treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nouveau_bo.c
blob1b62ccc57aef03685c0f9b4d3095173dd372dd8b
1 /*
2 * Copyright 2007 Dave Airlied
3 * All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drv.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
48 * NV10-NV40 tiling helpers
51 static void
52 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
53 u32 addr, u32 size, u32 pitch, u32 flags)
55 struct nouveau_drm *drm = nouveau_drm(dev);
56 int i = reg - drm->tile.reg;
57 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
58 struct nvkm_fb_tile *tile = &fb->tile.region[i];
60 nouveau_fence_unref(&reg->fence);
62 if (tile->pitch)
63 nvkm_fb_tile_fini(fb, i, tile);
65 if (pitch)
66 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
68 nvkm_fb_tile_prog(fb, i, tile);
71 static struct nouveau_drm_tile *
72 nv10_bo_get_tile_region(struct drm_device *dev, int i)
74 struct nouveau_drm *drm = nouveau_drm(dev);
75 struct nouveau_drm_tile *tile = &drm->tile.reg[i];
77 spin_lock(&drm->tile.lock);
79 if (!tile->used &&
80 (!tile->fence || nouveau_fence_done(tile->fence)))
81 tile->used = true;
82 else
83 tile = NULL;
85 spin_unlock(&drm->tile.lock);
86 return tile;
89 static void
90 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
91 struct dma_fence *fence)
93 struct nouveau_drm *drm = nouveau_drm(dev);
95 if (tile) {
96 spin_lock(&drm->tile.lock);
97 tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
98 tile->used = false;
99 spin_unlock(&drm->tile.lock);
103 static struct nouveau_drm_tile *
104 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
105 u32 size, u32 pitch, u32 zeta)
107 struct nouveau_drm *drm = nouveau_drm(dev);
108 struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
109 struct nouveau_drm_tile *tile, *found = NULL;
110 int i;
112 for (i = 0; i < fb->tile.regions; i++) {
113 tile = nv10_bo_get_tile_region(dev, i);
115 if (pitch && !found) {
116 found = tile;
117 continue;
119 } else if (tile && fb->tile.region[i].pitch) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
124 nv10_bo_put_tile_region(dev, tile, NULL);
127 if (found)
128 nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
129 return found;
132 static void
133 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
135 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
136 struct drm_device *dev = drm->dev;
137 struct nouveau_bo *nvbo = nouveau_bo(bo);
139 WARN_ON(nvbo->pin_refcnt > 0);
140 nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
143 * If nouveau_bo_new() allocated this buffer, the GEM object was never
144 * initialized, so don't attempt to release it.
146 if (bo->base.dev)
147 drm_gem_object_release(&bo->base);
149 kfree(nvbo);
152 static inline u64
153 roundup_64(u64 x, u32 y)
155 x += y - 1;
156 do_div(x, y);
157 return x * y;
160 static void
161 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
162 int *align, u64 *size)
164 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
165 struct nvif_device *device = &drm->client.device;
167 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
168 if (nvbo->mode) {
169 if (device->info.chipset >= 0x40) {
170 *align = 65536;
171 *size = roundup_64(*size, 64 * nvbo->mode);
173 } else if (device->info.chipset >= 0x30) {
174 *align = 32768;
175 *size = roundup_64(*size, 64 * nvbo->mode);
177 } else if (device->info.chipset >= 0x20) {
178 *align = 16384;
179 *size = roundup_64(*size, 64 * nvbo->mode);
181 } else if (device->info.chipset >= 0x10) {
182 *align = 16384;
183 *size = roundup_64(*size, 32 * nvbo->mode);
186 } else {
187 *size = roundup_64(*size, (1 << nvbo->page));
188 *align = max((1 << nvbo->page), *align);
191 *size = roundup_64(*size, PAGE_SIZE);
194 struct nouveau_bo *
195 nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 flags,
196 u32 tile_mode, u32 tile_flags)
198 struct nouveau_drm *drm = cli->drm;
199 struct nouveau_bo *nvbo;
200 struct nvif_mmu *mmu = &cli->mmu;
201 struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
202 int i, pi = -1;
204 if (!*size) {
205 NV_WARN(drm, "skipped size %016llx\n", *size);
206 return ERR_PTR(-EINVAL);
209 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
210 if (!nvbo)
211 return ERR_PTR(-ENOMEM);
212 INIT_LIST_HEAD(&nvbo->head);
213 INIT_LIST_HEAD(&nvbo->entry);
214 INIT_LIST_HEAD(&nvbo->vma_list);
215 nvbo->bo.bdev = &drm->ttm.bdev;
217 /* This is confusing, and doesn't actually mean we want an uncached
218 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
219 * into in nouveau_gem_new().
221 if (flags & TTM_PL_FLAG_UNCACHED) {
222 /* Determine if we can get a cache-coherent map, forcing
223 * uncached mapping if we can't.
225 if (!nouveau_drm_use_coherent_gpu_mapping(drm))
226 nvbo->force_coherent = true;
229 if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
230 nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
231 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
232 kfree(nvbo);
233 return ERR_PTR(-EINVAL);
236 nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
237 } else
238 if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
239 nvbo->kind = (tile_flags & 0x00007f00) >> 8;
240 nvbo->comp = (tile_flags & 0x00030000) >> 16;
241 if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
242 kfree(nvbo);
243 return ERR_PTR(-EINVAL);
245 } else {
246 nvbo->zeta = (tile_flags & 0x00000007);
248 nvbo->mode = tile_mode;
249 nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
251 /* Determine the desirable target GPU page size for the buffer. */
252 for (i = 0; i < vmm->page_nr; i++) {
253 /* Because we cannot currently allow VMM maps to fail
254 * during buffer migration, we need to determine page
255 * size for the buffer up-front, and pre-allocate its
256 * page tables.
