treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
blob218893e3e5f92b95efa613e2f4269b4d19d0e8bb
1 /*
2 * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
22 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
25 #include "priv.h"
26 #include "gk20a.h"
28 #include <core/tegra.h>
29 #include <subdev/timer.h>
31 static const u8 _pl_to_div[] = {
32 /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
33 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
36 static u32 pl_to_div(u32 pl)
38 if (pl >= ARRAY_SIZE(_pl_to_div))
39 return 1;
41 return _pl_to_div[pl];
44 static u32 div_to_pl(u32 div)
46 u32 pl;
48 for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
49 if (_pl_to_div[pl] >= div)
50 return pl;
53 return ARRAY_SIZE(_pl_to_div) - 1;
56 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
57 .min_vco = 1000000, .max_vco = 2064000,
58 .min_u = 12000, .max_u = 38000,
59 .min_m = 1, .max_m = 255,
60 .min_n = 8, .max_n = 255,
61 .min_pl = 1, .max_pl = 32,
64 void
65 gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
67 struct nvkm_device *device = clk->base.subdev.device;
68 u32 val;
70 val = nvkm_rd32(device, GPCPLL_COEFF);
71 pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
72 pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
73 pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
76 void
77 gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
79 struct nvkm_device *device = clk->base.subdev.device;
80 u32 val;
82 val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT;
83 val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
84 val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT;
85 nvkm_wr32(device, GPCPLL_COEFF, val);
88 u32
89 gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll)
91 u32 rate;
92 u32 divider;
94 rate = clk->parent_rate * pll->n;
95 divider = pll->m * clk->pl_to_div(pll->pl);
97 return rate / divider / 2;
101 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate,
102 struct gk20a_pll *pll)
104 struct nvkm_subdev *subdev = &clk->base.subdev;
105 u32 target_clk_f, ref_clk_f, target_freq;
106 u32 min_vco_f, max_vco_f;
107 u32 low_pl, high_pl, best_pl;
108 u32 target_vco_f;
109 u32 best_m, best_n;
110 u32 best_delta = ~0;
111 u32 pl;
113 target_clk_f = rate * 2 / KHZ;
114 ref_clk_f = clk->parent_rate / KHZ;
116 target_vco_f = target_clk_f + target_clk_f / 50;
117 max_vco_f = max(clk->params->max_vco, target_vco_f);
118 min_vco_f = clk->params->min_vco;
119 best_m = clk->params->max_m;
120 best_n = clk->params->min_n;
121 best_pl = clk->params->min_pl;
123 /* min_pl <= high_pl <= max_pl */
124 high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
125 high_pl = min(high_pl, clk->params->max_pl);
126 high_pl = max(high_pl, clk->params->min_pl);
127 high_pl = clk->div_to_pl(high_pl);
129 /* min_pl <= low_pl <= max_pl */
130 low_pl = min_vco_f / target_vco_f;
131 low_pl = min(low_pl, clk->params->max_pl);
132 low_pl = max(low_pl, clk->params->min_pl);
133 low_pl = clk->div_to_pl(low_pl);
135 nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
136 clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
138 /* Select lowest possible VCO */
139 for (pl = low_pl; pl <= high_pl; pl++) {
140 u32 m, n, n2;
142 target_vco_f = target_clk_f * clk->pl_to_div(pl);
144 for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
145 u32 u_f = ref_clk_f / m;
147 if (u_f < clk->params->min_u)
148 break;
149 if (u_f > clk->params->max_u)
150 continue;
152 n = (target_vco_f * m) / ref_clk_f;
153 n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
155 if (n > clk->params->max_n)
156 break;
158 for (; n <= n2; n++) {
159 u32 vco_f;
161 if (n < clk->params->min_n)
162 continue;
163 if (n > clk->params->max_n)
164 break;
166 vco_f = ref_clk_f * n / m;
168 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
169 u32 delta, lwv;
171 lwv = (vco_f + (clk->pl_to_div(pl) / 2))
172 / clk->pl_to_div(pl);
173 delta = abs(lwv - target_clk_f);
175 if (delta < best_delta) {
176 best_delta = delta;
177 best_m = m;
178 best_n = n;
179 best_pl = pl;
181 if (best_delta == 0)
182 goto found_match;
189 found_match:
190 WARN_ON(best_delta == ~0);
192 if (best_delta != 0)
193 nvkm_debug(subdev,
194 "no best match for target @ %dMHz on gpc_pll",
195 target_clk_f / KHZ);
197 pll->m = best_m;
198 pll->n = best_n;
199 pll->pl = best_pl;
201 target_freq = gk20a_pllg_calc_rate(clk, pll);
203 nvkm_debug(subdev,
204 "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
205 target_freq / KHZ, pll->m, pll->n, pll->pl,
206 clk->pl_to_div(pll->pl));
207 return 0;
210 static int
211 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
213 struct nvkm_subdev *subdev = &clk->base.subdev;
214 struct nvkm_device *device = subdev->device;
215 struct gk20a_pll pll;
216 int ret = 0;
218 /* get old coefficients */
219 gk20a_pllg_read_mnp(clk, &pll);
220 /* do nothing if NDIV is the same */
221 if (n == pll.n)
