1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
27 **************************************************************************/
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/dma-resv.h>
43 struct ttm_transfer_obj
{
44 struct ttm_buffer_object base
;
45 struct ttm_buffer_object
*bo
;
48 void ttm_bo_free_old_node(struct ttm_buffer_object
*bo
)
50 ttm_bo_mem_put(bo
, &bo
->mem
);
53 int ttm_bo_move_ttm(struct ttm_buffer_object
*bo
,
54 struct ttm_operation_ctx
*ctx
,
55 struct ttm_mem_reg
*new_mem
)
57 struct ttm_tt
*ttm
= bo
->ttm
;
58 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
61 if (old_mem
->mem_type
!= TTM_PL_SYSTEM
) {
62 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
64 if (unlikely(ret
!= 0)) {
65 if (ret
!= -ERESTARTSYS
)
66 pr_err("Failed to expire sync object before unbinding TTM\n");
71 ttm_bo_free_old_node(bo
);
72 ttm_flag_masked(&old_mem
->placement
, TTM_PL_FLAG_SYSTEM
,
74 old_mem
->mem_type
= TTM_PL_SYSTEM
;
77 ret
= ttm_tt_set_placement_caching(ttm
, new_mem
->placement
);
78 if (unlikely(ret
!= 0))
81 if (new_mem
->mem_type
!= TTM_PL_SYSTEM
) {
82 ret
= ttm_tt_bind(ttm
, new_mem
, ctx
);
83 if (unlikely(ret
!= 0))
88 new_mem
->mm_node
= NULL
;
92 EXPORT_SYMBOL(ttm_bo_move_ttm
);
94 int ttm_mem_io_lock(struct ttm_mem_type_manager
*man
, bool interruptible
)
96 if (likely(man
->io_reserve_fastpath
))
100 return mutex_lock_interruptible(&man
->io_reserve_mutex
);
102 mutex_lock(&man
->io_reserve_mutex
);
106 void ttm_mem_io_unlock(struct ttm_mem_type_manager
*man
)
108 if (likely(man
->io_reserve_fastpath
))
111 mutex_unlock(&man
->io_reserve_mutex
);
114 static int ttm_mem_io_evict(struct ttm_mem_type_manager
*man
)
116 struct ttm_buffer_object
*bo
;
118 if (!man
->use_io_reserve_lru
|| list_empty(&man
->io_reserve_lru
))
121 bo
= list_first_entry(&man
->io_reserve_lru
,
122 struct ttm_buffer_object
,
124 list_del_init(&bo
->io_reserve_lru
);
125 ttm_bo_unmap_virtual_locked(bo
);
131 int ttm_mem_io_reserve(struct ttm_bo_device
*bdev
,
132 struct ttm_mem_reg
*mem
)
134 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
137 if (!bdev
->driver
->io_mem_reserve
)
139 if (likely(man
->io_reserve_fastpath
))
140 return bdev
->driver
->io_mem_reserve(bdev
, mem
);
142 if (bdev
->driver
->io_mem_reserve
&&
143 mem
->bus
.io_reserved_count
++ == 0) {
145 ret
= bdev
->driver
->io_mem_reserve(bdev
, mem
);
146 if (ret
== -EAGAIN
) {
147 ret
= ttm_mem_io_evict(man
);
155 void ttm_mem_io_free(struct ttm_bo_device
*bdev
,
156 struct ttm_mem_reg
*mem
)
158 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
160 if (likely(man
->io_reserve_fastpath
))
163 if (bdev
->driver
->io_mem_reserve
&&
164 --mem
->bus
.io_reserved_count
== 0 &&
165 bdev
->driver
->io_mem_free
)
166 bdev
->driver
->io_mem_free(bdev
, mem
);
170 int ttm_mem_io_reserve_vm(struct ttm_buffer_object
*bo
)
172 struct ttm_mem_reg
*mem
= &bo
->mem
;
175 if (!mem
->bus
.io_reserved_vm
) {
176 struct ttm_mem_type_manager
*man
=
177 &bo