258 * Skip page sizes that can't support needed domains.
260 if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
261 (flags & TTM_PL_FLAG_VRAM) && !vmm->page[i].vram)
262 continue;
263 if ((flags & TTM_PL_FLAG_TT) &&
264 (!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
265 continue;
267 /* Select this page size if it's the first that supports
268 * the potential memory domains, or when it's compatible
269 * with the requested compression settings.
271 if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
272 pi = i;
274 /* Stop once the buffer is larger than the current page size. */
275 if (*size >= 1ULL << vmm->page[i].shift)
276 break;
279 if (WARN_ON(pi < 0))
280 return ERR_PTR(-EINVAL);
282 /* Disable compression if suitable settings couldn't be found. */
283 if (nvbo->comp && !vmm->page[pi].comp) {
284 if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
285 nvbo->kind = mmu->kind[nvbo->kind];
286 nvbo->comp = 0;
288 nvbo->page = vmm->page[pi].shift;
290 nouveau_bo_fixup_align(nvbo, flags, align, size);
292 return nvbo;
296 nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 flags,
297 struct sg_table *sg, struct dma_resv *robj)
299 int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
300 size_t acc_size;
301 int ret;
303 acc_size = ttm_bo_dma_acc_size(nvbo->bo.bdev, size, sizeof(*nvbo));
305 nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
306 nouveau_bo_placement_set(nvbo, flags, 0);
308 ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type,
309 &nvbo->placement, align >> PAGE_SHIFT, false,
310 acc_size, sg, robj, nouveau_bo_del_ttm);
311 if (ret) {
312 /* ttm will call nouveau_bo_del_ttm if it fails.. */
313 return ret;
316 return 0;
320 nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
321 uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
322 struct sg_table *sg, struct dma_resv *robj,
323 struct nouveau_bo **pnvbo)
325 struct nouveau_bo *nvbo;
326 int ret;
328 nvbo = nouveau_bo_alloc(cli, &size, &align, flags, tile_mode,
329 tile_flags);
330 if (IS_ERR(nvbo))
331 return PTR_ERR(nvbo);
333 ret = nouveau_bo_init(nvbo, size, align, flags, sg, robj);
334 if (ret)
335 return ret;
337 *pnvbo = nvbo;
338 return 0;
341 static void
342 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
344 *n = 0;
346 if (type & TTM_PL_FLAG_VRAM)
347 pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
348 if (type & TTM_PL_FLAG_TT)
349 pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
350 if (type & TTM_PL_FLAG_SYSTEM)
351 pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
354 static void
355 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
357 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
358 u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
359 unsigned i, fpfn, lpfn;
361 if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
362 nvbo->mode && (type & TTM_PL_FLAG_VRAM) &&
363 nvbo->bo.mem.num_pages < vram_pages / 4) {
365 * Make sure that the color and depth buffers are handled
366 * by independent memory controller units. Up to a 9x
367 * speed up when alpha-blending and depth-test are enabled
368 * at the same time.
370 if (nvbo->zeta) {
371 fpfn = vram_pages / 2;
372 lpfn = ~0;
373 } else {
374 fpfn = 0;
375 lpfn = vram_pages / 2;
377 for (i = 0; i < nvbo->placement.num_placement; ++i) {
378 nvbo->placements[i].fpfn = fpfn;
379 nvbo->placements[i].lpfn = lpfn;
381 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
382 nvbo->busy_placements[i].fpfn = fpfn;
383 nvbo->busy_placements[i].lpfn = lpfn;
388 void
389 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
391 struct ttm_placement *pl = &nvbo->placement;
392 uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
393 TTM_PL_MASK_CACHING) |
394 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
396 pl->placement = nvbo->placements;
397 set_placement_list(nvbo->placements, &pl->num_placement,
398 type, flags);
400 pl->busy_placement = nvbo->busy_placements;
401 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
402 type | busy, flags);
404 set_placement_range(nvbo, type);
408 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
410 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
411 struct ttm_buffer_object *bo = &nvbo->bo;
412 bool force = false, evict = false;
413 int ret;
415 ret = ttm_bo_reserve(bo, false, false, NULL);
416 if (ret)
417 return ret;
419 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
420 memtype == TTM_PL_FLAG_VRAM && contig) {
421 if (!nvbo->contig) {
422 nvbo->contig = true;
423 force = true;
424 evict = true;
428 if (nvbo->pin_refcnt) {
429 if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
430 NV_ERROR(drm, "bo %p pinned elsewhere: "
431 "0x%08x vs 0x%08x\n", bo,
432 1 << bo->mem.mem_type, memtype);
433 ret = -EBUSY;
435 nvbo->pin_refcnt++;
436 goto out;
439 if (evict) {
440 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
441 ret = nouveau_bo_validate(nvbo, false, false);
442 if (ret)
443 goto out;
446 nvbo->pin_refcnt++;
447 nouveau_bo_placement_set(nvbo, memtype, 0);
449 /* drop pin_refcnt temporarily, so we don't trip the assertion
450 * in nouveau_bo_move() that makes sure we're not trying to
451 * move a pinned buffer
453 nvbo->pin_refcnt--;
454 ret = nouveau_bo_validate(nvbo, false, false);
455 if (ret)
456 goto out;
457 nvbo->pin_refcnt++;
459 switch (bo->mem.mem_type) {
460 case TTM_PL_VRAM:
461 drm->gem.vram_available -= bo->mem.size;
462 break;
463 case TTM_PL_TT:
464 drm->gem.gart_available -= bo->mem.size;
465 break;
466 default:
467 break;
470 out:
471 if (force && ret)
472 nvbo->contig = false;
473 ttm_bo_unreserve(bo);
474 return ret;
478 nouveau_bo_unpin(struct nouveau_bo *nvbo)
480 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
