treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / omapdrm / omap_dmm_tiler.c
blob252f5ebb1acc4830caf833e785df6a94f9cc7e3c
1 /*
2 * DMM IOMMU driver support functions for TI OMAP processors.
4 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
5 * Author: Rob Clark <rob@ti.com>
6 * Andy Gross <andy.gross@ti.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation version 2.
12 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
13 * kind, whether express or implied; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/completion.h>
19 #include <linux/delay.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmaengine.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h> /* platform_device() */
29 #include <linux/sched.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/vmalloc.h>
34 #include <linux/wait.h>
36 #include "omap_dmm_tiler.h"
37 #include "omap_dmm_priv.h"
39 #define DMM_DRIVER_NAME "dmm"
41 /* mappings for associating views to luts */
42 static struct tcm *containers[TILFMT_NFORMATS];
43 static struct dmm *omap_dmm;
45 #if defined(CONFIG_OF)
46 static const struct of_device_id dmm_of_match[];
47 #endif
49 /* global spinlock for protecting lists */
50 static DEFINE_SPINLOCK(list_lock);
52 /* Geometry table */
53 #define GEOM(xshift, yshift, bytes_per_pixel) { \
54 .x_shft = (xshift), \
55 .y_shft = (yshift), \
56 .cpp = (bytes_per_pixel), \
57 .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \
58 .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \
61 static const struct {
62 u32 x_shft; /* unused X-bits (as part of bpp) */
63 u32 y_shft; /* unused Y-bits (as part of bpp) */
64 u32 cpp; /* bytes/chars per pixel */
65 u32 slot_w; /* width of each slot (in pixels) */
66 u32 slot_h; /* height of each slot (in pixels) */
67 } geom[TILFMT_NFORMATS] = {
68 [TILFMT_8BIT] = GEOM(0, 0, 1),
69 [TILFMT_16BIT] = GEOM(0, 1, 2),
70 [TILFMT_32BIT] = GEOM(1, 1, 4),
71 [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1),
75 /* lookup table for registers w/ per-engine instances */
76 static const u32 reg[][4] = {
77 [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1,
78 DMM_PAT_STATUS__2, DMM_PAT_STATUS__3},
79 [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1,
80 DMM_PAT_DESCR__2, DMM_PAT_DESCR__3},
83 static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst)
85 struct dma_device *dma_dev = dmm->wa_dma_chan->device;
86 struct dma_async_tx_descriptor *tx;
87 enum dma_status status;
88 dma_cookie_t cookie;
90 tx = dma_dev->device_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0);
91 if (!tx) {
92 dev_err(dmm->dev, "Failed to prepare DMA memcpy\n");
93 return -EIO;
96 cookie = tx->tx_submit(tx);
97 if (dma_submit_error(cookie)) {
98 dev_err(dmm->dev, "Failed to do DMA tx_submit\n");
99 return -EIO;
102 dma_async_issue_pending(dmm->wa_dma_chan);
103 status = dma_sync_wait(dmm->wa_dma_chan, cookie);
104 if (status != DMA_COMPLETE)
105 dev_err(dmm->dev, "i878 wa DMA copy failure\n");
107 dmaengine_terminate_all(dmm->wa_dma_chan);
108 return 0;
111 static u32 dmm_read_wa(struct dmm *dmm, u32 reg)
113 dma_addr_t src, dst;
114 int r;
116 src = dmm->phys_base + reg;
117 dst = dmm->wa_dma_handle;
119 r = dmm_dma_copy(dmm, src, dst);
120 if (r) {
121 dev_err(dmm->dev, "sDMA read transfer timeout\n");
122 return readl(dmm->base + reg);
126 * As per i878 workaround, the DMA is used to access the DMM registers.
127 * Make sure that the readl is not moved by the compiler or the CPU
128 * earlier than the DMA finished writing the value to memory.
130 rmb();
131 return readl(dmm->wa_dma_data);
134 static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg)
136 dma_addr_t src, dst;
137 int r;
139 writel(val, dmm->wa_dma_data);
141 * As per i878 workaround, the DMA is used to access the DMM registers.
142 * Make sure that the writel is not moved by the compiler or the CPU, so
143 * the data will be in place before we start the DMA to do the actual
144 * register write.