->bdev
->man
[mem
->mem_type
];
179 ret
= ttm_mem_io_reserve(bo
->bdev
, mem
);
180 if (unlikely(ret
!= 0))
182 mem
->bus
.io_reserved_vm
= true;
183 if (man
->use_io_reserve_lru
)
184 list_add_tail(&bo
->io_reserve_lru
,
185 &man
->io_reserve_lru
);
190 void ttm_mem_io_free_vm(struct ttm_buffer_object
*bo
)
192 struct ttm_mem_reg
*mem
= &bo
->mem
;
194 if (mem
->bus
.io_reserved_vm
) {
195 mem
->bus
.io_reserved_vm
= false;
196 list_del_init(&bo
->io_reserve_lru
);
197 ttm_mem_io_free(bo
->bdev
, mem
);
201 static int ttm_mem_reg_ioremap(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
,
204 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
209 (void) ttm_mem_io_lock(man
, false);
210 ret
= ttm_mem_io_reserve(bdev
, mem
);
211 ttm_mem_io_unlock(man
);
212 if (ret
|| !mem
->bus
.is_iomem
)
216 addr
= mem
->bus
.addr
;
218 if (mem
->placement
& TTM_PL_FLAG_WC
)
219 addr
= ioremap_wc(mem
->bus
.base
+ mem
->bus
.offset
, mem
->bus
.size
);
221 addr
= ioremap(mem
->bus
.base
+ mem
->bus
.offset
, mem
->bus
.size
);
223 (void) ttm_mem_io_lock(man
, false);
224 ttm_mem_io_free(bdev
, mem
);
225 ttm_mem_io_unlock(man
);
233 static void ttm_mem_reg_iounmap(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
,
236 struct ttm_mem_type_manager
*man
;
238 man
= &bdev
->man
[mem
->mem_type
];
240 if (virtual && mem
->bus
.addr
== NULL
)
242 (void) ttm_mem_io_lock(man
, false);
243 ttm_mem_io_free(bdev
, mem
);
244 ttm_mem_io_unlock(man
);
247 static int ttm_copy_io_page(void *dst
, void *src
, unsigned long page
)
250 (uint32_t *) ((unsigned long)dst
+ (page
<< PAGE_SHIFT
));
252 (uint32_t *) ((unsigned long)src
+ (page
<< PAGE_SHIFT
));
255 for (i
= 0; i
< PAGE_SIZE
/ sizeof(uint32_t); ++i
)
256 iowrite32(ioread32(srcP
++), dstP
++);
261 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
262 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
264 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot)
265 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
270 * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
271 * specified page protection.
273 * @page: The page to map.
274 * @prot: The page protection.
276 * This function maps a TTM page using the kmap_atomic api if available,
277 * otherwise falls back to vmap. The user must make sure that the
278 * specified page does not have an aliased mapping with a different caching
279 * policy unless the architecture explicitly allows it. Also mapping and
280 * unmapping using this api must be correctly nested. Unmapping should
281 * occur in the reverse order of mapping.
283 void *ttm_kmap_atomic_prot(struct page
*page
, pgprot_t prot
)
285 if (pgprot_val(prot
) == pgprot_val(PAGE_KERNEL
))
286 return kmap_atomic(page
);
288 return __ttm_kmap_atomic_prot(page
, prot
);
290 EXPORT_SYMBOL(ttm_kmap_atomic_prot
);
293 * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
294 * ttm_kmap_atomic_prot.
296 * @addr: The virtual address from the map.
297 * @prot: The page protection.