481 struct ttm_buffer_object *bo = &nvbo->bo;
482 int ret, ref;
484 ret = ttm_bo_reserve(bo, false, false, NULL);
485 if (ret)
486 return ret;
488 ref = --nvbo->pin_refcnt;
489 WARN_ON_ONCE(ref < 0);
490 if (ref)
491 goto out;
493 nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
495 ret = nouveau_bo_validate(nvbo, false, false);
496 if (ret == 0) {
497 switch (bo->mem.mem_type) {
498 case TTM_PL_VRAM:
499 drm->gem.vram_available += bo->mem.size;
500 break;
501 case TTM_PL_TT:
502 drm->gem.gart_available += bo->mem.size;
503 break;
504 default:
505 break;
509 out:
510 ttm_bo_unreserve(bo);
511 return ret;
515 nouveau_bo_map(struct nouveau_bo *nvbo)
517 int ret;
519 ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
520 if (ret)
521 return ret;
523 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
525 ttm_bo_unreserve(&nvbo->bo);
526 return ret;
529 void
530 nouveau_bo_unmap(struct nouveau_bo *nvbo)
532 if (!nvbo)
533 return;
535 ttm_bo_kunmap(&nvbo->kmap);
538 void
539 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
541 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
542 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
543 int i;
545 if (!ttm_dma)
546 return;
548 /* Don't waste time looping if the object is coherent */
549 if (nvbo->force_coherent)
550 return;
552 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
553 dma_sync_single_for_device(drm->dev->dev,
554 ttm_dma->dma_address[i],
555 PAGE_SIZE, DMA_TO_DEVICE);
558 void
559 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
561 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
562 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
563 int i;
565 if (!ttm_dma)
566 return;
568 /* Don't waste time looping if the object is coherent */
569 if (nvbo->force_coherent)
570 return;
572 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
573 dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
574 PAGE_SIZE, DMA_FROM_DEVICE);
578 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
579 bool no_wait_gpu)
581 struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
582 int ret;
584 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
585 if (ret)
586 return ret;
588 nouveau_bo_sync_for_device(nvbo);
590 return 0;
593 void
594 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
596 bool is_iomem;
597 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
599 mem += index;
601 if (is_iomem)
602 iowrite16_native(val, (void __force __iomem *)mem);
603 else
604 *mem = val;
608 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
610 bool is_iomem;
611 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
613 mem += index;
615 if (is_iomem)
616 return ioread32_native((void __force __iomem *)mem);
617 else
618 return *mem;
621 void
622 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
624 bool is_iomem;
625 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
627 mem += index;
629 if (is_iomem)
630 iowrite32_native(val, (void __force __iomem *)mem);
631 else
632 *mem = val;
635 static struct ttm_tt *
636 nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
638 #if IS_ENABLED(CONFIG_AGP)
639 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
641 if (drm->agp.bridge) {
642 return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
644 #endif
646 return nouveau_sgdma_create_ttm(bo, page_flags);
649 static int
650 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
652 /* We'll do this from user space. */
653 return 0;
656 static int
657 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
658 struct ttm_mem_type_manager *man)
660 struct nouveau_drm *drm = nouveau_bdev(bdev);
661 struct nvif_mmu *mmu = &drm->client.mmu;
663 switch (type) {
664 case TTM_PL_SYSTEM:
665 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
666 man->available_caching = TTM_PL_MASK_CACHING;
667 man->default_caching = TTM_PL_FLAG_CACHED;
668 break;
669 case TTM_PL_VRAM:
670 man->flags = TTM_MEMTYPE_FLAG_FIXED |
671 TTM_MEMTYPE_FLAG_MAPPABLE;
672 man->available_caching = TTM_PL_FLAG_UNCACHED |
673 TTM_PL_FLAG_WC;
674 man->default_caching = TTM_PL_FLAG_WC;
676 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
677 /* Some BARs do not support being ioremapped WC */
678 const u8 type = mmu->type[drm->ttm.type_vram].type;
679 if (type & NVIF_MEM_UNCACHED) {
680 man->available_caching = TTM_PL_FLAG_UNCACHED;
681 man->default_caching = TTM_PL_FLAG_UNCACHED;
684 man->func = &nouveau_vram_manager;
685 man->io_reserve_fastpath = false;
686 man->use_io_reserve_lru = true;
687 } else {
688 man->func = &ttm_bo_manager_func;
690 break;
691 case TTM_PL_TT:
692 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA)
693 man->func = &nouveau_gart_manager;
694 else
695 if (!drm->agp.bridge)
696 man->func = &nv04_gart_manager;
697 else
698 man->func = &ttm_bo_manager_func;
700 if (drm->agp.bridge) {
701 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
702 man->available_caching = TTM_PL_FLAG_UNCACHED |
703 TTM_PL_FLAG_WC;
704 man->default_caching = TTM_PL_FLAG_WC;
705 } else {
706 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
707 TTM_MEMTYPE_FLAG_CMA;
708 man->available_caching = TTM_PL_MASK_CACHING;
709 man->default_caching = TTM_PL_FLAG_CACHED;
712 break;
713 default:
714 return -EINVAL;
716 return 0;
719 static void
720 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
722 struct nouveau_bo *nvbo = nouveau_bo(bo);
724 switch (bo->mem.mem_type) {
725 case TTM_PL_VRAM:
726 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
727 TTM_PL_FLAG_SYSTEM);
728 break;
729 default:
730 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
731 break;
734 *pl = nvbo->placement;
738 static int
739 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
741 int ret = RING_SPACE(chan, 2);
742 if (ret == 0) {