146 wmb();
148 src = dmm->wa_dma_handle;
149 dst = dmm->phys_base + reg;
151 r = dmm_dma_copy(dmm, src, dst);
152 if (r) {
153 dev_err(dmm->dev, "sDMA write transfer timeout\n");
154 writel(val, dmm->base + reg);
158 static u32 dmm_read(struct dmm *dmm, u32 reg)
160 if (dmm->dmm_workaround) {
161 u32 v;
162 unsigned long flags;
164 spin_lock_irqsave(&dmm->wa_lock, flags);
165 v = dmm_read_wa(dmm, reg);
166 spin_unlock_irqrestore(&dmm->wa_lock, flags);
168 return v;
169 } else {
170 return readl(dmm->base + reg);
174 static void dmm_write(struct dmm *dmm, u32 val, u32 reg)
176 if (dmm->dmm_workaround) {
177 unsigned long flags;
179 spin_lock_irqsave(&dmm->wa_lock, flags);
180 dmm_write_wa(dmm, val, reg);
181 spin_unlock_irqrestore(&dmm->wa_lock, flags);
182 } else {
183 writel(val, dmm->base + reg);
187 static int dmm_workaround_init(struct dmm *dmm)
189 dma_cap_mask_t mask;
191 spin_lock_init(&dmm->wa_lock);
193 dmm->wa_dma_data = dma_alloc_coherent(dmm->dev, sizeof(u32),
194 &dmm->wa_dma_handle, GFP_KERNEL);
195 if (!dmm->wa_dma_data)
196 return -ENOMEM;
198 dma_cap_zero(mask);
199 dma_cap_set(DMA_MEMCPY, mask);
201 dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL);
202 if (!dmm->wa_dma_chan) {
203 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
204 return -ENODEV;
207 return 0;
210 static void dmm_workaround_uninit(struct dmm *dmm)
212 dma_release_channel(dmm->wa_dma_chan);
214 dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
217 /* simple allocator to grab next 16 byte aligned memory from txn */
218 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa)
220 void *ptr;
221 struct refill_engine *engine = txn->engine_handle;
223 /* dmm programming requires 16 byte aligned addresses */
224 txn->current_pa = round_up(txn->current_pa, 16);
225 txn->current_va = (void *)round_up((long)txn->current_va, 16);
227 ptr = txn->current_va;
228 *pa = txn->current_pa;
230 txn->current_pa += sz;
231 txn->current_va += sz;
233 BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE);
235 return ptr;
238 /* check status and spin until wait_mask comes true */
239 static int wait_status(struct refill_engine *engine, u32 wait_mask)
241 struct dmm *dmm = engine->dmm;
242 u32 r = 0, err, i;
244 i = DMM_FIXED_RETRY_COUNT;
245 while (true) {
246 r = dmm_read(dmm, reg[PAT_STATUS][engine->id]);
247 err = r & DMM_PATSTATUS_ERR;
248 if (err) {
249 dev_err(dmm->dev,
250 "%s: error (engine%d). PAT_STATUS: 0x%08x\n",
251 __func__, engine->id, r);
252 return -EFAULT;
255 if ((r & wait_mask) == wait_mask)
256 break;
258 if (--i == 0) {
259 dev_err(dmm->dev,
260 "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n",
261 __func__, engine->id, r);
262 return -ETIMEDOUT;
265 udelay(1);
268 return 0;
271 static void release_engine(struct refill_engine *engine)
273 unsigned long flags;
275 spin_lock_irqsave(&list_lock, flags);
276 list_add(&engine->idle_node, &omap_dmm->idle_head);
277 spin_unlock_irqrestore(&list_lock, flags);
279 atomic_inc(&omap_dmm->engine_counter);
280 wake_up_interruptible(&omap_dmm->engine_queue);
283 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg)
285 struct dmm *dmm = arg;
286 u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS);
287 int i;
289 /* ack IRQ */
290 dmm_write(dmm, status, DMM_PAT_IRQSTATUS);
292 for (i = 0; i < dmm->num_engines; i++) {
293 if (status & DMM_IRQSTAT_ERR_MASK)
294 dev_err(dmm->dev,
295 "irq error(engine%d): IRQSTAT 0x%02x\n",
296 i, status & 0xff);
298 if (status & DMM_IRQSTAT_LST) {
299 if (dmm->engines[i].async)
300 release_engine(&dmm->engines[i]);
302 complete(&dmm->engines[i].compl);
305 status >>= 8;
308 return IRQ_HANDLED;
312 * Get a handle for a DMM transaction
314 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm)
316 struct dmm_txn *txn = NULL;
317 struct refill_engine *engine = NULL;
318 int ret;
319 unsigned long flags;
322 /* wait until an engine is available */
323 ret = wait_event_interruptible(omap_dmm->engine_queue,
324 atomic_add_unless(&omap_dmm->engine_counter, -1, 0));
325 if (ret)
