2 * Copyright 1993-2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
25 #include <drm/drm_crtc_helper.h>
26 #include <drm/drm_fourcc.h>
27 #include <drm/drm_plane_helper.h>
28 #include <drm/drm_vblank.h>
30 #include "nouveau_drv.h"
31 #include "nouveau_reg.h"
32 #include "nouveau_ttm.h"
33 #include "nouveau_bo.h"
34 #include "nouveau_gem.h"
35 #include "nouveau_encoder.h"
36 #include "nouveau_connector.h"
37 #include "nouveau_crtc.h"
40 #include "nouveau_fbcon.h"
42 #include "nouveau_dma.h"
44 #include <subdev/bios/pll.h>
45 #include <subdev/clk.h>
48 nv04_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
49 struct drm_framebuffer
*old_fb
);
52 crtc_wr_cio_state(struct drm_crtc
*crtc
, struct nv04_crtc_reg
*crtcstate
, int index
)
54 NVWriteVgaCrtc(crtc
->dev
, nouveau_crtc(crtc
)->index
, index
,
55 crtcstate
->CRTC
[index
]);
58 static void nv_crtc_set_digital_vibrance(struct drm_crtc
*crtc
, int level
)
60 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
61 struct drm_device
*dev
= crtc
->dev
;
62 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
64 regp
->CRTC
[NV_CIO_CRE_CSB
] = nv_crtc
->saturation
= level
;
65 if (nv_crtc
->saturation
&& nv_gf4_disp_arch(crtc
->dev
)) {
66 regp
->CRTC
[NV_CIO_CRE_CSB
] = 0x80;
67 regp
->CRTC
[NV_CIO_CRE_5B
] = nv_crtc
->saturation
<< 2;
68 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_5B
);
70 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_CSB
);
73 static void nv_crtc_set_image_sharpening(struct drm_crtc
*crtc
, int level
)
75 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
76 struct drm_device
*dev
= crtc
->dev
;
77 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
79 nv_crtc
->sharpness
= level
;
80 if (level
< 0) /* blur is in hw range 0x3f -> 0x20 */
82 regp
->ramdac_634
= level
;
83 NVWriteRAMDAC(crtc
->dev
, nv_crtc
->index
, NV_PRAMDAC_634
, regp
->ramdac_634
);
86 #define PLLSEL_VPLL1_MASK \
87 (NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \
88 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2)
89 #define PLLSEL_VPLL2_MASK \
90 (NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \
91 | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2)
92 #define PLLSEL_TV_MASK \
93 (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \
94 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \
95 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \
96 | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2)
98 /* NV4x 0x40.. pll notes:
99 * gpu pll: 0x4000 + 0x4004
100 * ?gpu? pll: 0x4008 + 0x400c
101 * vpll1: 0x4010 + 0x4014
102 * vpll2: 0x4018 + 0x401c
103 * mpll: 0x4020 + 0x4024
104 * mpll: 0x4038 + 0x403c
106 * the first register of each pair has some unknown details:
107 * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?)
108 * bits 20-23: (mpll) something to do with post divider?
109 * bits 28-31: related to single stage mode? (bit 8/12)
112 static void nv_crtc_calc_state_ext(struct drm_crtc
*crtc
, struct drm_display_mode
* mode
, int dot_clock
)
114 struct drm_device
*dev
= crtc
->dev
;
115 struct nouveau_drm
*drm
= nouveau_drm(dev
);
116 struct nvkm_bios
*bios
= nvxx_bios(&drm
->client
.device
);
117 struct nvkm_clk
*clk
= nvxx_clk(&drm
->client
.device
);
118 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
119 struct nv04_mode_state
*state
= &nv04_display(dev
)->mode_reg
;
120 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[nv_crtc
->index
];
121 struct nvkm_pll_vals
*pv
= ®p
->pllvals
;
122 struct nvbios_pll pll_lim
;
124 if (nvbios_pll_parse(bios
, nv_crtc
->index
? PLL_VPLL1
: PLL_VPLL0
,
128 /* NM2 == 0 is used to determine single stage mode on two stage plls */
131 /* for newer nv4x the blob uses only the first stage of the vpll below a
132 * certain clock. for a certain nv4b this is 150MHz. since the max
133 * output frequency of the first stage for this card is 300MHz, it is
134 * assumed the threshold is given by vco1 maxfreq/2
136 /* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6,
137 * not 8, others unknown), the blob always uses both plls. no problem
138 * has yet been observed in allowing the use a single stage pll on all
139 * nv43 however. the behaviour of single stage use is untested on nv40
141 if (drm
->client
.device
.info
.chipset
> 0x40 && dot_clock
<= (pll_lim
.vco1
.max_freq
/ 2))
142 memset(&pll_lim
.vco2
, 0, sizeof(pll_lim
.vco2
));
145 if (!clk
->pll_calc(clk
, &pll_lim
, dot_clock
, pv
))
148 state
->pllsel
&= PLLSEL_VPLL1_MASK
| PLLSEL_VPLL2_MASK
| PLLSEL_TV_MASK
;
150 /* The blob uses this always, so let's do the same */
151 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
)
152 state
->pllsel
|= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE
;
153 /* again nv40 and some nv43 act more like nv3x as described above */
154 if (drm
->client
.device
.info
.chipset
< 0x41)
155 state
->pllsel
|= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL
|
156 NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL
;
157 state
->pllsel
|= nv_crtc
->index
? PLLSEL_VPLL2_MASK
: PLLSEL_VPLL1_MASK
;
160 NV_DEBUG(drm
, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n",
161 pv
->N1
, pv
->N2
, pv
->M1
, pv
->M2
, pv
->log2P
);
163 NV_DEBUG(drm
