treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / rockchip / rockchip_drm_vop.c
blobd04b3492bdac2a04777eeabe41e8d087e80392a6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4 * Author:Mark Yao <mark.yao@rock-chips.com>
5 */
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_framebuffer_helper.h>
27 #include <drm/drm_plane_helper.h>
28 #include <drm/drm_probe_helper.h>
29 #include <drm/drm_self_refresh_helper.h>
30 #include <drm/drm_vblank.h>
32 #ifdef CONFIG_DRM_ANALOGIX_DP
33 #include <drm/bridge/analogix_dp.h>
34 #endif
36 #include "rockchip_drm_drv.h"
37 #include "rockchip_drm_gem.h"
38 #include "rockchip_drm_fb.h"
39 #include "rockchip_drm_vop.h"
40 #include "rockchip_rgb.h"
42 #define VOP_WIN_SET(vop, win, name, v) \
43 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
44 #define VOP_SCL_SET(vop, win, name, v) \
45 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET_EXT(vop, win, name, v) \
47 vop_reg_set(vop, &win->phy->scl->ext->name, \
48 win->base, ~0, v, #name)
50 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
51 do { \
52 if (win_yuv2yuv && win_yuv2yuv->name.mask) \
53 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
54 } while (0)
56 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
57 do { \
58 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
59 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
60 } while (0)
62 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
63 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
65 #define VOP_REG_SET(vop, group, name, v) \
66 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
68 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
69 do { \
70 int i, reg = 0, mask = 0; \
71 for (i = 0; i < vop->data->intr->nintrs; i++) { \
72 if (vop->data->intr->intrs[i] & type) { \
73 reg |= (v) << i; \
74 mask |= 1 << i; \
75 } \
76 } \
77 VOP_INTR_SET_MASK(vop, name, mask, reg); \
78 } while (0)
79 #define VOP_INTR_GET_TYPE(vop, name, type) \
80 vop_get_intr_type(vop, &vop->data->intr->name, type)
82 #define VOP_WIN_GET(vop, win, name) \
83 vop_read_reg(vop, win->base, &win->phy->name)
85 #define VOP_WIN_HAS_REG(win, name) \
86 (!!(win->phy->name.mask))
88 #define VOP_WIN_GET_YRGBADDR(vop, win) \
89 vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
91 #define VOP_WIN_TO_INDEX(vop_win) \
92 ((vop_win) - (vop_win)->vop->win)
94 #define to_vop(x) container_of(x, struct vop, crtc)
95 #define to_vop_win(x) container_of(x, struct vop_win, base)
98 * The coefficients of the following matrix are all fixed points.
99 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
100 * They are all represented in two's complement.
102 static const uint32_t bt601_yuv2rgb[] = {
103 0x4A8, 0x0, 0x662,
104 0x4A8, 0x1E6F, 0x1CBF,
105 0x4A8, 0x812, 0x0,
106 0x321168, 0x0877CF, 0x2EB127
109 enum vop_pending {
110 VOP_PENDING_FB_UNREF,
113 struct vop_win {
114 struct drm_plane base;
115 const struct vop_win_data *data;
116 const struct vop_win_yuv2yuv_data *yuv2yuv_data;
117 struct vop *vop;
120 struct rockchip_rgb;
121 struct vop {
122 struct drm_crtc crtc;
123 struct device *dev;
124 struct drm_device *drm_dev;
125 bool is_enabled;
127 struct completion dsp_hold_completion;
128 unsigned int win_enabled;
130 /* protected by dev->event_lock */
131 struct drm_pending_vblank_event *event;
133 struct drm_flip_work fb_unref_work;
134 unsigned long pending;
136 struct completion line_flag_completion;
138 const struct vop_data *data;
140 uint32_t *regsbak;
141 void __iomem *regs;
142 void __iomem *lut_regs;
144 /* physical map length of vop register */
145 uint32_t len;
147 /* one time only one process allowed to config the register */
148 spinlock_t reg_lock;
149 /* lock vop irq reg */
150 spinlock_t irq_lock;
151 /* protects crtc enable/disable */
152 struct mutex vop_lock;
154 unsigned int irq;
156 /* vop AHP clk */
157 struct clk *hclk;
158 /* vop dclk */
159 struct clk *dclk;
160 /* vop share memory frequency */
161 struct clk *aclk;
163 /* vop dclk reset */
164 struct reset_control *dclk_rst;
166 /* optional internal rgb encoder */
167 struct rockchip_rgb *rgb;
169 struct vop_win win[];
172 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
174 writel(v, vop->regs + offset);
175 vop->regsbak[offset >> 2] = v;
178 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
180 return readl(vop->regs + offset);
183 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
184 const struct vop_reg *reg)
186 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
189 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
190 uint32_t _offset, uint32_t _mask, uint32_t v,
191 const char *reg_name)
193 int offset, mask, shift;
195 if (!reg || !reg->mask) {
196 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
197 return;
200 offset = reg->offset + _offset;
201 mask = reg->mask & _mask;
202 shift = reg->shift;
204 if (reg->write_mask) {
205 v = ((v << shift) & 0xffff) | (mask << (shift + 16));
206 } else {
207 uint32_t cached_val = vop->regsbak[offset >> 2];
209 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
210 vop->regsbak[offset >> 2] = v;
213 if (reg->relaxed)
214 writel_relaxed(v, vop->regs + offset);
215 else
216 writel(v, vop->regs + offset);
219 static inline uint32_t vop_get_intr_type(struct vop *vop,
220 const struct vop_reg *reg, int type)
222 uint32_t i, ret = 0;
223 uint32_t regs = vop_read_reg(vop, 0, reg);
225 for (i = 0; i < vop->data->intr->nintrs; i++) {
226 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
227 ret |= vop->data->intr->intrs[i];
230 return ret;
233 static inline void vop_cfg_done(struct vop *vop)
235 VOP_REG_SET(vop, common, cfg_done, 1);
238 static bool has_rb_swapped(uint32_t format)
240 switch (format) {
241 case DRM_FORMAT_XBGR8888:
242 case DRM_FORMAT_ABGR8888:
243 case DRM_FORMAT_BGR888:
244 case DRM_FORMAT_BGR565:
245 return true;
246 default:
247 return false;
251 static enum vop_data_format vop_convert_format(uint32_t format)
253 switch (format) {
254 case DRM_FORMAT_XRGB8888:
255 case DRM_FORMAT_ARGB8888:
256 case DRM_FORMAT_XBGR8888:
257 case DRM_FORMAT_ABGR8888:
258 return VOP_FMT_ARGB8888;
259 case DRM_FORMAT_RGB888:
260 case DRM_FORMAT_BGR888:
261 return VOP_FMT_RGB888;
262 case DRM_FORMAT_RGB565:
263 case DRM_FORMAT_BGR565:
264 return VOP_FMT_RGB565;
265 case DRM_FORMAT_NV12:
266 return VOP_FMT_YUV420SP;
267 case DRM_FORMAT_NV16:
268 return VOP_FMT_YUV422SP;
269 case DRM_FORMAT_NV24:
270 return VOP_FMT_YUV444SP;
271 default:
272 DRM_ERROR("unsupported format[%08x]\n", format);
273 return -EINVAL;
277 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
278 uint32_t dst, bool is_horizontal,
279 int vsu_mode, int *vskiplines)
281 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
283 if (vskiplines)
284 *vskiplines = 0;
286 if (is_horizontal) {
287 if (mode == SCALE_UP)
288 val = GET_SCL_FT_BIC(src, dst);
289 else if (mode == SCALE_DOWN)
290 val = GET_SCL_FT_BILI_DN(src, dst);
291 } else {
292 if (mode == SCALE_UP) {
293 if (vsu_mode == SCALE_UP_BIL)
294 val = GET_SCL_FT_BILI_UP(src, dst);
295 else
296 val = GET_SCL_FT_BIC(src, dst);
297 } else if (mode == SCALE_DOWN) {
298 if (vskiplines) {
299 *vskiplines = scl_get_vskiplines(src, dst);
300 val = scl_get_bili_dn_vskip(src, dst,
301 *vskiplines);
302 } else {
