1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
16 #include <soc/tegra/pmc.h>
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc
*crtc
,
32 struct drm_crtc_state
*state
);
34 static void tegra_dc_stats_reset(struct tegra_dc_stats
*stats
)
42 /* Reads the active copy of a register. */
43 static u32
tegra_dc_readl_active(struct tegra_dc
*dc
, unsigned long offset
)
47 tegra_dc_writel(dc
, READ_MUX
, DC_CMD_STATE_ACCESS
);
48 value
= tegra_dc_readl(dc
, offset
);
49 tegra_dc_writel(dc
, 0, DC_CMD_STATE_ACCESS
);
54 static inline unsigned int tegra_plane_offset(struct tegra_plane
*plane
,
57 if (offset
>= 0x500 && offset
<= 0x638) {
58 offset
= 0x000 + (offset
- 0x500);
59 return plane
->offset
+ offset
;
62 if (offset
>= 0x700 && offset
<= 0x719) {
63 offset
= 0x180 + (offset
- 0x700);
64 return plane
->offset
+ offset
;
67 if (offset
>= 0x800 && offset
<= 0x839) {
68 offset
= 0x1c0 + (offset
- 0x800);
69 return plane
->offset
+ offset
;
72 dev_WARN(plane
->dc
->dev
, "invalid offset: %x\n", offset
);
74 return plane
->offset
+ offset
;
77 static inline u32
tegra_plane_readl(struct tegra_plane
*plane
,
80 return tegra_dc_readl(plane
->dc
, tegra_plane_offset(plane
, offset
));
83 static inline void tegra_plane_writel(struct tegra_plane
*plane
, u32 value
,
86 tegra_dc_writel(plane
->dc
, value
, tegra_plane_offset(plane
, offset
));
89 bool tegra_dc_has_output(struct tegra_dc
*dc
, struct device
*dev
)
91 struct device_node
*np
= dc
->dev
->of_node
;
92 struct of_phandle_iterator it
;
95 of_for_each_phandle(&it
, err
, np
, "nvidia,outputs", NULL
, 0)
96 if (it
.node
== dev
->of_node
)
103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105 * Latching happens mmediately if the display controller is in STOP mode or
106 * on the next frame boundary otherwise.
108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111 * into the ACTIVE copy, either immediately if the display controller is in
112 * STOP mode, or at the next frame boundary otherwise.
114 void tegra_dc_commit(struct tegra_dc
*dc
)
116 tegra_dc_writel(dc
, GENERAL_ACT_REQ
<< 8, DC_CMD_STATE_CONTROL
);
117 tegra_dc_writel(dc
, GENERAL_ACT_REQ
, DC_CMD_STATE_CONTROL
);
120 static inline u32
compute_dda_inc(unsigned int in
, unsigned int out
, bool v
,
123 fixed20_12 outf
= dfixed_init(out
);
124 fixed20_12 inf
= dfixed_init(in
);
145 outf
.full
= max_t(u32
, outf
.full
- dfixed_const(1), dfixed_const(1));
146 inf
.full
-= dfixed_const(1);
148 dda_inc
= dfixed_div(inf
, outf
);
149 dda_inc
= min_t(u32
, dda_inc
, dfixed_const(max
));
154 static inline u32
compute_initial_dda(unsigned int in
)
156 fixed20_12 inf
= dfixed_init(in
);
157 return dfixed_frac(inf
);
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane
*plane
)
162 u32 background
[3] = {
163 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE
,
164 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE
,
165 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE
,
167 u32 foreground
= BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 BLEND_COLOR_KEY_NONE
;
169 u32 blendnokey
= BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 struct tegra_plane_state
*state
;
174 /* disable blending for non-overlapping case */
175 tegra_plane_writel(plane
, blendnokey
, DC_WIN_BLEND_NOKEY
);
176 tegra_plane_writel(plane
, foreground
, DC_WIN_BLEND_1WIN
);
178 state
= to_tegra_plane_state(plane
->base
.state
);
182 * Since custom fix-weight blending isn't utilized and weight
183 * of top window is set to max, we can enforce dependent
184 * blending which in this case results in transparent bottom
185 * window if top window is opaque and if top window enables
186 * alpha blending, then bottom window is getting alpha value
187 * of 1 minus the sum of alpha components of the overlapping
190 background
[0] |= BLEND_CONTROL_DEPENDENT
;
191 background
[1] |= BLEND_CONTROL_DEPENDENT
;
194 * The region where three windows overlap is the intersection
195 * of the two regions where two windows overlap. It contributes
196 * to the area if all of the windows on top of it have an alpha
199 switch (state
->base
.normalized_zpos
) {
201 if (state
->blending
[0].alpha
&&
202 state
->blending
[1].alpha
)
203 background
[2] |= BLEND_CONTROL_DEPENDENT
;
207 background
[2] |= BLEND_CONTROL_DEPENDENT
;
212 * Enable alpha blending if pixel format has an alpha
215 foreground
|= BLEND_CONTROL_ALPHA
;
218 * If any of the windows on top of this window is opaque, it
219 * will completely conceal this window within that area. If
220 * top window has an alpha component, it is blended over the
223 for (i
= 0; i
< 2; i
++) {
224 if (state
->blending
[i
].alpha
&&
225 state
->blending
[i
].top
)
226 background
[i
] |= BLEND_CONTROL_DEPENDENT
;
229 switch (state
->base
.normalized_zpos
) {
231 if (state
->blending
[0].alpha
&&
232 state
->blending
[1].alpha
)
233 background
[2] |= BLEND_CONTROL_DEPENDENT
;
238 * When both middle and topmost windows have an alpha,
239 * these windows a mixed together and then the result
240 * is blended over the bottom window.
242 if (state
->blending
[0].alpha
&&
243 state
->blending
[0].top
)
244 background
[2] |= BLEND_CONTROL_ALPHA
;
246 if (state
->blending
[1].alpha
&&
247 state
->blending
[1].top
)
248 background
[2] |= BLEND_CONTROL_ALPHA
;
253 switch (state
->base
.normalized_zpos
) {
255 tegra_plane_writel(plane
, background
[0], DC_WIN_BLEND_2WIN_X
);
256 tegra_plane_writel(plane
, background
[1], DC_WIN_BLEND_2WIN_Y
);
257 tegra_plane_writel(plane
, background
[2], DC_WIN_BLEND_3WIN_XY
);
262 * If window B / C is topmost, then X / Y registers are
263 * matching the order of blending[...] state indices,
264 * otherwise a swap is required.
266 if (!state
->blending
[0].top
&& state
->blending
[1].top
) {
267 blending
[0] = foreground
;
268 blending
[1] = background
[1];
270 blending
[0] = background
[0];
271 blending
[1] = foreground
;
274 tegra_plane_writel(plane
, blending
[0], DC_WIN_BLEND_2WIN_X
);
275 tegra_plane_writel(plane
, blending
[1], DC_WIN_BLEND_2WIN_Y
);
276 tegra_plane_writel(plane
, background
[2], DC_WIN_BLEND_3WIN_XY
);
280 tegra_plane_writel(plane
, foreground
, DC_WIN_BLEND_2WIN_X
);
281 tegra_plane_writel(plane
, foreground
, DC_WIN_BLEND_2WIN_Y
);
282 tegra_plane_writel(plane
, foreground
, DC_WIN_BLEND_3WIN_XY
);
287 static void tegra_plane_setup_blending(struct tegra_plane
*plane
,
288 const struct tegra_dc_window
*window
)
292 value
= BLEND_FACTOR_DST_ALPHA_ZERO
| BLEND_FACTOR_SRC_ALPHA_K2
|
293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC
|
294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC
;
295 tegra_plane_writel(plane
, value
, DC_WIN_BLEND_MATCH_SELECT
);
297 value
= BLEND_FACTOR_DST_ALPHA_ZERO
| BLEND_FACTOR_SRC_ALPHA_K2
|
298 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC
|
299 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC
;
300 tegra_plane_writel(plane
, value
, DC_WIN_BLEND_NOMATCH_SELECT
);
302 value
= K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window
->zpos
);
303 tegra_plane_writel(plane
, value
, DC_WIN_BLEND_LAYER_CONTROL
);
307 tegra_plane_use_horizontal_filtering(struct tegra_plane
*plane
,
308 const struct tegra_dc_window
*window
)
310 struct tegra_dc
*dc
= plane
->dc
;
312 if (window
->src
.w
== window
->dst
.w
)
315 if (plane
->index
== 0 && dc
->soc
->has_win_a_without_filters
)
322 tegra_plane_use_vertical_filtering(struct tegra_plane
*plane
,
323 const struct tegra_dc_window
*window
)
325 struct tegra_dc
*dc
= plane
->dc
;
327 if (window
->src
.h
== window
->dst
.h
)
330 if (plane
->index
== 0 && dc
->soc
->has_win_a_without_filters
)
333 if (plane
->index
== 2 && dc
->soc
->has_win_c_without_vert_filter
)
339 static void tegra_dc_setup_window(struct tegra_plane
*plane
,
340 const struct tegra_dc_window
*window
)
342 unsigned h_offset
, v_offset
, h_size
, v_size
, h_dda
, v_dda
, bpp
;
343 struct tegra_dc
*dc
= plane
->dc
;
348 * For YUV planar modes, the number of bytes per pixel takes into
349 * account only the luma component and therefore is 1.
351 yuv
= tegra_plane_format_is_yuv(window
->format
, &planar
);
353 bpp
= window
->bits_per_pixel
/ 8;
355 bpp
= planar
? 1 : 2;
357 tegra_plane_writel(plane
, window
->format
, DC_WIN_COLOR_DEPTH
);
358 tegra_plane_writel(plane
, window
->swap
, DC_WIN_BYTE_SWAP
);
360 value
= V_POSITION(window
->dst
.y
) | H_POSITION(window
->dst
.x
);
361 tegra_plane_writel(plane
, value
, DC_WIN_POSITION
);
363 value
= V_SIZE(window
->dst
.h
) | H_SIZE(window
->dst
.w
);
364 tegra_plane_writel(plane
, value
, DC_WIN_SIZE
);
366 h_offset
= window
->src
.x
* bpp
;
367 v_offset
= window
->src
.y
;
368 h_size
= window
->src
.w
* bpp
;
369 v_size
= window
->src
.h
;
371 value
= V_PRESCALED_SIZE(v_size
) | H_PRESCALED_SIZE(h_size
);
372 tegra_plane_writel(plane
, value
, DC_WIN_PRESCALED_SIZE
);
375 * For DDA computations the number of bytes per pixel for YUV planar
376 * modes needs to take into account all Y, U and V components.
