treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nouveau_chan.c
blobd9381a0531693d779fd1df592c442fa11acd65d3
1 /*
2 * Copyright 2012 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: Ben Skeggs
25 #include <nvif/os.h>
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/cl006b.h>
29 #include <nvif/cl506f.h>
30 #include <nvif/cl906f.h>
31 #include <nvif/cla06f.h>
32 #include <nvif/clc36f.h>
33 #include <nvif/ioctl.h>
35 /*XXX*/
36 #include <core/client.h>
38 #include "nouveau_drv.h"
39 #include "nouveau_dma.h"
40 #include "nouveau_bo.h"
41 #include "nouveau_chan.h"
42 #include "nouveau_fence.h"
43 #include "nouveau_abi16.h"
44 #include "nouveau_vmm.h"
45 #include "nouveau_svm.h"
47 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
48 int nouveau_vram_pushbuf;
49 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
51 static int
52 nouveau_channel_killed(struct nvif_notify *ntfy)
54 struct nouveau_channel *chan = container_of(ntfy, typeof(*chan), kill);
55 struct nouveau_cli *cli = (void *)chan->user.client;
56 NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
57 atomic_set(&chan->killed, 1);
58 if (chan->fence)
59 nouveau_fence_context_kill(chan->fence, -ENODEV);
60 return NVIF_NOTIFY_DROP;
63 int
64 nouveau_channel_idle(struct nouveau_channel *chan)
66 if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
67 struct nouveau_cli *cli = (void *)chan->user.client;
68 struct nouveau_fence *fence = NULL;
69 int ret;
71 ret = nouveau_fence_new(chan, false, &fence);
72 if (!ret) {
73 ret = nouveau_fence_wait(fence, false, false);
74 nouveau_fence_unref(&fence);
77 if (ret) {
78 NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
79 chan->chid, nvxx_client(&cli->base)->name);
80 return ret;
83 return 0;
86 void
87 nouveau_channel_del(struct nouveau_channel **pchan)
89 struct nouveau_channel *chan = *pchan;
90 if (chan) {
91 struct nouveau_cli *cli = (void *)chan->user.client;
92 bool super;
94 if (cli) {
95 super = cli->base.super;
96 cli->base.super = true;
99 if (chan->fence)
100 nouveau_fence(chan->drm)->context_del(chan);
102 if (cli)
103 nouveau_svmm_part(chan->vmm->svmm, chan->inst);
105 nvif_object_fini(&chan->nvsw);
106 nvif_object_fini(&chan->gart);
107 nvif_object_fini(&chan->vram);
108 nvif_notify_fini(&chan->kill);
109 nvif_object_fini(&chan->user);
110 nvif_object_fini(&chan->push.ctxdma);
111 nouveau_vma_del(&chan->push.vma);
112 nouveau_bo_unmap(chan->push.buffer);
113 if (chan->push.buffer && chan->push.buffer->pin_refcnt)
114 nouveau_bo_unpin(chan->push.buffer);
115 nouveau_bo_ref(NULL, &chan->push.buffer);
116 kfree(chan);
118 if (cli)
119 cli->base.super = super;
121 *pchan = NULL;
124 static int
125 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
126 u32 size, struct nouveau_channel **pchan)
128 struct nouveau_cli *cli = (void *)device->object.client;
129 struct nv_dma_v0 args = {};
130 struct nouveau_channel *chan;
131 u32 target;
132 int ret;
134 chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
135 if (!chan)
136 return -ENOMEM;
138 chan->device = device;
139 chan->drm = drm;
140 chan->vmm = cli->svm.cli ? &cli->svm : &cli->vmm;
141 atomic_set(&chan->killed, 0);
143 /* allocate memory for dma push buffer */
144 target = TTM_PL_FLAG_TT | TTM_PL_FLAG_UNCACHED;
145 if (nouveau_vram_pushbuf)
146 target = TTM_PL_FLAG_VRAM;
148 ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
149 &chan->push.buffer);
150 if (ret == 0) {
151 ret = nouveau_bo_pin(chan->push.buffer, target, false);
152 if (ret == 0)
153 ret = nouveau_bo_map(chan->push.buffer);
156 if (ret) {
157 nouveau_channel_del(pchan);
158 return ret;
161 /* create dma object covering the *entire* memory space that the
162 * pushbuf lives in, this is because the GEM code requires that
163 * we be able to call out to other (indirect) push buffers
165 chan->push.addr = chan->push.buffer->bo.offset;
167 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
168 ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
169 &chan->push.vma);
170 if (ret) {
171 nouveau_channel_del(pchan);
172 return ret;
175 chan->push.addr = chan->push.vma->addr;
177 if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
178 return 0;
180 args.target = NV_DMA_V0_TARGET_VM;
181 args.access = NV_DMA_V0_ACCESS_VM;
182 args.start = 0;
183 args.limit = chan->vmm->vmm.limit - 1;
184 } else
185 if (chan->push.buffer->bo.mem.mem_type == TTM_PL_VRAM) {
186 if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
187 /* nv04 vram pushbuf hack, retarget to its location in
188 * the framebuffer bar rather than direct vram access..