303 val = GET_SCL_FT_BILI_DN(src, dst);
308 return val;
311 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
312 uint32_t src_w, uint32_t src_h, uint32_t dst_w,
313 uint32_t dst_h, const struct drm_format_info *info)
315 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
316 uint16_t cbcr_hor_scl_mode = SCALE_NONE;
317 uint16_t cbcr_ver_scl_mode = SCALE_NONE;
318 bool is_yuv = false;
319 uint16_t cbcr_src_w = src_w / info->hsub;
320 uint16_t cbcr_src_h = src_h / info->vsub;
321 uint16_t vsu_mode;
322 uint16_t lb_mode;
323 uint32_t val;
324 int vskiplines;
326 if (info->is_yuv)
327 is_yuv = true;
329 if (dst_w > 3840) {
330 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
331 return;
334 if (!win->phy->scl->ext) {
335 VOP_SCL_SET(vop, win, scale_yrgb_x,
336 scl_cal_scale2(src_w, dst_w));
337 VOP_SCL_SET(vop, win, scale_yrgb_y,
338 scl_cal_scale2(src_h, dst_h));
339 if (is_yuv) {
340 VOP_SCL_SET(vop, win, scale_cbcr_x,
341 scl_cal_scale2(cbcr_src_w, dst_w));
342 VOP_SCL_SET(vop, win, scale_cbcr_y,
343 scl_cal_scale2(cbcr_src_h, dst_h));
345 return;
348 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
349 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
351 if (is_yuv) {
352 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
353 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
354 if (cbcr_hor_scl_mode == SCALE_DOWN)
355 lb_mode = scl_vop_cal_lb_mode(dst_w, true);
356 else
357 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
358 } else {
359 if (yrgb_hor_scl_mode == SCALE_DOWN)
360 lb_mode = scl_vop_cal_lb_mode(dst_w, false);
361 else
362 lb_mode = scl_vop_cal_lb_mode(src_w, false);
365 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
366 if (lb_mode == LB_RGB_3840X2) {
367 if (yrgb_ver_scl_mode != SCALE_NONE) {
368 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
369 return;
371 if (cbcr_ver_scl_mode != SCALE_NONE) {
372 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
373 return;
375 vsu_mode = SCALE_UP_BIL;
376 } else if (lb_mode == LB_RGB_2560X4) {
377 vsu_mode = SCALE_UP_BIL;
378 } else {
379 vsu_mode = SCALE_UP_BIC;
382 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
383 true, 0, NULL);
384 VOP_SCL_SET(vop, win, scale_yrgb_x, val);
385 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
386 false, vsu_mode, &vskiplines);
387 VOP_SCL_SET(vop, win, scale_yrgb_y, val);
389 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
390 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
392 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
393 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
394 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
395 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
396 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
397 if (is_yuv) {
398 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
399 dst_w, true, 0, NULL);
400 VOP_SCL_SET(vop, win, scale_cbcr_x, val);
401 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
402 dst_h, false, vsu_mode, &vskiplines);
403 VOP_SCL_SET(vop, win, scale_cbcr_y, val);
405 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
406 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
407 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
408 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
409 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
410 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
411 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
415 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
417 unsigned long flags;
419 if (WARN_ON(!vop->is_enabled))
420 return;
422 spin_lock_irqsave(&vop->irq_lock, flags);
424 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
425 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
427 spin_unlock_irqrestore(&vop->irq_lock, flags);
430 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
432 unsigned long flags;
434 if (WARN_ON(!vop->is_enabled))
435 return;
437 spin_lock_irqsave(&vop->irq_lock, flags);
439 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
441 spin_unlock_irqrestore(&vop->irq_lock, flags);
445 * (1) each frame starts at the start of the Vsync pulse which is signaled by
446 * the "FRAME_SYNC" interrupt.
447 * (2) the active data region of each frame ends at dsp_vact_end
448 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
449 * to get "LINE_FLAG" interrupt at the end of the active on screen data.
451 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
452 * Interrupts
453 * LINE_FLAG -------------------------------+
454 * FRAME_SYNC ----+ |
455 * | |
456 * v v
457 * | Vsync | Vbp | Vactive | Vfp |
458 * ^ ^ ^ ^
459 * | | | |
460 * | | | |
461 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END
462 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END
463 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END
464 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END
466 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
468 uint32_t line_flag_irq;
469 unsigned long flags;
471 spin_lock_irqsave(&vop->irq_lock, flags);
473 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
475 spin_unlock_irqrestore(&vop->irq_lock, flags);
477 return !!line_flag_irq;
480 static void vop_line_flag_irq_enable(struct vop *vop)
482 unsigned long flags;
484 if (WARN_ON(!vop->is_enabled))
485 return;
487 spin_lock_irqsave(&vop->irq_lock, flags);
489 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
490 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
492 spin_unlock_irqrestore(&vop->irq_lock, flags);
495 static void vop_line_flag_irq_disable(struct vop *vop)
497 unsigned long flags;
499 if (WARN_ON(!vop->is_enabled))
500 return;
502 spin_lock_irqsave(&vop->irq_lock, flags);
504 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
506 spin_unlock_irqrestore(&vop->irq_lock, flags);
509 static int vop_core_clks_enable(struct vop *vop)
511 int ret;
513 ret = clk_enable(vop->hclk);
514 if (ret < 0)
515 return ret;
517 ret = clk_enable(vop->aclk);
518 if (ret < 0)
519 goto err_disable_hclk;
521 return 0;
523 err_disable_hclk:
524 clk_disable(vop->hclk);
525 return ret;
528 static void vop_core_clks_disable(struct vop *vop)
530 clk_disable(vop->aclk);
531 clk_disable(vop->hclk);
534 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
536 const struct vop_win_data *win = vop_win->data;
538 if (win->phy->scl && win->phy->scl->ext) {
539 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
540 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
541 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
542 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
545 VOP_WIN_SET(vop, win, enable, 0);
546 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
549 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
551 struct vop *vop = to_vop(crtc);
552 int ret, i;
554 ret = pm_runtime_get_sync(vop->dev);
555 if (ret < 0) {
556 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
557 return ret;
560 ret = vop_core_clks_enable(vop);
561 if (WARN_ON(ret < 0))
562 goto err_put_pm_runtime;
564 ret = clk_enable(vop->dclk);
565 if (WARN_ON(ret < 0))
566 goto err_disable_core;
569 * Slave iommu shares power, irq and clock with vop. It was associated
570 * automatically with this master device via common driver code.