381 h_dda
= compute_dda_inc(window
->src
.w
, window
->dst
.w
, false, bpp
);
382 v_dda
= compute_dda_inc(window
->src
.h
, window
->dst
.h
, true, bpp
);
384 value
= V_DDA_INC(v_dda
) | H_DDA_INC(h_dda
);
385 tegra_plane_writel(plane
, value
, DC_WIN_DDA_INC
);
387 h_dda
= compute_initial_dda(window
->src
.x
);
388 v_dda
= compute_initial_dda(window
->src
.y
);
390 tegra_plane_writel(plane
, h_dda
, DC_WIN_H_INITIAL_DDA
);
391 tegra_plane_writel(plane
, v_dda
, DC_WIN_V_INITIAL_DDA
);
393 tegra_plane_writel(plane
, 0, DC_WIN_UV_BUF_STRIDE
);
394 tegra_plane_writel(plane
, 0, DC_WIN_BUF_STRIDE
);
396 tegra_plane_writel(plane
, window
->base
[0], DC_WINBUF_START_ADDR
);
399 tegra_plane_writel(plane
, window
->base
[1], DC_WINBUF_START_ADDR_U
);
400 tegra_plane_writel(plane
, window
->base
[2], DC_WINBUF_START_ADDR_V
);
401 value
= window
->stride
[1] << 16 | window
->stride
[0];
402 tegra_plane_writel(plane
, value
, DC_WIN_LINE_STRIDE
);
404 tegra_plane_writel(plane
, window
->stride
[0], DC_WIN_LINE_STRIDE
);
407 if (window
->bottom_up
)
408 v_offset
+= window
->src
.h
- 1;
410 tegra_plane_writel(plane
, h_offset
, DC_WINBUF_ADDR_H_OFFSET
);
411 tegra_plane_writel(plane
, v_offset
, DC_WINBUF_ADDR_V_OFFSET
);
413 if (dc
->soc
->supports_block_linear
) {
414 unsigned long height
= window
->tiling
.value
;
416 switch (window
->tiling
.mode
) {
417 case TEGRA_BO_TILING_MODE_PITCH
:
418 value
= DC_WINBUF_SURFACE_KIND_PITCH
;
421 case TEGRA_BO_TILING_MODE_TILED
:
422 value
= DC_WINBUF_SURFACE_KIND_TILED
;
425 case TEGRA_BO_TILING_MODE_BLOCK
:
426 value
= DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height
) |
427 DC_WINBUF_SURFACE_KIND_BLOCK
;
431 tegra_plane_writel(plane
, value
, DC_WINBUF_SURFACE_KIND
);
433 switch (window
->tiling
.mode
) {
434 case TEGRA_BO_TILING_MODE_PITCH
:
435 value
= DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV
|
436 DC_WIN_BUFFER_ADDR_MODE_LINEAR
;
439 case TEGRA_BO_TILING_MODE_TILED
:
440 value
= DC_WIN_BUFFER_ADDR_MODE_TILE_UV
|
441 DC_WIN_BUFFER_ADDR_MODE_TILE
;
444 case TEGRA_BO_TILING_MODE_BLOCK
:
446 * No need to handle this here because ->atomic_check
447 * will already have filtered it out.
452 tegra_plane_writel(plane
, value
, DC_WIN_BUFFER_ADDR_MODE
);
458 /* setup default colorspace conversion coefficients */
459 tegra_plane_writel(plane
, 0x00f0, DC_WIN_CSC_YOF
);
460 tegra_plane_writel(plane
, 0x012a, DC_WIN_CSC_KYRGB
);
461 tegra_plane_writel(plane
, 0x0000, DC_WIN_CSC_KUR
);
462 tegra_plane_writel(plane
, 0x0198, DC_WIN_CSC_KVR
);
463 tegra_plane_writel(plane
, 0x039b, DC_WIN_CSC_KUG
);
464 tegra_plane_writel(plane
, 0x032f, DC_WIN_CSC_KVG
);
465 tegra_plane_writel(plane
, 0x0204, DC_WIN_CSC_KUB
);
466 tegra_plane_writel(plane
, 0x0000, DC_WIN_CSC_KVB
);
469 } else if (window
->bits_per_pixel
< 24) {
470 value
|= COLOR_EXPAND
;
473 if (window
->bottom_up
)
474 value
|= V_DIRECTION
;
476 if (tegra_plane_use_horizontal_filtering(plane
, window
)) {
478 * Enable horizontal 6-tap filter and set filtering
479 * coefficients to the default values defined in TRM.
481 tegra_plane_writel(plane
, 0x00008000, DC_WIN_H_FILTER_P(0));
482 tegra_plane_writel(plane
, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
483 tegra_plane_writel(plane
, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
484 tegra_plane_writel(plane
, 0x591b73aa, DC_WIN_H_FILTER_P(3));
485 tegra_plane_writel(plane
, 0x57256d9a, DC_WIN_H_FILTER_P(4));
486 tegra_plane_writel(plane
, 0x552f668b, DC_WIN_H_FILTER_P(5));
487 tegra_plane_writel(plane
, 0x73385e8b, DC_WIN_H_FILTER_P(6));
488 tegra_plane_writel(plane
, 0x72435583, DC_WIN_H_FILTER_P(7));
489 tegra_plane_writel(plane
, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
490 tegra_plane_writel(plane
, 0x70554393, DC_WIN_H_FILTER_P(9));
491 tegra_plane_writel(plane
, 0x715e389b, DC_WIN_H_FILTER_P(10));
492 tegra_plane_writel(plane
, 0x71662faa, DC_WIN_H_FILTER_P(11));
493 tegra_plane_writel(plane
, 0x536d25ba, DC_WIN_H_FILTER_P(12));
494 tegra_plane_writel(plane
, 0x55731bca, DC_WIN_H_FILTER_P(13));
495 tegra_plane_writel(plane
, 0x387a11d9, DC_WIN_H_FILTER_P(14));
496 tegra_plane_writel(plane
, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
501 if (tegra_plane_use_vertical_filtering(plane
, window
)) {
505 * Enable vertical 2-tap filter and set filtering
506 * coefficients to the default values defined in TRM.
508 for (i
= 0, k
= 128; i
< 16; i
++, k
-= 8)
509 tegra_plane_writel(plane
, k
, DC_WIN_V_FILTER_P(i
));
514 tegra_plane_writel(plane
, value
, DC_WIN_WIN_OPTIONS
);
516 if (dc
->soc
->has_legacy_blending
)
517 tegra_plane_setup_blending_legacy(plane
);
519 tegra_plane_setup_blending(plane
, window
);
522 static const u32 tegra20_primary_formats
[] = {
529 /* non-native formats */
536 static const u64 tegra20_modifiers
[] = {
537 DRM_FORMAT_MOD_LINEAR
,
538 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED
,
539 DRM_FORMAT_MOD_INVALID
542 static const u32 tegra114_primary_formats
[] = {
549 /* new on Tegra114 */
564 static const u32 tegra124_primary_formats
[] = {
571 /* new on Tegra114 */
584 /* new on Tegra124 */
589 static const u64 tegra124_modifiers
[] = {
590 DRM_FORMAT_MOD_LINEAR
,
591 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
592 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
593 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
594 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
595 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
596 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
597 DRM_FORMAT_MOD_INVALID
600 static int tegra_plane_atomic_check(struct drm_plane
*plane
,
601 struct drm_plane_state
*state
)
603 struct tegra_plane_state
*plane_state
= to_tegra_plane_state(state
);
604 unsigned int rotation
= DRM_MODE_ROTATE_0
| DRM_MODE_REFLECT_Y
;
605 struct tegra_bo_tiling
*tiling
= &plane_state
->tiling
;
606 struct tegra_plane
*tegra
= to_tegra_plane(plane
);
607 struct tegra_dc
*dc
= to_tegra_dc(state
->crtc
);
610 /* no need for further checks if the plane is being disabled */
614 err
= tegra_plane_format(state
->fb
->format
->format
,
615 &plane_state
->format
,
621 * Tegra20 and Tegra30 are special cases here because they support
622 * only variants of specific formats with an alpha component, but not
623 * the corresponding opaque formats. However, the opaque formats can
624 * be emulated by disabling alpha blending for the plane.
626 if (dc
->soc
->has_legacy_blending
) {
627 err
= tegra_plane_setup_legacy_state(tegra
, plane_state
);
632 err
= tegra_fb_get_tiling(state
->fb
, tiling
);
636 if (tiling
->mode
== TEGRA_BO_TILING_MODE_BLOCK
&&
637 !dc
->soc
->supports_block_linear
) {
638 DRM_ERROR("hardware doesn't support block linear mode\n");
642 rotation
= drm_rotation_simplify(state
->rotation
, rotation
);
644 if (rotation
& DRM_MODE_REFLECT_Y
)
645 plane_state
->bottom_up
= true;
647 plane_state
->bottom_up
= false;
650 * Tegra doesn't support different strides for U and V planes so we
651 * error out if the user tries to display a framebuffer with such a
654 if (state
->fb
->format
->num_planes
> 2) {
655 if (state
->fb
->pitches
[2] != state
->fb
->pitches
[1]) {
656 DRM_ERROR("unsupported UV-plane configuration\n");
661 err
= tegra_plane_state_add(tegra
, state
);
668 static void tegra_plane_atomic_disable(struct drm_plane
*plane
,
669 struct drm_plane_state
*old_state
)
671 struct tegra_plane
*p
= to_tegra_plane(plane
);
674 /* rien ne va plus */
675 if (!old_state
|| !old_state
->crtc
)
678 value
= tegra_plane_readl(p
, DC_WIN_WIN_OPTIONS
);
679 value
&= ~WIN_ENABLE
;
680 tegra_plane_writel(p
, value
, DC_WIN_WIN_OPTIONS
);
683 static void tegra_plane_atomic_update(struct drm_plane
*plane
,
684 struct drm_plane_state
*old_state
)
686 struct tegra_plane_state
*state
= to_tegra_plane_state(plane
->state
);
687 struct drm_framebuffer
*fb
= plane
->state
->fb
;
688 struct tegra_plane
*p
= to_tegra_plane(plane
);
689 struct tegra_dc_window window
;
692 /* rien ne va plus */
693 if (!plane
->state
->crtc
|| !plane
->state
->fb
)
696 if (!plane
->state
->visible
)
697 return tegra_plane_atomic_disable(plane
, old_state
);
699 memset(&window
, 0, sizeof(window
));
700 window
.src
.x
= plane
->state
->src
.x1
>> 16;
701 window
.src
.y
= plane
->state
->src
.y1
>> 16;
702 window
.src
.w
= drm_rect_width(&plane
->state
->src
) >> 16;
703 window
.src
.h
= drm_rect_height(&plane
->state
->src
) >> 16;
704 window
.dst
.x
= plane
->state
->dst
.x1
;
705 window
.dst
.y
= plane
->state
->dst
.y1
;
706 window
.dst
.w
= drm_rect_width(&plane
->state
->dst
);
707 window
.dst
.h
= drm_rect_height(&plane
->state
->dst
);
708 window
.bits_per_pixel
= fb
->format
->cpp
[0] * 8;
709 window
.bottom_up
= tegra_fb_is_bottom_up(fb
) || state
->bottom_up
;
711 /* copy from state */
712 window
.zpos
= plane
->state
->normalized_zpos
;
713 window
.tiling
= state
->tiling
;
714 window
.format
= state
->format
;
715 window
.swap
= state
->swap
;
717 for (i
= 0; i
< fb
->format
->num_planes
; i
++) {
718 window
.base
[i
] = state
->iova
[i
] + fb
->offsets
[i
];
721 * Tegra uses a shared stride for UV planes. Framebuffers are
722 * already checked for this in the tegra_plane_atomic_check()
723 * function, so it's safe to ignore the V-plane pitch here.