189 * nfi why this exists, it came from the -nv ddx.
191 args.target = NV_DMA_V0_TARGET_PCI;
192 args.access = NV_DMA_V0_ACCESS_RDWR;
193 args.start = nvxx_device(device)->func->
194 resource_addr(nvxx_device(device), 1);
195 args.limit = args.start + device->info.ram_user - 1;
196 } else {
197 args.target = NV_DMA_V0_TARGET_VRAM;
198 args.access = NV_DMA_V0_ACCESS_RDWR;
199 args.start = 0;
200 args.limit = device->info.ram_user - 1;
202 } else {
203 if (chan->drm->agp.bridge) {
204 args.target = NV_DMA_V0_TARGET_AGP;
205 args.access = NV_DMA_V0_ACCESS_RDWR;
206 args.start = chan->drm->agp.base;
207 args.limit = chan->drm->agp.base +
208 chan->drm->agp.size - 1;
209 } else {
210 args.target = NV_DMA_V0_TARGET_VM;
211 args.access = NV_DMA_V0_ACCESS_RDWR;
212 args.start = 0;
213 args.limit = chan->vmm->vmm.limit - 1;
217 ret = nvif_object_init(&device->object, 0, NV_DMA_FROM_MEMORY,
218 &args, sizeof(args), &chan->push.ctxdma);
219 if (ret) {
220 nouveau_channel_del(pchan);
221 return ret;
224 return 0;
227 static int
228 nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device,
229 u64 runlist, bool priv, struct nouveau_channel **pchan)
231 static const u16 oclasses[] = { TURING_CHANNEL_GPFIFO_A,
232 VOLTA_CHANNEL_GPFIFO_A,
233 PASCAL_CHANNEL_GPFIFO_A,
234 MAXWELL_CHANNEL_GPFIFO_A,
235 KEPLER_CHANNEL_GPFIFO_B,
236 KEPLER_CHANNEL_GPFIFO_A,
237 FERMI_CHANNEL_GPFIFO,
238 G82_CHANNEL_GPFIFO,
239 NV50_CHANNEL_GPFIFO,
240 0 };
241 const u16 *oclass = oclasses;
242 union {
243 struct nv50_channel_gpfifo_v0 nv50;
244 struct fermi_channel_gpfifo_v0 fermi;
245 struct kepler_channel_gpfifo_a_v0 kepler;
246 struct volta_channel_gpfifo_a_v0 volta;
247 } args;
248 struct nouveau_channel *chan;
249 u32 size;
250 int ret;
252 /* allocate dma push buffer */
253 ret = nouveau_channel_prep(drm, device, 0x12000, &chan);
254 *pchan = chan;
255 if (ret)
256 return ret;
258 /* create channel object */
259 do {
260 if (oclass[0] >= VOLTA_CHANNEL_GPFIFO_A) {
261 args.volta.version = 0;
262 args.volta.ilength = 0x02000;
263 args.volta.ioffset = 0x10000 + chan->push.addr;
264 args.volta.runlist = runlist;
265 args.volta.vmm = nvif_handle(&chan->vmm->vmm.object);
266 args.volta.priv = priv;
267 size = sizeof(args.volta);
268 } else
269 if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) {
270 args.kepler.version = 0;
271 args.kepler.ilength = 0x02000;
272 args.kepler.ioffset = 0x10000 + chan->push.addr;
273 args.kepler.runlist = runlist;
274 args.kepler.vmm = nvif_handle(&chan->vmm->vmm.object);
275 args.kepler.priv = priv;
276 size = sizeof(args.kepler);
277 } else
278 if (oclass[0] >= FERMI_CHANNEL_GPFIFO) {
279 args.fermi.version = 0;
280 args.fermi.ilength = 0x02000;
281 args.fermi.ioffset = 0x10000 + chan->push.addr;
282 args.fermi.vmm = nvif_handle(&chan->vmm->vmm.object);
283 size = sizeof(args.fermi);
284 } else {
285 args.nv50.version = 0;
286 args.nv50.ilength = 0x02000;
287 args.nv50.ioffset = 0x10000 + chan->push.addr;
288 args.nv50.pushbuf = nvif_handle(&chan->push.ctxdma);
289 args.nv50.vmm = nvif_handle(&chan->vmm->vmm.object);
290 size = sizeof(args.nv50);
293 ret = nvif_object_init(&device->object, 0, *oclass++,