571 * Now that we have enabled the clock we attach it to the shared drm
572 * mapping.
574 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
575 if (ret) {
576 DRM_DEV_ERROR(vop->dev,
577 "failed to attach dma mapping, %d\n", ret);
578 goto err_disable_dclk;
581 spin_lock(&vop->reg_lock);
582 for (i = 0; i < vop->len; i += 4)
583 writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
586 * We need to make sure that all windows are disabled before we
587 * enable the crtc. Otherwise we might try to scan from a destroyed
588 * buffer later.
590 * In the case of enable-after-PSR, we don't need to worry about this
591 * case since the buffer is guaranteed to be valid and disabling the
592 * window will result in screen glitches on PSR exit.
594 if (!old_state || !old_state->self_refresh_active) {
595 for (i = 0; i < vop->data->win_size; i++) {
596 struct vop_win *vop_win = &vop->win[i];
598 vop_win_disable(vop, vop_win);
601 spin_unlock(&vop->reg_lock);
603 vop_cfg_done(vop);
606 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
608 vop->is_enabled = true;
610 spin_lock(&vop->reg_lock);
612 VOP_REG_SET(vop, common, standby, 1);
614 spin_unlock(&vop->reg_lock);
616 drm_crtc_vblank_on(crtc);
618 return 0;
620 err_disable_dclk:
621 clk_disable(vop->dclk);
622 err_disable_core:
623 vop_core_clks_disable(vop);
624 err_put_pm_runtime:
625 pm_runtime_put_sync(vop->dev);
626 return ret;
629 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
631 struct vop *vop = to_vop(crtc);
632 int i;
634 spin_lock(&vop->reg_lock);
636 for (i = 0; i < vop->data->win_size; i++) {
637 struct vop_win *vop_win = &vop->win[i];
638 const struct vop_win_data *win = vop_win->data;
640 VOP_WIN_SET(vop, win, enable,
641 enabled && (vop->win_enabled & BIT(i)));
643 vop_cfg_done(vop);
645 spin_unlock(&vop->reg_lock);
648 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
649 struct drm_crtc_state *old_state)
651 struct vop *vop = to_vop(crtc);
653 WARN_ON(vop->event);
655 if (crtc->state->self_refresh_active)
656 rockchip_drm_set_win_enabled(crtc, false);
658 mutex_lock(&vop->vop_lock);
660 drm_crtc_vblank_off(crtc);
662 if (crtc->state->self_refresh_active)
663 goto out;
666 * Vop standby will take effect at end of current frame,
667 * if dsp hold valid irq happen, it means standby complete.
669 * we must wait standby complete when we want to disable aclk,
670 * if not, memory bus maybe dead.
672 reinit_completion(&vop->dsp_hold_completion);
673 vop_dsp_hold_valid_irq_enable(vop);
675 spin_lock(&vop->reg_lock);
677 VOP_REG_SET(vop, common, standby, 1);
679 spin_unlock(&vop->reg_lock);
681 wait_for_completion(&vop->dsp_hold_completion);
683 vop_dsp_hold_valid_irq_disable(vop);
685 vop->is_enabled = false;
688 * vop standby complete, so iommu detach is safe.
690 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
692 clk_disable(vop->dclk);
693 vop_core_clks_disable(vop);
694 pm_runtime_put(vop->dev);
696 out:
697 mutex_unlock(&vop->vop_lock);
699 if (crtc->state->event && !crtc->state->active) {
700 spin_lock_irq(&crtc->dev->event_lock);
701 drm_crtc_send_vblank_event(crtc, crtc->state->event);
702 spin_unlock_irq(&crtc->dev->event_lock);
704 crtc->state->event = NULL;
708 static void vop_plane_destroy(struct drm_plane *plane)
710 drm_plane_cleanup(plane);
713 static int vop_plane_atomic_check(struct drm_plane *plane,
714 struct drm_plane_state *state)
716 struct drm_crtc *crtc = state->crtc;
717 struct drm_crtc_state *crtc_state;
718 struct drm_framebuffer *fb = state->fb;
719 struct vop_win *vop_win = to_vop_win(plane);
720 const struct vop_win_data *win = vop_win->data;
721 int ret;
722 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
723 DRM_PLANE_HELPER_NO_SCALING;
724 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
725 DRM_PLANE_HELPER_NO_SCALING;
727 if (!crtc || !fb)
728 return 0;
730 crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
731 if (WARN_ON(!crtc_state))
732 return -EINVAL;
734 ret = drm_atomic_helper_check_plane_state(state, crtc_state,
735 min_scale, max_scale,
736 true, true);
737 if (ret)
738 return ret;
740 if (!state->visible)
741 return 0;
743 ret = vop_convert_format(fb->format->format);
744 if (ret < 0)
745 return ret;
748 * Src.x1 can be odd when do clip, but yuv plane start point
749 * need align with 2 pixel.
751 if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
752 DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
753 return -EINVAL;
756 if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
757 DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
758 return -EINVAL;
761 return 0;
764 static void vop_plane_atomic_disable(struct drm_plane *plane,
765 struct drm_plane_state *old_state)
767 struct vop_win *vop_win = to_vop_win(plane);
768 struct vop *vop = to_vop(old_state->crtc);
770 if (!old_state->crtc)
771 return;
773 spin_lock(&vop->reg_lock);
775 vop_win_disable(vop, vop_win);
777 spin_unlock(&vop->reg_lock);
780 static void vop_plane_atomic_update(struct drm_plane *plane,
781 struct drm_plane_state *old_state)
783 struct drm_plane_state *state = plane->state;
784 struct drm_crtc *crtc = state->crtc;
785 struct vop_win *vop_win = to_vop_win(plane);
786 const struct vop_win_data *win = vop_win->data;
787 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
788 struct vop *vop = to_vop(state->crtc);
789 struct drm_framebuffer *fb = state->fb;
790 unsigned int actual_w, actual_h;
791 unsigned int dsp_stx, dsp_sty;
792 uint32_t act_info, dsp_info, dsp_st;
793 struct drm_rect *src = &state->src;
794 struct drm_rect *dest = &state->dst;
795 struct drm_gem_object *obj, *uv_obj;
796 struct rockchip_gem_object *rk_obj, *rk_uv_obj;
797 unsigned long offset;
798 dma_addr_t dma_addr;
799 uint32_t val;
800 bool rb_swap;
801 int win_index = VOP_WIN_TO_INDEX(vop_win);
802 int format;
803 int is_yuv = fb->format->is_yuv;
804 int i;
807 * can't update plane when vop is disabled.