, "vpll: n %d m %d log2p %d\n",
164 pv
->N1
, pv
->M1
, pv
->log2P
);
166 nv_crtc
->cursor
.set_offset(nv_crtc
, nv_crtc
->cursor
.offset
);
170 nv_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
172 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
173 struct drm_device
*dev
= crtc
->dev
;
174 struct nouveau_drm
*drm
= nouveau_drm(dev
);
175 unsigned char seq1
= 0, crtc17
= 0;
176 unsigned char crtc1A
;
178 NV_DEBUG(drm
, "Setting dpms mode %d on CRTC %d\n", mode
,
181 if (nv_crtc
->last_dpms
== mode
) /* Don't do unnecessary mode changes. */
184 nv_crtc
->last_dpms
= mode
;
186 if (nv_two_heads(dev
))
187 NVSetOwner(dev
, nv_crtc
->index
);
189 /* nv4ref indicates these two RPC1 bits inhibit h/v sync */
190 crtc1A
= NVReadVgaCrtc(dev
, nv_crtc
->index
,
191 NV_CIO_CRE_RPC1_INDEX
) & ~0xC0;
193 case DRM_MODE_DPMS_STANDBY
:
194 /* Screen: Off; HSync: Off, VSync: On -- Not Supported */
199 case DRM_MODE_DPMS_SUSPEND
:
200 /* Screen: Off; HSync: On, VSync: Off -- Not Supported */
205 case DRM_MODE_DPMS_OFF
:
206 /* Screen: Off; HSync: Off, VSync: Off */
211 case DRM_MODE_DPMS_ON
:
213 /* Screen: On; HSync: On, VSync: On */
219 NVVgaSeqReset(dev
, nv_crtc
->index
, true);
220 /* Each head has it's own sequencer, so we can turn it off when we want */
221 seq1
|= (NVReadVgaSeq(dev
, nv_crtc
->index
, NV_VIO_SR_CLOCK_INDEX
) & ~0x20);
222 NVWriteVgaSeq(dev
, nv_crtc
->index
, NV_VIO_SR_CLOCK_INDEX
, seq1
);
223 crtc17
|= (NVReadVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CR_MODE_INDEX
) & ~0x80);
225 NVWriteVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CR_MODE_INDEX
, crtc17
);
226 NVVgaSeqReset(dev
, nv_crtc
->index
, false);
228 NVWriteVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CRE_RPC1_INDEX
, crtc1A
);
232 nv_crtc_mode_set_vga(struct drm_crtc
*crtc
, struct drm_display_mode
*mode
)
234 struct drm_device
*dev
= crtc
->dev
;
235 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
236 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
237 struct drm_framebuffer
*fb
= crtc
->primary
->fb
;
239 /* Calculate our timings */
240 int horizDisplay
= (mode
->crtc_hdisplay
>> 3) - 1;
241 int horizStart
= (mode
->crtc_hsync_start
>> 3) + 1;
242 int horizEnd
= (mode
->crtc_hsync_end
>> 3) + 1;
243 int horizTotal
= (mode
->crtc_htotal
>> 3) - 5;
244 int horizBlankStart
= (mode
->crtc_hdisplay
>> 3) - 1;
245 int horizBlankEnd
= (mode
->crtc_htotal
>> 3) - 1;
246 int vertDisplay
= mode
->crtc_vdisplay
- 1;
247 int vertStart
= mode
->crtc_vsync_start
- 1;
248 int vertEnd
= mode
->crtc_vsync_end
- 1;
249 int vertTotal
= mode
->crtc_vtotal
- 2;
250 int vertBlankStart
= mode
->crtc_vdisplay
- 1;
251 int vertBlankEnd
= mode
->crtc_vtotal
- 1;
253 struct drm_encoder
*encoder
;
254 bool fp_output
= false;
256 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
257 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
259 if (encoder
->crtc
== crtc
&&
260 (nv_encoder
->dcb
->type
== DCB_OUTPUT_LVDS
||
261 nv_encoder
->dcb
->type
== DCB_OUTPUT_TMDS
))
266 vertStart
= vertTotal
- 3;
267 vertEnd
= vertTotal
- 2;
268 vertBlankStart
= vertStart
;
269 horizStart
= horizTotal
- 5;
270 horizEnd
= horizTotal
- 2;
271 horizBlankEnd
= horizTotal
+ 4;
273 if (dev
->overlayAdaptor
&& drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
)
274 /* This reportedly works around some video overlay bandwidth problems */
279 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
283 ErrorF("horizDisplay: 0x%X \n", horizDisplay
);
284 ErrorF("horizStart: 0x%X \n", horizStart
);
285 ErrorF("horizEnd: 0x%X \n", horizEnd
);
286 ErrorF("horizTotal: 0x%X \n", horizTotal
);
287 ErrorF("horizBlankStart: 0x%X \n", horizBlankStart
);
288 ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd
);
289 ErrorF("vertDisplay: 0x%X \n", vertDisplay
);
290 ErrorF("vertStart: 0x%X \n", vertStart
);
291 ErrorF("vertEnd: 0x%X \n", vertEnd
);
292 ErrorF("vertTotal: 0x%X \n", vertTotal
);
293 ErrorF("vertBlankStart: 0x%X \n", vertBlankStart
);
294 ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd
);
298 * compute correct Hsync & Vsync polarity
300 if ((mode
->flags
& (DRM_MODE_FLAG_PHSYNC
| DRM_MODE_FLAG_NHSYNC
))
301 && (mode
->flags
& (DRM_MODE_FLAG_PVSYNC
| DRM_MODE_FLAG_NVSYNC
))) {
303 regp
->MiscOutReg
= 0x23;
304 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
305 regp
->MiscOutReg
|= 0x40;
306 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
307 regp
->MiscOutReg
|= 0x80;
309 int vdisplay
= mode
->vdisplay
;
310 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
313 vdisplay
*= mode
->vscan
;
315 regp
->MiscOutReg
= 0xA3; /* +hsync -vsync */
316 else if (vdisplay
< 480)
317 regp
->MiscOutReg
= 0x63; /* -hsync +vsync */
318 else if (vdisplay
< 768)
319 regp
->MiscOutReg
= 0xE3; /* -hsync -vsync */
321 regp
->MiscOutReg
= 0x23; /* +hsync +vsync */
327 regp
->Sequencer
[NV_VIO_SR_RESET_INDEX
] = 0x00;
328 /* 0x20 disables the sequencer */
329 if (mode
->flags
& DRM_MODE_FLAG_CLKDIV2
)
330 regp
->Sequencer
[NV_VIO_SR_CLOCK_INDEX
] = 0x29;
332 regp
->Sequencer
[NV_VIO_SR_CLOCK_INDEX
] = 0x21;
333 regp
->Sequencer
[NV_VIO_SR_PLANE_MASK_INDEX
] = 0x0F;
334 regp
->Sequencer
[NV_VIO_SR_CHAR_MAP_INDEX
] = 0x00;
335 regp
