1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 Free Electrons
4 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 #include <linux/component.h>
9 #include <linux/module.h>
10 #include <linux/of_device.h>
11 #include <linux/platform_device.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/regmap.h>
14 #include <linux/reset.h>
16 #include <drm/drm_device.h>
17 #include <drm/drm_fb_cma_helper.h>
18 #include <drm/drm_fourcc.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_gem_cma_helper.h>
21 #include <drm/drm_plane.h>
23 #include "sun4i_drv.h"
24 #include "sun4i_frontend.h"
26 static const u32 sun4i_frontend_vert_coef
[32] = {
27 0x00004000, 0x000140ff, 0x00033ffe, 0x00043ffd,
28 0x00063efc, 0xff083dfc, 0x000a3bfb, 0xff0d39fb,
29 0xff0f37fb, 0xff1136fa, 0xfe1433fb, 0xfe1631fb,
30 0xfd192ffb, 0xfd1c2cfb, 0xfd1f29fb, 0xfc2127fc,
31 0xfc2424fc, 0xfc2721fc, 0xfb291ffd, 0xfb2c1cfd,
32 0xfb2f19fd, 0xfb3116fe, 0xfb3314fe, 0xfa3611ff,
33 0xfb370fff, 0xfb390dff, 0xfb3b0a00, 0xfc3d08ff,
34 0xfc3e0600, 0xfd3f0400, 0xfe3f0300, 0xff400100,
37 static const u32 sun4i_frontend_horz_coef
[64] = {
38 0x40000000, 0x00000000, 0x40fe0000, 0x0000ff03,
39 0x3ffd0000, 0x0000ff05, 0x3ffc0000, 0x0000ff06,
40 0x3efb0000, 0x0000ff08, 0x3dfb0000, 0x0000ff09,
41 0x3bfa0000, 0x0000fe0d, 0x39fa0000, 0x0000fe0f,
42 0x38fa0000, 0x0000fe10, 0x36fa0000, 0x0000fe12,
43 0x33fa0000, 0x0000fd16, 0x31fa0000, 0x0000fd18,
44 0x2ffa0000, 0x0000fd1a, 0x2cfa0000, 0x0000fc1e,
45 0x29fa0000, 0x0000fc21, 0x27fb0000, 0x0000fb23,
46 0x24fb0000, 0x0000fb26, 0x21fb0000, 0x0000fb29,
47 0x1ffc0000, 0x0000fa2b, 0x1cfc0000, 0x0000fa2e,
48 0x19fd0000, 0x0000fa30, 0x16fd0000, 0x0000fa33,
49 0x14fd0000, 0x0000fa35, 0x11fe0000, 0x0000fa37,
50 0x0ffe0000, 0x0000fa39, 0x0dfe0000, 0x0000fa3b,
51 0x0afe0000, 0x0000fa3e, 0x08ff0000, 0x0000fb3e,
52 0x06ff0000, 0x0000fb40, 0x05ff0000, 0x0000fc40,
53 0x03ff0000, 0x0000fd41, 0x01ff0000, 0x0000fe42,
57 * These coefficients are taken from the A33 BSP from Allwinner.
59 * The first three values of each row are coded as 13-bit signed fixed-point
60 * numbers, with 10 bits for the fractional part. The fourth value is a
61 * constant coded as a 14-bit signed fixed-point number with 4 bits for the
64 * The values in table order give the following colorspace translation:
65 * G = 1.164 * Y - 0.391 * U - 0.813 * V + 135
66 * R = 1.164 * Y + 1.596 * V - 222
67 * B = 1.164 * Y + 2.018 * U + 276
69 * This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255],
70 * following the BT601 spec.
