2 * Copyright 2007 Dave Airlied
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drv.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
48 * NV10-NV40 tiling helpers
52 nv10_bo_update_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*reg
,
53 u32 addr
, u32 size
, u32 pitch
, u32 flags
)
55 struct nouveau_drm
*drm
= nouveau_drm(dev
);
56 int i
= reg
- drm
->tile
.reg
;
57 struct nvkm_fb
*fb
= nvxx_fb(&drm
->client
.device
);
58 struct nvkm_fb_tile
*tile
= &fb
->tile
.region
[i
];
60 nouveau_fence_unref(®
->fence
);
63 nvkm_fb_tile_fini(fb
, i
, tile
);
66 nvkm_fb_tile_init(fb
, i
, addr
, size
, pitch
, flags
, tile
);
68 nvkm_fb_tile_prog(fb
, i
, tile
);
71 static struct nouveau_drm_tile
*
72 nv10_bo_get_tile_region(struct drm_device
*dev
, int i
)
74 struct nouveau_drm
*drm
= nouveau_drm(dev
);
75 struct nouveau_drm_tile
*tile
= &drm
->tile
.reg
[i
];
77 spin_lock(&drm
->tile
.lock
);
80 (!tile
->fence
|| nouveau_fence_done(tile
->fence
)))
85 spin_unlock(&drm
->tile
.lock
);
90 nv10_bo_put_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*tile
,
91 struct dma_fence
*fence
)
93 struct nouveau_drm
*drm
= nouveau_drm(dev
);
96 spin_lock(&drm
->tile
.lock
);
97 tile
->fence
= (struct nouveau_fence
*)dma_fence_get(fence
);
99 spin_unlock(&drm
->tile
.lock
);
103 static struct nouveau_drm_tile
*
104 nv10_bo_set_tiling(struct drm_device
*dev
, u32 addr
,
105 u32 size
, u32 pitch
, u32 zeta
)
107 struct nouveau_drm
*drm
= nouveau_drm(dev
);
108 struct nvkm_fb
*fb
= nvxx_fb(&drm
->client
.device
);
109 struct nouveau_drm_tile
*tile
, *found
= NULL
;
112 for (i
= 0; i
< fb
->tile
.regions
; i
++) {
113 tile
= nv10_bo_get_tile_region(dev
, i
);
115 if (pitch
&& !found
) {
119 } else if (tile
&& fb
->tile
.region
[i
].pitch
) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev
, tile
, 0, 0, 0, 0);
124 nv10_bo_put_tile_region(dev
, tile
, NULL
);
128 nv10_bo_update_tile_region(dev
, found
, addr
, size
, pitch
, zeta
);
133 nouveau_bo_del_ttm(struct ttm_buffer_object
*bo
)
135 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
136 struct drm_device
*dev
= drm
->dev
;
137 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
139 WARN_ON(nvbo
->pin_refcnt
> 0);
140 nv10_bo_put_tile_region(dev
, nvbo
->tile
, NULL
);
143 * If nouveau_bo_new() allocated this buffer, the GEM object was never
144 * initialized, so don't attempt to release it.
147 drm_gem_object_release(&bo
->base
);
153 roundup_64(u64 x
, u32 y
)
161 nouveau_bo_fixup_align(struct nouveau_bo
*nvbo
, u32 flags
,
162 int *align
, u64
*size
)
164 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
165 struct nvif_device
*device
= &drm
->client
.device
;
167 if (device
->info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
169 if (device
->info
.chipset
>= 0x40) {
171 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
173 } else if (device
->info
.chipset
>= 0x30) {
175 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
177 } else if (device
->info
.chipset
>= 0x20) {
179 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
181 } else if (device
->info
.chipset
>= 0x10) {
183 *size
= roundup_64(*size
, 32 * nvbo
->mode
);
187 *size
= roundup_64(*size
, (1 << nvbo
->page
));
188 *align
= max((1 << nvbo
->page
), *align
);
191 *size
= roundup_64(*size
, PAGE_SIZE
);
195 nouveau_bo_alloc(struct nouveau_cli
*cli
, u64
*size
, int *align
, u32 flags
,
196 u32 tile_mode
, u32 tile_flags
)
198 struct nouveau_drm
*drm
= cli
->drm
;
199 struct nouveau_bo
*nvbo
;
200 struct nvif_mmu
*mmu
= &cli
->mmu
;
201 struct nvif_vmm
*vmm
= cli
->svm
.cli
? &cli
->svm
.vmm
: &cli
->vmm
.vmm
;
205 NV_WARN(drm
, "skipped size %016llx\n", *size
);
206 return ERR_PTR(-EINVAL
);
209 nvbo
= kzalloc(sizeof(struct nouveau_bo
), GFP_KERNEL
);
211 return ERR_PTR(-ENOMEM
);
212 INIT_LIST_HEAD(&nvbo
->head
);
213 INIT_LIST_HEAD(&nvbo
->entry
);
214 INIT_LIST_HEAD(&nvbo
->vma_list
);
215 nvbo
->bo
.bdev
= &drm
->ttm
.bdev
;
217 /* This is confusing, and doesn't actually mean we want an uncached
218 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
219 * into in nouveau_gem_new().
221 if (flags
& TTM_PL_FLAG_UNCACHED
) {
222 /* Determine if we can get a cache-coherent map, forcing
223 * uncached mapping if we can't.