726 window
.stride
[i
] = fb
->pitches
[i
];
729 tegra_dc_setup_window(p
, &window
);
732 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs
= {
733 .prepare_fb
= tegra_plane_prepare_fb
,
734 .cleanup_fb
= tegra_plane_cleanup_fb
,
735 .atomic_check
= tegra_plane_atomic_check
,
736 .atomic_disable
= tegra_plane_atomic_disable
,
737 .atomic_update
= tegra_plane_atomic_update
,
740 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device
*drm
)
743 * Ideally this would use drm_crtc_mask(), but that would require the
744 * CRTC to already be in the mode_config's list of CRTCs. However, it
745 * will only be added to that list in the drm_crtc_init_with_planes()
746 * (in tegra_dc_init()), which in turn requires registration of these
747 * planes. So we have ourselves a nice little chicken and egg problem
750 * We work around this by manually creating the mask from the number
751 * of CRTCs that have been registered, and should therefore always be
752 * the same as drm_crtc_index() after registration.
754 return 1 << drm
->mode_config
.num_crtc
;
757 static struct drm_plane
*tegra_primary_plane_create(struct drm_device
*drm
,
760 unsigned long possible_crtcs
= tegra_plane_get_possible_crtcs(drm
);
761 enum drm_plane_type type
= DRM_PLANE_TYPE_PRIMARY
;
762 struct tegra_plane
*plane
;
763 unsigned int num_formats
;
764 const u64
*modifiers
;
768 plane
= kzalloc(sizeof(*plane
), GFP_KERNEL
);
770 return ERR_PTR(-ENOMEM
);
772 /* Always use window A as primary window */
773 plane
->offset
= 0xa00;
777 num_formats
= dc
->soc
->num_primary_formats
;
778 formats
= dc
->soc
->primary_formats
;
779 modifiers
= dc
->soc
->modifiers
;
781 err
= drm_universal_plane_init(drm
, &plane
->base
, possible_crtcs
,
782 &tegra_plane_funcs
, formats
,
783 num_formats
, modifiers
, type
, NULL
);
789 drm_plane_helper_add(&plane
->base
, &tegra_plane_helper_funcs
);
790 drm_plane_create_zpos_property(&plane
->base
, plane
->index
, 0, 255);
792 err
= drm_plane_create_rotation_property(&plane
->base
,
797 dev_err(dc
->dev
, "failed to create rotation property: %d\n",
803 static const u32 tegra_cursor_plane_formats
[] = {
807 static int tegra_cursor_atomic_check(struct drm_plane
*plane
,
808 struct drm_plane_state
*state
)
810 struct tegra_plane
*tegra
= to_tegra_plane(plane
);
813 /* no need for further checks if the plane is being disabled */
817 /* scaling not supported for cursor */
818 if ((state
->src_w
>> 16 != state
->crtc_w
) ||
819 (state
->src_h
>> 16 != state
->crtc_h
))
822 /* only square cursors supported */
823 if (state
->src_w
!= state
->src_h
)
826 if (state
->crtc_w
!= 32 && state
->crtc_w
!= 64 &&
827 state
->crtc_w
!= 128 && state
->crtc_w
!= 256)
830 err
= tegra_plane_state_add(tegra
, state
);
837 static void tegra_cursor_atomic_update(struct drm_plane
*plane
,
838 struct drm_plane_state
*old_state
)
840 struct tegra_plane_state
*state
= to_tegra_plane_state(plane
->state
);
841 struct tegra_dc
*dc
= to_tegra_dc(plane
->state
->crtc
);
842 u32 value
= CURSOR_CLIP_DISPLAY
;
844 /* rien ne va plus */
845 if (!plane
->state
->crtc
|| !plane
->state
->fb
)
848 switch (plane
->state
->crtc_w
) {
850 value
|= CURSOR_SIZE_32x32
;
854 value
|= CURSOR_SIZE_64x64
;
858 value
|= CURSOR_SIZE_128x128
;
862 value
|= CURSOR_SIZE_256x256
;
866 WARN(1, "cursor size %ux%u not supported\n",
867 plane
->state
->crtc_w
, plane
->state
->crtc_h
);
871 value
|= (state
->iova
[0] >> 10) & 0x3fffff;
872 tegra_dc_writel(dc
, value
, DC_DISP_CURSOR_START_ADDR
);
874 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
875 value
= (state
->iova
[0] >> 32) & 0x3;
876 tegra_dc_writel(dc
, value
, DC_DISP_CURSOR_START_ADDR_HI
);
879 /* enable cursor and set blend mode */
880 value
= tegra_dc_readl(dc
, DC_DISP_DISP_WIN_OPTIONS
);
881 value
|= CURSOR_ENABLE
;
882 tegra_dc_writel(dc
, value
, DC_DISP_DISP_WIN_OPTIONS
);
884 value
= tegra_dc_readl(dc
, DC_DISP_BLEND_CURSOR_CONTROL
);
885 value
&= ~CURSOR_DST_BLEND_MASK
;
886 value
&= ~CURSOR_SRC_BLEND_MASK
;
887 value
|= CURSOR_MODE_NORMAL
;
888 value
|= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC
;
889 value
|= CURSOR_SRC_BLEND_K1_TIMES_SRC
;
890 value
|= CURSOR_ALPHA
;
891 tegra_dc_writel(dc
, value
, DC_DISP_BLEND_CURSOR_CONTROL
);
893 /* position the cursor */
894 value
= (plane
->state
->crtc_y
& 0x3fff) << 16 |
895 (plane
->state
->crtc_x
& 0x3fff);
896 tegra_dc_writel(dc
, value
, DC_DISP_CURSOR_POSITION
);
899 static void tegra_cursor_atomic_disable(struct drm_plane
*plane
,
900 struct drm_plane_state
*old_state
)
905 /* rien ne va plus */
906 if (!old_state
|| !old_state
->crtc
)
909 dc
= to_tegra_dc(old_state
->crtc
);
911 value
= tegra_dc_readl(dc
, DC_DISP_DISP_WIN_OPTIONS
);
912 value
&= ~CURSOR_ENABLE
;
913 tegra_dc_writel(dc
, value
, DC_DISP_DISP_WIN_OPTIONS
);
916 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs
= {
917 .prepare_fb
= tegra_plane_prepare_fb
,
918 .cleanup_fb
= tegra_plane_cleanup_fb
,
919 .atomic_check
= tegra_cursor_atomic_check
,
920 .atomic_update
= tegra_cursor_atomic_update
,
921 .atomic_disable
= tegra_cursor_atomic_disable
,
924 static struct drm_plane
*tegra_dc_cursor_plane_create(struct drm_device
*drm
,
927 unsigned long possible_crtcs
= tegra_plane_get_possible_crtcs(drm
);
928 struct tegra_plane
*plane
;
929 unsigned int num_formats
;
933 plane
= kzalloc(sizeof(*plane
), GFP_KERNEL
);
935 return ERR_PTR(-ENOMEM
);
938 * This index is kind of fake. The cursor isn't a regular plane, but
939 * its update and activation request bits in DC_CMD_STATE_CONTROL do
940 * use the same programming. Setting this fake index here allows the
941 * code in tegra_add_plane_state() to do the right thing without the
942 * need to special-casing the cursor plane.