743 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
744 OUT_RING (chan, handle & 0x0000ffff);
745 FIRE_RING (chan);
747 return ret;
750 static int
751 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
752 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
754 struct nouveau_mem *mem = nouveau_mem(old_reg);
755 int ret = RING_SPACE(chan, 10);
756 if (ret == 0) {
757 BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
758 OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
759 OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
760 OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
761 OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
762 OUT_RING (chan, PAGE_SIZE);
763 OUT_RING (chan, PAGE_SIZE);
764 OUT_RING (chan, PAGE_SIZE);
765 OUT_RING (chan, new_reg->num_pages);
766 BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
768 return ret;
771 static int
772 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
774 int ret = RING_SPACE(chan, 2);
775 if (ret == 0) {
776 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
777 OUT_RING (chan, handle);
779 return ret;
782 static int
783 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
784 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
786 struct nouveau_mem *mem = nouveau_mem(old_reg);
787 u64 src_offset = mem->vma[0].addr;
788 u64 dst_offset = mem->vma[1].addr;
789 u32 page_count = new_reg->num_pages;
790 int ret;
792 page_count = new_reg->num_pages;
793 while (page_count) {
794 int line_count = (page_count > 8191) ? 8191 : page_count;
796 ret = RING_SPACE(chan, 11);
797 if (ret)
798 return ret;
800 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
801 OUT_RING (chan, upper_32_bits(src_offset));
802 OUT_RING (chan, lower_32_bits(src_offset));
803 OUT_RING (chan, upper_32_bits(dst_offset));
804 OUT_RING (chan, lower_32_bits(dst_offset));
805 OUT_RING (chan, PAGE_SIZE);
806 OUT_RING (chan, PAGE_SIZE);
807 OUT_RING (chan, PAGE_SIZE);
808 OUT_RING (chan, line_count);
809 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
810 OUT_RING (chan, 0x00000110);
812 page_count -= line_count;
813 src_offset += (PAGE_SIZE * line_count);
814 dst_offset += (PAGE_SIZE * line_count);
817 return 0;
820 static int
821 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
822 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
824 struct nouveau_mem *mem = nouveau_mem(old_reg);
825 u64 src_offset = mem->vma[0].addr;
826 u64 dst_offset = mem->vma[1].addr;
827 u32 page_count = new_reg->num_pages;
828 int ret;
830 page_count = new_reg->num_pages;
831 while (page_count) {
832 int line_count = (page_count > 2047) ? 2047 : page_count;
834 ret = RING_SPACE(chan, 12);
835 if (ret)
836 return ret;
838 BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
839 OUT_RING (chan, upper_32_bits(dst_offset));
840 OUT_RING (chan, lower_32_bits(dst_offset));
841 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
842 OUT_RING (chan, upper_32_bits(src_offset));
843 OUT_RING (chan, lower_32_bits(src_offset));
844 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
845 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
846 OUT_RING (chan, PAGE_SIZE); /* line_length */
847 OUT_RING (chan, line_count);
848 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
849 OUT_RING (chan, 0x00100110);
851 page_count -= line_count;
852 src_offset += (PAGE_SIZE * line_count);
853 dst_offset += (PAGE_SIZE * line_count);
856 return 0;
859 static int
860 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
861 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
863 struct nouveau_mem *mem = nouveau_mem(old_reg);
864 u64 src_offset = mem->vma[0].addr;
865 u64 dst_offset = mem->vma[1].addr;
866 u32 page_count = new_reg->num_pages;
867 int ret;
869 page_count = new_reg->num_pages;
870 while (page_count) {
871 int line_count = (page_count > 8191) ? 8191 : page_count;
873 ret = RING_SPACE(chan, 11);
874 if (ret)
875 return ret;
877 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
878 OUT_RING (chan, upper_32_bits(src_offset));
879 OUT_RING (chan, lower_32_bits(src_offset));
880 OUT_RING (chan, upper_32_bits(dst_offset));
881 OUT_RING (chan, lower_32_bits(dst_offset));
882 OUT_RING (chan, PAGE_SIZE);
883 OUT_RING (chan, PAGE_SIZE);
884 OUT_RING (chan, PAGE_SIZE);
885 OUT_RING (chan, line_count);
886 BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
887 OUT_RING (chan, 0x00000110);
889 page_count -= line_count;
890 src_offset += (PAGE_SIZE * line_count);
891 dst_offset += (PAGE_SIZE * line_count);
894 return 0;
897 static int
898 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
899 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
901 struct nouveau_mem *mem = nouveau_mem(old_reg);
902 int ret = RING_SPACE(chan, 7);
903 if (ret == 0) {
904 BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
905 OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
906 OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
907 OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
908 OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
909 OUT_RING (chan, 0x00000000 /* COPY */);
910 OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
912 return ret;
915 static int
916 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
917 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
919 struct nouveau_mem *mem = nouveau_mem(old_reg);
920 int ret = RING_SPACE(chan, 7);
921 if (ret == 0) {
922 BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
923 OUT_RING (chan, new_reg->num_pages << PAGE_SHIFT);
924 OUT_RING (chan, upper_32_bits(mem->vma[0].addr));
925 OUT_RING (chan, lower_32_bits(mem->vma[0].addr));
926 OUT_RING (chan, upper_32_bits(mem->vma[1].addr));
927 OUT_RING (chan, lower_32_bits(mem->vma[1].addr));