225 if (!nouveau_drm_use_coherent_gpu_mapping(drm
))
226 nvbo
->force_coherent
= true;
229 if (cli
->device
.info
.family
>= NV_DEVICE_INFO_V0_FERMI
) {
230 nvbo
->kind
= (tile_flags
& 0x0000ff00) >> 8;
231 if (!nvif_mmu_kind_valid(mmu
, nvbo
->kind
)) {
233 return ERR_PTR(-EINVAL
);
236 nvbo
->comp
= mmu
->kind
[nvbo
->kind
] != nvbo
->kind
;
238 if (cli
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
239 nvbo
->kind
= (tile_flags
& 0x00007f00) >> 8;
240 nvbo
->comp
= (tile_flags
& 0x00030000) >> 16;
241 if (!nvif_mmu_kind_valid(mmu
, nvbo
->kind
)) {
243 return ERR_PTR(-EINVAL
);
246 nvbo
->zeta
= (tile_flags
& 0x00000007);
248 nvbo
->mode
= tile_mode
;
249 nvbo
->contig
= !(tile_flags
& NOUVEAU_GEM_TILE_NONCONTIG
);
251 /* Determine the desirable target GPU page size for the buffer. */
252 for (i
= 0; i
< vmm
->page_nr
; i
++) {
253 /* Because we cannot currently allow VMM maps to fail
254 * during buffer migration, we need to determine page
255 * size for the buffer up-front, and pre-allocate its
258 * Skip page sizes that can't support needed domains.
260 if (cli
->device
.info
.family
> NV_DEVICE_INFO_V0_CURIE
&&
261 (flags
& TTM_PL_FLAG_VRAM
) && !vmm
->page
[i
].vram
)
263 if ((flags
& TTM_PL_FLAG_TT
) &&
264 (!vmm
->page
[i
].host
|| vmm
->page
[i
].shift
> PAGE_SHIFT
))
267 /* Select this page size if it's the first that supports
268 * the potential memory domains, or when it's compatible
269 * with the requested compression settings.
271 if (pi
< 0 || !nvbo
->comp
|| vmm
->page
[i
].comp
)
274 /* Stop once the buffer is larger than the current page size. */
275 if (*size
>= 1ULL << vmm
->page
[i
].shift
)
280 return ERR_PTR(-EINVAL
);
282 /* Disable compression if suitable settings couldn't be found. */
283 if (nvbo
->comp
&& !vmm
->page
[pi
].comp
) {
284 if (mmu
->object
.oclass
>= NVIF_CLASS_MMU_GF100
)
285 nvbo
->kind
= mmu
->kind
[nvbo
->kind
];
288 nvbo
->page
= vmm
->page
[pi
].shift
;
290 nouveau_bo_fixup_align(nvbo
, flags
, align
, size
);
296 nouveau_bo_init(struct nouveau_bo
*nvbo
, u64 size
, int align
, u32 flags
,
297 struct sg_table
*sg
, struct dma_resv
*robj
)
299 int type
= sg
? ttm_bo_type_sg
: ttm_bo_type_device
;
303 acc_size
= ttm_bo_dma_acc_size(nvbo
->bo
.bdev
, size
, sizeof(*nvbo
));
305 nvbo
->bo
.mem
.num_pages
= size
>> PAGE_SHIFT
;
306 nouveau_bo_placement_set(nvbo
, flags
, 0);
308 ret
= ttm_bo_init(nvbo
->bo
.bdev
, &nvbo
->bo
, size
, type
,
309 &nvbo
->placement
, align
>> PAGE_SHIFT
, false,
310 acc_size
, sg
, robj
, nouveau_bo_del_ttm
);
312 /* ttm will call nouveau_bo_del_ttm if it fails.. */
320 nouveau_bo_new(struct nouveau_cli
*cli
, u64 size
, int align
,
321 uint32_t flags
, uint32_t tile_mode
, uint32_t tile_flags
,
322 struct sg_table
*sg
, struct dma_resv
*robj
,
323 struct nouveau_bo
**pnvbo
)
325 struct nouveau_bo
*nvbo
;
328 nvbo
= nouveau_bo_alloc(cli
, &size
, &align
, flags
, tile_mode
,
331 return PTR_ERR(nvbo
);
333 ret
= nouveau_bo_init(nvbo
, size
, align
, flags
, sg
, robj
);
342 set_placement_list(struct ttm_place
*pl
, unsigned *n
, uint32_t type
, uint32_t flags
)
346 if (type
& TTM_PL_FLAG_VRAM
)
347 pl
[(*n
)++].flags
= TTM_PL_FLAG_VRAM
| flags
;
348 if (type
& TTM_PL_FLAG_TT
)
349 pl
[(*n
)++].flags
= TTM_PL_FLAG_TT
| flags
;
350 if (type
& TTM_PL_FLAG_SYSTEM
)
351 pl
[(*n
)++].flags
= TTM_PL_FLAG_SYSTEM
| flags
;
355 set_placement_range(struct nouveau_bo
*nvbo
, uint32_t type
)
357 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
358 u32 vram_pages
= drm
->client
.device
.info
.ram_size
>> PAGE_SHIFT
;
359 unsigned i
, fpfn
, lpfn
;
361 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CELSIUS
&&
362 nvbo
->mode
&& (type
& TTM_PL_FLAG_VRAM
) &&
363 nvbo
->bo
.mem
.num_pages
< vram_pages
/ 4) {
365 * Make sure that the color and depth buffers are handled
366 * by independent memory controller units. Up to a 9x
367 * speed up when alpha-blending and depth-test are enabled
371 fpfn
= vram_pages
/ 2;
375 lpfn
= vram_pages
/ 2;
377 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
378 nvbo
->placements
[i
].fpfn
= fpfn
;
379 nvbo
->placements
[i
].lpfn
= lpfn
;
381 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
382 nvbo
->busy_placements
[i
].fpfn
= fpfn
;
383 nvbo
->busy_placements
[i
].lpfn
= lpfn
;
389 nouveau_bo_placement_set(struct nouveau_bo
*nvbo
, uint32_t type
, uint32_t busy
)
391 struct ttm_placement
*pl
= &nvbo
->placement
;
392 uint32_t flags
= (nvbo
->force_coherent
? TTM_PL_FLAG_UNCACHED
:
393 TTM_PL_MASK_CACHING
) |
394 (nvbo
->pin_refcnt
? TTM_PL_FLAG_NO_EVICT
: 0);
396 pl
->placement
= nvbo
->placements
;
397 set_placement_list(nvbo
->placements
, &pl
->num_placement
,
400 pl
->busy_placement
= nvbo
->busy_placements
;
401 set_placement_list(nvbo
->busy_placements
, &pl
->num_busy_placement
,
404 set_placement_range(nvbo
, type
);
408 nouveau_bo_pin(struct nouveau_bo
*nvbo
, uint32_t memtype
, bool contig
)
410 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
411 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
412 bool force
= false, evict
= false;
415 ret
= ttm_bo_reserve(bo
, false, false, NULL
);
419 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
&&
420 memtype
== TTM_PL_FLAG_VRAM
&& contig
) {
428 if (nvbo
->pin_refcnt
) {
429 if (!(memtype