947 num_formats
= ARRAY_SIZE(tegra_cursor_plane_formats
);
948 formats
= tegra_cursor_plane_formats
;
950 err
= drm_universal_plane_init(drm
, &plane
->base
, possible_crtcs
,
951 &tegra_plane_funcs
, formats
,
953 DRM_PLANE_TYPE_CURSOR
, NULL
);
959 drm_plane_helper_add(&plane
->base
, &tegra_cursor_plane_helper_funcs
);
964 static const u32 tegra20_overlay_formats
[] = {
971 /* non-native formats */
983 static const u32 tegra114_overlay_formats
[] = {
990 /* new on Tegra114 */
1000 DRM_FORMAT_RGBA8888
,
1001 DRM_FORMAT_XRGB8888
,
1002 DRM_FORMAT_XBGR8888
,
1003 /* planar formats */
1010 static const u32 tegra124_overlay_formats
[] = {
1011 DRM_FORMAT_ARGB4444
,
1012 DRM_FORMAT_ARGB1555
,
1014 DRM_FORMAT_RGBA5551
,
1015 DRM_FORMAT_ABGR8888
,
1016 DRM_FORMAT_ARGB8888
,
1017 /* new on Tegra114 */
1018 DRM_FORMAT_ABGR4444
,
1019 DRM_FORMAT_ABGR1555
,
1020 DRM_FORMAT_BGRA5551
,
1021 DRM_FORMAT_XRGB1555
,
1022 DRM_FORMAT_RGBX5551
,
1023 DRM_FORMAT_XBGR1555
,
1024 DRM_FORMAT_BGRX5551
,
1026 DRM_FORMAT_BGRA8888
,
1027 DRM_FORMAT_RGBA8888
,
1028 DRM_FORMAT_XRGB8888
,
1029 DRM_FORMAT_XBGR8888
,
1030 /* new on Tegra124 */
1031 DRM_FORMAT_RGBX8888
,
1032 DRM_FORMAT_BGRX8888
,
1033 /* planar formats */
1040 static struct drm_plane
*tegra_dc_overlay_plane_create(struct drm_device
*drm
,
1041 struct tegra_dc
*dc
,
1045 unsigned long possible_crtcs
= tegra_plane_get_possible_crtcs(drm
);
1046 struct tegra_plane
*plane
;
1047 unsigned int num_formats
;
1048 enum drm_plane_type type
;
1052 plane
= kzalloc(sizeof(*plane
), GFP_KERNEL
);
1054 return ERR_PTR(-ENOMEM
);
1056 plane
->offset
= 0xa00 + 0x200 * index
;
1057 plane
->index
= index
;
1060 num_formats
= dc
->soc
->num_overlay_formats
;
1061 formats
= dc
->soc
->overlay_formats
;
1064 type
= DRM_PLANE_TYPE_OVERLAY
;
1066 type
= DRM_PLANE_TYPE_CURSOR
;
1068 err
= drm_universal_plane_init(drm
, &plane
->base
, possible_crtcs
,
1069 &tegra_plane_funcs
, formats
,
1070 num_formats
, NULL
, type
, NULL
);
1073 return ERR_PTR(err
);
1076 drm_plane_helper_add(&plane
->base
, &tegra_plane_helper_funcs
);
1077 drm_plane_create_zpos_property(&plane
->base
, plane
->index
, 0, 255);
1079 err
= drm_plane_create_rotation_property(&plane
->base
,
1082 DRM_MODE_REFLECT_Y
);
1084 dev_err(dc
->dev
, "failed to create rotation property: %d\n",
1087 return &plane
->base
;
1090 static struct drm_plane
*tegra_dc_add_shared_planes(struct drm_device
*drm
,
1091 struct tegra_dc
*dc
)
1093 struct drm_plane
*plane
, *primary
= NULL
;
1096 for (i
= 0; i
< dc
->soc
->num_wgrps
; i
++) {
1097 const struct tegra_windowgroup_soc
*wgrp
= &dc
->soc
->wgrps
[i
];
1099 if (wgrp
->dc
== dc
->pipe
) {
1100 for (j
= 0; j
< wgrp
->num_windows
; j
++) {
1101 unsigned int index
= wgrp
->windows
[j
];
1103 plane
= tegra_shared_plane_create(drm
, dc
,
1110 * Choose the first shared plane owned by this
1111 * head as the primary plane.
1114 plane
->type
= DRM_PLANE_TYPE_PRIMARY
;
1124 static struct drm_plane
*tegra_dc_add_planes(struct drm_device
*drm
,
1125 struct tegra_dc
*dc
)
1127 struct drm_plane
*planes
[2], *primary
;
1128 unsigned int planes_num
;
1132 primary
= tegra_primary_plane_create(drm
, dc
);
1133 if (IS_ERR(primary
))
1136 if (dc
->soc
->supports_cursor
)
1141 for (i
= 0; i
< planes_num
; i
++) {
1142 planes
[i
] = tegra_dc_overlay_plane_create(drm
, dc
, 1 + i
,
1144 if (IS_ERR(planes
[i
])) {
1145 err
= PTR_ERR(planes
[i
]);
1148 tegra_plane_funcs
.destroy(planes
[i
]);
1150 tegra_plane_funcs
.destroy(primary
);
1151 return ERR_PTR(err
);
1158 static void tegra_dc_destroy(struct drm_crtc
*crtc
)
1160 drm_crtc_cleanup(crtc
);
1163 static void tegra_crtc_reset(struct drm_crtc
*crtc
)
1165 struct tegra_dc_state
*state
= kzalloc(sizeof(*state
), GFP_KERNEL
);
1168 tegra_crtc_atomic_destroy_state(crtc
, crtc
->state
);
1170 __drm_atomic_helper_crtc_reset(crtc
, &state
->base
);
1171 drm_crtc_vblank_reset(crtc
);
1174 static struct drm_crtc_state
*
1175 tegra_crtc_atomic_duplicate_state(struct drm_crtc
*crtc
)
1177 struct tegra_dc_state
*state
= to_dc_state(crtc
->state
);
1178 struct tegra_dc_state
*copy
;
1180 copy
= kmalloc(sizeof(*copy
), GFP_KERNEL
);
1184 __drm_atomic_helper_crtc_duplicate_state(crtc
, ©
->base
);
1185 copy
->clk
= state
->clk
;
1186 copy
->pclk
= state
->pclk
;
1187 copy
->div
= state
->div
;
1188 copy
->planes
= state
->planes
;
1193 static void tegra_crtc_atomic_destroy_state(struct drm_crtc
*crtc
,
1194 struct drm_crtc_state
*state
)
1196 __drm_atomic_helper_crtc_destroy_state(state
);
1200 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1202 static const struct debugfs_reg32 tegra_dc_regs
[] = {
1203 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT
),
1204 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL
),
1205 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR
),
1206 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT
),
1207 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL
),
1208 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR
),
1209 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT
),
1210 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL
),
1211 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR
),
1212 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT
),
1213 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL
),
1214 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR
),
1215 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC
),
1216 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0
),
1217 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND
),
1218 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE
),
1219 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL
),
1220 DEBUGFS_REG32(DC_CMD_INT_STATUS
),
1221 DEBUGFS_REG32(DC_CMD_INT_MASK
),
1222 DEBUGFS_REG32(DC_CMD_INT_ENABLE
),
1223 DEBUGFS_REG32(DC_CMD_INT_TYPE
),
1224 DEBUGFS_REG32(DC_CMD_INT_POLARITY
),
1225 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1
),
1226 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2
),
1227 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3
),
1228 DEBUGFS_REG32(DC_CMD_STATE_ACCESS
),
1229 DEBUGFS_REG32(DC_CMD_STATE_CONTROL
),
1230 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER
),
1231 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL
),
1232 DEBUGFS_REG32(DC_COM_CRC_CONTROL
),
1233 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM
),
1234 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1235 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1236 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1237 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1238 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1239 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1240 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1241 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1242 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1243 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1244 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1245 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1246 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1247 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1248 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1249 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1250 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1251 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1252 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1253 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1254 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1255 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1256 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1257 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1258 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1259 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL
),
1260 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL
),
1261 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE
),
1262 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL
),
1263 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE
),
1264 DEBUGFS_REG32(DC_COM_SPI_CONTROL
),
1265 DEBUGFS_REG32(DC_COM_SPI_START_BYTE
),
1266 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB
),
1267 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD
),
1268 DEBUGFS_REG32(DC_COM_HSPI_CS_DC
),
1269 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A
),
1270 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B
),
1271 DEBUGFS_REG32(DC_COM_GPIO_CTRL
),
1272 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER
),
1273 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED
),
1274 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0
),
1275 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1
),
1276 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS
),
1277 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY
),
1278 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER
),
1279 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS
),
1280 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC
),
1281 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH
),
1282 DEBUGFS_REG32(DC_DISP_BACK_PORCH
),
1283 DEBUGFS_REG32(DC_DISP_ACTIVE
),
1284 DEBUGFS_REG32(DC_DISP_FRONT_PORCH
),
1285 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL
),
1286 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A
),
1287 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B
),
1288 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C
),
1289 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D
),
1290 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL
),
1291 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A
),
1292 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B
),
1293 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C
),
1294 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D
),
1295 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL
),
1296 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A
),
1297 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B
),
1298 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C
),
1299 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D
),
1300 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL
),
1301 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A
),
1302 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B
),
1303 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C
),
1304 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL
),
1305 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A
),
1306 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B
),
1307 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C
),
1308 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL
),
1309 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A
),
1310 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL
),
1311 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A
),
1312 DEBUGFS_REG32(DC_DISP_M0_CONTROL
),
1313 DEBUGFS_REG32(DC_DISP_M1_CONTROL
),
1314 DEBUGFS_REG32(DC_DISP_DI_CONTROL
),
1315 DEBUGFS_REG32(DC_DISP_PP_CONTROL
),
1316 DEBUGFS_REG32(DC_DISP_PP_SELECT_A
),
1317 DEBUGFS_REG32(DC_DISP_PP_SELECT_B
),
1318 DEBUGFS_REG32(DC_DISP_PP_SELECT_C
),
1319 DEBUGFS_REG32(DC_DISP_PP_SELECT_D
),
1320 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL
),
1321 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL
),
1322 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL
),
1323 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS
),
1324 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS
),
1325 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS
),
1326 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS
),
1327 DEBUGFS_REG32(DC_DISP_BORDER_COLOR
),
1328 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER
),
1329 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER
),
1330 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER
),
1331 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER
),
1332 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND
),
1333 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND
),
1334 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR
),
1335 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS
),
1336 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION
),
1337 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS
),
1338 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL
),
1339 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A
),
1340 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B
),
1341 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C
),
1342 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D
),
1343 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL
),
1344 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST
),
1345 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST
),
1346 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST
),
1347 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST
),
1348 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL
),
1349 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL
),
1350 DEBUGFS_REG32(DC_DISP_SD_CONTROL
),
1351 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF
),
1352 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1353 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1354 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1355 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1356 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1357 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1358 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1359 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1360 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1361 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL
),
1362 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT
),
1363 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1364 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1365 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1366 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1367 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1368 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1369 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1370 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1371 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1372 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1373 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1374 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1375 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL
),
1376 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES
),
1377 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES
),
1378 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI
),
1379 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL
),
1380 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS
),
1381 DEBUGFS_REG32(DC_WIN_BYTE_SWAP
),
1382 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL
),
1383 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH
),
1384 DEBUGFS_REG32(DC_WIN_POSITION
),
1385 DEBUGFS_REG32(DC_WIN_SIZE
),
1386 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE
),
1387 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA
),
1388 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA
),
1389 DEBUGFS_REG32(DC_WIN_DDA_INC
),
1390 DEBUGFS_REG32(DC_WIN_LINE_STRIDE
),
1391 DEBUGFS_REG32(DC_WIN_BUF_STRIDE
),
1392 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE
),
1393 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE
),
1394 DEBUGFS_REG32(DC_WIN_DV_CONTROL
),
1395 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY
),
1396 DEBUGFS_REG32(DC_WIN_BLEND_1WIN
),
1397 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X
),
1398 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y
),
1399 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY
),
1400 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL
),
1401 DEBUGFS_REG32(DC_WINBUF_START_ADDR
),
1402 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS
),
1403 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U
),
1404 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS
),
1405 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V
),
1406 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS
),
1407 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET
),
1408 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS
),
1409 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET
),
1410 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS
),
1411 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS
),
1412 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS
),
1413 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS
),
1414 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS
),
1417 static int tegra_dc_show_regs(struct seq_file
*s
, void *data
)
1419 struct drm_info_node
*node
= s
->private;
1420 struct tegra_dc
*dc
= node
->info_ent
->data
;
1424 drm_modeset_lock(&dc
->base
.mutex
, NULL
);
1426 if (!dc
->base
.state
->active
) {
1431 for (i
= 0; i
< ARRAY_SIZE(tegra_dc_regs
); i
++) {
1432 unsigned int offset
= tegra_dc_regs
[i
].offset
;
1434 seq_printf(s
, "%-40s %#05x %08x\n", tegra_dc_regs
[i
].name
,
1435 offset
, tegra_dc_readl(dc
, offset
));
1439 drm_modeset_unlock(&dc
->base
.mutex
);
1443 static int tegra_dc_show_crc(struct seq_file
*s
, void *data
)
1445 struct drm_info_node
*node
= s
->private;
1446 struct tegra_dc
*dc
= node
->info_ent
->data
;
1450 drm_modeset_lock(&dc
->base
.mutex
, NULL
);
1452 if (!dc
->base
.state
->active
) {
1457 value
= DC_COM_CRC_CONTROL_ACTIVE_DATA
| DC_COM_CRC_CONTROL_ENABLE
;
1458 tegra_dc_writel(dc
, value
, DC_COM_CRC_CONTROL
);
1459 tegra_dc_commit(dc
);
1461 drm_crtc_wait_one_vblank(&dc
->base
);
1462 drm_crtc_wait_one_vblank(&dc
->base
);
1464 value
= tegra_dc_readl(dc
, DC_COM_CRC_CHECKSUM
);
1465 seq_printf(s
, "%08x\n", value
);
1467 tegra_dc_writel(dc
, 0, DC_COM_CRC_CONTROL
);
1470 drm_modeset_unlock(&dc
->base
.mutex
);
1474 static int tegra_dc_show_stats(struct seq_file
*s
, void *data
)
1476 struct drm_info_node
*node
= s
->private;
1477 struct tegra_dc
*dc
= node
->info_ent
->data
;
1479 seq_printf(s
, "frames: %lu\n", dc
->stats
.frames
);
1480 seq_printf(s
, "vblank: %lu\n", dc
->stats
.vblank
);
1481 seq_printf(s
, "underflow: %lu\n", dc
->stats
.underflow
);
1482 seq_printf(s
, "overflow: %lu\n", dc
->stats
.overflow
);
1487 static struct drm_info_list debugfs_files
[] = {
1488 { "regs", tegra_dc_show_regs
, 0, NULL
},
1489 { "crc", tegra_dc_show_crc
, 0, NULL
},
1490 { "stats", tegra_dc_show_stats
, 0, NULL
},
1493 static int tegra_dc_late_register(struct drm_crtc
*crtc
)
1495 unsigned int i
, count
= ARRAY_SIZE(debugfs_files
);
1496 struct drm_minor
*minor
= crtc
->dev
->primary
;
1497 struct dentry
*root
;
1498 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1501 #ifdef CONFIG_DEBUG_FS
1502 root
= crtc
->debugfs_entry
;
1507 dc
->debugfs_files
= kmemdup(debugfs_files
, sizeof(debugfs_files
),
1509 if (!dc
->debugfs_files
)
1512 for (i
= 0; i
< count
; i
++)
1513 dc
->debugfs_files
[i
].data
= dc
;
1515 err
= drm_debugfs_create_files(dc
->debugfs_files
, count
, root
, minor
);
1522 kfree(dc
->debugfs_files
);
1523 dc
->debugfs_files
= NULL
;
1528 static void tegra_dc_early_unregister(struct drm_crtc
*crtc
)
1530 unsigned int count
= ARRAY_SIZE(debugfs_files
);
1531 struct drm_minor
*minor
= crtc
->dev
->primary
;
1532 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1534 drm_debugfs_remove_files(dc
->debugfs_files
, count
, minor
);
1535 kfree(dc
->debugfs_files
);
1536 dc
->debugfs_files
= NULL
;
1539 static u32
tegra_dc_get_vblank_counter(struct drm_crtc
*crtc
)
1541 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1543 /* XXX vblank syncpoints don't work with nvdisplay yet */
1544 if (dc
->syncpt
&& !dc
->soc
->has_nvdisplay
)
1545 return host1x_syncpt_read(dc
->syncpt
);
1547 /* fallback to software emulated VBLANK counter */
1548 return (u32
)drm_crtc_vblank_count(&dc
->base
);
1551 static int tegra_dc_enable_vblank(struct drm_crtc
*crtc
)
1553 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1556 value
= tegra_dc_readl(dc
, DC_CMD_INT_MASK
);
1557 value
|= VBLANK_INT
;
1558 tegra_dc_writel(dc
, value
, DC_CMD_INT_MASK
);
1563 static void tegra_dc_disable_vblank(struct drm_crtc
*crtc
)
1565 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1568 value
= tegra_dc_readl(dc
, DC_CMD_INT_MASK
);
1569 value
&= ~VBLANK_INT
;
1570 tegra_dc_writel(dc
, value
, DC_CMD_INT_MASK
);
1573 static const struct drm_crtc_funcs tegra_crtc_funcs
= {
1574 .page_flip
= drm_atomic_helper_page_flip
,
1575 .set_config
= drm_atomic_helper_set_config
,
1576 .destroy
= tegra_dc_destroy
,
1577 .reset
= tegra_crtc_reset
,
1578 .atomic_duplicate_state
= tegra_crtc_atomic_duplicate_state
,
1579 .atomic_destroy_state
= tegra_crtc_atomic_destroy_state
,
1580 .late_register
= tegra_dc_late_register
,
1581 .early_unregister
= tegra_dc_early_unregister
,
1582 .get_vblank_counter
= tegra_dc_get_vblank_counter
,
1583 .enable_vblank
= tegra_dc_enable_vblank
,
1584 .disable_vblank
= tegra_dc_disable_vblank
,
1587 static int tegra_dc_set_timings(struct tegra_dc
*dc
,
1588 struct drm_display_mode
*mode
)
1590 unsigned int h_ref_to_sync
= 1;
1591 unsigned int v_ref_to_sync
= 1;
1592 unsigned long value
;
1594 if (!dc
->soc
->has_nvdisplay
) {
1595 tegra_dc_writel(dc
, 0x0, DC_DISP_DISP_TIMING_OPTIONS
);
1597 value
= (v_ref_to_sync
<< 16) | h_ref_to_sync
;
1598 tegra_dc_writel(dc
, value
, DC_DISP_REF_TO_SYNC
);
1601 value
= ((mode
->vsync_end
- mode
->vsync_start
) << 16) |
1602 ((mode
->hsync_end
- mode
->hsync_start
) << 0);
1603 tegra_dc_writel(dc
, value
, DC_DISP_SYNC_WIDTH
);
1605 value
= ((mode
->vtotal
- mode
->vsync_end
) << 16) |
1606 ((mode
->htotal
- mode
->hsync_end
) << 0);
1607 tegra_dc_writel(dc
, value
, DC_DISP_BACK_PORCH
);
1609 value
= ((mode
->vsync_start
- mode
->vdisplay
) << 16) |
1610 ((mode
->hsync_start
- mode
->hdisplay
) << 0);
1611 tegra_dc_writel(dc
, value
, DC_DISP_FRONT_PORCH
);
1613 value
= (mode
->vdisplay
<< 16) | mode
->hdisplay
;
1614 tegra_dc_writel(dc
, value
, DC_DISP_ACTIVE
);
1620 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1622 * @dc: display controller
1623 * @crtc_state: CRTC atomic state
1624 * @clk: parent clock for display controller
1625 * @pclk: pixel clock
1626 * @div: shift clock divider
1629 * 0 on success or a negative error-code on failure.
1631 int tegra_dc_state_setup_clock(struct tegra_dc
*dc
,
1632 struct drm_crtc_state
*crtc_state
,
1633 struct clk
*clk
, unsigned long pclk
,
1636 struct tegra_dc_state
*state
= to_dc_state(crtc_state
);
1638 if (!clk_has_parent(dc
->clk
, clk
))
1648 static void tegra_dc_commit_state(struct tegra_dc
*dc
,
1649 struct tegra_dc_state
*state
)
1654 err
= clk_set_parent(dc
->clk
, state
->clk
);
1656 dev_err(dc
->dev
, "failed to set parent clock: %d\n", err
);
1659 * Outputs may not want to change the parent clock rate. This is only
1660 * relevant to Tegra20 where only a single display PLL is available.
1661 * Since that PLL would typically be used for HDMI, an internal LVDS
1662 * panel would need to be driven by some other clock such as PLL_P
1663 * which is shared with other peripherals. Changing the clock rate
1664 * should therefore be avoided.