222 return 0;
224 /* pll slowdown mode */
225 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
226 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
227 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
229 /* new ndiv ready for ramp */
230 pll.n = n;
231 udelay(1);
232 gk20a_pllg_write_mnp(clk, &pll);
234 /* dynamic ramp to new ndiv */
235 udelay(1);
236 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
237 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
238 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
240 /* wait for ramping to complete */
241 if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
242 GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
243 GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
244 ret = -ETIMEDOUT;
246 /* exit slowdown mode */
247 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
248 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
249 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
250 nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
252 return ret;
255 static int
256 gk20a_pllg_enable(struct gk20a_clk *clk)
258 struct nvkm_device *device = clk->base.subdev.device;
259 u32 val;
261 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
262 nvkm_rd32(device, GPCPLL_CFG);
264 /* enable lock detection */
265 val = nvkm_rd32(device, GPCPLL_CFG);
266 if (val & GPCPLL_CFG_LOCK_DET_OFF) {
267 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
268 nvkm_wr32(device, GPCPLL_CFG, val);
271 /* wait for lock */
272 if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
273 GPCPLL_CFG_LOCK) < 0)
274 return -ETIMEDOUT;
276 /* switch to VCO mode */
277 nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
278 BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
280 return 0;
283 static void
284 gk20a_pllg_disable(struct gk20a_clk *clk)
286 struct nvkm_device *device = clk->base.subdev.device;
288 /* put PLL in bypass before disabling it */
289 nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
291 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
292 nvkm_rd32(device, GPCPLL_CFG);
295 static int
296 gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
298 struct nvkm_subdev *subdev = &clk->base.subdev;
299 struct nvkm_device *device = subdev->device;
300 struct gk20a_pll cur_pll;
301 int ret;
303 gk20a_pllg_read_mnp(clk, &cur_pll);
305 /* split VCO-to-bypass jump in half by setting out divider 1:2 */
306 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
307 GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
308 /* Intentional 2nd write to assure linear divider operation */
309 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
310 GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
311 nvkm_rd32(device, GPC2CLK_OUT);
312 udelay(2);
314 gk20a_pllg_disable(clk);
316 gk20a_pllg_write_mnp(clk, pll);
318 ret = gk20a_pllg_enable(clk);
319 if (ret)
320 return ret;
322 /* restore out divider 1:1 */
323 udelay(2);
324 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
325 GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
326 /* Intentional 2nd write to assure linear divider operation */
327 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
328 GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
329 nvkm_rd32(device, GPC2CLK_OUT);
331 return 0;
334 static int
335 gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
337 struct gk20a_pll cur_pll;
338 int ret;
340 if (gk20a_pllg_is_enabled(clk)) {
341 gk20a_pllg_read_mnp(clk, &cur_pll);
343 /* just do NDIV slide if there is no change to M and PL */
344 if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
345 return gk20a_pllg_slide(clk, pll->n);
347 /* slide down to current NDIV_LO */
348 cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
349 ret = gk20a_pllg_slide(clk, cur_pll.n);
350 if (ret)
351 return ret;
354 /* program MNP with the new clock parameters and new NDIV_LO */
355 cur_pll = *pll;
356 cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
357 ret = gk20a_pllg_program_mnp(clk, &cur_pll);
358 if (ret)
359 return ret;
361 /* slide up to new NDIV */
362 return gk20a_pllg_slide(clk, pll->n);
365 static struct nvkm_pstate
366 gk20a_pstates[] = {
368 .base = {
369 .domain[nv_clk_src_gpc] = 72000,
370 .voltage = 0,
374 .base = {
375 .domain[nv_clk_src_gpc] = 108000,
376 .voltage = 1,
380 .base = {
381 .domain[nv_clk_src_gpc] = 180000,
382 .voltage = 2,
386 .base = {
387 .domain[nv_clk_src_gpc] = 252000,
388 .voltage = 3,
392 .base = {
393 .domain[nv_clk_src_gpc] = 324000,
394 .voltage = 4,
398 .base = {
399 .domain[nv_clk_src_gpc] = 396000,
400 .voltage = 5,
404 .base = {
405 .domain[nv_clk_src_gpc] = 468000,
406 .voltage = 6,
410 .base = {
411 .domain[nv_clk_src_gpc] = 540000,
412 .voltage = 7,
416 .base = {
417 .domain[nv_clk_src_gpc] = 612000,
418 .voltage = 8,
422 .base = {
423 .domain[nv_clk_src_gpc] = 648000,
424 .voltage = 9,