299 void ttm_kunmap_atomic_prot(void *addr
, pgprot_t prot
)
301 if (pgprot_val(prot
) == pgprot_val(PAGE_KERNEL
))
304 __ttm_kunmap_atomic(addr
);
306 EXPORT_SYMBOL(ttm_kunmap_atomic_prot
);
308 static int ttm_copy_io_ttm_page(struct ttm_tt
*ttm
, void *src
,
312 struct page
*d
= ttm
->pages
[page
];
318 src
= (void *)((unsigned long)src
+ (page
<< PAGE_SHIFT
));
319 dst
= ttm_kmap_atomic_prot(d
, prot
);
323 memcpy_fromio(dst
, src
, PAGE_SIZE
);
325 ttm_kunmap_atomic_prot(dst
, prot
);
330 static int ttm_copy_ttm_io_page(struct ttm_tt
*ttm
, void *dst
,
334 struct page
*s
= ttm
->pages
[page
];
340 dst
= (void *)((unsigned long)dst
+ (page
<< PAGE_SHIFT
));
341 src
= ttm_kmap_atomic_prot(s
, prot
);
345 memcpy_toio(dst
, src
, PAGE_SIZE
);
347 ttm_kunmap_atomic_prot(src
, prot
);
352 int ttm_bo_move_memcpy(struct ttm_buffer_object
*bo
,
353 struct ttm_operation_ctx
*ctx
,
354 struct ttm_mem_reg
*new_mem
)
356 struct ttm_bo_device
*bdev
= bo
->bdev
;
357 struct ttm_mem_type_manager
*man
= &bdev
->man
[new_mem
->mem_type
];
358 struct ttm_tt
*ttm
= bo
->ttm
;
359 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
360 struct ttm_mem_reg old_copy
= *old_mem
;
366 unsigned long add
= 0;
369 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
373 ret
= ttm_mem_reg_ioremap(bdev
, old_mem
, &old_iomap
);
376 ret
= ttm_mem_reg_ioremap(bdev
, new_mem
, &new_iomap
);
381 * Single TTM move. NOP.
383 if (old_iomap
== NULL
&& new_iomap
== NULL
)
387 * Don't move nonexistent data. Clear destination instead.
389 if (old_iomap
== NULL
&&
390 (ttm
== NULL
|| (ttm
->state
== tt_unpopulated
&&
391 !(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)))) {
392 memset_io(new_iomap
, 0, new_mem
->num_pages
*PAGE_SIZE
);
397 * TTM might be null for moves within the same region.
400 ret
= ttm_tt_populate(ttm
, ctx
);
408 if ((old_mem
->mem_type
== new_mem
->mem_type
) &&
409 (new_mem
->start
< old_mem
->start
+ old_mem
->size
)) {
411 add
= new_mem
->num_pages
- 1;
414 for (i
= 0; i
< new_mem
->num_pages
; ++i
) {
415 page
= i
* dir
+ add
;
416 if (old_iomap
== NULL
) {
417 pgprot_t prot
= ttm_io_prot(old_mem
->placement
,
419 ret
= ttm_copy_ttm_io_page(ttm
, new_iomap
, page
,
421 } else if (new_iomap
== NULL
) {
422 pgprot_t prot
= ttm_io_prot(new_mem
->placement
,
424 ret
= ttm_copy_io_ttm_page(ttm
, old_iomap
, page
,
427 ret
= ttm_copy_io_page(new_iomap
, old_iomap
, page
);
436 new_mem
->mm_node
= NULL
;
438 if (man
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
444 ttm_mem_reg_iounmap(bdev
, old_mem
, new_iomap
);
446 ttm_mem_reg_iounmap(bdev
, &old_copy
, old_iomap
);
449 * On error, keep the mm node!
452 ttm_bo_mem_put(bo
, &old_copy
);
455 EXPORT_SYMBOL(ttm_bo_move_memcpy
);
457 static void ttm_transfered_destroy(struct ttm_buffer_object
*bo
)
459 struct ttm_transfer_obj
*fbo
;
461 fbo
= container_of(bo
, struct ttm_transfer_obj
, base
);
467 * ttm_buffer_object_transfer
469 * @bo: A pointer to a struct ttm_buffer_object.
470 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
471 * holding the data of @bo with the old placement.