& (1 << bo
->mem
.mem_type
)) || evict
) {
430 NV_ERROR(drm
, "bo %p pinned elsewhere: "
431 "0x%08x vs 0x%08x\n", bo
,
432 1 << bo
->mem
.mem_type
, memtype
);
440 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
, 0);
441 ret
= nouveau_bo_validate(nvbo
, false, false);
447 nouveau_bo_placement_set(nvbo
, memtype
, 0);
449 /* drop pin_refcnt temporarily, so we don't trip the assertion
450 * in nouveau_bo_move() that makes sure we're not trying to
451 * move a pinned buffer
454 ret
= nouveau_bo_validate(nvbo
, false, false);
459 switch (bo
->mem
.mem_type
) {
461 drm
->gem
.vram_available
-= bo
->mem
.size
;
464 drm
->gem
.gart_available
-= bo
->mem
.size
;
472 nvbo
->contig
= false;
473 ttm_bo_unreserve(bo
);
478 nouveau_bo_unpin(struct nouveau_bo
*nvbo
)
480 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
481 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
484 ret
= ttm_bo_reserve(bo
, false, false, NULL
);
488 ref
= --nvbo
->pin_refcnt
;
489 WARN_ON_ONCE(ref
< 0);
493 nouveau_bo_placement_set(nvbo
, bo
->mem
.placement
, 0);
495 ret
= nouveau_bo_validate(nvbo
, false, false);
497 switch (bo
->mem
.mem_type
) {
499 drm
->gem
.vram_available
+= bo
->mem
.size
;
502 drm
->gem
.gart_available
+= bo
->mem
.size
;
510 ttm_bo_unreserve(bo
);
515 nouveau_bo_map(struct nouveau_bo
*nvbo
)
519 ret
= ttm_bo_reserve(&nvbo
->bo
, false, false, NULL
);
523 ret
= ttm_bo_kmap(&nvbo
->bo
, 0, nvbo
->bo
.mem
.num_pages
, &nvbo
->kmap
);
525 ttm_bo_unreserve(&nvbo
->bo
);
530 nouveau_bo_unmap(struct nouveau_bo
*nvbo
)
535 ttm_bo_kunmap(&nvbo
->kmap
);
539 nouveau_bo_sync_for_device(struct nouveau_bo
*nvbo
)
541 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
542 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
548 /* Don't waste time looping if the object is coherent */
549 if (nvbo
->force_coherent
)
552 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
553 dma_sync_single_for_device(drm
->dev
->dev
,
554 ttm_dma
->dma_address
[i
],
555 PAGE_SIZE
, DMA_TO_DEVICE
);
559 nouveau_bo_sync_for_cpu(struct nouveau_bo
*nvbo
)
561 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
562 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
568 /* Don't waste time looping if the object is coherent */
569 if (nvbo
->force_coherent
)
572 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
573 dma_sync_single_for_cpu(drm
->dev
->dev
, ttm_dma
->dma_address
[i
],
574 PAGE_SIZE
, DMA_FROM_DEVICE
);
578 nouveau_bo_validate(struct nouveau_bo
*nvbo
, bool interruptible
,
581 struct ttm_operation_ctx ctx
= { interruptible
, no_wait_gpu
};
584 ret
= ttm_bo_validate(&nvbo
->bo
, &nvbo
->placement
, &ctx
);
588 nouveau_bo_sync_for_device(nvbo
);
594 nouveau_bo_wr16(struct nouveau_bo
*nvbo
, unsigned index
, u16 val
)
597 u16
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
602 iowrite16_native(val
, (void __force __iomem
*)mem
);
608 nouveau_bo_rd32(struct nouveau_bo
*nvbo
, unsigned index
)
611 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
616 return ioread32_native((void __force __iomem
*)mem
);
622 nouveau_bo_wr32(struct nouveau_bo
*nvbo
, unsigned index
, u32 val
)
625 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
630 iowrite32_native(val
, (void __force __iomem
*)mem
);
635 static struct ttm_tt
*
636 nouveau_ttm_tt_create(struct ttm_buffer_object
*bo
, uint32_t page_flags
)
638 #if IS_ENABLED(CONFIG_AGP)
639 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
641 if (drm
->agp
.bridge
) {
642 return ttm_agp_tt_create(bo
, drm
->agp
.bridge
, page_flags
);
646 return nouveau_sgdma_create_ttm(bo
, page_flags
);
650 nouveau_bo_invalidate_caches(struct ttm_bo_device
*bdev
, uint32_t flags
)
652 /* We'll do this from user space. */
657 nouveau_bo_init_mem_type(struct ttm_bo_device
*bdev
, uint32_t type
,
658 struct ttm_mem_type_manager
*man
)
660 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
661 struct nvif_mmu
*mmu
= &drm
->client
.mmu
;
665 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
666 man
->available_caching
= TTM_PL_MASK_CACHING
;
667 man
->default_caching
= TTM_PL_FLAG_CACHED
;
670 man
->flags
= TTM_MEMTYPE_FLAG_FIXED
|
671 TTM_MEMTYPE_FLAG_MAPPABLE
;
672 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
674 man
->default_caching
= TTM_PL_FLAG_WC
;
676 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
677 /* Some BARs do not support being ioremapped WC */
678 const u8 type
= mmu
->type
[drm
->ttm
.type_vram
].type
;
679 if (type
& NVIF_MEM_UNCACHED
) {
680 man
->available_caching
= TTM_PL_FLAG_UNCACHED
;
681 man
->default_caching
= TTM_PL_FLAG_UNCACHED
;
684 man
->func
= &nouveau_vram_manager
;
685 man
->io_reserve_fastpath
= false;
686 man
->use_io_reserve_lru
= true;
688 man
->func
= &ttm_bo_manager_func
;
692 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
)
693 man
->func
= &nouveau_gart_manager
;
695 if (!drm
->agp
.bridge
)
696 man
->func
= &nv04_gart_manager
;
698 man
->func
= &ttm_bo_manager_func
;
700 if (drm
->agp
.bridge
) {
701 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
702 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
704 man
->default_caching
= TTM_PL_FLAG_WC
;
706 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
|
707 TTM_MEMTYPE_FLAG_CMA
;
708 man
->available_caching
= TTM_PL_MASK_CACHING
