = buf[0];
2170 switch (cmd) {
2171 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2172 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2173 ret = 0;
2174 break;
2175 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2176 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2177 ret = dsi_short_read1_resp(buf, msg);
2178 break;
2179 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2180 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2181 ret = dsi_short_read2_resp(buf, msg);
2182 break;
2183 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2184 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2185 ret = dsi_long_read_resp(buf, msg);
2186 break;
2187 default:
2188 pr_warn("%s:Invalid response cmd\n", __func__);
2189 ret = 0;
2192 return ret;
2195 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2196 u32 len)
2198 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2200 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2201 dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2202 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2204 /* Make sure trigger happens */
2205 wmb();
2208 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host,
2209 struct msm_dsi_pll *src_pll)
2211 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2212 struct clk *byte_clk_provider, *pixel_clk_provider;
2213 int ret;
2215 ret = msm_dsi_pll_get_clk_provider(src_pll,
2216 &byte_clk_provider, &pixel_clk_provider);
2217 if (ret) {
2218 pr_info("%s: can't get provider from pll, don't set parent\n",
2219 __func__);
2220 return 0;
2223 ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider);
2224 if (ret) {
2225 pr_err("%s: can't set parent to byte_clk_src. ret=%d\n",
2226 __func__, ret);
2227 goto exit;
2230 ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider);
2231 if (ret) {
2232 pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n",
2233 __func__, ret);
2234 goto exit;
2237 if (msm_host->dsi_clk_src) {
2238 ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider);
2239 if (ret) {
2240 pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n",
2241 __func__, ret);
2242 goto exit;
2246 if (msm_host->esc_clk_src) {
2247 ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider);
2248 if (ret) {
2249 pr_err("%s: can't set parent to esc_clk_src. ret=%d\n",
2250 __func__, ret);
2251 goto exit;
2255 exit:
2256 return ret;
2259 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2261 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2263 DBG("");
2264 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2265 /* Make sure fully reset */
2266 wmb();
2267 udelay(1000);
2268 dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2269 udelay(100);
2272 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2273 struct msm_dsi_phy_clk_request *clk_req,
2274 bool is_dual_dsi)
2276 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2277 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2278 int ret;
2280 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi);
2281 if (ret) {
2282 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2283 return;
2286 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2287 clk_req->escclk_rate = msm_host->esc_clk_rate;
2290 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2292 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2294 dsi_op_mode_config(msm_host,
2295 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2297 /* TODO: clock should be turned off for command mode,
2298 * and only turned on before MDP START.
2299 * This part of code should be enabled once mdp driver support it.
2301 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2302 * dsi_link_clk_disable(msm_host);
2303 * pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2306 msm_host->enabled = true;
2307 return 0;
2310 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2312 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2314 msm_host->enabled = false;
2315 dsi_op_mode_config(msm_host,
2316 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2318 /* Since we have disabled INTF, the video engine won't stop so that
2319 * the cmd engine will be blocked.
2320 * Reset to disable video engine so that we can send off cmd.
2322 dsi_sw_reset(msm_host);
2324 return 0;
2327 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2329 enum sfpb_ahb_arb_master_port_en en;
2331 if (!msm_host->sfpb)
2332 return;
2334 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2336 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2337 SFPB_GPREG_MASTER_PORT_EN__MASK,
2338 SFPB_GPREG_MASTER_PORT_EN(en));
2341 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2342 struct msm_dsi_phy_shared_timings *phy_shared_timings,
2343 bool is_dual_dsi)
2345 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2346 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2347 int ret = 0;
2349 mutex_lock(&msm_host->dev_mutex);
2350 if (msm_host->power_on) {
2351 DBG("dsi host already on");
2352 goto unlock_ret;
2355 msm_dsi_sfpb_config(msm_host, true);
2357 ret = dsi_host_regulator_enable(msm_host);
2358 if (ret) {
2359 pr_err("%s:Failed to enable vregs.ret=%d\n",
2360 __func__, ret);
2361 goto unlock_ret;
2364 pm_runtime_get_sync(&msm_host->pdev->dev);
2365 ret = cfg_hnd->ops->link_clk_set_rate(msm_host);
2366 if (!ret)
2367 ret = cfg_hnd->ops->link_clk_enable(msm_host);
2368 if (ret) {
2369 pr_err("%s: failed to enable link clocks. ret=%d\n",
2370 __func__, ret);
2371 goto fail_disable_reg;
2374 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2375 if (ret) {
2376 pr_err("%s: failed to set pinctrl default state, %d\n",
2377 __func__, ret);
2378 goto fail_disable_clk;
2381 dsi_timing_setup(msm_host, is_dual_dsi);
2382 dsi_sw_reset(msm_host);
2383 dsi_ctrl_config(msm_host, true, phy_shared_timings);
2385 if (msm_host->disp_en_gpio)
2386 gpiod_set_value(msm_host->disp_en_gpio, 1);
2388 msm_host->power_on = true;
2389 mutex_unlock(&msm_host->dev_mutex);
2391 return 0;
2393 fail_disable_clk:
2394 cfg_hnd->ops->link_clk_disable(msm_host);
2395 pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2396 fail_disable_reg:
2397 dsi_host_regulator_disable(msm_host);
2398 unlock_ret:
2399 mutex_unlock(&msm_host->dev_mutex);
2400 return ret;
2403 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2405 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2406 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2408 mutex_lock(&msm_host->dev_mutex);
2409 if (!msm_host->power_on) {
2410 DBG("dsi host already off");
2411 goto unlock_ret;
2414 dsi_ctrl_config(msm_host, false, NULL);
2416 if (msm_host->disp_en_gpio)
2417 gpiod_set_value(msm_host->disp_en_gpio, 0);
2419 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2421 cfg_hnd->ops->link_clk_disable(msm_host);
2422 pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2424 dsi_host_regulator_disable(msm_host);
2426 msm_dsi_sfpb_config(msm_host, false);
2428 DBG("-");
2430 msm_host->power_on = false;
2432 unlock_ret:
2433 mutex_unlock(&msm_host->dev_mutex);
2434 return 0;
2437 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2438 const struct drm_display_mode *mode)
2440 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2442 if (msm_host->mode) {
2443 drm_mode_destroy(msm_host->dev, msm_host->mode);
2444 msm_host->mode = NULL;
2447 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2448 if (!msm_host->mode) {
2449 pr_err("%s: cannot duplicate mode\n", __func__);
2450 return -ENOMEM;
2453 return 0;
2456 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host)
2458 return of_drm_find_panel(to_msm_dsi_host(host)->device_node);
2461 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host)
2463 return to_msm_dsi_host(host)->mode_flags;
2466 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
2468 struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2470 return of_drm_find_bridge(msm_host->device_node);