->Sequencer
[NV_VIO_SR_MEM_MODE_INDEX
] = 0x0E;
340 regp
->CRTC
[NV_CIO_CR_HDT_INDEX
] = horizTotal
;
341 regp
->CRTC
[NV_CIO_CR_HDE_INDEX
] = horizDisplay
;
342 regp
->CRTC
[NV_CIO_CR_HBS_INDEX
] = horizBlankStart
;
343 regp
->CRTC
[NV_CIO_CR_HBE_INDEX
] = (1 << 7) |
344 XLATE(horizBlankEnd
, 0, NV_CIO_CR_HBE_4_0
);
345 regp
->CRTC
[NV_CIO_CR_HRS_INDEX
] = horizStart
;
346 regp
->CRTC
[NV_CIO_CR_HRE_INDEX
] = XLATE(horizBlankEnd
, 5, NV_CIO_CR_HRE_HBE_5
) |
347 XLATE(horizEnd
, 0, NV_CIO_CR_HRE_4_0
);
348 regp
->CRTC
[NV_CIO_CR_VDT_INDEX
] = vertTotal
;
349 regp
->CRTC
[NV_CIO_CR_OVL_INDEX
] = XLATE(vertStart
, 9, NV_CIO_CR_OVL_VRS_9
) |
350 XLATE(vertDisplay
, 9, NV_CIO_CR_OVL_VDE_9
) |
351 XLATE(vertTotal
, 9, NV_CIO_CR_OVL_VDT_9
) |
353 XLATE(vertBlankStart
, 8, NV_CIO_CR_OVL_VBS_8
) |
354 XLATE(vertStart
, 8, NV_CIO_CR_OVL_VRS_8
) |
355 XLATE(vertDisplay
, 8, NV_CIO_CR_OVL_VDE_8
) |
356 XLATE(vertTotal
, 8, NV_CIO_CR_OVL_VDT_8
);
357 regp
->CRTC
[NV_CIO_CR_RSAL_INDEX
] = 0x00;
358 regp
->CRTC
[NV_CIO_CR_CELL_HT_INDEX
] = ((mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL
) : 0) |
360 XLATE(vertBlankStart
, 9, NV_CIO_CR_CELL_HT_VBS_9
);
361 regp
->CRTC
[NV_CIO_CR_CURS_ST_INDEX
] = 0x00;
362 regp
->CRTC
[NV_CIO_CR_CURS_END_INDEX
] = 0x00;
363 regp
->CRTC
[NV_CIO_CR_SA_HI_INDEX
] = 0x00;
364 regp
->CRTC
[NV_CIO_CR_SA_LO_INDEX
] = 0x00;
365 regp
->CRTC
[NV_CIO_CR_TCOFF_HI_INDEX
] = 0x00;
366 regp
->CRTC
[NV_CIO_CR_TCOFF_LO_INDEX
] = 0x00;
367 regp
->CRTC
[NV_CIO_CR_VRS_INDEX
] = vertStart
;
368 regp
->CRTC
[NV_CIO_CR_VRE_INDEX
] = 1 << 5 | XLATE(vertEnd
, 0, NV_CIO_CR_VRE_3_0
);
369 regp
->CRTC
[NV_CIO_CR_VDE_INDEX
] = vertDisplay
;
370 /* framebuffer can be larger than crtc scanout area. */
371 regp
->CRTC
[NV_CIO_CR_OFFSET_INDEX
] = fb
->pitches
[0] / 8;
372 regp
->CRTC
[NV_CIO_CR_ULINE_INDEX
] = 0x00;
373 regp
->CRTC
[NV_CIO_CR_VBS_INDEX
] = vertBlankStart
;
374 regp
->CRTC
[NV_CIO_CR_VBE_INDEX
] = vertBlankEnd
;
375 regp
->CRTC
[NV_CIO_CR_MODE_INDEX
] = 0x43;
376 regp
->CRTC
[NV_CIO_CR_LCOMP_INDEX
] = 0xff;
379 * Some extended CRTC registers (they are not saved with the rest of the vga regs).
382 /* framebuffer can be larger than crtc scanout area. */
383 regp
->CRTC
[NV_CIO_CRE_RPC0_INDEX
] =
384 XLATE(fb
->pitches
[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8
);
385 regp
->CRTC
[NV_CIO_CRE_42
] =
386 XLATE(fb
->pitches
[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11
);
387 regp
->CRTC
[NV_CIO_CRE_RPC1_INDEX
] = mode
->crtc_hdisplay
< 1280 ?
388 MASK(NV_CIO_CRE_RPC1_LARGE
) : 0x00;
389 regp
->CRTC
[NV_CIO_CRE_LSR_INDEX
] = XLATE(horizBlankEnd
, 6, NV_CIO_CRE_LSR_HBE_6
) |
390 XLATE(vertBlankStart
, 10, NV_CIO_CRE_LSR_VBS_10
) |
391 XLATE(vertStart
, 10, NV_CIO_CRE_LSR_VRS_10
) |
392 XLATE(vertDisplay
, 10, NV_CIO_CRE_LSR_VDE_10
) |
393 XLATE(vertTotal
, 10, NV_CIO_CRE_LSR_VDT_10
);
394 regp
->CRTC
[NV_CIO_CRE_HEB__INDEX
] = XLATE(horizStart
, 8, NV_CIO_CRE_HEB_HRS_8
) |
395 XLATE(horizBlankStart
, 8, NV_CIO_CRE_HEB_HBS_8
) |
396 XLATE(horizDisplay
, 8, NV_CIO_CRE_HEB_HDE_8
) |
397 XLATE(horizTotal
, 8, NV_CIO_CRE_HEB_HDT_8
);
398 regp
->CRTC
[NV_CIO_CRE_EBR_INDEX
] = XLATE(vertBlankStart
, 11, NV_CIO_CRE_EBR_VBS_11
) |
399 XLATE(vertStart
, 11, NV_CIO_CRE_EBR_VRS_11
) |
400 XLATE(vertDisplay
, 11, NV_CIO_CRE_EBR_VDE_11
) |
401 XLATE(vertTotal
, 11, NV_CIO_CRE_EBR_VDT_11
);
403 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
404 horizTotal
= (horizTotal
>> 1) & ~1;
405 regp
->CRTC
[NV_CIO_CRE_ILACE__INDEX
] = horizTotal
;
406 regp
->CRTC
[NV_CIO_CRE_HEB__INDEX
] |= XLATE(horizTotal
, 8, NV_CIO_CRE_HEB_ILC_8
);
408 regp
->CRTC
[NV_CIO_CRE_ILACE__INDEX
] = 0xff; /* interlace off */
411 * Graphics Display Controller
413 regp
->Graphics
[NV_VIO_GX_SR_INDEX
] = 0x00;
414 regp
->Graphics
[NV_VIO_GX_SREN_INDEX
] = 0x00;
415 regp
->Graphics
[NV_VIO_GX_CCOMP_INDEX
] = 0x00;
416 regp
->Graphics
[NV_VIO_GX_ROP_INDEX
] = 0x00;
417 regp
->Graphics
[NV_VIO_GX_READ_MAP_INDEX
] = 0x00;
418 regp
->Graphics
[NV_VIO_GX_MODE_INDEX
] = 0x40; /* 256 color mode */
419 regp
->Graphics
[NV_VIO_GX_MISC_INDEX
] = 0x05; /* map 64k mem + graphic mode */
420 regp
->Graphics
[NV_VIO_GX_DONT_CARE_INDEX
] = 0x0F;
421 regp
->Graphics
[NV_VIO_GX_BIT_MASK_INDEX
] = 0xFF;
423 regp
->Attribute
[0] = 0x00; /* standard colormap translation */
424 regp
->Attribute
[1] = 0x01;
425 regp
->Attribute
[2] = 0x02;
426 regp
->Attribute
[3] = 0x03;
427 regp
->Attribute
[4] = 0x04;
428 regp
->Attribute
[5] = 0x05;
429 regp
->Attribute
[6] = 0x06;
430 regp
->Attribute
[7] = 0x07;
431 regp
->Attribute
[8] = 0x08;
432 regp
->Attribute
[9] = 0x09;
433 regp
->Attribute
[10] = 0x0A;
434 regp
->Attribute
[11] = 0x0B;
435 regp
->Attribute
[12] = 0x0C;
436 regp
->Attribute
[13] = 0x0D;
437 regp
->Attribute
[14] = 0x0E;
438 regp
->Attribute
[15] = 0x0F;
439 regp
->Attribute
[NV_CIO_AR_MODE_INDEX
] = 0x01; /* Enable graphic mode */
441 regp
->Attribute
[NV_CIO_AR_OSCAN_INDEX
] = 0x00;
442 regp
->Attribute
[NV_CIO_AR_PLANE_INDEX
] = 0x0F; /* enable all color planes */
443 regp
->Attribute
[NV_CIO_AR_HPP_INDEX
] = 0x00;
444 regp
->Attribute
[NV_CIO_AR_CSEL_INDEX
] = 0x00;
448 * Sets up registers for the given mode/adjusted_mode pair.