;
709 man
->default_caching
= TTM_PL_FLAG_CACHED
;
720 nouveau_bo_evict_flags(struct ttm_buffer_object
*bo
, struct ttm_placement
*pl
)
722 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
724 switch (bo
->mem
.mem_type
) {
726 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
,
730 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_SYSTEM
, 0);
734 *pl
= nvbo
->placement
;
739 nve0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
741 int ret
= RING_SPACE(chan
, 2);
743 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
744 OUT_RING (chan
, handle
& 0x0000ffff);
751 nve0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
752 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
754 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
755 int ret
= RING_SPACE(chan
, 10);
757 BEGIN_NVC0(chan
, NvSubCopy
, 0x0400, 8);
758 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
759 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
760 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
761 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
762 OUT_RING (chan
, PAGE_SIZE
);
763 OUT_RING (chan
, PAGE_SIZE
);
764 OUT_RING (chan
, PAGE_SIZE
);
765 OUT_RING (chan
, new_reg
->num_pages
);
766 BEGIN_IMC0(chan
, NvSubCopy
, 0x0300, 0x0386);
772 nvc0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
774 int ret
= RING_SPACE(chan
, 2);
776 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
777 OUT_RING (chan
, handle
);
783 nvc0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
784 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
786 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
787 u64 src_offset
= mem
->vma
[0].addr
;
788 u64 dst_offset
= mem
->vma
[1].addr
;
789 u32 page_count
= new_reg
->num_pages
;
792 page_count
= new_reg
->num_pages
;
794 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
796 ret
= RING_SPACE(chan
, 11);
800 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 8);
801 OUT_RING (chan
, upper_32_bits(src_offset
));
802 OUT_RING (chan
, lower_32_bits(src_offset
));
803 OUT_RING (chan
, upper_32_bits(dst_offset
));
804 OUT_RING (chan
, lower_32_bits(dst_offset
));
805 OUT_RING (chan
, PAGE_SIZE
);
806 OUT_RING (chan
, PAGE_SIZE
);
807 OUT_RING (chan
, PAGE_SIZE
);
808 OUT_RING (chan
, line_count
);
809 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
810 OUT_RING (chan
, 0x00000110);
812 page_count
-= line_count
;
813 src_offset
+= (PAGE_SIZE
* line_count
);
814 dst_offset
+= (PAGE_SIZE
* line_count
);
821 nvc0_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
822 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
824 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
825 u64 src_offset
= mem
->vma
[0].addr
;
826 u64 dst_offset
= mem
->vma
[1].addr
;
827 u32 page_count
= new_reg
->num_pages
;
830 page_count
= new_reg
->num_pages
;
832 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
834 ret
= RING_SPACE(chan
, 12);
838 BEGIN_NVC0(chan
, NvSubCopy
, 0x0238, 2);
839 OUT_RING (chan
, upper_32_bits(dst_offset
));
840 OUT_RING (chan
, lower_32_bits(dst_offset
));
841 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 6);
842 OUT_RING (chan
, upper_32_bits(src_offset
));
843 OUT_RING (chan
, lower_32_bits(src_offset
));
844 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
845 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
846 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
847 OUT_RING (chan
, line_count
);
848 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
849 OUT_RING (chan
, 0x00100110);
851 page_count
-= line_count
;
852 src_offset
+= (PAGE_SIZE
* line_count
);
853 dst_offset
+= (PAGE_SIZE
* line_count
);
860 nva3_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
861 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
863 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
864 u64 src_offset
= mem
->vma
[0].addr
;
865 u64 dst_offset
= mem
->vma
[1].addr
;
866 u32 page_count
= new_reg
->num_pages
;
869 page_count
= new_reg
->num_pages
;
871 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
873 ret
= RING_SPACE(chan
, 11);
877 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
878 OUT_RING (chan
, upper_32_bits(src_offset
));
879 OUT_RING (chan
, lower_32_bits(src_offset
));
880 OUT_RING (chan
, upper_32_bits(dst_offset
));
881 OUT_RING (chan
, lower_32_bits(dst_offset
));
882 OUT_RING (chan
, PAGE_SIZE
);
883 OUT_RING (chan
, PAGE_SIZE
);
884 OUT_RING (chan
, PAGE_SIZE
);
885 OUT_RING (chan
, line_count
);
886 BEGIN_NV04(chan
, NvSubCopy
, 0x0300, 1);
887 OUT_RING (chan
, 0x00000110);
889 page_count
-= line_count
;
890 src_offset
+= (PAGE_SIZE
* line_count
);
891 dst_offset
+= (PAGE_SIZE
* line_count
);
898 nv98_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
899 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
901 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
902 int ret
= RING_SPACE(chan
, 7);
904 BEGIN_NV04(chan
, NvSubCopy
, 0x0320, 6);
905 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
906 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
907 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
908 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
909 OUT_RING (chan
, 0x00000000 /* COPY */);
910 OUT_RING (chan