809 if (WARN_ON(!crtc))
810 return;
812 if (WARN_ON(!vop->is_enabled))
813 return;
815 if (!state->visible) {
816 vop_plane_atomic_disable(plane, old_state);
817 return;
820 obj = fb->obj[0];
821 rk_obj = to_rockchip_obj(obj);
823 actual_w = drm_rect_width(src) >> 16;
824 actual_h = drm_rect_height(src) >> 16;
825 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
827 dsp_info = (drm_rect_height(dest) - 1) << 16;
828 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
830 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
831 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
832 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
834 offset = (src->x1 >> 16) * fb->format->cpp[0];
835 offset += (src->y1 >> 16) * fb->pitches[0];
836 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
839 * For y-mirroring we need to move address
840 * to the beginning of the last line.
842 if (state->rotation & DRM_MODE_REFLECT_Y)
843 dma_addr += (actual_h - 1) * fb->pitches[0];
845 format = vop_convert_format(fb->format->format);
847 spin_lock(&vop->reg_lock);
849 VOP_WIN_SET(vop, win, format, format);
850 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
851 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
852 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
853 VOP_WIN_SET(vop, win, y_mir_en,
854 (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
855 VOP_WIN_SET(vop, win, x_mir_en,
856 (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
858 if (is_yuv) {
859 int hsub = fb->format->hsub;
860 int vsub = fb->format->vsub;
861 int bpp = fb->format->cpp[1];
863 uv_obj = fb->obj[1];
864 rk_uv_obj = to_rockchip_obj(uv_obj);
866 offset = (src->x1 >> 16) * bpp / hsub;
867 offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
869 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
870 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
871 VOP_WIN_SET(vop, win, uv_mst, dma_addr);
873 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
874 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
875 win_yuv2yuv,
876 y2r_coefficients[i],
877 bt601_yuv2rgb[i]);
881 if (win->phy->scl)
882 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
883 drm_rect_width(dest), drm_rect_height(dest),
884 fb->format);
886 VOP_WIN_SET(vop, win, act_info, act_info);
887 VOP_WIN_SET(vop, win, dsp_info, dsp_info);
888 VOP_WIN_SET(vop, win, dsp_st, dsp_st);
890 rb_swap = has_rb_swapped(fb->format->format);
891 VOP_WIN_SET(vop, win, rb_swap, rb_swap);
894 * Blending win0 with the background color doesn't seem to work
895 * correctly. We only get the background color, no matter the contents
896 * of the win0 framebuffer. However, blending pre-multiplied color
897 * with the default opaque black default background color is a no-op,
898 * so we can just disable blending to get the correct result.
900 if (fb->format->has_alpha && win_index > 0) {
901 VOP_WIN_SET(vop, win, dst_alpha_ctl,
902 DST_FACTOR_M0(ALPHA_SRC_INVERSE));
903 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
904 SRC_ALPHA_M0(ALPHA_STRAIGHT) |
905 SRC_BLEND_M0(ALPHA_PER_PIX) |
906 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
907 SRC_FACTOR_M0(ALPHA_ONE);
908 VOP_WIN_SET(vop, win, src_alpha_ctl, val);
909 } else {
910 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
913 VOP_WIN_SET(vop, win, enable, 1);
914 vop->win_enabled |= BIT(win_index);
915 spin_unlock(&vop->reg_lock);
918 static int vop_plane_atomic_async_check(struct drm_plane *plane,
919 struct drm_plane_state *state)
921 struct vop_win *vop_win = to_vop_win(plane);
922 const struct vop_win_data *win = vop_win->data;
923 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
924 DRM_PLANE_HELPER_NO_SCALING;
925 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
926 DRM_PLANE_HELPER_NO_SCALING;
927 struct drm_crtc_state *crtc_state;
929 if (plane != state->crtc->cursor)
930 return -EINVAL;
932 if (!plane->state)
933 return -EINVAL;
935 if (!plane->state->fb)
936 return -EINVAL;
938 if (state->state)
939 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
940 state->crtc);
941 else /* Special case for asynchronous cursor updates. */
942 crtc_state = plane->crtc->state;
944 return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
945 min_scale, max_scale,
946 true, true);
949 static void vop_plane_atomic_async_update(struct drm_plane *plane,
950 struct drm_plane_state *new_state)
952 struct vop *vop = to_vop(plane->state->crtc);
953 struct drm_framebuffer *old_fb = plane->state->fb;
955 plane->state->crtc_x = new_state->crtc_x;
956 plane->state->crtc_y = new_state->crtc_y;
957 plane->state->crtc_h = new_state->crtc_h;
958 plane->state->crtc_w = new_state->crtc_w;
959 plane->state->src_x = new_state->src_x;
960 plane->state->src_y = new_state->src_y;
961 plane->state->src_h = new_state->src_h;
962 plane->state->src_w = new_state->src_w;
963 swap(plane->state->fb, new_state->fb);
965 if (vop->is_enabled) {
966 vop_plane_atomic_update(plane, plane->state);
967 spin_lock(&vop->reg_lock);
968 vop_cfg_done(vop);
969 spin_unlock(&vop->reg_lock);
972 * A scanout can still be occurring, so we can't drop the
973 * reference to the old framebuffer. To solve this we get a
974 * reference to old_fb and set a worker to release it later.
975 * FIXME: if we perform 500 async_update calls before the
976 * vblank, then we can have 500 different framebuffers waiting
977 * to be released.
979 if (old_fb && plane->state->fb != old_fb) {
980 drm_framebuffer_get(old_fb);
981 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
982 drm_flip_work_queue(&vop->fb_unref_work, old_fb);
983 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
988 static const struct drm_plane_helper_funcs plane_helper_funcs = {
989 .atomic_check = vop_plane_atomic_check,
990 .atomic_update = vop_plane_atomic_update,
991 .atomic_disable = vop_plane_atomic_disable,
992 .atomic_async_check = vop_plane_atomic_async_check,
993 .atomic_async_update = vop_plane_atomic_async_update,
994 .prepare_fb = drm_gem_fb_prepare_fb,
997 static const struct drm_plane_funcs vop_plane_funcs = {
998 .update_plane = drm_atomic_helper_update_plane,
999 .disable_plane = drm_atomic_helper_disable_plane,
1000 .destroy = vop_plane_destroy,
1001 .reset = drm_atomic_helper_plane_reset,
1002 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1003 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1006 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1008 struct vop *vop = to_vop(crtc);
1009 unsigned long flags;
1011 if (WARN_ON(!vop->is_enabled))
1012 return -EPERM;
1014 spin_lock_irqsave(&vop->irq_lock, flags);
1016 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1017 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1019 spin_unlock_irqrestore(&vop->irq_lock, flags);
1021 return 0;
1024 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1026 struct vop *vop = to_vop(crtc);
1027 unsigned long flags;
1029 if (WARN_ON(!vop->is_enabled))
1030 return;
1032 spin_lock_irqsave(&vop->irq_lock, flags);
1034 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1036 spin_unlock_irqrestore(&vop->irq_lock, flags);
1039 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1040 const struct drm_display_mode *mode,
1041 struct drm_display_mode *adjusted_mode)
1043 struct vop *vop = to_vop(crtc);
1044 unsigned long rate;
1047 * Clock craziness.