928 OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
930 return ret;
933 static int
934 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
936 int ret = RING_SPACE(chan, 6);
937 if (ret == 0) {
938 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
939 OUT_RING (chan, handle);
940 BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
941 OUT_RING (chan, chan->drm->ntfy.handle);
942 OUT_RING (chan, chan->vram.handle);
943 OUT_RING (chan, chan->vram.handle);
946 return ret;
949 static int
950 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
951 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
953 struct nouveau_mem *mem = nouveau_mem(old_reg);
954 u64 length = (new_reg->num_pages << PAGE_SHIFT);
955 u64 src_offset = mem->vma[0].addr;
956 u64 dst_offset = mem->vma[1].addr;
957 int src_tiled = !!mem->kind;
958 int dst_tiled = !!nouveau_mem(new_reg)->kind;
959 int ret;
961 while (length) {
962 u32 amount, stride, height;
964 ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
965 if (ret)
966 return ret;
968 amount = min(length, (u64)(4 * 1024 * 1024));
969 stride = 16 * 4;
970 height = amount / stride;
972 if (src_tiled) {
973 BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
974 OUT_RING (chan, 0);
975 OUT_RING (chan, 0);
976 OUT_RING (chan, stride);
977 OUT_RING (chan, height);
978 OUT_RING (chan, 1);
979 OUT_RING (chan, 0);
980 OUT_RING (chan, 0);
981 } else {
982 BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
983 OUT_RING (chan, 1);
985 if (dst_tiled) {
986 BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
987 OUT_RING (chan, 0);
988 OUT_RING (chan, 0);
989 OUT_RING (chan, stride);
990 OUT_RING (chan, height);
991 OUT_RING (chan, 1);
992 OUT_RING (chan, 0);
993 OUT_RING (chan, 0);
994 } else {
995 BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
996 OUT_RING (chan, 1);
999 BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
1000 OUT_RING (chan, upper_32_bits(src_offset));
1001 OUT_RING (chan, upper_32_bits(dst_offset));
1002 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
1003 OUT_RING (chan, lower_32_bits(src_offset));
1004 OUT_RING (chan, lower_32_bits(dst_offset));
1005 OUT_RING (chan, stride);
1006 OUT_RING (chan, stride);
1007 OUT_RING (chan, stride);
1008 OUT_RING (chan, height);
1009 OUT_RING (chan, 0x00000101);
1010 OUT_RING (chan, 0x00000000);
1011 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1012 OUT_RING (chan, 0);
1014 length -= amount;
1015 src_offset += amount;
1016 dst_offset += amount;
1019 return 0;
1022 static int
1023 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
1025 int ret = RING_SPACE(chan, 4);
1026 if (ret == 0) {
1027 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
1028 OUT_RING (chan, handle);
1029 BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
1030 OUT_RING (chan, chan->drm->ntfy.handle);
1033 return ret;
1036 static inline uint32_t
1037 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
1038 struct nouveau_channel *chan, struct ttm_mem_reg *reg)
1040 if (reg->mem_type == TTM_PL_TT)
1041 return NvDmaTT;
1042 return chan->vram.handle;
1045 static int
1046 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
1047 struct ttm_mem_reg *old_reg, struct ttm_mem_reg *new_reg)
1049 u32 src_offset = old_reg->start << PAGE_SHIFT;
1050 u32 dst_offset = new_reg->start << PAGE_SHIFT;
1051 u32 page_count = new_reg->num_pages;
1052 int ret;
1054 ret = RING_SPACE(chan, 3);
1055 if (ret)
1056 return ret;
1058 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
1059 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_reg));
1060 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_reg));
1062 page_count = new_reg->num_pages;
1063 while (page_count) {
1064 int line_count = (page_count > 2047) ? 2047 : page_count;
1066 ret = RING_SPACE(chan, 11);
1067 if (ret)
1068 return ret;
1070 BEGIN_NV04(chan, NvSubCopy,
1071 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
1072 OUT_RING (chan, src_offset);
1073 OUT_RING (chan, dst_offset);
1074 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
1075 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
1076 OUT_RING (chan, PAGE_SIZE); /* line_length */
1077 OUT_RING (chan, line_count);
1078 OUT_RING (chan, 0x00000101);
1079 OUT_RING (chan, 0x00000000);
1080 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1081 OUT_RING (chan, 0);
1083 page_count -= line_count;
1084 src_offset += (PAGE_SIZE * line_count);
1085 dst_offset += (PAGE_SIZE * line_count);
1088 return 0;
1091 static int
1092 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
1093 struct ttm_mem_reg *reg)
1095 struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
1096 struct nouveau_mem *new_mem = nouveau_mem(reg);
1097 struct nvif_vmm *vmm = &drm->client.vmm.vmm;
1098 int ret;
1100 ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
1101 old_mem->mem.size, &old_mem->vma[0]);
1102 if (ret)
1103 return ret;
1105 ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
1106 new_mem->mem.size, &old_mem->vma[1]);
1107 if (ret)
1108 goto done;
1110 ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
1111 if (ret)
1112 goto done;
1114 ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
1115 done:
1116 if (ret) {
1117 nvif_vmm_put(vmm, &old_mem->vma[1]);
1118 nvif_vmm_put(vmm, &old_mem->vma[0]);
1120 return 0;
1123 static int
1124 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
1125 bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1127 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1128 struct nouveau_channel *chan = drm->ttm.chan;
1129 struct nouveau_cli *cli = (void *)chan->user.client;
1130 struct nouveau_fence *fence;
1131 int ret;
1133 /* create temporary vmas for the transfer and attach them to the