450 * The clocks, CRTCs and outputs attached to this CRTC must be off.
452 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
453 * be easily turned on/off after this.
456 nv_crtc_mode_set_regs(struct drm_crtc
*crtc
, struct drm_display_mode
* mode
)
458 struct drm_device
*dev
= crtc
->dev
;
459 struct nouveau_drm
*drm
= nouveau_drm(dev
);
460 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
461 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
462 struct nv04_crtc_reg
*savep
= &nv04_display(dev
)->saved_reg
.crtc_reg
[nv_crtc
->index
];
463 const struct drm_framebuffer
*fb
= crtc
->primary
->fb
;
464 struct drm_encoder
*encoder
;
465 bool lvds_output
= false, tmds_output
= false, tv_output
= false,
466 off_chip_digital
= false;
468 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
469 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
470 bool digital
= false;
472 if (encoder
->crtc
!= crtc
)
475 if (nv_encoder
->dcb
->type
== DCB_OUTPUT_LVDS
)
476 digital
= lvds_output
= true;
477 if (nv_encoder
->dcb
->type
== DCB_OUTPUT_TV
)
479 if (nv_encoder
->dcb
->type
== DCB_OUTPUT_TMDS
)
480 digital
= tmds_output
= true;
481 if (nv_encoder
->dcb
->location
!= DCB_LOC_ON_CHIP
&& digital
)
482 off_chip_digital
= true;
485 /* Registers not directly related to the (s)vga mode */
487 /* What is the meaning of this register? */
488 /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */
489 regp
->CRTC
[NV_CIO_CRE_ENH_INDEX
] = savep
->CRTC
[NV_CIO_CRE_ENH_INDEX
] & ~(1<<5);
491 regp
->crtc_eng_ctrl
= 0;
492 /* Except for rare conditions I2C is enabled on the primary crtc */
493 if (nv_crtc
->index
== 0)
494 regp
->crtc_eng_ctrl
|= NV_CRTC_FSEL_I2C
;
496 /* Set overlay to desired crtc. */
497 if (dev
->overlayAdaptor
) {
498 NVPortPrivPtr pPriv
= GET_OVERLAY_PRIVATE(dev
);
499 if (pPriv
->overlayCRTC
== nv_crtc
->index
)
500 regp
->crtc_eng_ctrl
|= NV_CRTC_FSEL_OVERLAY
;
504 /* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */
505 regp
->cursor_cfg
= NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64
|
506 NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64
|
507 NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM
;
508 if (drm
->client
.device
.info
.chipset
>= 0x11)
509 regp
->cursor_cfg
|= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32
;
510 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
511 regp
->cursor_cfg
|= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE
;
513 /* Unblock some timings */
514 regp
->CRTC
[NV_CIO_CRE_53
] = 0;
515 regp
->CRTC
[NV_CIO_CRE_54
] = 0;
517 /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
519 regp
->CRTC
[NV_CIO_CRE_SCRATCH3__INDEX
] = 0x11;
520 else if (tmds_output
)
521 regp
->CRTC
[NV_CIO_CRE_SCRATCH3__INDEX
] = 0x88;
523 regp
->CRTC
[NV_CIO_CRE_SCRATCH3__INDEX
] = 0x22;
525 /* These values seem to vary */
526 /* This register seems to be used by the bios to make certain decisions on some G70 cards? */
527 regp
->CRTC
[NV_CIO_CRE_SCRATCH4__INDEX
] = savep
->CRTC
[NV_CIO_CRE_SCRATCH4__INDEX
];
529 nv_crtc_set_digital_vibrance(crtc
, nv_crtc
->saturation
);
531 /* probably a scratch reg, but kept for cargo-cult purposes:
532 * bit0: crtc0?, head A
534 * bit7: (only in X), head A
536 if (nv_crtc
->index
== 0)
537 regp
->CRTC
[NV_CIO_CRE_4B
] = savep
->CRTC
[NV_CIO_CRE_4B
] | 0x80;
539 /* The blob seems to take the current value from crtc 0, add 4 to that
540 * and reuse the old value for crtc 1 */
541 regp
->CRTC
[NV_CIO_CRE_TVOUT_LATENCY
] = nv04_display(dev
)->saved_reg
.crtc_reg
[0].CRTC
[NV_CIO_CRE_TVOUT_LATENCY
];
543 regp
->CRTC
[NV_CIO_CRE_TVOUT_LATENCY
] += 4;
545 /* the blob sometimes sets |= 0x10 (which is the same as setting |=
546 * 1 << 30 on 0x60.830), for no apparent reason */
547 regp
->CRTC
[NV_CIO_CRE_59
] = off_chip_digital
;
549 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_RANKINE
)
550 regp
->CRTC
[0x9f] = off_chip_digital
? 0x11 : 0x1;
552 regp
->crtc_830
= mode
->crtc_vdisplay
- 3;
553 regp
->crtc_834
= mode
->crtc_vdisplay
- 1;
555 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
)
556 /* This is what the blob does */
557 regp
->crtc_850
= NVReadCRTC(dev
, 0, NV_PCRTC_850
);
559 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_RANKINE
)
560 regp
->gpio_ext
= NVReadCRTC(dev
, 0, NV_PCRTC_GPIO_EXT
);
562 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
)
563 regp
->crtc_cfg
= NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC
;
565 regp
->crtc_cfg
= NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC
;
568 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
) {
569 regp
->CRTC
[NV_CIO_CRE_85
] = 0xFF;
570 regp
->CRTC
[NV_CIO_CRE_86
] = 0x1;
573 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] = (fb
->format
->depth
+ 1) / 8;
574 /* Enable slaved mode (called MODE_TV in nv4ref.h) */
575 if (lvds_output
|| tmds_output
|| tv_output
)
576 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] |= (1 << 7);
578 /* Generic PRAMDAC regs */
580 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
)
581 /* Only bit that bios and blob set. */
582 regp
->nv10_cursync
= (1 << 25);
584 regp
->ramdac_gen_ctrl
= NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS
|
585 NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL
|
586 NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON
;
587 if (fb
->format
->depth
== 16)
588 regp
->ramdac_gen_ctrl
|= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL
;
589 if (drm
->client
.device
.info
.chipset
>= 0x11)
590 regp
->ramdac_gen_ctrl
|= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG
;
592 regp
->ramdac_630
= 0; /* turn off green mode (tv test pattern?) */
595 nv_crtc_set_image_sharpening(crtc
, nv_crtc
->sharpness
);
597 /* Some values the blob sets */
598 regp
->ramdac_8c0
= 0x100;
599 regp
->ramdac_a20
= 0x0;
600 regp
->ramdac_a24
= 0xfffff;
601 regp
->ramdac_a34
= 0x1;
605 nv_crtc_swap_fbs(struct drm_crtc
*crtc
, struct drm_framebuffer
*old_fb
)
607 struct nv04_display
*disp
= nv04_display(crtc
->dev
);
608 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(crtc
->primary
->fb
);
609 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
612 ret
= nouveau_bo_pin(nvfb
->nvbo
, TTM_PL_FLAG_VRAM
, false);
614 if (disp
->image
[nv_crtc
->index
])
615 nouveau_bo_unpin(disp
->image
[nv_crtc
->index
]);
616 nouveau_bo_ref(nvfb
->nvbo
, &disp
->image
[nv_crtc
->index
]);
623 * Sets up registers for the given mode/adjusted_mode pair.