1049 * Key points:
1051 * - DRM works in in kHz.
1052 * - Clock framework works in Hz.
1053 * - Rockchip's clock driver picks the clock rate that is the
1054 * same _OR LOWER_ than the one requested.
1056 * Action plan:
1058 * 1. When DRM gives us a mode, we should add 999 Hz to it. That way
1059 * if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
1060 * make 60000 kHz then the clock framework will actually give us
1061 * the right clock.
1063 * NOTE: if the PLL (maybe through a divider) could actually make
1064 * a clock rate 999 Hz higher instead of the one we want then this
1065 * could be a problem. Unfortunately there's not much we can do
1066 * since it's baked into DRM to use kHz. It shouldn't matter in
1067 * practice since Rockchip PLLs are controlled by tables and
1068 * even if there is a divider in the middle I wouldn't expect PLL
1069 * rates in the table that are just a few kHz different.
1071 * 2. Get the clock framework to round the rate for us to tell us
1072 * what it will actually make.
1074 * 3. Store the rounded up rate so that we don't need to worry about
1075 * this in the actual clk_set_rate().
1077 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
1078 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1080 return true;
1083 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1085 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1088 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1090 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1091 unsigned int i;
1093 for (i = 0; i < crtc->gamma_size; i++) {
1094 u32 word;
1096 word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1097 (drm_color_lut_extract(lut[i].green, 10) << 10) |
1098 drm_color_lut_extract(lut[i].blue, 10);
1099 writel(word, vop->lut_regs + i * 4);
1103 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1104 struct drm_crtc_state *old_state)
1106 struct drm_crtc_state *state = crtc->state;
1107 unsigned int idle;
1108 int ret;
1110 if (!vop->lut_regs)
1111 return;
1113 * To disable gamma (gamma_lut is null) or to write
1114 * an update to the LUT, clear dsp_lut_en.
1116 spin_lock(&vop->reg_lock);
1117 VOP_REG_SET(vop, common, dsp_lut_en, 0);
1118 vop_cfg_done(vop);
1119 spin_unlock(&vop->reg_lock);
1122 * In order to write the LUT to the internal memory,
1123 * we need to first make sure the dsp_lut_en bit is cleared.
1125 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1126 idle, !idle, 5, 30 * 1000);
1127 if (ret) {
1128 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1129 return;
1132 if (!state->gamma_lut)
1133 return;
1135 spin_lock(&vop->reg_lock);
1136 vop_crtc_write_gamma_lut(vop, crtc);
1137 VOP_REG_SET(vop, common, dsp_lut_en, 1);
1138 vop_cfg_done(vop);
1139 spin_unlock(&vop->reg_lock);
1142 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1143 struct drm_crtc_state *old_crtc_state)
1145 struct vop *vop = to_vop(crtc);
1148 * Only update GAMMA if the 'active' flag is not changed,
1149 * otherwise it's updated by .atomic_enable.
1151 if (crtc->state->color_mgmt_changed &&
1152 !crtc->state->active_changed)
1153 vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1156 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1157 struct drm_crtc_state *old_state)
1159 struct vop *vop = to_vop(crtc);
1160 const struct vop_data *vop_data = vop->data;
1161 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1162 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1163 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1164 u16 hdisplay = adjusted_mode->hdisplay;
1165 u16 htotal = adjusted_mode->htotal;
1166 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1167 u16 hact_end = hact_st + hdisplay;
1168 u16 vdisplay = adjusted_mode->vdisplay;
1169 u16 vtotal = adjusted_mode->vtotal;
1170 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1171 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1172 u16 vact_end = vact_st + vdisplay;
1173 uint32_t pin_pol, val;
1174 int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1175 int ret;
1177 if (old_state && old_state->self_refresh_active) {
1178 drm_crtc_vblank_on(crtc);
1179 rockchip_drm_set_win_enabled(crtc, true);
1180 return;
1184 * If we have a GAMMA LUT in the state, then let's make sure
1185 * it's updated. We might be coming out of suspend,
1186 * which means the LUT internal memory needs to be re-written.
1188 if (crtc->state->gamma_lut)
1189 vop_crtc_gamma_set(vop, crtc, old_state);
1191 mutex_lock(&vop->vop_lock);
1193 WARN_ON(vop->event);
1195 ret = vop_enable(crtc, old_state);
1196 if (ret) {
1197 mutex_unlock(&vop->vop_lock);
1198 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1199 return;
1201 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1202 BIT(HSYNC_POSITIVE) : 0;
1203 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1204 BIT(VSYNC_POSITIVE) : 0;
1205 VOP_REG_SET(vop, output, pin_pol, pin_pol);
1206 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1208 switch (s->output_type) {
1209 case DRM_MODE_CONNECTOR_LVDS:
1210 VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1211 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1212 VOP_REG_SET(vop, output, rgb_en, 1);
1213 break;
1214 case DRM_MODE_CONNECTOR_eDP:
1215 VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1216 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1217 VOP_REG_SET(vop, output, edp_en, 1);
1218 break;
1219 case DRM_MODE_CONNECTOR_HDMIA:
1220 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1221 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1222 VOP_REG_SET(vop, output, hdmi_en, 1);
1223 break;
1224 case DRM_MODE_CONNECTOR_DSI:
1225 VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1226 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1227 VOP_REG_SET(vop, output, mipi_en, 1);
1228 VOP_REG_SET(vop, output, mipi_dual_channel_en,
1229 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1230 break;
1231 case DRM_MODE_CONNECTOR_DisplayPort:
1232 VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1233 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1234 VOP_REG_SET(vop, output, dp_en, 1);
1235 break;
1236 default:
1237 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1238 s->output_type);
1242 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1244 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1245 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1246 s->output_mode = ROCKCHIP_OUT_MODE_P888;
1248 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1249 VOP_REG_SET(vop, common, pre_dither_down, 1);
1250 else
1251 VOP_REG_SET(vop, common, pre_dither_down, 0);
1253 if (dither_bpc == 6) {
1254 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1255 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1256 VOP_REG_SET(vop, common, dither_down_en, 1);
1257 } else {
1258 VOP_REG_SET(vop, common, dither_down_en, 0);
1261 VOP_REG_SET(vop, common, out_mode, s->output_mode);
1263 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1264 val = hact_st << 16;
1265 val |= hact_end;
1266 VOP_REG_SET(vop, modeset, hact_st_end, val);
1267 VOP_REG_SET(vop, modeset, hpost_st_end, val);
1269 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1270 val = vact_st << 16;
1271 val |= vact_end;
1272 VOP_REG_SET(vop, modeset, vact_st_end, val);
1273 VOP_REG_SET(vop, modeset, vpost_st_end, val);
1275 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1277 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1279 VOP_REG_SET(vop, common, standby, 0);
1280 mutex_unlock(&vop->vop_lock);
1283 static bool vop_fs_irq_is_pending(struct vop *vop)
1285 return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1288 static void vop_wait_for_irq_handler(struct vop *vop)
1290 bool pending;
1291 int ret;
1294 * Spin until frame start interrupt status bit goes low, which means
1295 * that interrupt handler was invoked and cleared it. The timeout of
1296 * 10 msecs is really too long, but it is just a safety measure if
1297 * something goes really wrong. The wait will only happen in the very
1298 * unlikely case of a vblank happening exactly at the same time and
1299 * shouldn't exceed microseconds range.