72 const u32 sunxi_bt601_yuv2rgb_coef
[12] = {
73 0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877,
74 0x000004a7, 0x00000000, 0x00000662, 0x00003211,
75 0x000004a7, 0x00000812, 0x00000000, 0x00002eb1,
77 EXPORT_SYMBOL(sunxi_bt601_yuv2rgb_coef
);
79 static void sun4i_frontend_scaler_init(struct sun4i_frontend
*frontend
)
83 if (frontend
->data
->has_coef_access_ctrl
)
84 regmap_write_bits(frontend
->regs
, SUN4I_FRONTEND_FRM_CTRL_REG
,
85 SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL
,
86 SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL
);
88 for (i
= 0; i
< 32; i
++) {
89 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_HORZCOEF0_REG(i
),
90 sun4i_frontend_horz_coef
[2 * i
]);
91 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_HORZCOEF0_REG(i
),
92 sun4i_frontend_horz_coef
[2 * i
]);
93 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_HORZCOEF1_REG(i
),
94 sun4i_frontend_horz_coef
[2 * i
+ 1]);
95 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_HORZCOEF1_REG(i
),
96 sun4i_frontend_horz_coef
[2 * i
+ 1]);
97 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_VERTCOEF_REG(i
),
98 sun4i_frontend_vert_coef
[i
]);
99 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_VERTCOEF_REG(i
),
100 sun4i_frontend_vert_coef
[i
]);
103 if (frontend
->data
->has_coef_rdy
)
104 regmap_write_bits(frontend
->regs
,
105 SUN4I_FRONTEND_FRM_CTRL_REG
,
106 SUN4I_FRONTEND_FRM_CTRL_COEF_RDY
,
107 SUN4I_FRONTEND_FRM_CTRL_COEF_RDY
);
110 int sun4i_frontend_init(struct sun4i_frontend
*frontend
)
112 return pm_runtime_get_sync(frontend
->dev
);
114 EXPORT_SYMBOL(sun4i_frontend_init
);
116 void sun4i_frontend_exit(struct sun4i_frontend
*frontend
)
118 pm_runtime_put(frontend
->dev
);
120 EXPORT_SYMBOL(sun4i_frontend_exit
);
122 static bool sun4i_frontend_format_chroma_requires_swap(uint32_t fmt
)
125 case DRM_FORMAT_YVU411
:
126 case DRM_FORMAT_YVU420
:
127 case DRM_FORMAT_YVU422
:
128 case DRM_FORMAT_YVU444
:
136 static bool sun4i_frontend_format_supports_tiling(uint32_t fmt
)
139 case DRM_FORMAT_NV12
:
140 case DRM_FORMAT_NV16
:
141 case DRM_FORMAT_NV21
:
142 case DRM_FORMAT_NV61
:
143 case DRM_FORMAT_YUV411
:
144 case DRM_FORMAT_YUV420
:
145 case DRM_FORMAT_YUV422
:
146 case DRM_FORMAT_YVU420
:
147 case DRM_FORMAT_YVU422
:
148 case DRM_FORMAT_YVU411
:
156 void sun4i_frontend_update_buffer(struct sun4i_frontend
*frontend
,
157 struct drm_plane
*plane
)
159 struct drm_plane_state
*state
= plane
->state
;
160 struct drm_framebuffer
*fb
= state
->fb
;
161 unsigned int strides
[3] = {};
166 if (fb
->modifier
== DRM_FORMAT_MOD_ALLWINNER_TILED
) {
167 unsigned int width
= state
->src_w
>> 16;
170 strides
[0] = SUN4I_FRONTEND_LINESTRD_TILED(fb
->pitches
[0]);
173 * The X1 offset is the offset to the bottom-right point in the
174 * end tile, which is the final pixel (at offset width - 1)
175 * within the end tile (with a 32-byte mask).