326 return ERR_PTR(ret);
328 /* grab an idle engine */
329 spin_lock_irqsave(&list_lock, flags);
330 if (!list_empty(&dmm->idle_head)) {
331 engine = list_entry(dmm->idle_head.next, struct refill_engine,
332 idle_node);
333 list_del(&engine->idle_node);
335 spin_unlock_irqrestore(&list_lock, flags);
337 BUG_ON(!engine);
339 txn = &engine->txn;
340 engine->tcm = tcm;
341 txn->engine_handle = engine;
342 txn->last_pat = NULL;
343 txn->current_va = engine->refill_va;
344 txn->current_pa = engine->refill_pa;
346 return txn;
350 * Add region to DMM transaction. If pages or pages[i] is NULL, then the
351 * corresponding slot is cleared (ie. dummy_pa is programmed)
353 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area,
354 struct page **pages, u32 npages, u32 roll)
356 dma_addr_t pat_pa = 0, data_pa = 0;
357 u32 *data;
358 struct pat *pat;
359 struct refill_engine *engine = txn->engine_handle;
360 int columns = (1 + area->x1 - area->x0);
361 int rows = (1 + area->y1 - area->y0);
362 int i = columns*rows;
364 pat = alloc_dma(txn, sizeof(*pat), &pat_pa);
366 if (txn->last_pat)
367 txn->last_pat->next_pa = (u32)pat_pa;
369 pat->area = *area;
371 /* adjust Y coordinates based off of container parameters */
372 pat->area.y0 += engine->tcm->y_offset;
373 pat->area.y1 += engine->tcm->y_offset;
375 pat->ctrl = (struct pat_ctrl){
376 .start = 1,
377 .lut_id = engine->tcm->lut_id,
380 data = alloc_dma(txn, 4*i, &data_pa);
381 /* FIXME: what if data_pa is more than 32-bit ? */
382 pat->data_pa = data_pa;
384 while (i--) {
385 int n = i + roll;
386 if (n >= npages)
387 n -= npages;
388 data[i] = (pages && pages[n]) ?
389 page_to_phys(pages[n]) : engine->dmm->dummy_pa;
392 txn->last_pat = pat;
394 return;
398 * Commit the DMM transaction.
400 static int dmm_txn_commit(struct dmm_txn *txn, bool wait)
402 int ret = 0;
403 struct refill_engine *engine = txn->engine_handle;
404 struct dmm *dmm = engine->dmm;
406 if (!txn->last_pat) {
407 dev_err(engine->dmm->dev, "need at least one txn\n");
408 ret = -EINVAL;
409 goto cleanup;
412 txn->last_pat->next_pa = 0;
413 /* ensure that the written descriptors are visible to DMM */
414 wmb();
417 * NOTE: the wmb() above should be enough, but there seems to be a bug
418 * in OMAP's memory barrier implementation, which in some rare cases may
419 * cause the writes not to be observable after wmb().
422 /* read back to ensure the data is in RAM */
423 readl(&txn->last_pat->next_pa);
425 /* write to PAT_DESCR to clear out any pending transaction */
426 dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]);
428 /* wait for engine ready: */
429 ret = wait_status(engine, DMM_PATSTATUS_READY);
430 if (ret) {
431 ret = -EFAULT;
432 goto cleanup;
435 /* mark whether it is async to denote list management in IRQ handler */
436 engine->async = wait ? false : true;
437 reinit_completion(&engine->compl);
438 /* verify that the irq handler sees the 'async' and completion value */
439 smp_mb();
441 /* kick reload */
442 dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]);
444 if (wait) {
445 if (!wait_for_completion_timeout(&engine->compl,
446 msecs_to_jiffies(100))) {
447 dev_err(dmm->dev, "timed out waiting for done\n");
448 ret = -ETIMEDOUT;
449 goto cleanup;
452 /* Check the engine status before continue */
453 ret = wait_status(engine, DMM_PATSTATUS_READY |
454 DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE);
457 cleanup:
458 /* only place engine back on list if we are done with it */
459 if (ret || wait)
460 release_engine(engine);
462 return ret;
466 * DMM programming
468 static int fill(struct tcm_area *area, struct page **pages,
469 u32 npages, u32 roll, bool wait)
471 int ret = 0;
472 struct tcm_area slice, area_s;
473 struct dmm_txn *txn;
476 * FIXME
478 * Asynchronous fill does not work reliably, as the driver does not
479 * handle errors in the async code paths. The fill operation may
480 * silently fail, leading to leaking DMM engines, which may eventually
481 * lead to deadlock if we run out of DMM engines.