625 * The clocks, CRTCs and outputs attached to this CRTC must be off.
627 * This shouldn't enable any clocks, CRTCs, or outputs, but they should
628 * be easily turned on/off after this.
631 nv_crtc_mode_set(struct drm_crtc
*crtc
, struct drm_display_mode
*mode
,
632 struct drm_display_mode
*adjusted_mode
,
633 int x
, int y
, struct drm_framebuffer
*old_fb
)
635 struct drm_device
*dev
= crtc
->dev
;
636 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
637 struct nouveau_drm
*drm
= nouveau_drm(dev
);
640 NV_DEBUG(drm
, "CTRC mode on CRTC %d:\n", nv_crtc
->index
);
641 drm_mode_debug_printmodeline(adjusted_mode
);
643 ret
= nv_crtc_swap_fbs(crtc
, old_fb
);
647 /* unlock must come after turning off FP_TG_CONTROL in output_prepare */
648 nv_lock_vga_crtc_shadow(dev
, nv_crtc
->index
, -1);
650 nv_crtc_mode_set_vga(crtc
, adjusted_mode
);
651 /* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */
652 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
)
653 NVWriteRAMDAC(dev
, 0, NV_PRAMDAC_SEL_CLK
, nv04_display(dev
)->mode_reg
.sel_clk
);
654 nv_crtc_mode_set_regs(crtc
, adjusted_mode
);
655 nv_crtc_calc_state_ext(crtc
, mode
, adjusted_mode
->clock
);
659 static void nv_crtc_save(struct drm_crtc
*crtc
)
661 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
662 struct drm_device
*dev
= crtc
->dev
;
663 struct nv04_mode_state
*state
= &nv04_display(dev
)->mode_reg
;
664 struct nv04_crtc_reg
*crtc_state
= &state
->crtc_reg
[nv_crtc
->index
];
665 struct nv04_mode_state
*saved
= &nv04_display(dev
)->saved_reg
;
666 struct nv04_crtc_reg
*crtc_saved
= &saved
->crtc_reg
[nv_crtc
->index
];
668 if (nv_two_heads(crtc
->dev
))
669 NVSetOwner(crtc
->dev
, nv_crtc
->index
);
671 nouveau_hw_save_state(crtc
->dev
, nv_crtc
->index
, saved
);
673 /* init some state to saved value */
674 state
->sel_clk
= saved
->sel_clk
& ~(0x5 << 16);
675 crtc_state
->CRTC
[NV_CIO_CRE_LCD__INDEX
] = crtc_saved
->CRTC
[NV_CIO_CRE_LCD__INDEX
];
676 state
->pllsel
= saved
->pllsel
& ~(PLLSEL_VPLL1_MASK
| PLLSEL_VPLL2_MASK
| PLLSEL_TV_MASK
);
677 crtc_state
->gpio_ext
= crtc_saved
->gpio_ext
;
680 static void nv_crtc_restore(struct drm_crtc
*crtc
)
682 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
683 struct drm_device
*dev
= crtc
->dev
;
684 int head
= nv_crtc
->index
;
685 uint8_t saved_cr21
= nv04_display(dev
)->saved_reg
.crtc_reg
[head
].CRTC
[NV_CIO_CRE_21
];
687 if (nv_two_heads(crtc
->dev
))
688 NVSetOwner(crtc
->dev
, head
);
690 nouveau_hw_load_state(crtc
->dev
, head
, &nv04_display(dev
)->saved_reg
);
691 nv_lock_vga_crtc_shadow(crtc
->dev
, head
, saved_cr21
);
693 nv_crtc
->last_dpms
= NV_DPMS_CLEARED
;
696 static void nv_crtc_prepare(struct drm_crtc
*crtc
)
698 struct drm_device
*dev
= crtc
->dev
;
699 struct nouveau_drm
*drm
= nouveau_drm(dev
);
700 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
701 const struct drm_crtc_helper_funcs
*funcs
= crtc
->helper_private
;
703 if (nv_two_heads(dev
))
704 NVSetOwner(dev
, nv_crtc
->index
);
706 drm_crtc_vblank_off(crtc
);
707 funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
709 NVBlankScreen(dev
, nv_crtc
->index
, true);
711 /* Some more preparation. */
712 NVWriteCRTC(dev
, nv_crtc
->index
, NV_PCRTC_CONFIG
, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA
);
713 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CURIE
) {
714 uint32_t reg900
= NVReadRAMDAC(dev
, nv_crtc
->index
, NV_PRAMDAC_900
);
715 NVWriteRAMDAC(dev
, nv_crtc
->index
, NV_PRAMDAC_900
, reg900
& ~0x10000);
719 static void nv_crtc_commit(struct drm_crtc
*crtc
)
721 struct drm_device
*dev
= crtc
->dev
;
722 const struct drm_crtc_helper_funcs
*funcs
= crtc
->helper_private
;
723 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
725 nouveau_hw_load_state(dev
, nv_crtc
->index
, &nv04_display(dev
)->mode_reg
);
726 nv04_crtc_mode_set_base(crtc
, crtc
->x
, crtc
->y
, NULL
);
729 /* turn on LFB swapping */
731 uint8_t tmp
= NVReadVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CRE_RCR
);
732 tmp
|= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG
);
733 NVWriteVgaCrtc(dev
, nv_crtc
->index
, NV_CIO_CRE_RCR
, tmp
);
737 funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
738 drm_crtc_vblank_on(crtc
);
741 static void nv_crtc_destroy(struct drm_crtc
*crtc
)
743 struct nv04_display
*disp
= nv04_display(crtc
->dev
);
744 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
749 drm_crtc_cleanup(crtc
);
751 if (disp
->image
[nv_crtc
->index
])
752 nouveau_bo_unpin(disp
->image
[nv_crtc
->index
]);
753 nouveau_bo_ref(NULL
, &disp
->image
[nv_crtc
->index
]);
755 nouveau_bo_unmap(nv_crtc
->cursor
.nvbo
);
756 nouveau_bo_unpin(nv_crtc
->cursor
.nvbo
);
757 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
762 nv_crtc_gamma_load(struct drm_crtc
*crtc
)
764 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
765 struct drm_device
*dev
= nv_crtc
->base
.dev
;
766 struct rgb
{ uint8_t r
, g
, b
; } __attribute__((packed