177 offset
= (width
- 1) & (32 - 1);
179 regmap_write(frontend
->regs
, SUN4I_FRONTEND_TB_OFF0_REG
,
180 SUN4I_FRONTEND_TB_OFF_X1(offset
));
182 if (fb
->format
->num_planes
> 1) {
184 SUN4I_FRONTEND_LINESTRD_TILED(fb
->pitches
[1]);
186 regmap_write(frontend
->regs
, SUN4I_FRONTEND_TB_OFF1_REG
,
187 SUN4I_FRONTEND_TB_OFF_X1(offset
));
190 if (fb
->format
->num_planes
> 2) {
192 SUN4I_FRONTEND_LINESTRD_TILED(fb
->pitches
[2]);
194 regmap_write(frontend
->regs
, SUN4I_FRONTEND_TB_OFF2_REG
,
195 SUN4I_FRONTEND_TB_OFF_X1(offset
));
198 strides
[0] = fb
->pitches
[0];
200 if (fb
->format
->num_planes
> 1)
201 strides
[1] = fb
->pitches
[1];
203 if (fb
->format
->num_planes
> 2)
204 strides
[2] = fb
->pitches
[2];
207 /* Set the line width */
208 DRM_DEBUG_DRIVER("Frontend stride: %d bytes\n", fb
->pitches
[0]);
209 regmap_write(frontend
->regs
, SUN4I_FRONTEND_LINESTRD0_REG
,
212 if (fb
->format
->num_planes
> 1)
213 regmap_write(frontend
->regs
, SUN4I_FRONTEND_LINESTRD1_REG
,
216 if (fb
->format
->num_planes
> 2)
217 regmap_write(frontend
->regs
, SUN4I_FRONTEND_LINESTRD2_REG
,
220 /* Some planar formats require chroma channel swapping by hand. */
221 swap
= sun4i_frontend_format_chroma_requires_swap(fb
->format
->format
);
223 /* Set the physical address of the buffer in memory */
224 paddr
= drm_fb_cma_get_gem_addr(fb
, state
, 0);
225 paddr
-= PHYS_OFFSET
;
226 DRM_DEBUG_DRIVER("Setting buffer #0 address to %pad\n", &paddr
);
227 regmap_write(frontend
->regs
, SUN4I_FRONTEND_BUF_ADDR0_REG
, paddr
);
229 if (fb
->format
->num_planes
> 1) {
230 paddr
= drm_fb_cma_get_gem_addr(fb
, state
, swap
? 2 : 1);
231 paddr
-= PHYS_OFFSET
;
232 DRM_DEBUG_DRIVER("Setting buffer #1 address to %pad\n", &paddr
);
233 regmap_write(frontend
->regs
, SUN4I_FRONTEND_BUF_ADDR1_REG
,
237 if (fb
->format
->num_planes
> 2) {
238 paddr
= drm_fb_cma_get_gem_addr(fb
, state
, swap
? 1 : 2);
239 paddr
-= PHYS_OFFSET
;
240 DRM_DEBUG_DRIVER("Setting buffer #2 address to %pad\n", &paddr
);
241 regmap_write(frontend
->regs
, SUN4I_FRONTEND_BUF_ADDR2_REG
,
245 EXPORT_SYMBOL(sun4i_frontend_update_buffer
);
248 sun4i_frontend_drm_format_to_input_fmt(const struct drm_format_info
*format
,
252 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_RGB
;
253 else if (drm_format_info_is_yuv_sampling_411(format
))
254 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV411
;
255 else if (drm_format_info_is_yuv_sampling_420(format
))
256 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV420
;
257 else if (drm_format_info_is_yuv_sampling_422(format
))
258 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV422
;
259 else if (drm_format_info_is_yuv_sampling_444(format
))
260 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV444
;
268 sun4i_frontend_drm_format_to_input_mode(const struct drm_format_info
*format
,
269 uint64_t modifier
, u32
*val
)
271 bool tiled
= (modifier
== DRM_FORMAT_MOD_ALLWINNER_TILED
);
273 switch (format
->num_planes
) {
275 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PACKED
;
279 *val
= tiled
? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_SEMIPLANAR
280 : SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_SEMIPLANAR
;
284 *val
= tiled
? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_PLANAR
285 : SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PLANAR
;
294 sun4i_frontend_drm_format_to_input_sequence(const struct drm_format_info
*format
,
297 /* Planar formats have an explicit input sequence. */
298 if (drm_format_info_is_yuv_planar(format
)) {
303 switch (format
->format
) {
304 case DRM_FORMAT_BGRX8888
:
305 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_BGRX
;
308 case DRM_FORMAT_NV12
:
309 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV
;
312 case DRM_FORMAT_NV16
:
313 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV
;
316 case DRM_FORMAT_NV21
:
317 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU
;
320 case DRM_FORMAT_NV61
:
321 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU
;
324 case DRM_FORMAT_UYVY
:
325 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UYVY
;
328 case DRM_FORMAT_VYUY
:
329 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VYUY
;
332 case DRM_FORMAT_XRGB8888
:
333 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_XRGB
;
336 case DRM_FORMAT_YUYV
:
337 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YUYV
;
340 case DRM_FORMAT_YVYU
:
341 *val
= SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YVYU
;
349 static int sun4i_frontend_drm_format_to_output_fmt(uint32_t fmt
, u32
*val
)
352 case DRM_FORMAT_BGRX8888
:
353 *val
= SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_BGRX8888
;
356 case DRM_FORMAT_XRGB8888
:
357 *val
= SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_XRGB8888
;
365 static const uint32_t sun4i_frontend_formats
[] = {
386 bool sun4i_frontend_format_is_supported(uint32_t fmt
, uint64_t modifier
)
390 if (modifier
== DRM_FORMAT_MOD_ALLWINNER_TILED
)
391 return sun4i_frontend_format_supports_tiling(fmt
);
392 else if (modifier
!= DRM_FORMAT_MOD_LINEAR
)
395 for (i
= 0; i
< ARRAY_SIZE(sun4i_frontend_formats
); i
++)
396 if (sun4i_frontend_formats
[i
] == fmt
)
401 EXPORT_SYMBOL(sun4i_frontend_format_is_supported
);
403 int sun4i_frontend_update_formats(struct sun4i_frontend
*frontend
,
404 struct drm_plane
*plane
, uint32_t out_fmt
)
406 struct drm_plane_state
*state
= plane
->state
;
407 struct drm_framebuffer
*fb
= state
->fb
;
408 const struct drm_format_info
*format
= fb
->format
;
409 uint64_t modifier
= fb
->modifier
;
411 u32 in_fmt_val
, in_mod_val
, in_ps_val
;
416 ret
= sun4i_frontend_drm_format_to_input_fmt(format
, &in_fmt_val
);
418 DRM_DEBUG_DRIVER("Invalid input format\n");
422 ret
= sun4i_frontend_drm_format_to_input_mode(format
, modifier
,
425 DRM_DEBUG_DRIVER("Invalid input mode\n");
429 ret
= sun4i_frontend_drm_format_to_input_sequence(format
, &in_ps_val
);
431 DRM_DEBUG_DRIVER("Invalid pixel sequence\n");
435 ret
= sun4i_frontend_drm_format_to_output_fmt(out_fmt
, &out_fmt_val
);
437 DRM_DEBUG_DRIVER("Invalid output format\n");
442 * I have no idea what this does exactly, but it seems to be
443 * related to the scaler FIR filter phase parameters.
445 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_HORZPHASE_REG
,
446 frontend
->data
->ch_phase
[0].horzphase
);
447 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_HORZPHASE_REG
,
448 frontend
->data
->ch_phase
[1].horzphase
);
449 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_VERTPHASE0_REG
,
450 frontend
->data
->ch_phase
[0].vertphase
[0]);
451 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_VERTPHASE0_REG
,
452 frontend
->data
->ch_phase
[1].vertphase
[0]);
453 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_VERTPHASE1_REG
,
454 frontend
->data
->ch_phase
[0].vertphase
[1]);
455 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_VERTPHASE1_REG
,
456 frontend
->data
->ch_phase
[1].vertphase
[1]);
459 * Checking the input format is sufficient since we currently only
460 * support RGB output formats to the backend. If YUV output formats
461 * ever get supported, an YUV input and output would require bypassing
462 * the CSC engine too.
464 if (format
->is_yuv
) {
465 /* Setup the CSC engine for YUV to RGB conversion. */
468 for (i
= 0; i
< ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef
); i
++)
469 regmap_write(frontend
->regs
,