1301 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1302 !pending, 0, 10 * 1000);
1303 if (ret)
1304 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1306 synchronize_irq(vop->irq);
1309 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1310 struct drm_crtc_state *crtc_state)
1312 struct vop *vop = to_vop(crtc);
1314 if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1315 crtc_state->gamma_lut) {
1316 unsigned int len;
1318 len = drm_color_lut_size(crtc_state->gamma_lut);
1319 if (len != crtc->gamma_size) {
1320 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1321 len, crtc->gamma_size);
1322 return -EINVAL;
1326 return 0;
1329 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1330 struct drm_crtc_state *old_crtc_state)
1332 struct drm_atomic_state *old_state = old_crtc_state->state;
1333 struct drm_plane_state *old_plane_state, *new_plane_state;
1334 struct vop *vop = to_vop(crtc);
1335 struct drm_plane *plane;
1336 int i;
1338 if (WARN_ON(!vop->is_enabled))
1339 return;
1341 spin_lock(&vop->reg_lock);
1343 vop_cfg_done(vop);
1345 spin_unlock(&vop->reg_lock);
1348 * There is a (rather unlikely) possiblity that a vblank interrupt
1349 * fired before we set the cfg_done bit. To avoid spuriously
1350 * signalling flip completion we need to wait for it to finish.
1352 vop_wait_for_irq_handler(vop);
1354 spin_lock_irq(&crtc->dev->event_lock);
1355 if (crtc->state->event) {
1356 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1357 WARN_ON(vop->event);
1359 vop->event = crtc->state->event;
1360 crtc->state->event = NULL;
1362 spin_unlock_irq(&crtc->dev->event_lock);
1364 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1365 new_plane_state, i) {
1366 if (!old_plane_state->fb)
1367 continue;
1369 if (old_plane_state->fb == new_plane_state->fb)
1370 continue;
1372 drm_framebuffer_get(old_plane_state->fb);
1373 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1374 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1375 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1379 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1380 .mode_fixup = vop_crtc_mode_fixup,
1381 .atomic_check = vop_crtc_atomic_check,
1382 .atomic_begin = vop_crtc_atomic_begin,
1383 .atomic_flush = vop_crtc_atomic_flush,
1384 .atomic_enable = vop_crtc_atomic_enable,
1385 .atomic_disable = vop_crtc_atomic_disable,
1388 static void vop_crtc_destroy(struct drm_crtc *crtc)
1390 drm_crtc_cleanup(crtc);
1393 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1395 struct rockchip_crtc_state *rockchip_state;
1397 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1398 if (!rockchip_state)
1399 return NULL;
1401 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1402 return &rockchip_state->base;
1405 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1406 struct drm_crtc_state *state)
1408 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1410 __drm_atomic_helper_crtc_destroy_state(&s->base);
1411 kfree(s);
1414 static void vop_crtc_reset(struct drm_crtc *crtc)
1416 struct rockchip_crtc_state *crtc_state =
1417 kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1419 if (crtc->state)
1420 vop_crtc_destroy_state(crtc, crtc->state);
1422 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1425 #ifdef CONFIG_DRM_ANALOGIX_DP
1426 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1428 struct drm_connector *connector;
1429 struct drm_connector_list_iter conn_iter;
1431 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1432 drm_for_each_connector_iter(connector, &conn_iter) {
1433 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1434 drm_connector_list_iter_end(&conn_iter);
1435 return connector;
1438 drm_connector_list_iter_end(&conn_iter);
1440 return NULL;
1443 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1444 const char *source_name)
1446 struct vop *vop = to_vop(crtc);
1447 struct drm_connector *connector;
1448 int ret;
1450 connector = vop_get_edp_connector(vop);
1451 if (!connector)
1452 return -EINVAL;
1454 if (source_name && strcmp(source_name, "auto") == 0)
1455 ret = analogix_dp_start_crc(connector);
1456 else if (!source_name)
1457 ret = analogix_dp_stop_crc(connector);
1458 else
1459 ret = -EINVAL;
1461 return ret;
1464 static int
1465 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1466 size_t *values_cnt)
1468 if (source_name && strcmp(source_name, "auto") != 0)
1469 return -EINVAL;
1471 *values_cnt = 3;
1472 return 0;
1475 #else
1476 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1477 const char *source_name)
1479 return -ENODEV;
1482 static int
1483 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1484 size_t *values_cnt)
1486 return -ENODEV;
1488 #endif
1490 static const struct drm_crtc_funcs vop_crtc_funcs = {
1491 .set_config = drm_atomic_helper_set_config,
1492 .page_flip = drm_atomic_helper_page_flip,
1493 .destroy = vop_crtc_destroy,
1494 .reset = vop_crtc_reset,
1495 .atomic_duplicate_state = vop_crtc_duplicate_state,
1496 .atomic_destroy_state = vop_crtc_destroy_state,
1497 .enable_vblank = vop_crtc_enable_vblank,
1498 .disable_vblank = vop_crtc_disable_vblank,
1499 .set_crc_source = vop_crtc_set_crc_source,
1500 .verify_crc_source = vop_crtc_verify_crc_source,
1501 .gamma_set = drm_atomic_helper_legacy_gamma_set,
1504 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1506 struct vop *vop = container_of(work, struct vop, fb_unref_work);
1507 struct drm_framebuffer *fb = val;
1509 drm_crtc_vblank_put(&vop->crtc);
1510 drm_framebuffer_put(fb);
1513 static void vop_handle_vblank(struct vop *vop)
1515 struct drm_device *drm = vop->drm_dev;
1516 struct drm_crtc *crtc = &vop->crtc;
1518 spin_lock(&drm->event_lock);
1519 if (vop->event) {
1520 drm_crtc_send_vblank_event(crtc, vop->event);
1521 drm_crtc_vblank_put(crtc);
1522 vop->event = NULL;
1524 spin_unlock(&drm->event_lock);
1526 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1527 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1530 static irqreturn_t vop_isr(int irq, void *data)
1532 struct vop *vop = data;
1533 struct drm_crtc *crtc = &vop->crtc;
1534 uint32_t active_irqs;
1535 int ret = IRQ_NONE;
1538 * The irq is shared with the iommu. If the runtime-pm state of the
1539 * vop-device is disabled the irq has to be targeted at the iommu.