294 &args, size, &chan->user);
295 if (ret == 0) {
296 if (chan->user.oclass >= VOLTA_CHANNEL_GPFIFO_A) {
297 chan->chid = args.volta.chid;
298 chan->inst = args.volta.inst;
299 chan->token = args.volta.token;
300 } else
301 if (chan->user.oclass >= KEPLER_CHANNEL_GPFIFO_A) {
302 chan->chid = args.kepler.chid;
303 chan->inst = args.kepler.inst;
304 } else
305 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
306 chan->chid = args.fermi.chid;
307 } else {
308 chan->chid = args.nv50.chid;
310 return ret;
312 } while (*oclass);
314 nouveau_channel_del(pchan);
315 return ret;
318 static int
319 nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device,
320 struct nouveau_channel **pchan)
322 static const u16 oclasses[] = { NV40_CHANNEL_DMA,
323 NV17_CHANNEL_DMA,
324 NV10_CHANNEL_DMA,
325 NV03_CHANNEL_DMA,
326 0 };
327 const u16 *oclass = oclasses;
328 struct nv03_channel_dma_v0 args;
329 struct nouveau_channel *chan;
330 int ret;
332 /* allocate dma push buffer */
333 ret = nouveau_channel_prep(drm, device, 0x10000, &chan);
334 *pchan = chan;
335 if (ret)
336 return ret;
338 /* create channel object */
339 args.version = 0;
340 args.pushbuf = nvif_handle(&chan->push.ctxdma);
341 args.offset = chan->push.addr;
343 do {
344 ret = nvif_object_init(&device->object, 0, *oclass++,
345 &args, sizeof(args), &chan->user);
346 if (ret == 0) {
347 chan->chid = args.chid;
348 return ret;
350 } while (ret && *oclass);
352 nouveau_channel_del(pchan);
353 return ret;
356 static int
357 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
359 struct nvif_device *device = chan->device;
360 struct nouveau_drm *drm = chan->drm;
361 struct nv_dma_v0 args = {};
362 int ret, i;
364 nvif_object_map(&chan->user, NULL, 0);
366 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
367 ret = nvif_notify_init(&chan->user, nouveau_channel_killed,
368 true, NV906F_V0_NTFY_KILLED,
369 NULL, 0, 0, &chan->kill);
370 if (ret == 0)
371 ret = nvif_notify_get(&chan->kill);
372 if (ret) {
373 NV_ERROR(drm, "Failed to request channel kill "
374 "notification: %d\n", ret);
375 return ret;
379 /* allocate dma objects to cover all allowed vram, and gart */
380 if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
381 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
382 args.target = NV_DMA_V0_TARGET_VM;
383 args.access = NV_DMA_V0_ACCESS_VM;
384 args.start = 0;
385 args.limit = chan->vmm->vmm.limit - 1;
386 } else {
387 args.target = NV_DMA_V0_TARGET_VRAM;
388 args.access = NV_DMA_V0_ACCESS_RDWR;
389 args.start = 0;
390 args.limit = device->info.ram_user - 1;
393 ret = nvif_object_init(&chan->user, vram, NV_DMA_IN_MEMORY,
394 &args, sizeof(args), &chan->vram);
395 if (ret)
396 return ret;
398 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
399 args.target = NV_DMA_V0_TARGET_VM;
400 args.access = NV_DMA_V0_ACCESS_VM;
401 args.start = 0;
402 args.limit = chan->vmm->vmm.limit - 1;
403 } else
404 if (chan->drm->agp.bridge) {
405 args.target = NV_DMA_V0_TARGET_AGP;
406 args.access = NV_DMA_V0_ACCESS_RDWR;
407 args.start = chan->drm->agp.base;
408 args.limit = chan->drm->agp.base +
409 chan->drm->agp.size - 1;
410 } else {