, new_reg
->num_pages
<< PAGE_SHIFT
);
916 nv84_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
917 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
919 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
920 int ret
= RING_SPACE(chan
, 7);
922 BEGIN_NV04(chan
, NvSubCopy
, 0x0304, 6);
923 OUT_RING (chan
, new_reg
->num_pages
<< PAGE_SHIFT
);
924 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
925 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
926 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
927 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
928 OUT_RING (chan
, 0x00000000 /* MODE_COPY, QUERY_NONE */);
934 nv50_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
936 int ret
= RING_SPACE(chan
, 6);
938 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
939 OUT_RING (chan
, handle
);
940 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 3);
941 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
942 OUT_RING (chan
, chan
->vram
.handle
);
943 OUT_RING (chan
, chan
->vram
.handle
);
950 nv50_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
951 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
953 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
954 u64 length
= (new_reg
->num_pages
<< PAGE_SHIFT
);
955 u64 src_offset
= mem
->vma
[0].addr
;
956 u64 dst_offset
= mem
->vma
[1].addr
;
957 int src_tiled
= !!mem
->kind
;
958 int dst_tiled
= !!nouveau_mem(new_reg
)->kind
;
962 u32 amount
, stride
, height
;
964 ret
= RING_SPACE(chan
, 18 + 6 * (src_tiled
+ dst_tiled
));
968 amount
= min(length
, (u64
)(4 * 1024 * 1024));
970 height
= amount
/ stride
;
973 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 7);
976 OUT_RING (chan
, stride
);
977 OUT_RING (chan
, height
);
982 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 1);
986 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 7);
989 OUT_RING (chan
, stride
);
990 OUT_RING (chan
, height
);
995 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 1);
999 BEGIN_NV04(chan
, NvSubCopy
, 0x0238, 2);
1000 OUT_RING (chan
, upper_32_bits(src_offset
));
1001 OUT_RING (chan
, upper_32_bits(dst_offset
));
1002 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
1003 OUT_RING (chan
, lower_32_bits(src_offset
));
1004 OUT_RING (chan
, lower_32_bits(dst_offset
));
1005 OUT_RING (chan
, stride
);
1006 OUT_RING (chan
, stride
);
1007 OUT_RING (chan
, stride
);
1008 OUT_RING (chan
, height
);
1009 OUT_RING (chan
, 0x00000101);
1010 OUT_RING (chan
, 0x00000000);
1011 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
1015 src_offset
+= amount
;
1016 dst_offset
+= amount
;
1023 nv04_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
1025 int ret
= RING_SPACE(chan
, 4);
1027 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
1028 OUT_RING (chan
, handle
);
1029 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 1);
1030 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
1036 static inline uint32_t
1037 nouveau_bo_mem_ctxdma(struct ttm_buffer_object
*bo
,
1038 struct nouveau_channel
*chan
, struct ttm_mem_reg
*reg
)
1040 if (reg
->mem_type
== TTM_PL_TT
)
1042 return chan
->vram
.handle
;
1046 nv04_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
1047 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
1049 u32 src_offset
= old_reg
->start
<< PAGE_SHIFT
;
1050 u32 dst_offset
= new_reg
->start
<< PAGE_SHIFT
;
1051 u32 page_count
= new_reg
->num_pages
;
1054 ret
= RING_SPACE(chan
, 3);
1058 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE
, 2);
1059 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, old_reg
));
1060 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, new_reg
));
1062 page_count
= new_reg
->num_pages
;
1063 while (page_count
) {
1064 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
1066 ret
= RING_SPACE(chan
, 11);
1070 BEGIN_NV04(chan
, NvSubCopy
,
1071 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN
, 8);
1072 OUT_RING (chan
, src_offset
);
1073 OUT_RING (chan
, dst_offset
);
1074 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
1075 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
1076 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
1077 OUT_RING (chan
, line_count
);
1078 OUT_RING (chan
, 0x00000101);
1079 OUT_RING (chan
, 0x00000000);
1080 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
1083 page_count
-= line_count
;
1084 src_offset
+= (PAGE_SIZE
* line_count
);
1085 dst_offset
+= (PAGE_SIZE
* line_count
);
1092 nouveau_bo_move_prep(struct nouveau_drm
*drm
, struct ttm_buffer_object
*bo
,
1093 struct ttm_mem_reg
*reg
)
1095 struct nouveau_mem
*old_mem
= nouveau_mem(&bo
->mem
);
1096 struct nouveau_mem
*new_mem
= nouveau_mem(reg
);
1097 struct nvif_vmm
*vmm
= &drm
->client
.vmm
.vmm
;
1100 ret
= nvif_vmm_get(vmm
, LAZY
, false, old_mem
->mem
.page
, 0,
1101 old_mem
->mem
.size
, &old_mem
->vma
[0]);
1105 ret
= nvif_vmm_get(vmm
, LAZY
, false, new_mem
->mem
.page
, 0,
1106 new_mem
->mem
.size
, &old_mem
->vma
[1]);
1110 ret
= nouveau_mem_map(old_mem
, vmm
, &old_mem
->vma
[0]);
1114 ret
= nouveau_mem_map(new_mem
, vmm
, &old_mem
->vma
[1]);
1117 nvif_vmm_put(vmm
, &old_mem
->vma
[1]);
1118 nvif_vmm_put(vmm
, &old_mem
->vma
[0]);
1124 nouveau_bo_move_m2mf(struct ttm_buffer_object
*bo