473 * This is a utility function that may be called after an accelerated move
474 * has been scheduled. A new buffer object is created as a placeholder for
475 * the old data while it's being copied. When that buffer object is idle,
476 * it can be destroyed, releasing the space of the old placement.
481 static int ttm_buffer_object_transfer(struct ttm_buffer_object
*bo
,
482 struct ttm_buffer_object
**new_obj
)
484 struct ttm_transfer_obj
*fbo
;
487 fbo
= kmalloc(sizeof(*fbo
), GFP_KERNEL
);
492 fbo
->base
.mem
.placement
|= TTM_PL_FLAG_NO_EVICT
;
498 * Fix up members that we shouldn't copy directly:
499 * TODO: Explicit member copy would probably be better here.
502 atomic_inc(&ttm_bo_glob
.bo_count
);
503 INIT_LIST_HEAD(&fbo
->base
.ddestroy
);
504 INIT_LIST_HEAD(&fbo
->base
.lru
);
505 INIT_LIST_HEAD(&fbo
->base
.swap
);
506 INIT_LIST_HEAD(&fbo
->base
.io_reserve_lru
);
507 fbo
->base
.moving
= NULL
;
508 drm_vma_node_reset(&fbo
->base
.base
.vma_node
);
510 kref_init(&fbo
->base
.list_kref
);
511 kref_init(&fbo
->base
.kref
);
512 fbo
->base
.destroy
= &ttm_transfered_destroy
;
513 fbo
->base
.acc_size
= 0;
514 if (bo
->base
.resv
== &bo
->base
._resv
)
515 fbo
->base
.base
.resv
= &fbo
->base
.base
._resv
;
517 dma_resv_init(&fbo
->base
.base
._resv
);
518 ret
= dma_resv_trylock(&fbo
->base
.base
._resv
);
521 *new_obj
= &fbo
->base
;
525 pgprot_t
ttm_io_prot(uint32_t caching_flags
, pgprot_t tmp
)
527 /* Cached mappings need no adjustment */
528 if (caching_flags
& TTM_PL_FLAG_CACHED
)
531 #if defined(__i386__) || defined(__x86_64__)
532 if (caching_flags
& TTM_PL_FLAG_WC
)
533 tmp
= pgprot_writecombine(tmp
);
534 else if (boot_cpu_data
.x86
> 3)
535 tmp
= pgprot_noncached(tmp
);
537 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
538 defined(__powerpc__) || defined(__mips__)
539 if (caching_flags
& TTM_PL_FLAG_WC
)
540 tmp
= pgprot_writecombine(tmp
);
542 tmp
= pgprot_noncached(tmp
);
544 #if defined(__sparc__)
545 tmp
= pgprot_noncached(tmp
);
549 EXPORT_SYMBOL(ttm_io_prot
);
551 static int ttm_bo_ioremap(struct ttm_buffer_object
*bo
,
552 unsigned long offset
,
554 struct ttm_bo_kmap_obj
*map
)
556 struct ttm_mem_reg
*mem
= &bo
->mem
;
558 if (bo
->mem
.bus
.addr
) {
559 map
->bo_kmap_type
= ttm_bo_map_premapped
;
560 map
->virtual = (void *)(((u8
*)bo
->mem
.bus
.addr
) + offset
);
562 map
->bo_kmap_type
= ttm_bo_map_iomap
;
563 if (mem
->placement
& TTM_PL_FLAG_WC
)
564 map
->virtual = ioremap_wc(bo
->mem
.bus
.base
+ bo
->mem
.bus
.offset
+ offset
,
567 map
->virtual = ioremap(bo
->mem
.bus
.base
+ bo
->mem
.bus
.offset
+ offset
,
570 return (!map
->virtual) ? -ENOMEM
: 0;
573 static int ttm_bo_kmap_ttm(struct ttm_buffer_object
*bo
,
574 unsigned long start_page
,
575 unsigned long num_pages
,
576 struct ttm_bo_kmap_obj
*map
)
578 struct ttm_mem_reg
*mem
= &bo
->mem
;
579 struct ttm_operation_ctx ctx
= {
580 .interruptible
= false,
583 struct ttm_tt
*ttm
= bo
->ttm
;
589 ret
= ttm_tt_populate(ttm
, &ctx
);
593 if (num_pages
== 1 && (mem
->placement
& TTM_PL_FLAG_CACHED
)) {
595 * We're mapping a single page, and the desired
596 * page protection is consistent with the bo.