483 * For now, always set 'wait' so that we only use sync fills. Async
484 * fills should be fixed, or alternatively we could decide to only
485 * support sync fills and so the whole async code path could be removed.
488 wait = true;
490 txn = dmm_txn_init(omap_dmm, area->tcm);
491 if (IS_ERR_OR_NULL(txn))
492 return -ENOMEM;
494 tcm_for_each_slice(slice, *area, area_s) {
495 struct pat_area p_area = {
496 .x0 = slice.p0.x, .y0 = slice.p0.y,
497 .x1 = slice.p1.x, .y1 = slice.p1.y,
500 dmm_txn_append(txn, &p_area, pages, npages, roll);
502 roll += tcm_sizeof(slice);
505 ret = dmm_txn_commit(txn, wait);
507 return ret;
511 * Pin/unpin
514 /* note: slots for which pages[i] == NULL are filled w/ dummy page
516 int tiler_pin(struct tiler_block *block, struct page **pages,
517 u32 npages, u32 roll, bool wait)
519 int ret;
521 ret = fill(&block->area, pages, npages, roll, wait);
523 if (ret)
524 tiler_unpin(block);
526 return ret;
529 int tiler_unpin(struct tiler_block *block)
531 return fill(&block->area, NULL, 0, 0, false);
535 * Reserve/release
537 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w,
538 u16 h, u16 align)
540 struct tiler_block *block;
541 u32 min_align = 128;
542 int ret;
543 unsigned long flags;
544 u32 slot_bytes;
546 block = kzalloc(sizeof(*block), GFP_KERNEL);
547 if (!block)
548 return ERR_PTR(-ENOMEM);
550 BUG_ON(!validfmt(fmt));
552 /* convert width/height to slots */
553 w = DIV_ROUND_UP(w, geom[fmt].slot_w);
554 h = DIV_ROUND_UP(h, geom[fmt].slot_h);
556 /* convert alignment to slots */
557 slot_bytes = geom[fmt].slot_w * geom[fmt].cpp;
558 min_align = max(min_align, slot_bytes);
559 align = (align > min_align) ? ALIGN(align, min_align) : min_align;
560 align /= slot_bytes;
562 block->fmt = fmt;
564 ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes,
565 &block->area);
566 if (ret) {
567 kfree(block);
568 return ERR_PTR(-ENOMEM);
571 /* add to allocation list */
572 spin_lock_irqsave(&list_lock, flags);
573 list_add(&block->alloc_node, &omap_dmm->alloc_head);
574 spin_unlock_irqrestore(&list_lock, flags);
576 return block;
579 struct tiler_block *tiler_reserve_1d(size_t size)
581 struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
582 int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
583 unsigned long flags;
585 if (!block)
586 return ERR_PTR(-ENOMEM);
588 block->fmt = TILFMT_PAGE;
590 if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages,
591 &block->area)) {
592 kfree(block);
593 return ERR_PTR(-ENOMEM);
596 spin_lock_irqsave(&list_lock, flags);
597 list_add(&block->alloc_node, &omap_dmm->alloc_head);
598 spin_unlock_irqrestore(&list_lock, flags);
600 return block;
603 /* note: if you have pin'd pages, you should have already unpin'd first! */
604 int tiler_release(struct tiler_block *block)
606 int ret = tcm_free(&block->area);
607 unsigned long flags;
609 if (block->area.tcm)
610 dev_err(omap_dmm->dev, "failed to release block\n");
612 spin_lock_irqsave(&list_lock, flags);
613 list_del(&block->alloc_node);
614 spin_unlock_irqrestore(&list_lock, flags);
616 kfree(block);
617 return ret;
621 * Utils
624 /* calculate the tiler space address of a pixel in a view orientation...
625 * below description copied from the display subsystem section of TRM:
627 * When the TILER is addressed, the bits:
628 * [28:27] = 0x0 for 8-bit tiled
629 * 0x1 for 16-bit tiled
630 * 0x2 for 32-bit tiled
631 * 0x3 for page mode
632 * [31:29] = 0x0 for 0-degree view
633 * 0x1 for 180-degree view + mirroring
634 * 0x2 for 0-degree view + mirroring
635 * 0x3 for 180-degree view
636 * 0x4 for 270-degree view + mirroring
637 * 0x5 for 270-degree view
638 * 0x6 for 90-degree view
639 * 0x7 for 90-degree view + mirroring
640 * Otherwise the bits indicated the corresponding bit address to access
641 * the SDRAM.