1541 if (!pm_runtime_get_if_in_use(vop->dev))
1542 return IRQ_NONE;
1544 if (vop_core_clks_enable(vop)) {
1545 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1546 goto out;
1550 * interrupt register has interrupt status, enable and clear bits, we
1551 * must hold irq_lock to avoid a race with enable/disable_vblank().
1553 spin_lock(&vop->irq_lock);
1555 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1556 /* Clear all active interrupt sources */
1557 if (active_irqs)
1558 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1560 spin_unlock(&vop->irq_lock);
1562 /* This is expected for vop iommu irqs, since the irq is shared */
1563 if (!active_irqs)
1564 goto out_disable;
1566 if (active_irqs & DSP_HOLD_VALID_INTR) {
1567 complete(&vop->dsp_hold_completion);
1568 active_irqs &= ~DSP_HOLD_VALID_INTR;
1569 ret = IRQ_HANDLED;
1572 if (active_irqs & LINE_FLAG_INTR) {
1573 complete(&vop->line_flag_completion);
1574 active_irqs &= ~LINE_FLAG_INTR;
1575 ret = IRQ_HANDLED;
1578 if (active_irqs & FS_INTR) {
1579 drm_crtc_handle_vblank(crtc);
1580 vop_handle_vblank(vop);
1581 active_irqs &= ~FS_INTR;
1582 ret = IRQ_HANDLED;
1585 /* Unhandled irqs are spurious. */
1586 if (active_irqs)
1587 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1588 active_irqs);
1590 out_disable:
1591 vop_core_clks_disable(vop);
1592 out:
1593 pm_runtime_put(vop->dev);
1594 return ret;
1597 static void vop_plane_add_properties(struct drm_plane *plane,
1598 const struct vop_win_data *win_data)
1600 unsigned int flags = 0;
1602 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1603 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1604 if (flags)
1605 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1606 DRM_MODE_ROTATE_0 | flags);
1609 static int vop_create_crtc(struct vop *vop)
1611 const struct vop_data *vop_data = vop->data;
1612 struct device *dev = vop->dev;
1613 struct drm_device *drm_dev = vop->drm_dev;
1614 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1615 struct drm_crtc *crtc = &vop->crtc;
1616 struct device_node *port;
1617 int ret;
1618 int i;
1621 * Create drm_plane for primary and cursor planes first, since we need
1622 * to pass them to drm_crtc_init_with_planes, which sets the
1623 * "possible_crtcs" to the newly initialized crtc.
1625 for (i = 0; i < vop_data->win_size; i++) {
1626 struct vop_win *vop_win = &vop->win[i];
1627 const struct vop_win_data *win_data = vop_win->data;
1629 if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1630 win_data->type != DRM_PLANE_TYPE_CURSOR)
1631 continue;
1633 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1634 0, &vop_plane_funcs,
1635 win_data->phy->data_formats,
1636 win_data->phy->nformats,
1637 NULL, win_data->type, NULL);
1638 if (ret) {
1639 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1640 ret);
1641 goto err_cleanup_planes;
1644 plane = &vop_win->base;
1645 drm_plane_helper_add(plane, &plane_helper_funcs);
1646 vop_plane_add_properties(plane, win_data);
1647 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1648 primary = plane;
1649 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1650 cursor = plane;
1653 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1654 &vop_crtc_funcs, NULL);
1655 if (ret)
1656 goto err_cleanup_planes;
1658 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1659 if (vop->lut_regs) {
1660 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1661 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1665 * Create drm_planes for overlay windows with possible_crtcs restricted
1666 * to the newly created crtc.
1668 for (i = 0; i < vop_data->win_size; i++) {
1669 struct vop_win *vop_win = &vop->win[i];
1670 const struct vop_win_data *win_data = vop_win->data;
1671 unsigned long possible_crtcs = drm_crtc_mask(crtc);
1673 if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1674 continue;
1676 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1677 possible_crtcs,
1678 &vop_plane_funcs,
1679 win_data->phy->data_formats,
1680 win_data->phy->nformats,
1681 NULL, win_data->type, NULL);
1682 if (ret) {
1683 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1684 ret);
1685 goto err_cleanup_crtc;
1687 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1688 vop_plane_add_properties(&vop_win->base, win_data);
1691 port = of_get_child_by_name(dev->of_node, "port");
1692 if (!port) {
1693 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1694 dev->of_node);
1695 ret = -ENOENT;
1696 goto err_cleanup_crtc;
1699 drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1700 vop_fb_unref_worker);
1702 init_completion(&vop->dsp_hold_completion);
1703 init_completion(&vop->line_flag_completion);
1704 crtc->port = port;
1706 ret = drm_self_refresh_helper_init(crtc);
1707 if (ret)
1708 DRM_DEV_DEBUG_KMS(vop->dev,
1709 "Failed to init %s with SR helpers %d, ignoring\n",
1710 crtc->name, ret);
1712 return 0;
1714 err_cleanup_crtc:
1715 drm_crtc_cleanup(crtc);
1716 err_cleanup_planes:
1717 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1718 head)
1719 drm_plane_cleanup(plane);
1720 return ret;
1723 static void vop_destroy_crtc(struct vop *vop)
1725 struct drm_crtc *crtc = &vop->crtc;
1726 struct drm_device *drm_dev = vop->drm_dev;
1727 struct drm_plane *plane, *tmp;
1729 drm_self_refresh_helper_cleanup(crtc);
1731 of_node_put(crtc->port);
1734 * We need to cleanup the planes now. Why?
1736 * The planes are "&vop->win[i].base". That means the memory is
1737 * all part of the big "struct vop" chunk of memory. That memory
1738 * was devm allocated and associated with this component. We need to
1739 * free it ourselves before vop_unbind() finishes.
1741 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1742 head)
1743 vop_plane_destroy(plane);
1746 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1747 * references the CRTC.
1749 drm_crtc_cleanup(crtc);
1750 drm_flip_work_cleanup(&vop->fb_unref_work);
1753 static int vop_initial(struct vop *vop)
1755 struct reset_control *ahb_rst;
1756 int i, ret;
1758 vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1759 if (IS_ERR(vop->hclk)) {
1760 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1761 return PTR_ERR(vop->hclk);
1763 vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1764 if (IS_ERR(vop->aclk)) {
1765 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1766 return PTR_ERR(vop->aclk);
1768 vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1769 if (IS_ERR(vop->dclk)) {
1770 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1771 return PTR_ERR(vop->dclk);
1774 ret = pm_runtime_get_sync(vop->dev);
1775 if (ret < 0) {
1776 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1777 return ret;
1780 ret = clk_prepare(vop->dclk);
1781 if (ret < 0) {
1782 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1783 goto err_put_pm_runtime;
1786 /* Enable both the hclk and aclk to setup the vop */
1787 ret = clk_prepare_enable(vop->hclk);
1788 if (ret < 0) {
1789 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1790 goto err_unprepare_dclk;
1793 ret = clk_prepare_enable(vop->aclk);
1794 if (ret < 0) {
1795 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1796 goto err_disable_hclk;
1800 * do hclk_reset, reset all vop registers.