599 map
->bo_kmap_type
= ttm_bo_map_kmap
;
600 map
->page
= ttm
->pages
[start_page
];
601 map
->virtual = kmap(map
->page
);
604 * We need to use vmap to get the desired page protection
605 * or to make the buffer object look contiguous.
607 prot
= ttm_io_prot(mem
->placement
, PAGE_KERNEL
);
608 map
->bo_kmap_type
= ttm_bo_map_vmap
;
609 map
->virtual = vmap(ttm
->pages
+ start_page
, num_pages
,
612 return (!map
->virtual) ? -ENOMEM
: 0;
615 int ttm_bo_kmap(struct ttm_buffer_object
*bo
,
616 unsigned long start_page
, unsigned long num_pages
,
617 struct ttm_bo_kmap_obj
*map
)
619 struct ttm_mem_type_manager
*man
=
620 &bo
->bdev
->man
[bo
->mem
.mem_type
];
621 unsigned long offset
, size
;
626 if (num_pages
> bo
->num_pages
)
628 if (start_page
> bo
->num_pages
)
631 (void) ttm_mem_io_lock(man
, false);
632 ret
= ttm_mem_io_reserve(bo
->bdev
, &bo
->mem
);
633 ttm_mem_io_unlock(man
);
636 if (!bo
->mem
.bus
.is_iomem
) {
637 return ttm_bo_kmap_ttm(bo
, start_page
, num_pages
, map
);
639 offset
= start_page
<< PAGE_SHIFT
;
640 size
= num_pages
<< PAGE_SHIFT
;
641 return ttm_bo_ioremap(bo
, offset
, size
, map
);
644 EXPORT_SYMBOL(ttm_bo_kmap
);
646 void ttm_bo_kunmap(struct ttm_bo_kmap_obj
*map
)
648 struct ttm_buffer_object
*bo
= map
->bo
;
649 struct ttm_mem_type_manager
*man
=
650 &bo
->bdev
->man
[bo
->mem
.mem_type
];
654 switch (map
->bo_kmap_type
) {
655 case ttm_bo_map_iomap
:
656 iounmap(map
->virtual);
658 case ttm_bo_map_vmap
:
659 vunmap(map
->virtual);
661 case ttm_bo_map_kmap
:
664 case ttm_bo_map_premapped
:
669 (void) ttm_mem_io_lock(man
, false);
670 ttm_mem_io_free(map
->bo
->bdev
, &map
->bo
->mem
);
671 ttm_mem_io_unlock(man
);
675 EXPORT_SYMBOL(ttm_bo_kunmap
);
677 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object
*bo
,
678 struct dma_fence
*fence
,
680 struct ttm_mem_reg
*new_mem
)
682 struct ttm_bo_device
*bdev
= bo
->bdev
;
683 struct ttm_mem_type_manager
*man
= &bdev
->man
[new_mem
->mem_type
];
684 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
686 struct ttm_buffer_object
*ghost_obj
;
688 dma_resv_add_excl_fence(bo
->base
.resv
, fence
);
690 ret
= ttm_bo_wait(bo
, false, false);
694 if (man
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
695 ttm_tt_destroy(bo
->ttm
);
698 ttm_bo_free_old_node(bo
);
701 * This should help pipeline ordinary buffer moves.
703 * Hang old buffer memory on a new buffer object,
704 * and leave it to be released when the GPU
705 * operation has completed.