643 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y)
645 u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment;
647 x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft;
648 y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft;
649 alignment = geom[fmt].x_shft + geom[fmt].y_shft;
651 /* validate coordinate */
652 x_mask = MASK(x_bits);
653 y_mask = MASK(y_bits);
655 if (x < 0 || x > x_mask || y < 0 || y > y_mask) {
656 DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u",
657 x, x, x_mask, y, y, y_mask);
658 return 0;
661 /* account for mirroring */
662 if (orient & MASK_X_INVERT)
663 x ^= x_mask;
664 if (orient & MASK_Y_INVERT)
665 y ^= y_mask;
667 /* get coordinate address */
668 if (orient & MASK_XY_FLIP)
669 tmp = ((x << y_bits) + y);
670 else
671 tmp = ((y << x_bits) + x);
673 return TIL_ADDR((tmp << alignment), orient, fmt);
676 dma_addr_t tiler_ssptr(struct tiler_block *block)
678 BUG_ON(!validfmt(block->fmt));
680 return TILVIEW_8BIT + tiler_get_address(block->fmt, 0,
681 block->area.p0.x * geom[block->fmt].slot_w,
682 block->area.p0.y * geom[block->fmt].slot_h);
685 dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient,
686 u32 x, u32 y)
688 struct tcm_pt *p = &block->area.p0;
689 BUG_ON(!validfmt(block->fmt));
691 return tiler_get_address(block->fmt, orient,
692 (p->x * geom[block->fmt].slot_w) + x,
693 (p->y * geom[block->fmt].slot_h) + y);
696 void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h)
698 BUG_ON(!validfmt(fmt));
699 *w = round_up(*w, geom[fmt].slot_w);
700 *h = round_up(*h, geom[fmt].slot_h);
703 u32 tiler_stride(enum tiler_fmt fmt, u32 orient)
705 BUG_ON(!validfmt(fmt));
707 if (orient & MASK_XY_FLIP)
708 return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft);
709 else
710 return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft);
713 size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h)
715 tiler_align(fmt, &w, &h);
716 return geom[fmt].cpp * w * h;
719 size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h)
721 BUG_ON(!validfmt(fmt));
722 return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h;
725 u32 tiler_get_cpu_cache_flags(void)
727 return omap_dmm->plat_data->cpu_cache_flags;
730 bool dmm_is_available(void)
732 return omap_dmm ? true : false;
735 static int omap_dmm_remove(struct platform_device *dev)
737 struct tiler_block *block, *_block;
738 int i;
739 unsigned long flags;
741 if (omap_dmm) {
742 /* Disable all enabled interrupts */
743 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR);
744 free_irq(omap_dmm->irq, omap_dmm);
746 /* free all area regions */
747 spin_lock_irqsave(&list_lock, flags);
748 list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head,
749 alloc_node) {
750 list_del(&block->alloc_node);
751 kfree(block);
753 spin_unlock_irqrestore(&list_lock, flags);
755 for (i = 0; i < omap_dmm->num_lut; i++)
756 if (omap_dmm->tcm && omap_dmm->tcm[i])
757 omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]);
758 kfree(omap_dmm->tcm);
760 kfree(omap_dmm->engines);
761 if (omap_dmm->refill_va)
762 dma_free_wc(omap_dmm->dev,
763 REFILL_BUFFER_SIZE * omap_dmm->num_engines,
764 omap_dmm->refill_va, omap_dmm->refill_pa);
765 if (omap_dmm->dummy_page)
766 __free_page(omap_dmm->dummy_page);
768 if (omap_dmm->dmm_workaround)
769 dmm_workaround_uninit(omap_dmm);
771 iounmap(omap_dmm->base);
772 kfree(omap_dmm);
773 omap_dmm = NULL;
776 return 0;
779 static int omap_dmm_probe(struct platform_device *dev)
781 int ret = -EFAULT, i;
782 struct tcm_area area = {0};
783 u32 hwinfo, pat_geom;
784 struct resource *mem;
786 omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL);
787 if (!omap_dmm)
788 goto fail;
790 /* initialize lists */
791 INIT_LIST_HEAD(&omap_dmm->alloc_head);
792 INIT_LIST_HEAD(&omap_dmm->idle_head);
794 init_waitqueue_head(&omap_dmm->engine_queue);
796 if (dev->dev.of_node) {
797 const struct of_device_id *match;
799 match = of_match_node(dmm_of_match, dev->dev.of_node);
800 if (!match) {
801 dev_err(&dev->dev, "failed to find matching device node\n");