1134 * old nvkm_mem node, these will get cleaned up after ttm has
1135 * destroyed the ttm_mem_reg
1137 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1138 ret = nouveau_bo_move_prep(drm, bo, new_reg);
1139 if (ret)
1140 return ret;
1143 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
1144 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
1145 if (ret == 0) {
1146 ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
1147 if (ret == 0) {
1148 ret = nouveau_fence_new(chan, false, &fence);
1149 if (ret == 0) {
1150 ret = ttm_bo_move_accel_cleanup(bo,
1151 &fence->base,
1152 evict,
1153 new_reg);
1154 nouveau_fence_unref(&fence);
1158 mutex_unlock(&cli->mutex);
1159 return ret;
1162 void
1163 nouveau_bo_move_init(struct nouveau_drm *drm)
1165 static const struct _method_table {
1166 const char *name;
1167 int engine;
1168 s32 oclass;
1169 int (*exec)(struct nouveau_channel *,
1170 struct ttm_buffer_object *,
1171 struct ttm_mem_reg *, struct ttm_mem_reg *);
1172 int (*init)(struct nouveau_channel *, u32 handle);
1173 } _methods[] = {
1174 { "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
1175 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
1176 { "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
1177 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
1178 { "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
1179 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
1180 { "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
1181 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1182 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
1183 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1184 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1185 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1186 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1187 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1188 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1189 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1190 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1191 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1192 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1194 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1196 const struct _method_table *mthd = _methods;
1197 const char *name = "CPU";
1198 int ret;
1200 do {
1201 struct nouveau_channel *chan;
1203 if (mthd->engine)
1204 chan = drm->cechan;
1205 else
1206 chan = drm->channel;
1207 if (chan == NULL)
1208 continue;
1210 ret = nvif_object_init(&chan->user,
1211 mthd->oclass | (mthd->engine << 16),
1212 mthd->oclass, NULL, 0,
1213 &drm->ttm.copy);
1214 if (ret == 0) {
1215 ret = mthd->init(chan, drm->ttm.copy.handle);
1216 if (ret) {
1217 nvif_object_fini(&drm->ttm.copy);
1218 continue;
1221 drm->ttm.move = mthd->exec;
1222 drm->ttm.chan = chan;
1223 name = mthd->name;
1224 break;
1226 } while ((++mthd)->exec);
1228 NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1231 static int
1232 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1233 bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1235 struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
1236 struct ttm_place placement_memtype = {
1237 .fpfn = 0,
1238 .lpfn = 0,
1239 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1241 struct ttm_placement placement;
1242 struct ttm_mem_reg tmp_reg;
1243 int ret;
1245 placement.num_placement = placement.num_busy_placement = 1;
1246 placement.placement = placement.busy_placement = &placement_memtype;
1248 tmp_reg = *new_reg;
1249 tmp_reg.mm_node = NULL;
1250 ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
1251 if (ret)
1252 return ret;
1254 ret = ttm_tt_bind(bo->ttm, &tmp_reg, &ctx);
1255 if (ret)
1256 goto out;
1258 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_reg);
1259 if (ret)
1260 goto out;
1262 ret = ttm_bo_move_ttm(bo, &ctx, new_reg);
1263 out:
1264 ttm_bo_mem_put(bo, &tmp_reg);
1265 return ret;
1268 static int
1269 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1270 bool no_wait_gpu, struct ttm_mem_reg *new_reg)
1272 struct ttm_operation_ctx ctx = { intr, no_wait_gpu };
1273 struct ttm_place placement_memtype = {
1274 .fpfn = 0,
1275 .lpfn = 0,
1276 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1278 struct ttm_placement placement;
1279 struct ttm_mem_reg tmp_reg;
1280 int ret;
1282 placement.num_placement = placement.num_busy_placement = 1;
1283 placement.placement = placement.busy_placement = &placement_memtype;
1285 tmp_reg = *new_reg;
1286 tmp_reg.mm_node = NULL;
1287 ret = ttm_bo_mem_space(bo, &placement, &tmp_reg, &ctx);
1288 if (ret)
1289 return ret;
1291 ret = ttm_bo_move_ttm(bo, &ctx, &tmp_reg);
1292 if (ret)
1293 goto out;
1295 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_reg);
1296 if (ret)
1297 goto out;
1299 out:
1300 ttm_bo_mem_put(bo, &tmp_reg);
1301 return ret;
1304 static void
1305 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
1306 struct ttm_mem_reg *new_reg)
1308 struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
1309 struct nouveau_bo *nvbo = nouveau_bo(bo);
1310 struct nouveau_vma *vma;
1312 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1313 if (bo->destroy != nouveau_bo_del_ttm)
1314 return;
1316 if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
1317 mem->mem.page == nvbo->page) {
1318 list_for_each_entry(vma, &nvbo->vma_list, head) {
1319 nouveau_vma_map(vma, mem);
1321 } else {
1322 list_for_each_entry(vma, &nvbo->vma_list, head) {
1323 WARN_ON(ttm_bo_wait(bo, false, false));
1324 nouveau_vma_unmap(vma);
1329 static int
1330 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_reg,
1331 struct nouveau_drm_tile **new_tile)
1333 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1334 struct drm_device *dev = drm->dev;