428 .base = {
429 .domain[nv_clk_src_gpc] = 684000,
430 .voltage = 10,
434 .base = {
435 .domain[nv_clk_src_gpc] = 708000,
436 .voltage = 11,
440 .base = {
441 .domain[nv_clk_src_gpc] = 756000,
442 .voltage = 12,
446 .base = {
447 .domain[nv_clk_src_gpc] = 804000,
448 .voltage = 13,
452 .base = {
453 .domain[nv_clk_src_gpc] = 852000,
454 .voltage = 14,
460 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
462 struct gk20a_clk *clk = gk20a_clk(base);
463 struct nvkm_subdev *subdev = &clk->base.subdev;
464 struct nvkm_device *device = subdev->device;
465 struct gk20a_pll pll;
467 switch (src) {
468 case nv_clk_src_crystal:
469 return device->crystal;
470 case nv_clk_src_gpc:
471 gk20a_pllg_read_mnp(clk, &pll);
472 return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV;
473 default:
474 nvkm_error(subdev, "invalid clock source %d\n", src);
475 return -EINVAL;
480 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
482 struct gk20a_clk *clk = gk20a_clk(base);
484 return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
485 GK20A_CLK_GPC_MDIV, &clk->pll);
489 gk20a_clk_prog(struct nvkm_clk *base)
491 struct gk20a_clk *clk = gk20a_clk(base);
492 int ret;
494 ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
495 if (ret)
496 ret = gk20a_pllg_program_mnp(clk, &clk->pll);
498 return ret;
501 void
502 gk20a_clk_tidy(struct nvkm_clk *base)
507 gk20a_clk_setup_slide(struct gk20a_clk *clk)
509 struct nvkm_subdev *subdev = &clk->base.subdev;
510 struct nvkm_device *device = subdev->device;
511 u32 step_a, step_b;
513 switch (clk->parent_rate) {
514 case 12000000:
515 case 12800000:
516 case 13000000:
517 step_a = 0x2b;
518 step_b = 0x0b;
519 break;
520 case 19200000:
521 step_a = 0x12;
522 step_b = 0x08;
523 break;
524 case 38400000:
525 step_a = 0x04;
526 step_b = 0x05;
527 break;
528 default:
529 nvkm_error(subdev, "invalid parent clock rate %u KHz",
530 clk->parent_rate / KHZ);
531 return -EINVAL;
534 nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
535 step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
536 nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
537 step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);
539 return 0;
542 void
543 gk20a_clk_fini(struct nvkm_clk *base)
545 struct nvkm_device *device = base->subdev.device;
546 struct gk20a_clk *clk = gk20a_clk(base);
548 /* slide to VCO min */
549 if (gk20a_pllg_is_enabled(clk)) {
550 struct gk20a_pll pll;
551 u32 n_lo;
553 gk20a_pllg_read_mnp(clk, &pll);
554 n_lo = gk20a_pllg_n_lo(clk, &pll);
555 gk20a_pllg_slide(clk, n_lo);
558 gk20a_pllg_disable(clk);
560 /* set IDDQ */
561 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
564 static int
565 gk20a_clk_init(struct nvkm_clk *base)
567 struct gk20a_clk *clk = gk20a_clk(base);
568 struct nvkm_subdev *subdev = &clk->base.subdev;
569 struct nvkm_device *device = subdev->device;
570 int ret;
572 /* get out from IDDQ */
573 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
574 nvkm_rd32(device, GPCPLL_CFG);
575 udelay(5);
577 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
578 GPC2CLK_OUT_INIT_VAL);
580 ret = gk20a_clk_setup_slide(clk);
581 if (ret)
582 return ret;
584 /* Start with lowest frequency */
585 base->func->calc(base, &base->func->pstates[0].base);
586 ret = base->func->prog(&clk->base);
587 if (ret) {
588 nvkm_error(subdev, "cannot initialize clock\n");
589 return ret;
592 return 0;
595 static const struct nvkm_clk_func
596 gk20a_clk = {
597 .init = gk20a_clk_init,
598 .fini = gk20a_clk_fini,
599 .read = gk20a_clk_read,
600 .calc = gk20a_clk_calc,
601 .prog = gk20a_clk_prog,
602 .tidy = gk20a_clk_tidy,
603 .pstates = gk20a_pstates,
604 .nr_pstates = ARRAY_SIZE(gk20a_pstates),
605 .domains = {
606 { nv_clk_src_crystal, 0xff },
607 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
608 { nv_clk_src_max }
613 gk20a_clk_ctor(struct nvkm_device *device, int index,
614 const struct nvkm_clk_func *func,
615 const struct gk20a_clk_pllg_params *params,
616 struct gk20a_clk *clk)
618 struct nvkm_device_tegra *tdev = device->func->tegra(device);
619 int ret;
620 int i;
622 /* Finish initializing the pstates */
623 for (i = 0; i < func->nr_pstates; i++) {
624 INIT_LIST_HEAD(&func->pstates[i].list);
625 func->pstates[i].pstate = i + 1;
628 clk->params = params;
629 clk->parent_rate = clk_get_rate(tdev->clk);
631 ret = nvkm_clk_ctor(func, device, index, true, &clk->base);
632 if (ret)
633 return ret;
635 nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
636 clk->parent_rate / KHZ);
638 return 0;
642 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
644 struct gk20a_clk *clk;
645 int ret;
647 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
648 if (!clk)
649 return -ENOMEM;
650 *pclk = &clk->base;
652 ret = gk20a_clk_ctor(device, index, &gk20a_clk, &gk20a_pllg_params,
653 clk);
655 clk->pl_to_div = pl_to_div;
656 clk->div_to_pl = div_to_pl;
658 return ret;