)) *rgbs
;
770 rgbs
= (struct rgb
*)nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
].DAC
;
771 r
= crtc
->gamma_store
;
772 g
= r
+ crtc
->gamma_size
;
773 b
= g
+ crtc
->gamma_size
;
775 for (i
= 0; i
< 256; i
++) {
776 rgbs
[i
].r
= *r
++ >> 8;
777 rgbs
[i
].g
= *g
++ >> 8;
778 rgbs
[i
].b
= *b
++ >> 8;
781 nouveau_hw_load_state_palette(dev
, nv_crtc
->index
, &nv04_display(dev
)->mode_reg
);
785 nv_crtc_disable(struct drm_crtc
*crtc
)
787 struct nv04_display
*disp
= nv04_display(crtc
->dev
);
788 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
789 if (disp
->image
[nv_crtc
->index
])
790 nouveau_bo_unpin(disp
->image
[nv_crtc
->index
]);
791 nouveau_bo_ref(NULL
, &disp
->image
[nv_crtc
->index
]);
795 nv_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
,
797 struct drm_modeset_acquire_ctx
*ctx
)
799 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
801 /* We need to know the depth before we upload, but it's possible to
802 * get called before a framebuffer is bound. If this is the case,
803 * mark the lut values as dirty by setting depth==0, and it'll be
804 * uploaded on the first mode_set_base()
806 if (!nv_crtc
->base
.primary
->fb
) {
807 nv_crtc
->lut
.depth
= 0;
811 nv_crtc_gamma_load(crtc
);
817 nv04_crtc_do_mode_set_base(struct drm_crtc
*crtc
,
818 struct drm_framebuffer
*passed_fb
,
819 int x
, int y
, bool atomic
)
821 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
822 struct drm_device
*dev
= crtc
->dev
;
823 struct nouveau_drm
*drm
= nouveau_drm(dev
);
824 struct nv04_crtc_reg
*regp
= &nv04_display(dev
)->mode_reg
.crtc_reg
[nv_crtc
->index
];
825 struct drm_framebuffer
*drm_fb
;
826 struct nouveau_framebuffer
*fb
;
827 int arb_burst
, arb_lwm
;
829 NV_DEBUG(drm
, "index %d\n", nv_crtc
->index
);
832 if (!atomic
&& !crtc
->primary
->fb
) {
833 NV_DEBUG(drm
, "No FB bound\n");
837 /* If atomic, we want to switch to the fb we were passed, so
838 * now we update pointers to do that.
842 fb
= nouveau_framebuffer(passed_fb
);
844 drm_fb
= crtc
->primary
->fb
;
845 fb
= nouveau_framebuffer(crtc
->primary
->fb
);
848 nv_crtc
->fb
.offset
= fb
->nvbo
->bo
.offset
;
850 if (nv_crtc
->lut
.depth
!= drm_fb
->format
->depth
) {
851 nv_crtc
->lut
.depth
= drm_fb
->format
->depth
;
852 nv_crtc_gamma_load(crtc
);
855 /* Update the framebuffer format. */
856 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] &= ~3;
857 regp
->CRTC
[NV_CIO_CRE_PIXEL_INDEX
] |= (drm_fb
->format
->depth
+ 1) / 8;
858 regp
->ramdac_gen_ctrl
&= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL
;
859 if (drm_fb
->format
->depth
== 16)
860 regp
->ramdac_gen_ctrl
|= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL
;
861 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_PIXEL_INDEX
);
862 NVWriteRAMDAC(dev
, nv_crtc
->index
, NV_PRAMDAC_GENERAL_CONTROL
,
863 regp
->ramdac_gen_ctrl
);
865 regp
->CRTC
[NV_CIO_CR_OFFSET_INDEX
] = drm_fb
->pitches
[0] >> 3;
866 regp
->CRTC
[NV_CIO_CRE_RPC0_INDEX
] =
867 XLATE(drm_fb
->pitches
[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8
);
868 regp
->CRTC
[NV_CIO_CRE_42
] =
869 XLATE(drm_fb
->pitches
[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11
);
870 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_RPC0_INDEX
);
871 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CR_OFFSET_INDEX
);
872 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_42
);
874 /* Update the framebuffer location. */
875 regp
->fb_start
= nv_crtc
->fb
.offset
& ~3;
876 regp
->fb_start
+= (y
* drm_fb
->pitches
[0]) + (x
* drm_fb
->format
->cpp
[0]);
877 nv_set_crtc_base(dev
, nv_crtc
->index
, regp
->fb_start
);
879 /* Update the arbitration parameters. */
880 nouveau_calc_arb(dev
, crtc
->mode
.clock
, drm_fb
->format
->cpp
[0] * 8,
881 &arb_burst
, &arb_lwm
);
883 regp
->CRTC
[NV_CIO_CRE_FF_INDEX
] = arb_burst
;
884 regp
->CRTC
[NV_CIO_CRE_FFLWM__INDEX
] = arb_lwm
& 0xff;
885 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_FF_INDEX
);
886 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_FFLWM__INDEX
);
888 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_KELVIN
) {
889 regp
->CRTC
[NV_CIO_CRE_47
] = arb_lwm
>> 8;
890 crtc_wr_cio_state(crtc
, regp
, NV_CIO_CRE_47
);
897 nv04_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
898 struct drm_framebuffer
*old_fb
)
900 int ret
= nv_crtc_swap_fbs(crtc
, old_fb
);
903 return nv04_crtc_do_mode_set_base(crtc
, old_fb
, x
, y
, false);
907 nv04_crtc_mode_set_base_atomic(struct drm_crtc
*crtc
,
908 struct drm_framebuffer
*fb
,
909 int x
, int y
, enum mode_set_atomic state
)
911 struct nouveau_drm
*drm
= nouveau_drm(crtc
->dev
);
912 struct drm_device
*dev
= drm
->dev
;
914 if (state
== ENTER_ATOMIC_MODE_SET
)
915 nouveau_fbcon_accel_save_disable(dev
);
917 nouveau_fbcon_accel_restore(dev
);
919 return nv04_crtc_do_mode_set_base(crtc
, fb
, x
, y
, true);
922 static void nv04_cursor_upload(struct drm_device
*dev
, struct nouveau_bo
*src
,
923 struct nouveau_bo