802 ret = -ENODEV;
803 goto fail;
806 omap_dmm->plat_data = match->data;
809 /* lookup hwmod data - base address and irq */
810 mem = platform_get_resource(dev, IORESOURCE_MEM, 0);
811 if (!mem) {
812 dev_err(&dev->dev, "failed to get base address resource\n");
813 goto fail;
816 omap_dmm->phys_base = mem->start;
817 omap_dmm->base = ioremap(mem->start, SZ_2K);
819 if (!omap_dmm->base) {
820 dev_err(&dev->dev, "failed to get dmm base address\n");
821 goto fail;
824 omap_dmm->irq = platform_get_irq(dev, 0);
825 if (omap_dmm->irq < 0) {
826 dev_err(&dev->dev, "failed to get IRQ resource\n");
827 goto fail;
830 omap_dmm->dev = &dev->dev;
832 if (of_machine_is_compatible("ti,dra7")) {
834 * DRA7 Errata i878 says that MPU should not be used to access
835 * RAM and DMM at the same time. As it's not possible to prevent
836 * MPU accessing RAM, we need to access DMM via a proxy.
838 if (!dmm_workaround_init(omap_dmm)) {
839 omap_dmm->dmm_workaround = true;
840 dev_info(&dev->dev,
841 "workaround for errata i878 in use\n");
842 } else {
843 dev_warn(&dev->dev,
844 "failed to initialize work-around for i878\n");
848 hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO);
849 omap_dmm->num_engines = (hwinfo >> 24) & 0x1F;
850 omap_dmm->num_lut = (hwinfo >> 16) & 0x1F;
851 omap_dmm->container_width = 256;
852 omap_dmm->container_height = 128;
854 atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines);
856 /* read out actual LUT width and height */
857 pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY);
858 omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5;
859 omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5;
861 /* increment LUT by one if on OMAP5 */
862 /* LUT has twice the height, and is split into a separate container */
863 if (omap_dmm->lut_height != omap_dmm->container_height)
864 omap_dmm->num_lut++;
866 /* initialize DMM registers */
867 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0);
868 dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1);
869 dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0);
870 dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE);
871 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0);
872 dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1);
874 omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32);
875 if (!omap_dmm->dummy_page) {
876 dev_err(&dev->dev, "could not allocate dummy page\n");
877 ret = -ENOMEM;
878 goto fail;
881 /* set dma mask for device */
882 ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32));
883 if (ret)
884 goto fail;
886 omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page);
888 /* alloc refill memory */
889 omap_dmm->refill_va = dma_alloc_wc(&dev->dev,
890 REFILL_BUFFER_SIZE * omap_dmm->num_engines,
891 &omap_dmm->refill_pa, GFP_KERNEL);
892 if (!omap_dmm->refill_va) {
893 dev_err(&dev->dev, "could not allocate refill memory\n");
894 goto fail;
897 /* alloc engines */
898 omap_dmm->engines = kcalloc(omap_dmm->num_engines,
899 sizeof(*omap_dmm->engines), GFP_KERNEL);
900 if (!omap_dmm->engines) {
901 ret = -ENOMEM;
902 goto fail;
905 for (i = 0; i < omap_dmm->num_engines; i++) {
906 omap_dmm->engines[i].id = i;
907 omap_dmm->engines[i].dmm = omap_dmm;
908 omap_dmm->engines[i].refill_va = omap_dmm->refill_va +
909 (REFILL_BUFFER_SIZE * i);
910 omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa +
911 (REFILL_BUFFER_SIZE * i);
912 init_completion(&omap_dmm->engines[i].compl);
914 list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head);
917 omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm),
918 GFP_KERNEL);
919 if (!omap_dmm->tcm) {
920 ret = -ENOMEM;
921 goto fail;
924 /* init containers */
925 /* Each LUT is associated with a TCM (container manager). We use the
926 lut_id to denote the lut_id used to identify the correct LUT for
927 programming during reill operations */
928 for (i = 0; i < omap_dmm->num_lut; i++) {
929 omap_dmm->tcm[i] = sita_init(omap_dmm->container_width,
930 omap_dmm->container_height);
932 if (!omap_dmm->tcm[i]) {