708 dma_fence_put(bo
->moving
);
709 bo
->moving
= dma_fence_get(fence
);
711 ret
= ttm_buffer_object_transfer(bo
, &ghost_obj
);
715 dma_resv_add_excl_fence(&ghost_obj
->base
._resv
, fence
);
718 * If we're not moving to fixed memory, the TTM object
719 * needs to stay alive. Otherwhise hang it on the ghost
720 * bo to be unbound and destroyed.
723 if (!(man
->flags
& TTM_MEMTYPE_FLAG_FIXED
))
724 ghost_obj
->ttm
= NULL
;
728 dma_resv_unlock(&ghost_obj
->base
._resv
);
729 ttm_bo_put(ghost_obj
);
733 new_mem
->mm_node
= NULL
;
737 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup
);
739 int ttm_bo_pipeline_move(struct ttm_buffer_object
*bo
,
740 struct dma_fence
*fence
, bool evict
,
741 struct ttm_mem_reg
*new_mem
)
743 struct ttm_bo_device
*bdev
= bo
->bdev
;
744 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
746 struct ttm_mem_type_manager
*from
= &bdev
->man
[old_mem
->mem_type
];
747 struct ttm_mem_type_manager
*to
= &bdev
->man
[new_mem
->mem_type
];
751 dma_resv_add_excl_fence(bo
->base
.resv
, fence
);
754 struct ttm_buffer_object
*ghost_obj
;
757 * This should help pipeline ordinary buffer moves.
759 * Hang old buffer memory on a new buffer object,
760 * and leave it to be released when the GPU
761 * operation has completed.
764 dma_fence_put(bo
->moving
);
765 bo
->moving
= dma_fence_get(fence
);
767 ret
= ttm_buffer_object_transfer(bo
, &ghost_obj
);
771 dma_resv_add_excl_fence(&ghost_obj
->base
._resv
, fence
);
774 * If we're not moving to fixed memory, the TTM object
775 * needs to stay alive. Otherwhise hang it on the ghost
776 * bo to be unbound and destroyed.
779 if (!(to
->flags
& TTM_MEMTYPE_FLAG_FIXED
))
780 ghost_obj
->ttm
= NULL
;
784 dma_resv_unlock(&ghost_obj
->base
._resv
);
785 ttm_bo_put(ghost_obj
);
787 } else if (from
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
790 * BO doesn't have a TTM we need to bind/unbind. Just remember
791 * this eviction and free up the allocation
794 spin_lock(&from
->move_lock
);
795 if (!from
->move
|| dma_fence_is_later(fence
, from
->move
)) {
796 dma_fence_put(from
->move
);
797 from
->move
= dma_fence_get(fence
);
799 spin_unlock(&from
->move_lock
);
801 ttm_bo_free_old_node(bo
);
803 dma_fence_put(bo
->moving
);
804 bo
->moving
= dma_fence_get(fence
);
808 * Last resort, wait for the move to be completed.
810 * Should never happen in pratice.
813 ret
= ttm_bo_wait(bo
, false, false);
817 if (to
->flags
& TTM_MEMTYPE_FLAG_FIXED
) {
818 ttm_tt_destroy(bo
->ttm
);
821 ttm_bo_free_old_node(bo
);
825 new_mem
->mm_node
= NULL
;
829 EXPORT_SYMBOL(ttm_bo_pipeline_move
);
831 int ttm_bo_pipeline_gutting(struct ttm_buffer_object
*bo
)
833 struct ttm_buffer_object
*ghost
;
836 ret
= ttm_buffer_object_transfer(bo
, &ghost
);
840 ret
= dma_resv_copy_fences(&ghost
->base
._resv
, bo
->base
.resv
);
841 /* Last resort, wait for the BO to be idle when we are OOM */
843 ttm_bo_wait(bo
, false, false);
845 memset(&bo
->mem
, 0, sizeof(bo
->mem
));
846 bo
->mem
.mem_type
= TTM_PL_SYSTEM
;
849 dma_resv_unlock(&ghost
->base
._resv
);