1666 if (state
->pclk
> 0) {
1667 err
= clk_set_rate(state
->clk
, state
->pclk
);
1670 "failed to set clock rate to %lu Hz\n",
1674 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc
->clk
),
1676 DRM_DEBUG_KMS("pclk: %lu\n", state
->pclk
);
1678 if (!dc
->soc
->has_nvdisplay
) {
1679 value
= SHIFT_CLK_DIVIDER(state
->div
) | PIXEL_CLK_DIVIDER_PCD1
;
1680 tegra_dc_writel(dc
, value
, DC_DISP_DISP_CLOCK_CONTROL
);
1683 err
= clk_set_rate(dc
->clk
, state
->pclk
);
1685 dev_err(dc
->dev
, "failed to set clock %pC to %lu Hz: %d\n",
1686 dc
->clk
, state
->pclk
, err
);
1689 static void tegra_dc_stop(struct tegra_dc
*dc
)
1693 /* stop the display controller */
1694 value
= tegra_dc_readl(dc
, DC_CMD_DISPLAY_COMMAND
);
1695 value
&= ~DISP_CTRL_MODE_MASK
;
1696 tegra_dc_writel(dc
, value
, DC_CMD_DISPLAY_COMMAND
);
1698 tegra_dc_commit(dc
);
1701 static bool tegra_dc_idle(struct tegra_dc
*dc
)
1705 value
= tegra_dc_readl_active(dc
, DC_CMD_DISPLAY_COMMAND
);
1707 return (value
& DISP_CTRL_MODE_MASK
) == 0;
1710 static int tegra_dc_wait_idle(struct tegra_dc
*dc
, unsigned long timeout
)
1712 timeout
= jiffies
+ msecs_to_jiffies(timeout
);
1714 while (time_before(jiffies
, timeout
)) {
1715 if (tegra_dc_idle(dc
))
1718 usleep_range(1000, 2000);
1721 dev_dbg(dc
->dev
, "timeout waiting for DC to become idle\n");
1725 static void tegra_crtc_atomic_disable(struct drm_crtc
*crtc
,
1726 struct drm_crtc_state
*old_state
)
1728 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1732 if (!tegra_dc_idle(dc
)) {
1736 * Ignore the return value, there isn't anything useful to do
1737 * in case this fails.
1739 tegra_dc_wait_idle(dc
, 100);
1743 * This should really be part of the RGB encoder driver, but clearing
1744 * these bits has the side-effect of stopping the display controller.
1745 * When that happens no VBLANK interrupts will be raised. At the same
1746 * time the encoder is disabled before the display controller, so the
1747 * above code is always going to timeout waiting for the controller
1750 * Given the close coupling between the RGB encoder and the display
1751 * controller doing it here is still kind of okay. None of the other
1752 * encoder drivers require these bits to be cleared.
1754 * XXX: Perhaps given that the display controller is switched off at
1755 * this point anyway maybe clearing these bits isn't even useful for
1759 value
= tegra_dc_readl(dc
, DC_CMD_DISPLAY_POWER_CONTROL
);
1760 value
&= ~(PW0_ENABLE
| PW1_ENABLE
| PW2_ENABLE
| PW3_ENABLE
|
1761 PW4_ENABLE
| PM0_ENABLE
| PM1_ENABLE
);
1762 tegra_dc_writel(dc
, value
, DC_CMD_DISPLAY_POWER_CONTROL
);
1765 tegra_dc_stats_reset(&dc
->stats
);
1766 drm_crtc_vblank_off(crtc
);
1768 spin_lock_irq(&crtc
->dev
->event_lock
);
1770 if (crtc
->state
->event
) {
1771 drm_crtc_send_vblank_event(crtc
, crtc
->state
->event
);
1772 crtc
->state
->event
= NULL
;
1775 spin_unlock_irq(&crtc
->dev
->event_lock
);
1777 err
= host1x_client_suspend(&dc
->client
);
1779 dev_err(dc
->dev
, "failed to suspend: %d\n", err
);
1782 static void tegra_crtc_atomic_enable(struct drm_crtc
*crtc
,
1783 struct drm_crtc_state
*old_state
)
1785 struct drm_display_mode
*mode
= &crtc
->state
->adjusted_mode
;
1786 struct tegra_dc_state
*state
= to_dc_state(crtc
->state
);
1787 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1791 err
= host1x_client_resume(&dc
->client
);
1793 dev_err(dc
->dev
, "failed to resume: %d\n", err
);
1797 /* initialize display controller */
1799 u32 syncpt
= host1x_syncpt_id(dc
->syncpt
), enable
;
1801 if (dc
->soc
->has_nvdisplay
)
1806 value
= SYNCPT_CNTRL_NO_STALL
;
1807 tegra_dc_writel(dc
, value
, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL
);
1809 value
= enable
| syncpt
;
1810 tegra_dc_writel(dc
, value
, DC_CMD_CONT_SYNCPT_VSYNC
);
1813 if (dc
->soc
->has_nvdisplay
) {
1814 value
= DSC_TO_UF_INT
| DSC_BBUF_UF_INT
| DSC_RBUF_UF_INT
|
1816 tegra_dc_writel(dc
, value
, DC_CMD_INT_TYPE
);
1818 value
= DSC_TO_UF_INT
| DSC_BBUF_UF_INT
| DSC_RBUF_UF_INT
|
1819 DSC_OBUF_UF_INT
| SD3_BUCKET_WALK_DONE_INT
|
1820 HEAD_UF_INT
| MSF_INT
| REG_TMOUT_INT
|
1821 REGION_CRC_INT
| V_PULSE2_INT
| V_PULSE3_INT
|
1822 VBLANK_INT
| FRAME_END_INT
;
1823 tegra_dc_writel(dc
, value
, DC_CMD_INT_POLARITY
);
1825 value
= SD3_BUCKET_WALK_DONE_INT
| HEAD_UF_INT
| VBLANK_INT
|
1827 tegra_dc_writel(dc
, value
, DC_CMD_INT_ENABLE
);
1829 value
= HEAD_UF_INT
| REG_TMOUT_INT
| FRAME_END_INT
;
1830 tegra_dc_writel(dc
, value
, DC_CMD_INT_MASK
);
1832 tegra_dc_writel(dc
, READ_MUX
, DC_CMD_STATE_ACCESS
);
1834 value
= WIN_A_UF_INT
| WIN_B_UF_INT
| WIN_C_UF_INT
|
1835 WIN_A_OF_INT
| WIN_B_OF_INT
| WIN_C_OF_INT
;
1836 tegra_dc_writel(dc
, value
, DC_CMD_INT_TYPE
);
1838 value
= WIN_A_UF_INT
| WIN_B_UF_INT
| WIN_C_UF_INT
|
1839 WIN_A_OF_INT
| WIN_B_OF_INT
| WIN_C_OF_INT
;
1840 tegra_dc_writel(dc
, value
, DC_CMD_INT_POLARITY
);
1842 /* initialize timer */
1843 value
= CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1844 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1845 tegra_dc_writel(dc
, value
, DC_DISP_DISP_MEM_HIGH_PRIORITY
);
1847 value
= CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1848 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1849 tegra_dc_writel(dc
, value
, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER
);
1851 value
= VBLANK_INT
| WIN_A_UF_INT
| WIN_B_UF_INT
| WIN_C_UF_INT
|
1852 WIN_A_OF_INT
| WIN_B_OF_INT
| WIN_C_OF_INT
;
1853 tegra_dc_writel(dc
, value
, DC_CMD_INT_ENABLE
);
1855 value
= WIN_A_UF_INT
| WIN_B_UF_INT
| WIN_C_UF_INT
|
1856 WIN_A_OF_INT
| WIN_B_OF_INT
| WIN_C_OF_INT
;
1857 tegra_dc_writel(dc
, value
, DC_CMD_INT_MASK
);
1860 if (dc
->soc
->supports_background_color
)
1861 tegra_dc_writel(dc
, 0, DC_DISP_BLEND_BACKGROUND_COLOR
);
1863 tegra_dc_writel(dc
, 0, DC_DISP_BORDER_COLOR
);
1865 /* apply PLL and pixel clock changes */
1866 tegra_dc_commit_state(dc
, state
);
1868 /* program display mode */
1869 tegra_dc_set_timings(dc
, mode
);
1871 /* interlacing isn't supported yet, so disable it */
1872 if (dc
->soc
->supports_interlacing
) {
1873 value
= tegra_dc_readl(dc
, DC_DISP_INTERLACE_CONTROL
);
1874 value
&= ~INTERLACE_ENABLE
;
1875 tegra_dc_writel(dc
, value
, DC_DISP_INTERLACE_CONTROL
);
1878 value
= tegra_dc_readl(dc
, DC_CMD_DISPLAY_COMMAND
);
1879 value
&= ~DISP_CTRL_MODE_MASK
;
1880 value
|= DISP_CTRL_MODE_C_DISPLAY
;
1881 tegra_dc_writel(dc
, value
, DC_CMD_DISPLAY_COMMAND
);
1883 if (!dc
->soc
->has_nvdisplay
) {
1884 value
= tegra_dc_readl(dc
, DC_CMD_DISPLAY_POWER_CONTROL
);
1885 value
|= PW0_ENABLE
| PW1_ENABLE
| PW2_ENABLE
| PW3_ENABLE
|
1886 PW4_ENABLE
| PM0_ENABLE
| PM1_ENABLE
;
1887 tegra_dc_writel(dc
, value
, DC_CMD_DISPLAY_POWER_CONTROL
);
1890 /* enable underflow reporting and display red for missing pixels */
1891 if (dc
->soc
->has_nvdisplay
) {
1892 value
= UNDERFLOW_MODE_RED
| UNDERFLOW_REPORT_ENABLE
;
1893 tegra_dc_writel(dc
, value
, DC_COM_RG_UNDERFLOW
);
1896 tegra_dc_commit(dc
);
1898 drm_crtc_vblank_on(crtc
);
1901 static void tegra_crtc_atomic_begin(struct drm_crtc
*crtc
,
1902 struct drm_crtc_state
*old_crtc_state
)
1904 unsigned long flags
;
1906 if (crtc
->state
->event
) {
1907 spin_lock_irqsave(&crtc
->dev
->event_lock
, flags
);
1909 if (drm_crtc_vblank_get(crtc
) != 0)
1910 drm_crtc_send_vblank_event(crtc
, crtc
->state
->event
);
1912 drm_crtc_arm_vblank_event(crtc
, crtc
->state
->event
);
1914 spin_unlock_irqrestore(&crtc
->dev
->event_lock
, flags
);
1916 crtc
->state
->event
= NULL
;
1920 static void tegra_crtc_atomic_flush(struct drm_crtc
*crtc
,
1921 struct drm_crtc_state
*old_crtc_state
)
1923 struct tegra_dc_state
*state
= to_dc_state(crtc
->state
);
1924 struct tegra_dc
*dc
= to_tegra_dc(crtc
);
1927 value
= state
->planes
<< 8 | GENERAL_UPDATE
;
1928 tegra_dc_writel(dc
, value
, DC_CMD_STATE_CONTROL
);
1929 value
= tegra_dc_readl(dc
, DC_CMD_STATE_CONTROL
);
1931 value
= state
->planes
| GENERAL_ACT_REQ
