1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
47 struct vc4_crtc_state
{
48 struct drm_crtc_state base
;
49 /* Dlist area for this CRTC configuration. */
50 struct drm_mm_node mm
;
62 static inline struct vc4_crtc_state
*
63 to_vc4_crtc_state(struct drm_crtc_state
*crtc_state
)
65 return (struct vc4_crtc_state
*)crtc_state
;
68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
71 static const struct debugfs_reg32 crtc_regs
[] = {
72 VC4_REG32(PV_CONTROL
),
73 VC4_REG32(PV_V_CONTROL
),
74 VC4_REG32(PV_VSYNCD_EVEN
),
79 VC4_REG32(PV_VERTA_EVEN
),
80 VC4_REG32(PV_VERTB_EVEN
),
82 VC4_REG32(PV_INTSTAT
),
84 VC4_REG32(PV_HACT_ACT
),
87 bool vc4_crtc_get_scanoutpos(struct drm_device
*dev
, unsigned int crtc_id
,
88 bool in_vblank_irq
, int *vpos
, int *hpos
,
89 ktime_t
*stime
, ktime_t
*etime
,
90 const struct drm_display_mode
*mode
)
92 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
93 struct drm_crtc
*crtc
= drm_crtc_from_index(dev
, crtc_id
);
94 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
100 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
102 /* Get optional system timestamp before query. */
104 *stime
= ktime_get();
107 * Read vertical scanline which is currently composed for our
108 * pixelvalve by the HVS, and also the scaler status.
110 val
= HVS_READ(SCALER_DISPSTATX(vc4_crtc
->channel
));
112 /* Get optional system timestamp after query. */
114 *etime
= ktime_get();
116 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
118 /* Vertical position of hvs composed scanline. */
119 *vpos
= VC4_GET_FIELD(val
, SCALER_DISPSTATX_LINE
);
122 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
125 /* Use hpos to correct for field offset in interlaced mode. */
126 if (VC4_GET_FIELD(val
, SCALER_DISPSTATX_FRAME_COUNT
) % 2)
127 *hpos
+= mode
->crtc_htotal
/ 2;
130 /* This is the offset we need for translating hvs -> pv scanout pos. */
131 fifo_lines
= vc4_crtc
->cob_size
/ mode
->crtc_hdisplay
;
136 /* HVS more than fifo_lines into frame for compositing? */
137 if (*vpos
> fifo_lines
) {
139 * We are in active scanout and can get some meaningful results
140 * from HVS. The actual PV scanout can not trail behind more
141 * than fifo_lines as that is the fifo's capacity. Assume that
142 * in active scanout the HVS and PV work in lockstep wrt. HVS
143 * refilling the fifo and PV consuming from the fifo, ie.
144 * whenever the PV consumes and frees up a scanline in the
145 * fifo, the HVS will immediately refill it, therefore
146 * incrementing vpos. Therefore we choose HVS read position -
147 * fifo size in scanlines as a estimate of the real scanout
148 * position of the PV.
150 *vpos
-= fifo_lines
+ 1;
156 * Less: This happens when we are in vblank and the HVS, after getting
157 * the VSTART restart signal from the PV, just started refilling its
158 * fifo with new lines from the top-most lines of the new framebuffers.
159 * The PV does not scan out in vblank, so does not remove lines from
160 * the fifo, so the fifo will be full quickly and the HVS has to pause.
161 * We can't get meaningful readings wrt. scanline position of the PV
162 * and need to make things up in a approximative but consistent way.
164 vblank_lines
= mode
->vtotal
- mode
->vdisplay
;
168 * Assume the irq handler got called close to first
169 * line of vblank, so PV has about a full vblank
170 * scanlines to go, and as a base timestamp use the
171 * one taken at entry into vblank irq handler, so it
172 * is not affected by random delays due to lock
173 * contention on event_lock or vblank_time lock in
176 *vpos
= -vblank_lines
;
179 *stime
= vc4_crtc
->t_vblank
;
181 *etime
= vc4_crtc
->t_vblank
;
184 * If the HVS fifo is not yet full then we know for certain
185 * we are at the very beginning of vblank, as the hvs just
186 * started refilling, and the stime and etime timestamps
187 * truly correspond to start of vblank.