933 dev_err(&dev->dev, "failed to allocate container\n");
934 ret = -ENOMEM;
935 goto fail;
938 omap_dmm->tcm[i]->lut_id = i;
941 /* assign access mode containers to applicable tcm container */
942 /* OMAP 4 has 1 container for all 4 views */
943 /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */
944 containers[TILFMT_8BIT] = omap_dmm->tcm[0];
945 containers[TILFMT_16BIT] = omap_dmm->tcm[0];
946 containers[TILFMT_32BIT] = omap_dmm->tcm[0];
948 if (omap_dmm->container_height != omap_dmm->lut_height) {
949 /* second LUT is used for PAGE mode. Programming must use
950 y offset that is added to all y coordinates. LUT id is still
951 0, because it is the same LUT, just the upper 128 lines */
952 containers[TILFMT_PAGE] = omap_dmm->tcm[1];
953 omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET;
954 omap_dmm->tcm[1]->lut_id = 0;
955 } else {
956 containers[TILFMT_PAGE] = omap_dmm->tcm[0];
959 area = (struct tcm_area) {
960 .tcm = NULL,
961 .p1.x = omap_dmm->container_width - 1,
962 .p1.y = omap_dmm->container_height - 1,
965 ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED,
966 "omap_dmm_irq_handler", omap_dmm);
968 if (ret) {
969 dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n",
970 omap_dmm->irq, ret);
971 omap_dmm->irq = -1;
972 goto fail;
975 /* Enable all interrupts for each refill engine except
976 * ERR_LUT_MISS<n> (which is just advisory, and we don't care
977 * about because we want to be able to refill live scanout
978 * buffers for accelerated pan/scroll) and FILL_DSC<n> which
979 * we just generally don't care about.
981 dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET);
983 /* initialize all LUTs to dummy page entries */
984 for (i = 0; i < omap_dmm->num_lut; i++) {
985 area.tcm = omap_dmm->tcm[i];
986 if (fill(&area, NULL, 0, 0, true))
987 dev_err(omap_dmm->dev, "refill failed");
990 dev_info(omap_dmm->dev, "initialized all PAT entries\n");
992 return 0;
994 fail:
995 if (omap_dmm_remove(dev))
996 dev_err(&dev->dev, "cleanup failed\n");
997 return ret;
1001 * debugfs support
1004 #ifdef CONFIG_DEBUG_FS
1006 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz"
1007 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
1008 static const char *special = ".,:;'\"`~!^-+";
1010 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a,
1011 char c, bool ovw)
1013 int x, y;
1014 for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++)
1015 for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++)
1016 if (map[y][x] == ' ' || ovw)
1017 map[y][x] = c;
1020 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p,
1021 char c)
1023 map[p->y / ydiv][p->x / xdiv] = c;
1026 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p)
1028 return map[p->y / ydiv][p->x / xdiv];
1031 static int map_width(int xdiv, int x0, int x1)
1033 return (x1 / xdiv) - (x0 / xdiv) + 1;
1036 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1)
1038 char *p = map[yd] + (x0 / xdiv);
1039 int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2;
1040 if (w >= 0) {
1041 p += w;
1042 while (*nice)
1043 *p++ = *nice++;
1047 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice,
1048 struct tcm_area *a)
1050 sprintf(nice, "%dK", tcm_sizeof(*a) * 4);
1051 if (a->p0.y + 1 < a->p1.y) {
1052 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0,
1053 256 - 1);
1054 } else if (a->p0.y < a->p1.y) {
1055 if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1))
1056 text_map(map, xdiv, nice, a->p0.y / ydiv,
1057 a->p0.x + xdiv, 256 - 1);
1058 else if (strlen(nice) < map_width(xdiv, 0, a->p1.x))
1059 text_map(map, xdiv, nice, a->p1.y / ydiv,
1060 0, a->p1.y - xdiv);
1061 } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) {
1062 text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x);
1066 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice,
1067 struct tcm_area *a)
1069 sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a));
1070 if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x))
1071 text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv,