*dst
)
925 int width
= nv_cursor_width(dev
);
929 for (i
= 0; i
< width
; i
++) {
930 for (j
= 0; j
< width
; j
++) {
931 pixel
= nouveau_bo_rd32(src
, i
*64 + j
);
933 nouveau_bo_wr16(dst
, i
*width
+ j
, (pixel
& 0x80000000) >> 16
934 | (pixel
& 0xf80000) >> 9
935 | (pixel
& 0xf800) >> 6
936 | (pixel
& 0xf8) >> 3);
941 static void nv11_cursor_upload(struct drm_device
*dev
, struct nouveau_bo
*src
,
942 struct nouveau_bo
*dst
)
947 /* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha
948 * cursors (though NPM in combination with fp dithering may not work on
949 * nv11, from "nv" driver history)
950 * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the
951 * blob uses, however we get given PM cursors so we use PM mode
953 for (i
= 0; i
< 64 * 64; i
++) {
954 pixel
= nouveau_bo_rd32(src
, i
);
956 /* hw gets unhappy if alpha <= rgb values. for a PM image "less
957 * than" shouldn't happen; fix "equal to" case by adding one to
958 * alpha channel (slightly inaccurate, but so is attempting to
959 * get back to NPM images, due to limits of integer precision)
962 if (alpha
> 0 && alpha
< 255)
963 pixel
= (pixel
& 0x00ffffff) | ((alpha
+ 1) << 24);
967 struct nouveau_drm
*drm
= nouveau_drm(dev
);
969 if (drm
->client
.device
.info
.chipset
== 0x11) {
970 pixel
= ((pixel
& 0x000000ff) << 24) |
971 ((pixel
& 0x0000ff00) << 8) |
972 ((pixel
& 0x00ff0000) >> 8) |
973 ((pixel
& 0xff000000) >> 24);
978 nouveau_bo_wr32(dst
, i
, pixel
);
983 nv04_crtc_cursor_set(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
984 uint32_t buffer_handle
, uint32_t width
, uint32_t height
)
986 struct nouveau_drm
*drm
= nouveau_drm(crtc
->dev
);
987 struct drm_device
*dev
= drm
->dev
;
988 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
989 struct nouveau_bo
*cursor
= NULL
;
990 struct drm_gem_object
*gem
;
993 if (!buffer_handle
) {
994 nv_crtc
->cursor
.hide(nv_crtc
, true);
998 if (width
!= 64 || height
!= 64)
1001 gem
= drm_gem_object_lookup(file_priv
, buffer_handle
);
1004 cursor
= nouveau_gem_object(gem
);
1006 ret
= nouveau_bo_map(cursor
);
1010 if (drm
->client
.device
.info
.chipset
>= 0x11)
1011 nv11_cursor_upload(dev
, cursor
, nv_crtc
->cursor
.nvbo
);
1013 nv04_cursor_upload(dev
, cursor
, nv_crtc
->cursor
.nvbo
);
1015 nouveau_bo_unmap(cursor
);
1016 nv_crtc
->cursor
.offset
= nv_crtc
->cursor
.nvbo
->bo
.offset
;
1017 nv_crtc
->cursor
.set_offset(nv_crtc
, nv_crtc
->cursor
.offset
);
1018 nv_crtc
->cursor
.show(nv_crtc
, true);
1020 drm_gem_object_put_unlocked(gem
);
1025 nv04_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
1027 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1029 nv_crtc
->cursor
.set_pos(nv_crtc
, x
, y
);
1033 struct nv04_page_flip_state
{
1034 struct list_head head
;
1035 struct drm_pending_vblank_event
*event
;
1036 struct drm_crtc
*crtc
;
1042 nv04_finish_page_flip(struct nouveau_channel
*chan
,
1043 struct nv04_page_flip_state
*ps
)
1045 struct nouveau_fence_chan
*fctx
= chan
->fence
;
1046 struct nouveau_drm
*drm
= chan
->drm
;
1047 struct drm_device
*dev
= drm
->dev
;
1048 struct nv04_page_flip_state
*s
;
1049 unsigned long flags
;
1051 spin_lock_irqsave(&dev
->event_lock
, flags
);
1053 if (list_empty(&fctx
->flip
)) {
1054 NV_ERROR(drm
, "unexpected pageflip\n");
1055 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1059 s
= list_first_entry(&fctx
->flip
, struct nv04_page_flip_state
, head
);
1061 drm_crtc_arm_vblank_event(s
->crtc
, s
->event
);
1063 /* Give up ownership of vblank for page-flipped crtc */
1064 drm_crtc_vblank_put(s
->crtc
);
1072 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1077 nv04_flip_complete(struct nvif_notify
*notify
)
1079 struct nouveau_cli
*cli
= (void *)notify
->object
->client
;
1080 struct nouveau_drm
*drm
= cli
->drm
;
1081 struct nouveau_channel
*chan
= drm
->channel
;
1082 struct nv04_page_flip_state state
;
1084 if (!nv04_finish_page_flip(chan
, &state
)) {
1085 nv_set_crtc_base(drm
->dev
, drm_crtc_index(state
.crtc
),
1086 state
.offset
+ state
.crtc
->y
*
1087 state
.pitch
+ state
.crtc
->x
*
1091 return NVIF_NOTIFY_KEEP
;
1095 nv04_page_flip_emit(struct nouveau_channel
*chan
,
1096 struct nouveau_bo
*old_bo
,
1097 struct nouveau_bo
*new_bo
,
1098 struct nv04_page_flip_state
*s
,
1099 struct nouveau_fence
**pfence
)
1101 struct nouveau_fence_chan
*fctx
= chan
->fence
;
1102 struct nouveau_drm
*drm
= chan
->drm
;
1103 struct drm_device
*dev
= drm
->dev
;
1104 unsigned long flags
;
1107 /* Queue it to the pending list */
1108 spin_lock_irqsave(&dev
->event_lock
, flags
);
1109 list_add_tail(&s
->head
, &fctx
->flip
);
1110 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1112 /* Synchronize with the old framebuffer */
1113 ret
= nouveau_fence_sync(old_bo
, chan
, false, false);
1117 /* Emit the pageflip */
1118 ret
= RING_SPACE(chan
, 2);
1122 BEGIN_NV04(chan
, NvSubSw
, NV_SW_PAGE_FLIP
, 1);
1123 OUT_RING (chan
, 0x00000000);
1126 ret
= nouveau_fence_new(chan
, false, pfence