411 args.target = NV_DMA_V0_TARGET_VM;
412 args.access = NV_DMA_V0_ACCESS_RDWR;
413 args.start = 0;
414 args.limit = chan->vmm->vmm.limit - 1;
417 ret = nvif_object_init(&chan->user, gart, NV_DMA_IN_MEMORY,
418 &args, sizeof(args), &chan->gart);
419 if (ret)
420 return ret;
423 /* initialise dma tracking parameters */
424 switch (chan->user.oclass & 0x00ff) {
425 case 0x006b:
426 case 0x006e:
427 chan->user_put = 0x40;
428 chan->user_get = 0x44;
429 chan->dma.max = (0x10000 / 4) - 2;
430 break;
431 default:
432 chan->user_put = 0x40;
433 chan->user_get = 0x44;
434 chan->user_get_hi = 0x60;
435 chan->dma.ib_base = 0x10000 / 4;
436 chan->dma.ib_max = (0x02000 / 8) - 1;
437 chan->dma.ib_put = 0;
438 chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
439 chan->dma.max = chan->dma.ib_base;
440 break;
443 chan->dma.put = 0;
444 chan->dma.cur = chan->dma.put;
445 chan->dma.free = chan->dma.max - chan->dma.cur;
447 ret = RING_SPACE(chan, NOUVEAU_DMA_SKIPS);
448 if (ret)
449 return ret;
451 for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
452 OUT_RING(chan, 0x00000000);
454 /* allocate software object class (used for fences on <= nv05) */
455 if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
456 ret = nvif_object_init(&chan->user, 0x006e,
457 NVIF_CLASS_SW_NV04,
458 NULL, 0, &chan->nvsw);
459 if (ret)
460 return ret;
462 ret = RING_SPACE(chan, 2);
463 if (ret)
464 return ret;
466 BEGIN_NV04(chan, NvSubSw, 0x0000, 1);
467 OUT_RING (chan, chan->nvsw.handle);
468 FIRE_RING (chan);
471 /* initialise synchronisation */
472 return nouveau_fence(chan->drm)->context_new(chan);
476 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
477 u32 arg0, u32 arg1, bool priv,
478 struct nouveau_channel **pchan)
480 struct nouveau_cli *cli = (void *)device->object.client;
481 bool super;
482 int ret;
484 /* hack until fencenv50 is fixed, and agp access relaxed */
485 super = cli->base.super;
486 cli->base.super = true;
488 ret = nouveau_channel_ind(drm, device, arg0, priv, pchan);
489 if (ret) {
490 NV_PRINTK(dbg, cli, "ib channel create, %d\n", ret);
491 ret = nouveau_channel_dma(drm, device, pchan);
492 if (ret) {
493 NV_PRINTK(dbg, cli, "dma channel create, %d\n", ret);
494 goto done;
498 ret = nouveau_channel_init(*pchan, arg0, arg1);
499 if (ret) {
500 NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
501 nouveau_channel_del(pchan);
504 ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
505 if (ret)
506 nouveau_channel_del(pchan);
508 done:
509 cli->base.super = super;
510 return ret;
514 nouveau_channels_init(struct nouveau_drm *drm)
516 struct {
517 struct nv_device_info_v1 m;
518 struct {
519 struct nv_device_info_v1_data channels;
520 } v;
521 } args = {
522 .m.version = 1,
523 .m.count = sizeof(args.v) / sizeof(args.v.channels),
524 .v.channels.mthd = NV_DEVICE_FIFO_CHANNELS,
526 struct nvif_object *device = &drm->client.device.object;
527 int ret;
529 ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
530 if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
531 return -ENODEV;
533 drm->chan.nr = args.v.channels.data;
534 drm->chan.context_base = dma_fence_context_alloc(drm->chan.nr);
535 return 0;