1802 ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1803 if (IS_ERR(ahb_rst)) {
1804 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1805 ret = PTR_ERR(ahb_rst);
1806 goto err_disable_aclk;
1808 reset_control_assert(ahb_rst);
1809 usleep_range(10, 20);
1810 reset_control_deassert(ahb_rst);
1812 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1813 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1815 for (i = 0; i < vop->len; i += sizeof(u32))
1816 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1818 VOP_REG_SET(vop, misc, global_regdone_en, 1);
1819 VOP_REG_SET(vop, common, dsp_blank, 0);
1821 for (i = 0; i < vop->data->win_size; i++) {
1822 struct vop_win *vop_win = &vop->win[i];
1823 const struct vop_win_data *win = vop_win->data;
1824 int channel = i * 2 + 1;
1826 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1827 vop_win_disable(vop, vop_win);
1828 VOP_WIN_SET(vop, win, gate, 1);
1831 vop_cfg_done(vop);
1834 * do dclk_reset, let all config take affect.
1836 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1837 if (IS_ERR(vop->dclk_rst)) {
1838 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1839 ret = PTR_ERR(vop->dclk_rst);
1840 goto err_disable_aclk;
1842 reset_control_assert(vop->dclk_rst);
1843 usleep_range(10, 20);
1844 reset_control_deassert(vop->dclk_rst);
1846 clk_disable(vop->hclk);
1847 clk_disable(vop->aclk);
1849 vop->is_enabled = false;
1851 pm_runtime_put_sync(vop->dev);
1853 return 0;
1855 err_disable_aclk:
1856 clk_disable_unprepare(vop->aclk);
1857 err_disable_hclk:
1858 clk_disable_unprepare(vop->hclk);
1859 err_unprepare_dclk:
1860 clk_unprepare(vop->dclk);
1861 err_put_pm_runtime:
1862 pm_runtime_put_sync(vop->dev);
1863 return ret;
1867 * Initialize the vop->win array elements.
1869 static void vop_win_init(struct vop *vop)
1871 const struct vop_data *vop_data = vop->data;
1872 unsigned int i;
1874 for (i = 0; i < vop_data->win_size; i++) {
1875 struct vop_win *vop_win = &vop->win[i];
1876 const struct vop_win_data *win_data = &vop_data->win[i];
1878 vop_win->data = win_data;
1879 vop_win->vop = vop;
1881 if (vop_data->win_yuv2yuv)
1882 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
1887 * rockchip_drm_wait_vact_end
1888 * @crtc: CRTC to enable line flag
1889 * @mstimeout: millisecond for timeout
1891 * Wait for vact_end line flag irq or timeout.
1893 * Returns:
1894 * Zero on success, negative errno on failure.
1896 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
1898 struct vop *vop = to_vop(crtc);
1899 unsigned long jiffies_left;
1900 int ret = 0;
1902 if (!crtc || !vop->is_enabled)
1903 return -ENODEV;
1905 mutex_lock(&vop->vop_lock);
1906 if (mstimeout <= 0) {
1907 ret = -EINVAL;
1908 goto out;
1911 if (vop_line_flag_irq_is_enabled(vop)) {
1912 ret = -EBUSY;
1913 goto out;
1916 reinit_completion(&vop->line_flag_completion);
1917 vop_line_flag_irq_enable(vop);
1919 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
1920 msecs_to_jiffies(mstimeout));
1921 vop_line_flag_irq_disable(vop);
1923 if (jiffies_left == 0) {
1924 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
1925 ret = -ETIMEDOUT;
1926 goto out;
1929 out:
1930 mutex_unlock(&vop->vop_lock);
1931 return ret;
1933 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
1935 static int vop_bind(struct device *dev, struct device *master, void *data)
1937 struct platform_device *pdev = to_platform_device(dev);
1938 const struct vop_data *vop_data;
1939 struct drm_device *drm_dev = data;
1940 struct vop *vop;
1941 struct resource *res;
1942 int ret, irq;
1944 vop_data = of_device_get_match_data(dev);
1945 if (!vop_data)
1946 return -ENODEV;
1948 /* Allocate vop struct and its vop_win array */
1949 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
1950 GFP_KERNEL);
1951 if (!vop)
1952 return -ENOMEM;
1954 vop->dev = dev;
1955 vop->data = vop_data;
1956 vop->drm_dev = drm_dev;
1957 dev_set_drvdata(dev, vop);
1959 vop_win_init(vop);
1961 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1962 vop->len = resource_size(res);
1963 vop->regs = devm_ioremap_resource(dev, res);
1964 if (IS_ERR(vop->regs))
1965 return PTR_ERR(vop->regs);
1967 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1968 if (res) {
1969 if (!vop_data->lut_size) {
1970 DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
1971 return -EINVAL;
1973 vop->lut_regs = devm_ioremap_resource(dev, res);
1974 if (IS_ERR(vop->lut_regs))
1975 return PTR_ERR(vop->lut_regs);
1978 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1979 if (!vop->regsbak)
1980 return -ENOMEM;
1982 irq = platform_get_irq(pdev, 0);
1983 if (irq < 0) {
1984 DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
1985 return irq;
1987 vop->irq = (unsigned int)irq;
1989 spin_lock_init(&vop->reg_lock);
1990 spin_lock_init(&vop->irq_lock);
1991 mutex_init(&vop->vop_lock);
1993 ret = vop_create_crtc(vop);
1994 if (ret)
1995 return ret;
1997 pm_runtime_enable(&pdev->dev);
1999 ret = vop_initial(vop);
2000 if (ret < 0) {
2001 DRM_DEV_ERROR(&pdev->dev,
2002 "cannot initial vop dev - err %d\n", ret);
2003 goto err_disable_pm_runtime;
2006 ret = devm_request_irq(dev, vop->irq, vop_isr,
2007 IRQF_SHARED, dev_name(dev), vop);
2008 if (ret)
2009 goto err_disable_pm_runtime;
2011 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2012 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2013 if (IS_ERR(vop->rgb)) {
2014 ret = PTR_ERR(vop->rgb);
2015 goto err_disable_pm_runtime;
2019 return 0;
2021 err_disable_pm_runtime:
2022 pm_runtime_disable(&pdev->dev);
2023 vop_destroy_crtc(vop);
2024 return ret;
2027 static void vop_unbind(struct device *dev, struct device *master, void *data)
2029 struct vop *vop = dev_get_drvdata(dev);
2031 if (vop->rgb)
2032 rockchip_rgb_fini(vop->rgb);
2034 pm_runtime_disable(dev);
2035 vop_destroy_crtc(vop);
2037 clk_unprepare(vop->aclk);
2038 clk_unprepare(vop->hclk);
2039 clk_unprepare(vop->dclk);
2042 const struct component_ops vop_component_ops = {
2043 .bind = vop_bind,
2044 .unbind = vop_unbind,
2046 EXPORT_SYMBOL_GPL(vop_component_ops);