1335 struct nouveau_bo *nvbo = nouveau_bo(bo);
1336 u64 offset = new_reg->start << PAGE_SHIFT;
1338 *new_tile = NULL;
1339 if (new_reg->mem_type != TTM_PL_VRAM)
1340 return 0;
1342 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1343 *new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
1344 nvbo->mode, nvbo->zeta);
1347 return 0;
1350 static void
1351 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1352 struct nouveau_drm_tile *new_tile,
1353 struct nouveau_drm_tile **old_tile)
1355 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1356 struct drm_device *dev = drm->dev;
1357 struct dma_fence *fence = dma_resv_get_excl(bo->base.resv);
1359 nv10_bo_put_tile_region(dev, *old_tile, fence);
1360 *old_tile = new_tile;
1363 static int
1364 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
1365 struct ttm_operation_ctx *ctx,
1366 struct ttm_mem_reg *new_reg)
1368 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1369 struct nouveau_bo *nvbo = nouveau_bo(bo);
1370 struct ttm_mem_reg *old_reg = &bo->mem;
1371 struct nouveau_drm_tile *new_tile = NULL;
1372 int ret = 0;
1374 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1375 if (ret)
1376 return ret;
1378 if (nvbo->pin_refcnt)
1379 NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1381 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1382 ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
1383 if (ret)
1384 return ret;
1387 /* Fake bo copy. */
1388 if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1389 BUG_ON(bo->mem.mm_node != NULL);
1390 bo->mem = *new_reg;
1391 new_reg->mm_node = NULL;
1392 goto out;
1395 /* Hardware assisted copy. */
1396 if (drm->ttm.move) {
1397 if (new_reg->mem_type == TTM_PL_SYSTEM)
1398 ret = nouveau_bo_move_flipd(bo, evict,
1399 ctx->interruptible,
1400 ctx->no_wait_gpu, new_reg);
1401 else if (old_reg->mem_type == TTM_PL_SYSTEM)
1402 ret = nouveau_bo_move_flips(bo, evict,
1403 ctx->interruptible,
1404 ctx->no_wait_gpu, new_reg);
1405 else
1406 ret = nouveau_bo_move_m2mf(bo, evict,
1407 ctx->interruptible,
1408 ctx->no_wait_gpu, new_reg);
1409 if (!ret)
1410 goto out;
1413 /* Fallback to software copy. */
1414 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
1415 if (ret == 0)
1416 ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
1418 out:
1419 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1420 if (ret)
1421 nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1422 else
1423 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1426 return ret;
1429 static int
1430 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1432 struct nouveau_bo *nvbo = nouveau_bo(bo);
1434 return drm_vma_node_verify_access(&nvbo->bo.base.vma_node,
1435 filp->private_data);
1438 static int
1439 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1441 struct ttm_mem_type_manager *man = &bdev->man[reg->mem_type];
1442 struct nouveau_drm *drm = nouveau_bdev(bdev);
1443 struct nvkm_device *device = nvxx_device(&drm->client.device);
1444 struct nouveau_mem *mem = nouveau_mem(reg);
1446 reg->bus.addr = NULL;
1447 reg->bus.offset = 0;
1448 reg->bus.size = reg->num_pages << PAGE_SHIFT;
1449 reg->bus.base = 0;
1450 reg->bus.is_iomem = false;
1451 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1452 return -EINVAL;
1453 switch (reg->mem_type) {
1454 case TTM_PL_SYSTEM:
1455 /* System memory */
1456 return 0;
1457 case TTM_PL_TT:
1458 #if IS_ENABLED(CONFIG_AGP)
1459 if (drm->agp.bridge) {
1460 reg->bus.offset = reg->start << PAGE_SHIFT;
1461 reg->bus.base = drm->agp.base;
1462 reg->bus.is_iomem = !drm->agp.cma;
1464 #endif
1465 if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 || !mem->kind)
1466 /* untiled */
1467 break;
1468 /* fall through - tiled memory */
1469 case TTM_PL_VRAM:
1470 reg->bus.offset = reg->start << PAGE_SHIFT;
1471 reg->bus.base = device->func->resource_addr(device, 1);
1472 reg->bus.is_iomem = true;
1473 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1474 union {
1475 struct nv50_mem_map_v0 nv50;
1476 struct gf100_mem_map_v0 gf100;
1477 } args;
1478 u64 handle, length;
1479 u32 argc = 0;
1480 int ret;
1482 switch (mem->mem.object.oclass) {
1483 case NVIF_CLASS_MEM_NV50:
1484 args.nv50.version = 0;
1485 args.nv50.ro = 0;
1486 args.nv50.kind = mem->kind;
1487 args.nv50.comp = mem->comp;
1488 argc = sizeof(args.nv50);
1489 break;
1490 case NVIF_CLASS_MEM_GF100:
1491 args.gf100.version = 0;
1492 args.gf100.ro = 0;
1493 args.gf100.kind = mem->kind;
1494 argc = sizeof(args.gf100);
1495 break;
1496 default:
1497 WARN_ON(1);
1498 break;
1501 ret = nvif_object_map_handle(&mem->mem.object,
1502 &args, argc,
1503 &handle, &length);
1504 if (ret != 1)
1505 return ret ? ret : -EINVAL;
1507 reg->bus.base = 0;
1508 reg->bus.offset = handle;
1510 break;
1511 default:
1512 return -EINVAL;
1514 return 0;
1517 static void
1518 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *reg)
1520 struct nouveau_drm *drm = nouveau_bdev(bdev);
1521 struct nouveau_mem *mem = nouveau_mem(reg);
1523 if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
1524 switch (reg->mem_type) {
1525 case TTM_PL_TT:
1526 if (mem->kind)
1527 nvif_object_unmap_handle(&mem->mem.object);
1528 break;
1529 case TTM_PL_VRAM:
1530 nvif_object_unmap_handle(&mem->mem.object);
1531 break;
1532 default:
1533 break;
1538 static int
1539 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1541 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1542 struct nouveau_bo *nvbo = nouveau_bo(bo);
1543 struct nvkm_device *device = nvxx_device(&drm->client.device);
1544 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1545 int i, ret;
1547 /* as long as the bo isn't in vram, and isn't tiled, we've got
1548 * nothing to do here.