, int evict
, bool intr
,
1125 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1127 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1128 struct nouveau_channel
*chan
= drm
->ttm
.chan
;
1129 struct nouveau_cli
*cli
= (void *)chan
->user
.client
;
1130 struct nouveau_fence
*fence
;
1133 /* create temporary vmas for the transfer and attach them to the
1134 * old nvkm_mem node, these will get cleaned up after ttm has
1135 * destroyed the ttm_mem_reg
1137 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
1138 ret
= nouveau_bo_move_prep(drm
, bo
, new_reg
);
1143 mutex_lock_nested(&cli
->mutex
, SINGLE_DEPTH_NESTING
);
1144 ret
= nouveau_fence_sync(nouveau_bo(bo
), chan
, true, intr
);
1146 ret
= drm
->ttm
.move(chan
, bo
, &bo
->mem
, new_reg
);
1148 ret
= nouveau_fence_new(chan
, false, &fence
);
1150 ret
= ttm_bo_move_accel_cleanup(bo
,
1154 nouveau_fence_unref(&fence
);
1158 mutex_unlock(&cli
->mutex
);
1163 nouveau_bo_move_init(struct nouveau_drm
*drm
)
1165 static const struct _method_table
{
1169 int (*exec
)(struct nouveau_channel
*,
1170 struct ttm_buffer_object
*,
1171 struct ttm_mem_reg
*, struct ttm_mem_reg
*);
1172 int (*init
)(struct nouveau_channel
*, u32 handle
);
1174 { "COPY", 4, 0xc5b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1175 { "GRCE", 0, 0xc5b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1176 { "COPY", 4, 0xc3b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1177 { "GRCE", 0, 0xc3b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1178 { "COPY", 4, 0xc1b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1179 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1180 { "COPY", 4, 0xc0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1181 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1182 { "COPY", 4, 0xb0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1183 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1184 { "COPY", 4, 0xa0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1185 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1186 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1187 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1188 { "COPY", 0, 0x85b5, nva3_bo_move_copy
, nv50_bo_move_init
},
1189 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec
, nv50_bo_move_init
},
1190 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf
, nvc0_bo_move_init
},
1191 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf
, nv50_bo_move_init
},
1192 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf
, nv04_bo_move_init
},
1194 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec
, nv50_bo_move_init
},
1196 const struct _method_table
*mthd
= _methods
;
1197 const char *name
= "CPU";
1201 struct nouveau_channel
*chan
;
1206 chan
= drm
->channel
;
1210 ret
= nvif_object_init(&chan
->user
,
1211 mthd
->oclass
| (mthd
->engine
<< 16),
1212 mthd
->oclass
, NULL
, 0,
1215 ret
= mthd
->init(chan
, drm
->ttm
.copy
.handle
);
1217 nvif_object_fini(&drm
->ttm
.copy
);
1221 drm
->ttm
.move
= mthd
->exec
;
1222 drm
->ttm
.chan
= chan
;
1226 } while ((++mthd
)->exec
);
1228 NV_INFO(drm
, "MM: using %s for buffer copies\n", name
);
1232 nouveau_bo_move_flipd(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1233 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1235 struct ttm_operation_ctx ctx
= { intr
, no_wait_gpu
};
1236 struct ttm_place placement_memtype
= {
1239 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1241 struct ttm_placement placement
;
1242 struct ttm_mem_reg tmp_reg
;
1245 placement
.num_placement
= placement
.num_busy_placement
= 1;
1246 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1249 tmp_reg
.mm_node
= NULL
;
1250 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_reg
, &ctx
);
1254 ret
= ttm_tt_bind(bo
->ttm
, &tmp_reg
, &ctx
);
1258 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, &tmp_reg
);
1262 ret
= ttm_bo_move_ttm(bo
, &ctx
, new_reg
);
1264 ttm_bo_mem_put(bo
, &tmp_reg
);
1269 nouveau_bo_move_flips(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1270 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1272 struct ttm_operation_ctx ctx
= { intr
, no_wait_gpu
};
1273 struct ttm_place placement_memtype
= {
1276 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1278 struct ttm_placement placement
;
1279 struct ttm_mem_reg tmp_reg
;
1282 placement
.num_placement
= placement
.num_busy_placement
= 1;
1283 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1286 tmp_reg
.mm_node
= NULL
;
1287 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_reg
, &ctx
);
1291 ret
= ttm_bo_move_ttm(bo
, &ctx
, &tmp_reg
);
1295 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, new_reg
);
1300 ttm_bo_mem_put(bo
, &tmp_reg
);
1305 nouveau_bo_move_ntfy(struct ttm_buffer_object
*bo
, bool evict
,
1306 struct ttm_mem_reg
*new_reg
)
1308 struct nouveau_mem
*mem
= new_reg
? nouveau_mem(new_reg
) : NULL
;
1309 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1310 struct nouveau_vma
*vma
;
1312 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1313 if (bo
->destroy
!= nouveau_bo_del_ttm
)
1316 if (mem
&& new_reg
->mem_type
!= TTM_PL_SYSTEM
&&
1317 mem
->mem
.page
== nvbo
->page
) {
1318 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1319 nouveau_vma_map(vma