470 SUN4I_FRONTEND_CSC_COEF_REG(i
),
471 sunxi_bt601_yuv2rgb_coef
[i
]);
473 bypass
= SUN4I_FRONTEND_BYPASS_CSC_EN
;
476 regmap_update_bits(frontend
->regs
, SUN4I_FRONTEND_BYPASS_REG
,
477 SUN4I_FRONTEND_BYPASS_CSC_EN
, bypass
);
479 regmap_write(frontend
->regs
, SUN4I_FRONTEND_INPUT_FMT_REG
,
480 in_mod_val
| in_fmt_val
| in_ps_val
);
483 * TODO: It look like the A31 and A80 at least will need the
484 * bit 7 (ALPHA_EN) enabled when using a format with alpha (so
487 regmap_write(frontend
->regs
, SUN4I_FRONTEND_OUTPUT_FMT_REG
,
492 EXPORT_SYMBOL(sun4i_frontend_update_formats
);
494 void sun4i_frontend_update_coord(struct sun4i_frontend
*frontend
,
495 struct drm_plane
*plane
)
497 struct drm_plane_state
*state
= plane
->state
;
498 struct drm_framebuffer
*fb
= state
->fb
;
499 uint32_t luma_width
, luma_height
;
500 uint32_t chroma_width
, chroma_height
;
502 /* Set height and width */
503 DRM_DEBUG_DRIVER("Frontend size W: %u H: %u\n",
504 state
->crtc_w
, state
->crtc_h
);
506 luma_width
= state
->src_w
>> 16;
507 luma_height
= state
->src_h
>> 16;
509 chroma_width
= DIV_ROUND_UP(luma_width
, fb
->format
->hsub
);
510 chroma_height
= DIV_ROUND_UP(luma_height
, fb
->format
->vsub
);
512 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_INSIZE_REG
,
513 SUN4I_FRONTEND_INSIZE(luma_height
, luma_width
));
514 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_INSIZE_REG
,
515 SUN4I_FRONTEND_INSIZE(chroma_height
, chroma_width
));
517 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_OUTSIZE_REG
,
518 SUN4I_FRONTEND_OUTSIZE(state
->crtc_h
, state
->crtc_w
));
519 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_OUTSIZE_REG
,
520 SUN4I_FRONTEND_OUTSIZE(state
->crtc_h
, state
->crtc_w
));
522 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_HORZFACT_REG
,
523 (luma_width
<< 16) / state
->crtc_w
);
524 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_HORZFACT_REG
,
525 (chroma_width
<< 16) / state
->crtc_w
);
527 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH0_VERTFACT_REG
,
528 (luma_height
<< 16) / state
->crtc_h
);
529 regmap_write(frontend
->regs
, SUN4I_FRONTEND_CH1_VERTFACT_REG
,
530 (chroma_height
<< 16) / state
->crtc_h
);
532 regmap_write_bits(frontend
->regs
, SUN4I_FRONTEND_FRM_CTRL_REG
,
533 SUN4I_FRONTEND_FRM_CTRL_REG_RDY
,
534 SUN4I_FRONTEND_FRM_CTRL_REG_RDY
);
536 EXPORT_SYMBOL(sun4i_frontend_update_coord
);
538 int sun4i_frontend_enable(struct sun4i_frontend
*frontend
)
540 regmap_write_bits(frontend
->regs
, SUN4I_FRONTEND_FRM_CTRL_REG
,
541 SUN4I_FRONTEND_FRM_CTRL_FRM_START
,
542 SUN4I_FRONTEND_FRM_CTRL_FRM_START
);
546 EXPORT_SYMBOL(sun4i_frontend_enable
);
548 static struct regmap_config sun4i_frontend_regmap_config
= {
552 .max_register
= 0x0a14,
555 static int sun4i_frontend_bind(struct device
*dev
, struct device
*master
,
558 struct platform_device
*pdev
= to_platform_device(dev
);
559 struct sun4i_frontend
*frontend
;
560 struct drm_device
*drm
= data
;
561 struct sun4i_drv
*drv
= drm
->dev_private
;
562 struct resource
*res
;
565 frontend
= devm_kzalloc(dev
, sizeof(*frontend
), GFP_KERNEL
);
569 dev_set_drvdata(dev
, frontend
);
571 frontend
->node
= dev
->of_node
;
573 frontend
->data
= of_device_get_match_data(dev
);
577 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
578 regs
= devm_ioremap_resource(dev
, res
);
580 return PTR_ERR(regs
);
582 frontend
->regs
= devm_regmap_init_mmio(dev
, regs
,
583 &sun4i_frontend_regmap_config
);
584 if (IS_ERR(frontend
->regs
)) {
585 dev_err(dev
, "Couldn't create the frontend regmap\n");
586 return PTR_ERR(frontend
->regs
);
589 frontend
->reset
= devm_reset_control_get(dev
, NULL
);
590 if (IS_ERR(frontend
->reset
)) {
591 dev_err(dev