;
1932 tegra_dc_writel(dc
, value
, DC_CMD_STATE_CONTROL
);
1933 value
= tegra_dc_readl(dc
, DC_CMD_STATE_CONTROL
);
1936 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs
= {
1937 .atomic_begin
= tegra_crtc_atomic_begin
,
1938 .atomic_flush
= tegra_crtc_atomic_flush
,
1939 .atomic_enable
= tegra_crtc_atomic_enable
,
1940 .atomic_disable
= tegra_crtc_atomic_disable
,
1943 static irqreturn_t
tegra_dc_irq(int irq
, void *data
)
1945 struct tegra_dc
*dc
= data
;
1946 unsigned long status
;
1948 status
= tegra_dc_readl(dc
, DC_CMD_INT_STATUS
);
1949 tegra_dc_writel(dc
, status
, DC_CMD_INT_STATUS
);
1951 if (status
& FRAME_END_INT
) {
1953 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1958 if (status
& VBLANK_INT
) {
1960 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1962 drm_crtc_handle_vblank(&dc
->base
);
1966 if (status
& (WIN_A_UF_INT
| WIN_B_UF_INT
| WIN_C_UF_INT
)) {
1968 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1970 dc
->stats
.underflow
++;
1973 if (status
& (WIN_A_OF_INT
| WIN_B_OF_INT
| WIN_C_OF_INT
)) {
1975 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1977 dc
->stats
.overflow
++;
1980 if (status
& HEAD_UF_INT
) {
1981 dev_dbg_ratelimited(dc
->dev
, "%s(): head underflow\n", __func__
);
1982 dc
->stats
.underflow
++;
1988 static bool tegra_dc_has_window_groups(struct tegra_dc
*dc
)
1992 if (!dc
->soc
->wgrps
)
1995 for (i
= 0; i
< dc
->soc
->num_wgrps
; i
++) {
1996 const struct tegra_windowgroup_soc
*wgrp
= &dc
->soc
->wgrps
[i
];
1998 if (wgrp
->dc
== dc
->pipe
&& wgrp
->num_windows
> 0)
2005 static int tegra_dc_init(struct host1x_client
*client
)
2007 struct drm_device
*drm
= dev_get_drvdata(client
->host
);
2008 unsigned long flags
= HOST1X_SYNCPT_CLIENT_MANAGED
;
2009 struct tegra_dc
*dc
= host1x_client_to_dc(client
);
2010 struct tegra_drm
*tegra
= drm
->dev_private
;
2011 struct drm_plane
*primary
= NULL
;
2012 struct drm_plane
*cursor
= NULL
;
2016 * XXX do not register DCs with no window groups because we cannot
2017 * assign a primary plane to them, which in turn will cause KMS to
2020 if (!tegra_dc_has_window_groups(dc
))
2024 * Set the display hub as the host1x client parent for the display
2025 * controller. This is needed for the runtime reference counting that
2026 * ensures the display hub is always powered when any of the display
2029 if (dc
->soc
->has_nvdisplay
)
2030 client
->parent
= &tegra
->hub
->client
;
2032 dc
->syncpt
= host1x_syncpt_request(client
, flags
);
2034 dev_warn(dc
->dev
, "failed to allocate syncpoint\n");
2036 err
= host1x_client_iommu_attach(client
);
2037 if (err
< 0 && err
!= -ENODEV
) {
2038 dev_err(client
->dev
, "failed to attach to domain: %d\n", err
);
2043 primary
= tegra_dc_add_shared_planes(drm
, dc
);
2045 primary
= tegra_dc_add_planes(drm
, dc
);
2047 if (IS_ERR(primary
)) {
2048 err
= PTR_ERR(primary
);
2052 if (dc
->soc
->supports_cursor
) {
2053 cursor
= tegra_dc_cursor_plane_create(drm
, dc
);
2054 if (IS_ERR(cursor
)) {
2055 err
= PTR_ERR(cursor
);
2059 /* dedicate one overlay to mouse cursor */
2060 cursor
= tegra_dc_overlay_plane_create(drm
, dc
, 2, true);
2061 if (IS_ERR(cursor
)) {
2062 err
= PTR_ERR(cursor
);
2067 err
= drm_crtc_init_with_planes(drm
, &dc
->base
, primary
, cursor
,
2068 &tegra_crtc_funcs
, NULL
);
2072 drm_crtc_helper_add(&dc
->base
, &tegra_crtc_helper_funcs
);
2075 * Keep track of the minimum pitch alignment across all display
2078 if (dc
->soc
->pitch_align
> tegra
->pitch_align
)
2079 tegra
->pitch_align
= dc
->soc
->pitch_align
;
2081 err
= tegra_dc_rgb_init(drm
, dc
);
2082 if (err
< 0 && err
!= -ENODEV
) {
2083 dev_err(dc
->dev
, "failed to initialize RGB output: %d\n", err
);
2087 err
= devm_request_irq(dc
->dev
, dc
->irq
, tegra_dc_irq
, 0,
2088 dev_name(dc
->dev
), dc
);
2090 dev_err(dc
->dev
, "failed to request IRQ#%u: %d\n", dc
->irq
,
2096 * Inherit the DMA parameters (such as maximum segment size) from the
2097 * parent host1x device.
2099 client
->dev
->dma_parms
= client
->host
->dma_parms
;
2104 if (!IS_ERR_OR_NULL(cursor
))
2105 drm_plane_cleanup(cursor
);
2107 if (!IS_ERR(primary
))
2108 drm_plane_cleanup(primary
);
2110 host1x_client_iommu_detach(client
);
2111 host1x_syncpt_free(dc
->syncpt
);
2116 static int tegra_dc_exit(struct host1x_client
*client
)
2118 struct tegra_dc
*dc
= host1x_client_to_dc(client
);
2121 if (!tegra_dc_has_window_groups(dc
))
2124 /* avoid a dangling pointer just in case this disappears */
2125 client
->dev
->dma_parms
= NULL
;
2127 devm_free_irq(dc
->dev
, dc
->irq
, dc
);
2129 err
= tegra_dc_rgb_exit(dc
);
2131 dev_err(dc
->dev
, "failed to shutdown RGB output: %d\n", err
);
2135 host1x_client_iommu_detach(client
);
2136 host1x_syncpt_free(dc
->syncpt
);
2141 static int tegra_dc_runtime_suspend(struct host1x_client
*client
)
2143 struct tegra_dc
*dc
= host1x_client_to_dc(client
);
2144 struct device
*dev
= client
->dev
;
2147 err
= reset_control_assert(dc
->rst
);
2149 dev_err(dev
, "failed to assert reset: %d\n", err
);
2153 if (dc
->soc
->has_powergate
)
2154 tegra_powergate_power_off(dc
->powergate
);
2156 clk_disable_unprepare(dc
->clk
);
2157 pm_runtime_put_sync(dev
);
2162 static int tegra_dc_runtime_resume(struct host1x_client
*client
)
2164 struct tegra_dc
*dc
= host1x_client_to_dc(client
);
2165 struct device
*dev
= client
->dev
;
2168 err
= pm_runtime_get_sync(dev
);
2170 dev_err(dev
, "failed to get runtime PM: %d\n", err
);
2174 if (dc
->soc
->has_powergate
) {
2175 err
= tegra_powergate_sequence_power_up(dc
->powergate
, dc
->clk
,
2178 dev_err(dev
, "failed to power partition: %d\n", err
);
2182 err
= clk_prepare_enable(dc
->clk
);
2184 dev_err(dev
, "failed to enable clock: %d\n", err
);
2188 err
= reset_control_deassert(dc
->rst
);
2190 dev_err(dev
, "failed to deassert reset: %d\n", err
);
2198 clk_disable_unprepare(dc
->clk
);
2200 pm_runtime_put_sync(dev
);
2204 static const struct host1x_client_ops dc_client_ops
= {
2205 .init
= tegra_dc_init
,
2206 .exit
= tegra_dc_exit
,
2207 .suspend
= tegra_dc_runtime_suspend
,
2208 .resume
= tegra_dc_runtime_resume
,
2211 static const struct tegra_dc_soc_info tegra20_dc_soc_info
= {
2212 .supports_background_color
= false,
2213 .supports_interlacing
= false,
2214 .supports_cursor
= false,
2215 .supports_block_linear
= false,
2216 .has_legacy_blending
= true,
2218 .has_powergate
= false,
2220 .has_nvdisplay
= false,
2221 .num_primary_formats
= ARRAY_SIZE(tegra20_primary_formats
),
2222 .primary_formats
= tegra20_primary_formats
,
2223 .num_overlay_formats
= ARRAY_SIZE(tegra20_overlay_formats
),
2224 .overlay_formats
= tegra20_overlay_formats
,
2225 .modifiers
= tegra20_modifiers
,
2226 .has_win_a_without_filters
= true,
2227 .has_win_c_without_vert_filter
= true,
2230 static const struct tegra_dc_soc_info tegra30_dc_soc_info
= {
2231 .supports_background_color
= false,
2232 .supports_interlacing
= false,
2233 .supports_cursor
= false,
2234 .supports_block_linear
= false,
2235 .has_legacy_blending
= true,
2237 .has_powergate
= false,
2238 .coupled_pm
= false,
2239 .has_nvdisplay
= false,
2240 .num_primary_formats
= ARRAY_SIZE(tegra20_primary_formats
),
2241 .primary_formats
= tegra20_primary_formats
,
2242 .num_overlay_formats
= ARRAY_SIZE(tegra20_overlay_formats
),
2243 .overlay_formats
= tegra20_overlay_formats
,
2244 .modifiers
= tegra20_modifiers
,
2245 .has_win_a_without_filters
= false,
2246 .has_win_c_without_vert_filter
= false,
2249 static const struct tegra_dc_soc_info tegra114_dc_soc_info
= {
2250 .supports_background_color
= false,
2251 .supports_interlacing
= false,
2252 .supports_cursor
= false,
2253 .supports_block_linear
= false,
2254 .has_legacy_blending
= true,
2256 .has_powergate
= true,
2257 .coupled_pm
= false,
2258 .has_nvdisplay
= false,
2259 .num_primary_formats
= ARRAY_SIZE(tegra114_primary_formats
),
2260 .primary_formats
= tegra114_primary_formats
,
2261 .num_overlay_formats
= ARRAY_SIZE(tegra114_overlay_formats