1550 if (bo->mem.mem_type != TTM_PL_VRAM) {
1551 if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1552 !nvbo->kind)
1553 return 0;
1555 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1556 nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1558 ret = nouveau_bo_validate(nvbo, false, false);
1559 if (ret)
1560 return ret;
1562 return 0;
1565 /* make sure bo is in mappable vram */
1566 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1567 bo->mem.start + bo->mem.num_pages < mappable)
1568 return 0;
1570 for (i = 0; i < nvbo->placement.num_placement; ++i) {
1571 nvbo->placements[i].fpfn = 0;
1572 nvbo->placements[i].lpfn = mappable;
1575 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1576 nvbo->busy_placements[i].fpfn = 0;
1577 nvbo->busy_placements[i].lpfn = mappable;
1580 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1581 return nouveau_bo_validate(nvbo, false, false);
1584 static int
1585 nouveau_ttm_tt_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1587 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1588 struct nouveau_drm *drm;
1589 struct device *dev;
1590 unsigned i;
1591 int r;
1592 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1594 if (ttm->state != tt_unpopulated)
1595 return 0;
1597 if (slave && ttm->sg) {
1598 /* make userspace faulting work */
1599 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1600 ttm_dma->dma_address, ttm->num_pages);
1601 ttm->state = tt_unbound;
1602 return 0;
1605 drm = nouveau_bdev(ttm->bdev);
1606 dev = drm->dev->dev;
1608 #if IS_ENABLED(CONFIG_AGP)
1609 if (drm->agp.bridge) {
1610 return ttm_agp_tt_populate(ttm, ctx);
1612 #endif
1614 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1615 if (swiotlb_nr_tbl()) {
1616 return ttm_dma_populate((void *)ttm, dev, ctx);
1618 #endif
1620 r = ttm_pool_populate(ttm, ctx);
1621 if (r) {
1622 return r;
1625 for (i = 0; i < ttm->num_pages; i++) {
1626 dma_addr_t addr;
1628 addr = dma_map_page(dev, ttm->pages[i], 0, PAGE_SIZE,
1629 DMA_BIDIRECTIONAL);
1631 if (dma_mapping_error(dev, addr)) {
1632 while (i--) {
1633 dma_unmap_page(dev, ttm_dma->dma_address[i],
1634 PAGE_SIZE, DMA_BIDIRECTIONAL);
1635 ttm_dma->dma_address[i] = 0;
1637 ttm_pool_unpopulate(ttm);
1638 return -EFAULT;
1641 ttm_dma->dma_address[i] = addr;
1643 return 0;
1646 static void
1647 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1649 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1650 struct nouveau_drm *drm;
1651 struct device *dev;
1652 unsigned i;
1653 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1655 if (slave)
1656 return;
1658 drm = nouveau_bdev(ttm->bdev);
1659 dev = drm->dev->dev;
1661 #if IS_ENABLED(CONFIG_AGP)
1662 if (drm->agp.bridge) {
1663 ttm_agp_tt_unpopulate(ttm);
1664 return;
1666 #endif
1668 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1669 if (swiotlb_nr_tbl()) {
1670 ttm_dma_unpopulate((void *)ttm, dev);
1671 return;
1673 #endif
1675 for (i = 0; i < ttm->num_pages; i++) {
1676 if (ttm_dma->dma_address[i]) {
1677 dma_unmap_page(dev, ttm_dma->dma_address[i], PAGE_SIZE,
1678 DMA_BIDIRECTIONAL);
1682 ttm_pool_unpopulate(ttm);
1685 void
1686 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1688 struct dma_resv *resv = nvbo->bo.base.resv;
1690 if (exclusive)
1691 dma_resv_add_excl_fence(resv, &fence->base);
1692 else if (fence)
1693 dma_resv_add_shared_fence(resv, &fence->base);
1696 struct ttm_bo_driver nouveau_bo_driver = {
1697 .ttm_tt_create = &nouveau_ttm_tt_create,
1698 .ttm_tt_populate = &nouveau_ttm_tt_populate,
1699 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1700 .invalidate_caches = nouveau_bo_invalidate_caches,
1701 .init_mem_type = nouveau_bo_init_mem_type,
1702 .eviction_valuable = ttm_bo_eviction_valuable,
1703 .evict_flags = nouveau_bo_evict_flags,
1704 .move_notify = nouveau_bo_move_ntfy,
1705 .move = nouveau_bo_move,
1706 .verify_access = nouveau_bo_verify_access,
1707 .fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1708 .io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1709 .io_mem_free = &nouveau_ttm_io_mem_free,