, "Couldn't get our reset line\n");
592 return PTR_ERR(frontend
->reset
);
595 frontend
->bus_clk
= devm_clk_get(dev
, "ahb");
596 if (IS_ERR(frontend
->bus_clk
)) {
597 dev_err(dev
, "Couldn't get our bus clock\n");
598 return PTR_ERR(frontend
->bus_clk
);
601 frontend
->mod_clk
= devm_clk_get(dev
, "mod");
602 if (IS_ERR(frontend
->mod_clk
)) {
603 dev_err(dev
, "Couldn't get our mod clock\n");
604 return PTR_ERR(frontend
->mod_clk
);
607 frontend
->ram_clk
= devm_clk_get(dev
, "ram");
608 if (IS_ERR(frontend
->ram_clk
)) {
609 dev_err(dev
, "Couldn't get our ram clock\n");
610 return PTR_ERR(frontend
->ram_clk
);
613 list_add_tail(&frontend
->list
, &drv
->frontend_list
);
614 pm_runtime_enable(dev
);
619 static void sun4i_frontend_unbind(struct device
*dev
, struct device
*master
,
622 struct sun4i_frontend
*frontend
= dev_get_drvdata(dev
);
624 list_del(&frontend
->list
);
625 pm_runtime_force_suspend(dev
);
628 static const struct component_ops sun4i_frontend_ops
= {
629 .bind
= sun4i_frontend_bind
,
630 .unbind
= sun4i_frontend_unbind
,
633 static int sun4i_frontend_probe(struct platform_device
*pdev
)
635 return component_add(&pdev
->dev
, &sun4i_frontend_ops
);
638 static int sun4i_frontend_remove(struct platform_device
*pdev
)
640 component_del(&pdev
->dev
, &sun4i_frontend_ops
);
645 static int sun4i_frontend_runtime_resume(struct device
*dev
)
647 struct sun4i_frontend
*frontend
= dev_get_drvdata(dev
);
650 clk_set_rate(frontend
->mod_clk
, 300000000);
652 clk_prepare_enable(frontend
->bus_clk
);
653 clk_prepare_enable(frontend
->mod_clk
);
654 clk_prepare_enable(frontend
->ram_clk
);
656 ret
= reset_control_reset(frontend
->reset
);
658 dev_err(dev
, "Couldn't reset our device\n");
662 regmap_update_bits(frontend
->regs
, SUN4I_FRONTEND_EN_REG
,
663 SUN4I_FRONTEND_EN_EN
,
664 SUN4I_FRONTEND_EN_EN
);
666 sun4i_frontend_scaler_init(frontend
);
671 static int sun4i_frontend_runtime_suspend(struct device
*dev
)
673 struct sun4i_frontend
*frontend
= dev_get_drvdata(dev
);
675 clk_disable_unprepare(frontend
->ram_clk
);
676 clk_disable_unprepare(frontend
->mod_clk
);
677 clk_disable_unprepare(frontend
->bus_clk
);
679 reset_control_assert(frontend
->reset
);
684 static const struct dev_pm_ops sun4i_frontend_pm_ops
= {
685 .runtime_resume
= sun4i_frontend_runtime_resume
,
686 .runtime_suspend
= sun4i_frontend_runtime_suspend
,
689 static const struct sun4i_frontend_data sun4i_a10_frontend
= {
693 .vertphase
= { 0, 0 },
696 .horzphase
= 0xfc000,
697 .vertphase
= { 0xfc000, 0xfc000 },
700 .has_coef_rdy
= true,
703 static const struct sun4i_frontend_data sun8i_a33_frontend
= {
707 .vertphase
= { 0x400, 0x400 },
711 .vertphase
= { 0x400, 0x400 },
714 .has_coef_access_ctrl
= true,
717 const struct of_device_id sun4i_frontend_of_table
[] = {
719 .compatible
= "allwinner,sun4i-a10-display-frontend",
720 .data
= &sun4i_a10_frontend
723 .compatible
= "allwinner,sun7i-a20-display-frontend",
724 .data
= &sun4i_a10_frontend
727 .compatible
= "allwinner,sun8i-a23-display-frontend",
728 .data
= &sun8i_a33_frontend
731 .compatible
= "allwinner,sun8i-a33-display-frontend",
732 .data
= &sun8i_a33_frontend
736 EXPORT_SYMBOL(sun4i_frontend_of_table
);
737 MODULE_DEVICE_TABLE(of
, sun4i_frontend_of_table
);
739 static struct platform_driver sun4i_frontend_driver
= {
740 .probe
= sun4i_frontend_probe
,
741 .remove
= sun4i_frontend_remove
,
743 .name
= "sun4i-frontend",
744 .of_match_table
= sun4i_frontend_of_table
,
745 .pm
= &sun4i_frontend_pm_ops
,
748 module_platform_driver(sun4i_frontend_driver
);
750 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
751 MODULE_DESCRIPTION("Allwinner A10 Display Engine Frontend Driver");
752 MODULE_LICENSE("GPL");