);
1132 spin_lock_irqsave(&dev
->event_lock
, flags
);
1134 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1139 nv04_crtc_page_flip(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
1140 struct drm_pending_vblank_event
*event
, u32 flags
,
1141 struct drm_modeset_acquire_ctx
*ctx
)
1143 const int swap_interval
= (flags
& DRM_MODE_PAGE_FLIP_ASYNC
) ? 0 : 1;
1144 struct drm_device
*dev
= crtc
->dev
;
1145 struct nouveau_drm
*drm
= nouveau_drm(dev
);
1146 struct nouveau_bo
*old_bo
= nouveau_framebuffer(crtc
->primary
->fb
)->nvbo
;
1147 struct nouveau_bo
*new_bo
= nouveau_framebuffer(fb
)->nvbo
;
1148 struct nv04_page_flip_state
*s
;
1149 struct nouveau_channel
*chan
;
1150 struct nouveau_cli
*cli
;
1151 struct nouveau_fence
*fence
;
1152 struct nv04_display
*dispnv04
= nv04_display(dev
);
1153 int head
= nouveau_crtc(crtc
)->index
;
1156 chan
= drm
->channel
;
1159 cli
= (void *)chan
->user
.client
;
1161 s
= kzalloc(sizeof(*s
), GFP_KERNEL
);
1165 if (new_bo
!= old_bo
) {
1166 ret
= nouveau_bo_pin(new_bo
, TTM_PL_FLAG_VRAM
, true);
1171 mutex_lock(&cli
->mutex
);
1172 ret
= ttm_bo_reserve(&new_bo
->bo
, true, false, NULL
);
1176 /* synchronise rendering channel with the kernel's channel */
1177 ret
= nouveau_fence_sync(new_bo
, chan
, false, true);
1179 ttm_bo_unreserve(&new_bo
->bo
);
1183 if (new_bo
!= old_bo
) {
1184 ttm_bo_unreserve(&new_bo
->bo
);
1186 ret
= ttm_bo_reserve(&old_bo
->bo
, true, false, NULL
);
1191 /* Initialize a page flip struct */
1192 *s
= (struct nv04_page_flip_state
)
1193 { { }, event
, crtc
, fb
->format
->cpp
[0] * 8, fb
->pitches
[0],
1194 new_bo
->bo
.offset
};
1196 /* Keep vblanks on during flip, for the target crtc of this flip */
1197 drm_crtc_vblank_get(crtc
);
1199 /* Emit a page flip */
1200 if (swap_interval
) {
1201 ret
= RING_SPACE(chan
, 8);
1203 goto fail_unreserve
;
1205 BEGIN_NV04(chan
, NvSubImageBlit
, 0x012c, 1);
1207 BEGIN_NV04(chan
, NvSubImageBlit
, 0x0134, 1);
1208 OUT_RING (chan
, head
);
1209 BEGIN_NV04(chan
, NvSubImageBlit
, 0x0100, 1);
1211 BEGIN_NV04(chan
, NvSubImageBlit
, 0x0130, 1);
1215 nouveau_bo_ref(new_bo
, &dispnv04
->image
[head
]);
1217 ret
= nv04_page_flip_emit(chan
, old_bo
, new_bo
, s
, &fence
);
1219 goto fail_unreserve
;
1220 mutex_unlock(&cli
->mutex
);
1222 /* Update the crtc struct and cleanup */
1223 crtc
->primary
->fb
= fb
;
1225 nouveau_bo_fence(old_bo
, fence
, false);
1226 ttm_bo_unreserve(&old_bo
->bo
);
1227 if (old_bo
!= new_bo
)
1228 nouveau_bo_unpin(old_bo
);
1229 nouveau_fence_unref(&fence
);
1233 drm_crtc_vblank_put(crtc
);
1234 ttm_bo_unreserve(&old_bo
->bo
);
1236 mutex_unlock(&cli
->mutex
);
1237 if (old_bo
!= new_bo
)
1238 nouveau_bo_unpin(new_bo
);
1244 static const struct drm_crtc_funcs nv04_crtc_funcs
= {
1245 .cursor_set
= nv04_crtc_cursor_set
,
1246 .cursor_move
= nv04_crtc_cursor_move
,
1247 .gamma_set
= nv_crtc_gamma_set
,
1248 .set_config
= drm_crtc_helper_set_config
,
1249 .page_flip
= nv04_crtc_page_flip
,
1250 .destroy
= nv_crtc_destroy
,
1253 static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs
= {
1254 .dpms
= nv_crtc_dpms
,
1255 .prepare
= nv_crtc_prepare
,
1256 .commit
= nv_crtc_commit
,
1257 .mode_set
= nv_crtc_mode_set
,
1258 .mode_set_base
= nv04_crtc_mode_set_base
,
1259 .mode_set_base_atomic
= nv04_crtc_mode_set_base_atomic
,
1260 .disable
= nv_crtc_disable
,
1263 static const uint32_t modeset_formats
[] = {
1264 DRM_FORMAT_XRGB8888
,
1266 DRM_FORMAT_XRGB1555
,
1269 static struct drm_plane
*
1270 create_primary_plane(struct drm_device
*dev
)
1272 struct drm_plane
*primary
;
1275 primary
= kzalloc(sizeof(*primary
), GFP_KERNEL
);
1276 if (primary
== NULL
) {
1277 DRM_DEBUG_KMS("Failed to allocate primary plane\n");
1281 /* possible_crtc's will be filled in later by crtc_init */
1282 ret
= drm_universal_plane_init(dev
, primary
, 0,
1283 &drm_primary_helper_funcs
,
1285 ARRAY_SIZE(modeset_formats
), NULL
,
1286 DRM_PLANE_TYPE_PRIMARY
, NULL
);
1296 nv04_crtc_create(struct drm_device
*dev
, int crtc_num
)
1298 struct nouveau_crtc
*nv_crtc
;
1301 nv_crtc
= kzalloc(sizeof(*nv_crtc
), GFP_KERNEL
);
1305 nv_crtc
->lut
.depth
= 0;
1307 nv_crtc
->index
= crtc_num
;
1308 nv_crtc
->last_dpms
= NV_DPMS_CLEARED
;
1310 nv_crtc
->save
= nv_crtc_save
;
1311 nv_crtc
->restore
= nv_crtc_restore
;
1313 drm_crtc_init_with_planes(dev
, &nv_crtc
->base
,
1314 create_primary_plane(dev
), NULL
,
1315 &nv04_crtc_funcs
, NULL
);
1316 drm_crtc_helper_add(&nv_crtc
->base
, &nv04_crtc_helper_funcs
);
1317 drm_mode_crtc_set_gamma_size(&nv_crtc
->base
, 256);
1319 ret
= nouveau_bo_new(&nouveau_drm(dev
)->client
, 64*64*4, 0x100,
1320 TTM_PL_FLAG_VRAM
, 0, 0x0000, NULL
, NULL
,
1321 &nv_crtc
->cursor
.nvbo
);
1323 ret
= nouveau_bo_pin(nv_crtc
->cursor
.nvbo
, TTM_PL_FLAG_VRAM
, false);
1325 ret
= nouveau_bo_map(nv_crtc
->cursor
.nvbo
);
1327 nouveau_bo_unpin(nv_crtc
->cursor
.nvbo
);
1330 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
1333 nv04_cursor_init(nv_crtc
);