, mem
);
1322 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1323 WARN_ON(ttm_bo_wait(bo
, false, false));
1324 nouveau_vma_unmap(vma
);
1330 nouveau_bo_vm_bind(struct ttm_buffer_object
*bo
, struct ttm_mem_reg
*new_reg
,
1331 struct nouveau_drm_tile
**new_tile
)
1333 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1334 struct drm_device
*dev
= drm
->dev
;
1335 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1336 u64 offset
= new_reg
->start
<< PAGE_SHIFT
;
1339 if (new_reg
->mem_type
!= TTM_PL_VRAM
)
1342 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
) {
1343 *new_tile
= nv10_bo_set_tiling(dev
, offset
, new_reg
->size
,
1344 nvbo
->mode
, nvbo
->zeta
);
1351 nouveau_bo_vm_cleanup(struct ttm_buffer_object
*bo
,
1352 struct nouveau_drm_tile
*new_tile
,
1353 struct nouveau_drm_tile
**old_tile
)
1355 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1356 struct drm_device
*dev
= drm
->dev
;
1357 struct dma_fence
*fence
= dma_resv_get_excl(bo
->base
.resv
);
1359 nv10_bo_put_tile_region(dev
, *old_tile
, fence
);
1360 *old_tile
= new_tile
;
1364 nouveau_bo_move(struct ttm_buffer_object
*bo
, bool evict
,
1365 struct ttm_operation_ctx
*ctx
,
1366 struct ttm_mem_reg
*new_reg
)
1368 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1369 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1370 struct ttm_mem_reg
*old_reg
= &bo
->mem
;
1371 struct nouveau_drm_tile
*new_tile
= NULL
;
1374 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
1378 if (nvbo
->pin_refcnt
)
1379 NV_WARN(drm
, "Moving pinned object %p!\n", nvbo
);
1381 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1382 ret
= nouveau_bo_vm_bind(bo
, new_reg
, &new_tile
);
1388 if (old_reg
->mem_type
== TTM_PL_SYSTEM
&& !bo
->ttm
) {
1389 BUG_ON(bo
->mem
.mm_node
!= NULL
);
1391 new_reg
->mm_node
= NULL
;
1395 /* Hardware assisted copy. */
1396 if (drm
->ttm
.move
) {
1397 if (new_reg
->mem_type
== TTM_PL_SYSTEM
)
1398 ret
= nouveau_bo_move_flipd(bo
, evict
,
1400 ctx
->no_wait_gpu
, new_reg
);
1401 else if (old_reg
->mem_type
== TTM_PL_SYSTEM
)
1402 ret
= nouveau_bo_move_flips(bo
, evict
,
1404 ctx
->no_wait_gpu
, new_reg
);
1406 ret
= nouveau_bo_move_m2mf(bo
, evict
,
1408 ctx
->no_wait_gpu
, new_reg
);
1413 /* Fallback to software copy. */
1414 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
1416 ret
= ttm_bo_move_memcpy(bo
, ctx
, new_reg
);
1419 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1421 nouveau_bo_vm_cleanup(bo
, NULL
, &new_tile
);
1423 nouveau_bo_vm_cleanup(bo
, new_tile
, &nvbo
->tile
);
1430 nouveau_bo_verify_access(struct ttm_buffer_object
*bo
, struct file
*filp
)
1432 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1434 return drm_vma_node_verify_access(&nvbo
->bo
.base
.vma_node
,
1435 filp
->private_data
);
1439 nouveau_ttm_io_mem_reserve(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*reg
)
1441 struct ttm_mem_type_manager
*man
= &bdev
->man
[reg
->mem_type
];
1442 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1443 struct nvkm_device
*device
= nvxx_device(&drm
->client
.device
);
1444 struct nouveau_mem
*mem
= nouveau_mem(reg
);
1446 reg
->bus
.addr
= NULL
;
1447 reg
->bus
.offset
= 0;
1448 reg
->bus
.size
= reg
->num_pages
<< PAGE_SHIFT
;
1450 reg
->bus
.is_iomem
= false;
1451 if (!(man
->flags
& TTM_MEMTYPE_FLAG_MAPPABLE
))
1453 switch (reg
->mem_type
) {
1458 #if IS_ENABLED(CONFIG_AGP)
1459 if (drm
->agp
.bridge
) {
1460 reg
->bus
.offset
= reg
->start
<< PAGE_SHIFT
;
1461 reg
->bus
.base
= drm
->agp
.base
;
1462 reg
->bus
.is_iomem
= !drm
->agp
.cma
;
1465 if (drm
->client
.mem
->oclass
< NVIF_CLASS_MEM_NV50
|| !mem
->kind
)
1468 /* fall through - tiled memory */
1470 reg
->bus
.offset
= reg
->start
<< PAGE_SHIFT
;
1471 reg
->bus
.base
= device
->func
->resource_addr(device
, 1);
1472 reg
->bus
.is_iomem
= true;
1473 if (drm
->client
.mem
->oclass
>= NVIF_CLASS_MEM_NV50
) {
1475 struct nv50_mem_map_v0 nv50
;
1476 struct gf100_mem_map_v0 gf100
;
1482 switch (mem
->mem
.object
.oclass
) {
1483 case NVIF_CLASS_MEM_NV50
:
1484 args
.nv50
.version
= 0;
1486 args
.nv50
.kind
= mem
->kind
;
1487 args
.nv50
.comp
= mem
->comp
;
1488 argc
= sizeof(args
.nv50
);
1490 case NVIF_CLASS_MEM_GF100
:
1491 args
.gf100
.version
= 0;
1493 args
.gf100
.kind
= mem
->kind
;
1494 argc
= sizeof(args
.gf100
);
1501 ret
= nvif_object_map_handle(&mem
->mem
.object
,
1505 return ret
? ret
: -EINVAL
;
1508 reg
->bus
.offset
= handle
;
1518 nouveau_ttm_io_mem_free(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*reg
)
1520 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1521 struct nouveau_mem
*mem
= nouveau_mem(reg
);
1523 if (drm
->client
.mem
->oclass
>= NVIF_CLASS_MEM_NV50
) {
1524 switch (reg
->mem_type
) {
1527 nvif_object_unmap_handle(&mem
->mem
.object
);
1530 nvif_object_unmap_handle(&mem
->mem
.object
);
1539 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object
*bo
)
1541 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1542 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1543 struct nvkm_device
*device
= nvxx_device(&drm
->client
.device
);
1544 u32 mappable
= device
->func
->resource_size(device
, 1) >> PAGE_SHIFT
;
1547 /* as long as the bo isn't in vram, and isn't tiled, we've got
1548 * nothing to do here.