1072 a->p0.x, a->p1.x);
1075 int tiler_map_show(struct seq_file *s, void *arg)
1077 int xdiv = 2, ydiv = 1;
1078 char **map = NULL, *global_map;
1079 struct tiler_block *block;
1080 struct tcm_area a, p;
1081 int i;
1082 const char *m2d = alphabet;
1083 const char *a2d = special;
1084 const char *m2dp = m2d, *a2dp = a2d;
1085 char nice[128];
1086 int h_adj;
1087 int w_adj;
1088 unsigned long flags;
1089 int lut_idx;
1092 if (!omap_dmm) {
1093 /* early return if dmm/tiler device is not initialized */
1094 return 0;
1097 h_adj = omap_dmm->container_height / ydiv;
1098 w_adj = omap_dmm->container_width / xdiv;
1100 map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL);
1101 global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL);
1103 if (!map || !global_map)
1104 goto error;
1106 for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) {
1107 memset(map, 0, h_adj * sizeof(*map));
1108 memset(global_map, ' ', (w_adj + 1) * h_adj);
1110 for (i = 0; i < omap_dmm->container_height; i++) {
1111 map[i] = global_map + i * (w_adj + 1);
1112 map[i][w_adj] = 0;
1115 spin_lock_irqsave(&list_lock, flags);
1117 list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) {
1118 if (block->area.tcm == omap_dmm->tcm[lut_idx]) {
1119 if (block->fmt != TILFMT_PAGE) {
1120 fill_map(map, xdiv, ydiv, &block->area,
1121 *m2dp, true);
1122 if (!*++a2dp)
1123 a2dp = a2d;
1124 if (!*++m2dp)
1125 m2dp = m2d;
1126 map_2d_info(map, xdiv, ydiv, nice,
1127 &block->area);
1128 } else {
1129 bool start = read_map_pt(map, xdiv,
1130 ydiv, &block->area.p0) == ' ';
1131 bool end = read_map_pt(map, xdiv, ydiv,
1132 &block->area.p1) == ' ';
1134 tcm_for_each_slice(a, block->area, p)
1135 fill_map(map, xdiv, ydiv, &a,
1136 '=', true);
1137 fill_map_pt(map, xdiv, ydiv,
1138 &block->area.p0,
1139 start ? '<' : 'X');
1140 fill_map_pt(map, xdiv, ydiv,
1141 &block->area.p1,
1142 end ? '>' : 'X');
1143 map_1d_info(map, xdiv, ydiv, nice,
1144 &block->area);
1149 spin_unlock_irqrestore(&list_lock, flags);
1151 if (s) {
1152 seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx);
1153 for (i = 0; i < 128; i++)
1154 seq_printf(s, "%03d:%s\n", i, map[i]);
1155 seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx);
1156 } else {
1157 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n",
1158 lut_idx);
1159 for (i = 0; i < 128; i++)
1160 dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]);
1161 dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n",
1162 lut_idx);
1166 error:
1167 kfree(map);
1168 kfree(global_map);
1170 return 0;
1172 #endif
1174 #ifdef CONFIG_PM_SLEEP
1175 static int omap_dmm_resume(struct device *dev)
1177 struct tcm_area area;
1178 int i;
1180 if (!omap_dmm)
1181 return -ENODEV;
1183 area = (struct tcm_area) {
1184 .tcm = NULL,
1185 .p1.x = omap_dmm->container_width - 1,
1186 .p1.y = omap_dmm->container_height - 1,
1189 /* initialize all LUTs to dummy page entries */
1190 for (i = 0; i < omap_dmm->num_lut; i++) {
1191 area.tcm = omap_dmm->tcm[i];
1192 if (fill(&area, NULL, 0, 0, true))
1193 dev_err(dev, "refill failed");
1196 return 0;
1198 #endif
1200 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume);
1202 #if defined(CONFIG_OF)
1203 static const struct dmm_platform_data dmm_omap4_platform_data = {
1204 .cpu_cache_flags = OMAP_BO_WC,
1207 static const struct dmm_platform_data dmm_omap5_platform_data = {
1208 .cpu_cache_flags = OMAP_BO_UNCACHED,
1211 static const struct of_device_id dmm_of_match[] = {
1213 .compatible = "ti,omap4-dmm",
1214 .data = &dmm_omap4_platform_data,
1217 .compatible = "ti,omap5-dmm",
1218 .data = &dmm_omap5_platform_data,
1222 #endif
1224 struct platform_driver omap_dmm_driver = {
1225 .probe = omap_dmm_probe,
1226 .remove = omap_dmm_remove,
1227 .driver = {
1228 .owner = THIS_MODULE,
1229 .name = DMM_DRIVER_NAME,
1230 .of_match_table = of_match_ptr(dmm_of_match),
1231 .pm = &omap_dmm_pm_ops,
1235 MODULE_LICENSE("GPL v2");
1236 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>");
1237 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");