),
2262 .overlay_formats
= tegra114_overlay_formats
,
2263 .modifiers
= tegra20_modifiers
,
2264 .has_win_a_without_filters
= false,
2265 .has_win_c_without_vert_filter
= false,
2268 static const struct tegra_dc_soc_info tegra124_dc_soc_info
= {
2269 .supports_background_color
= true,
2270 .supports_interlacing
= true,
2271 .supports_cursor
= true,
2272 .supports_block_linear
= true,
2273 .has_legacy_blending
= false,
2275 .has_powergate
= true,
2276 .coupled_pm
= false,
2277 .has_nvdisplay
= false,
2278 .num_primary_formats
= ARRAY_SIZE(tegra124_primary_formats
),
2279 .primary_formats
= tegra124_primary_formats
,
2280 .num_overlay_formats
= ARRAY_SIZE(tegra124_overlay_formats
),
2281 .overlay_formats
= tegra124_overlay_formats
,
2282 .modifiers
= tegra124_modifiers
,
2283 .has_win_a_without_filters
= false,
2284 .has_win_c_without_vert_filter
= false,
2287 static const struct tegra_dc_soc_info tegra210_dc_soc_info
= {
2288 .supports_background_color
= true,
2289 .supports_interlacing
= true,
2290 .supports_cursor
= true,
2291 .supports_block_linear
= true,
2292 .has_legacy_blending
= false,
2294 .has_powergate
= true,
2295 .coupled_pm
= false,
2296 .has_nvdisplay
= false,
2297 .num_primary_formats
= ARRAY_SIZE(tegra114_primary_formats
),
2298 .primary_formats
= tegra114_primary_formats
,
2299 .num_overlay_formats
= ARRAY_SIZE(tegra114_overlay_formats
),
2300 .overlay_formats
= tegra114_overlay_formats
,
2301 .modifiers
= tegra124_modifiers
,
2302 .has_win_a_without_filters
= false,
2303 .has_win_c_without_vert_filter
= false,
2306 static const struct tegra_windowgroup_soc tegra186_dc_wgrps
[] = {
2310 .windows
= (const unsigned int[]) { 0 },
2315 .windows
= (const unsigned int[]) { 1 },
2320 .windows
= (const unsigned int[]) { 2 },
2325 .windows
= (const unsigned int[]) { 3 },
2330 .windows
= (const unsigned int[]) { 4 },
2335 .windows
= (const unsigned int[]) { 5 },
2340 static const struct tegra_dc_soc_info tegra186_dc_soc_info
= {
2341 .supports_background_color
= true,
2342 .supports_interlacing
= true,
2343 .supports_cursor
= true,
2344 .supports_block_linear
= true,
2345 .has_legacy_blending
= false,
2347 .has_powergate
= false,
2348 .coupled_pm
= false,
2349 .has_nvdisplay
= true,
2350 .wgrps
= tegra186_dc_wgrps
,
2351 .num_wgrps
= ARRAY_SIZE(tegra186_dc_wgrps
),
2354 static const struct tegra_windowgroup_soc tegra194_dc_wgrps
[] = {
2358 .windows
= (const unsigned int[]) { 0 },
2363 .windows
= (const unsigned int[]) { 1 },
2368 .windows
= (const unsigned int[]) { 2 },
2373 .windows
= (const unsigned int[]) { 3 },
2378 .windows
= (const unsigned int[]) { 4 },
2383 .windows
= (const unsigned int[]) { 5 },
2388 static const struct tegra_dc_soc_info tegra194_dc_soc_info
= {
2389 .supports_background_color
= true,
2390 .supports_interlacing
= true,
2391 .supports_cursor
= true,
2392 .supports_block_linear
= true,
2393 .has_legacy_blending
= false,
2395 .has_powergate
= false,
2396 .coupled_pm
= false,
2397 .has_nvdisplay
= true,
2398 .wgrps
= tegra194_dc_wgrps
,
2399 .num_wgrps
= ARRAY_SIZE(tegra194_dc_wgrps
),
2402 static const struct of_device_id tegra_dc_of_match
[] = {
2404 .compatible
= "nvidia,tegra194-dc",
2405 .data
= &tegra194_dc_soc_info
,
2407 .compatible
= "nvidia,tegra186-dc",
2408 .data
= &tegra186_dc_soc_info
,
2410 .compatible
= "nvidia,tegra210-dc",
2411 .data
= &tegra210_dc_soc_info
,
2413 .compatible
= "nvidia,tegra124-dc",
2414 .data
= &tegra124_dc_soc_info
,
2416 .compatible
= "nvidia,tegra114-dc",
2417 .data
= &tegra114_dc_soc_info
,
2419 .compatible
= "nvidia,tegra30-dc",
2420 .data
= &tegra30_dc_soc_info
,
2422 .compatible
= "nvidia,tegra20-dc",
2423 .data
= &tegra20_dc_soc_info
,
2428 MODULE_DEVICE_TABLE(of
, tegra_dc_of_match
);
2430 static int tegra_dc_parse_dt(struct tegra_dc
*dc
)
2432 struct device_node
*np
;
2436 err
= of_property_read_u32(dc
->dev
->of_node
, "nvidia,head", &value
);
2438 dev_err(dc
->dev
, "missing \"nvidia,head\" property\n");
2441 * If the nvidia,head property isn't present, try to find the
2442 * correct head number by looking up the position of this
2443 * display controller's node within the device tree. Assuming
2444 * that the nodes are ordered properly in the DTS file and
2445 * that the translation into a flattened device tree blob
2446 * preserves that ordering this will actually yield the right
2449 * If those assumptions don't hold, this will still work for
2450 * cases where only a single display controller is used.
2452 for_each_matching_node(np
, tegra_dc_of_match
) {
2453 if (np
== dc
->dev
->of_node
) {
2467 static int tegra_dc_match_by_pipe(struct device
*dev
, const void *data
)
2469 struct tegra_dc
*dc
= dev_get_drvdata(dev
);
2470 unsigned int pipe
= (unsigned long)(void *)data
;
2472 return dc
->pipe
== pipe
;
2475 static int tegra_dc_couple(struct tegra_dc
*dc
)
2478 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2479 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2480 * POWER_CONTROL registers during CRTC enabling.
2482 if (dc
->soc
->coupled_pm
&& dc
->pipe
== 1) {
2483 u32 flags
= DL_FLAG_PM_RUNTIME
| DL_FLAG_AUTOREMOVE_CONSUMER
;
2484 struct device_link
*link
;
2485 struct device
*partner
;
2487 partner
= driver_find_device(dc
->dev
->driver
, NULL
, NULL
,
2488 tegra_dc_match_by_pipe
);
2490 return -EPROBE_DEFER
;
2492 link
= device_link_add(dc
->dev
, partner
, flags
);
2494 dev_err(dc
->dev
, "failed to link controllers\n");
2498 dev_dbg(dc
->dev
, "coupled to %s\n", dev_name(partner
));
2504 static int tegra_dc_probe(struct platform_device
*pdev
)
2506 struct resource
*regs
;
2507 struct tegra_dc
*dc
;
2510 dc
= devm_kzalloc(&pdev
->dev
, sizeof(*dc
), GFP_KERNEL
);
2514 dc
->soc
= of_device_get_match_data(&pdev
->dev
);
2516 INIT_LIST_HEAD(&dc
->list
);
2517 dc
->dev
= &pdev
->dev
;
2519 err
= tegra_dc_parse_dt(dc
);
2523 err
= tegra_dc_couple(dc
);
2527 dc
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
2528 if (IS_ERR(dc
->clk
)) {
2529 dev_err(&pdev
->dev
, "failed to get clock\n");
2530 return PTR_ERR(dc
->clk
);
2533 dc
->rst
= devm_reset_control_get(&pdev
->dev
, "dc");
2534 if (IS_ERR(dc
->rst
)) {
2535 dev_err(&pdev
->dev
, "failed to get reset\n");
2536 return PTR_ERR(dc
->rst
);
2539 /* assert reset and disable clock */
2540 err
= clk_prepare_enable(dc
->clk
);
2544 usleep_range(2000, 4000);
2546 err
= reset_control_assert(dc
->rst
);
2550 usleep_range(2000, 4000);
2552 clk_disable_unprepare(dc
->clk
);
2554 if (dc
->soc
->has_powergate
) {
2556 dc
->powergate
= TEGRA_POWERGATE_DIS
;
2558 dc
->powergate
= TEGRA_POWERGATE_DISB
;
2560 tegra_powergate_power_off(dc
->powergate
);
2563 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2564 dc
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
2565 if (IS_ERR(dc
->regs
))
2566 return PTR_ERR(dc
->regs
);
2568 dc
->irq
= platform_get_irq(pdev
, 0);
2570 dev_err(&pdev
->dev
, "failed to get IRQ\n");
2574 err
= tegra_dc_rgb_probe(dc
);
2575 if (err
< 0 && err
!= -ENODEV
) {
2576 dev_err(&pdev
->dev
, "failed to probe RGB output: %d\n", err
);
2580 platform_set_drvdata(pdev
, dc
);
2581 pm_runtime_enable(&pdev
->dev
);
2583 INIT_LIST_HEAD(&dc
->client
.list
);
2584 dc
->client
.ops
= &dc_client_ops
;
2585 dc
->client
.dev
= &pdev
->dev
;
2587 err
= host1x_client_register(&dc
->client
);
2589 dev_err(&pdev
->dev
, "failed to register host1x client: %d\n",
2597 static int tegra_dc_remove(struct platform_device
*pdev
)
2599 struct tegra_dc
*dc
= platform_get_drvdata(pdev
);
2602 err
= host1x_client_unregister(&dc
->client
);
2604 dev_err(&pdev
->dev
, "failed to unregister host1x client: %d\n",
2609 err
= tegra_dc_rgb_remove(dc
);
2611 dev_err(&pdev
->dev
, "failed to remove RGB output: %d\n", err
);
2615 pm_runtime_disable(&pdev
->dev
);
2620 struct platform_driver tegra_dc_driver
= {
2623 .of_match_table
= tegra_dc_of_match
,
2625 .probe
= tegra_dc_probe
,
2626 .remove
= tegra_dc_remove
,