1550 if (bo
->mem
.mem_type
!= TTM_PL_VRAM
) {
1551 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
||
1555 if (bo
->mem
.mem_type
== TTM_PL_SYSTEM
) {
1556 nouveau_bo_placement_set(nvbo
, TTM_PL_TT
, 0);
1558 ret
= nouveau_bo_validate(nvbo
, false, false);
1565 /* make sure bo is in mappable vram */
1566 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
||
1567 bo
->mem
.start
+ bo
->mem
.num_pages
< mappable
)
1570 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
1571 nvbo
->placements
[i
].fpfn
= 0;
1572 nvbo
->placements
[i
].lpfn
= mappable
;
1575 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
1576 nvbo
->busy_placements
[i
].fpfn
= 0;
1577 nvbo
->busy_placements
[i
].lpfn
= mappable
;
1580 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_VRAM
, 0);
1581 return nouveau_bo_validate(nvbo
, false, false);
1585 nouveau_ttm_tt_populate(struct ttm_tt
*ttm
, struct ttm_operation_ctx
*ctx
)
1587 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1588 struct nouveau_drm
*drm
;
1592 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1594 if (ttm
->state
!= tt_unpopulated
)
1597 if (slave
&& ttm
->sg
) {
1598 /* make userspace faulting work */
1599 drm_prime_sg_to_page_addr_arrays(ttm
->sg
, ttm
->pages
,
1600 ttm_dma
->dma_address
, ttm
->num_pages
);
1601 ttm
->state
= tt_unbound
;
1605 drm
= nouveau_bdev(ttm
->bdev
);
1606 dev
= drm
->dev
->dev
;
1608 #if IS_ENABLED(CONFIG_AGP)
1609 if (drm
->agp
.bridge
) {
1610 return ttm_agp_tt_populate(ttm
, ctx
);
1614 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1615 if (swiotlb_nr_tbl()) {
1616 return ttm_dma_populate((void *)ttm
, dev
, ctx
);
1620 r
= ttm_pool_populate(ttm
, ctx
);
1625 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1628 addr
= dma_map_page(dev
, ttm
->pages
[i
], 0, PAGE_SIZE
,
1631 if (dma_mapping_error(dev
, addr
)) {
1633 dma_unmap_page(dev
, ttm_dma
->dma_address
[i
],
1634 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
1635 ttm_dma
->dma_address
[i
] = 0;
1637 ttm_pool_unpopulate(ttm
);
1641 ttm_dma
->dma_address
[i
] = addr
;
1647 nouveau_ttm_tt_unpopulate(struct ttm_tt
*ttm
)
1649 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1650 struct nouveau_drm
*drm
;
1653 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1658 drm
= nouveau_bdev(ttm
->bdev
);
1659 dev
= drm
->dev
->dev
;
1661 #if IS_ENABLED(CONFIG_AGP)
1662 if (drm
->agp
.bridge
) {
1663 ttm_agp_tt_unpopulate(ttm
);
1668 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1669 if (swiotlb_nr_tbl()) {
1670 ttm_dma_unpopulate((void *)ttm
, dev
);
1675 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1676 if (ttm_dma
->dma_address
[i
]) {
1677 dma_unmap_page(dev
, ttm_dma
->dma_address
[i
], PAGE_SIZE
,
1682 ttm_pool_unpopulate(ttm
);
1686 nouveau_bo_fence(struct nouveau_bo
*nvbo
, struct nouveau_fence
*fence
, bool exclusive
)
1688 struct dma_resv
*resv
= nvbo
->bo
.base
.resv
;
1691 dma_resv_add_excl_fence(resv
, &fence
->base
);
1693 dma_resv_add_shared_fence(resv
, &fence
->base
);
1696 struct ttm_bo_driver nouveau_bo_driver
= {
1697 .ttm_tt_create
= &nouveau_ttm_tt_create
,
1698 .ttm_tt_populate
= &nouveau_ttm_tt_populate
,
1699 .ttm_tt_unpopulate
= &nouveau_ttm_tt_unpopulate
,
1700 .invalidate_caches
= nouveau_bo_invalidate_caches
,
1701 .init_mem_type
= nouveau_bo_init_mem_type
,
1702 .eviction_valuable
= ttm_bo_eviction_valuable
,
1703 .evict_flags
= nouveau_bo_evict_flags
,
1704 .move_notify
= nouveau_bo_move_ntfy
,
1705 .move
= nouveau_bo_move
,
1706 .verify_access
= nouveau_bo_verify_access
,
1707 .fault_reserve_notify
= &nouveau_ttm_fault_reserve_notify
,
1708 .io_mem_reserve
= &nouveau_ttm_io_mem_reserve
,
1709 .io_mem_free
= &nouveau_ttm_io_mem_free
,