189 * Unfortunately there's no way to report this to upper levels
190 * and make it more useful.
194 * No clue where we are inside vblank. Return a vpos of zero,
195 * which will cause calling code to just return the etime
196 * timestamp uncorrected. At least this is no worse than the
205 static void vc4_crtc_destroy(struct drm_crtc
*crtc
)
207 drm_crtc_cleanup(crtc
);
211 vc4_crtc_lut_load(struct drm_crtc
*crtc
)
213 struct drm_device
*dev
= crtc
->dev
;
214 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
215 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
218 /* The LUT memory is laid out with each HVS channel in order,
219 * each of which takes 256 writes for R, 256 for G, then 256
222 HVS_WRITE(SCALER_GAMADDR
,
223 SCALER_GAMADDR_AUTOINC
|
224 (vc4_crtc
->channel
* 3 * crtc
->gamma_size
));
226 for (i
= 0; i
< crtc
->gamma_size
; i
++)
227 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_r
[i
]);
228 for (i
= 0; i
< crtc
->gamma_size
; i
++)
229 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_g
[i
]);
230 for (i
= 0; i
< crtc
->gamma_size
; i
++)
231 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_b
[i
]);
235 vc4_crtc_update_gamma_lut(struct drm_crtc
*crtc
)
237 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
238 struct drm_color_lut
*lut
= crtc
->state
->gamma_lut
->data
;
239 u32 length
= drm_color_lut_size(crtc
->state
->gamma_lut
);
242 for (i
= 0; i
< length
; i
++) {
243 vc4_crtc
->lut_r
[i
] = drm_color_lut_extract(lut
[i
].red
, 8);
244 vc4_crtc
->lut_g
[i
] = drm_color_lut_extract(lut
[i
].green
, 8);
245 vc4_crtc
->lut_b
[i
] = drm_color_lut_extract(lut
[i
].blue
, 8);
248 vc4_crtc_lut_load(crtc
);
251 static u32
vc4_get_fifo_full_level(u32 format
)
253 static const u32 fifo_len_bytes
= 64;
254 static const u32 hvs_latency_pix
= 6;
257 case PV_CONTROL_FORMAT_DSIV_16
:
258 case PV_CONTROL_FORMAT_DSIC_16
:
259 return fifo_len_bytes
- 2 * hvs_latency_pix
;
260 case PV_CONTROL_FORMAT_DSIV_18
:
261 return fifo_len_bytes
- 14;
262 case PV_CONTROL_FORMAT_24
:
263 case PV_CONTROL_FORMAT_DSIV_24
:
265 return fifo_len_bytes
- 3 * hvs_latency_pix
;
270 * Returns the encoder attached to the CRTC.
272 * VC4 can only scan out to one encoder at a time, while the DRM core
273 * allows drivers to push pixels to more than one encoder from the
276 static struct drm_encoder
*vc4_get_crtc_encoder(struct drm_crtc
*crtc
)
278 struct drm_connector
*connector
;
279 struct drm_connector_list_iter conn_iter
;
281 drm_connector_list_iter_begin(crtc
->dev
, &conn_iter
);
282 drm_for_each_connector_iter(connector
, &conn_iter
) {
283 if (connector
->state
->crtc
== crtc
) {
284 drm_connector_list_iter_end(&conn_iter
);
285 return connector
->encoder
;
288 drm_connector_list_iter_end(&conn_iter
);
293 static void vc4_crtc_config_pv(struct drm_crtc
*crtc
)
295 struct drm_encoder
*encoder
= vc4_get_crtc_encoder(crtc
);
296 struct vc4_encoder
*vc4_encoder
= to_vc4_encoder(encoder
);
297 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
298 struct drm_crtc_state
*state
= crtc
->state
;
299 struct drm_display_mode
*mode
= &state
->adjusted_mode
;
300 bool interlace
= mode
->flags
& DRM_MODE_FLAG_INTERLACE
;
301 u32 pixel_rep
= (mode
->flags
& DRM_MODE_FLAG_DBLCLK
) ? 2 : 1;
302 bool is_dsi
= (vc4_encoder
->type
== VC4_ENCODER_TYPE_DSI0
||
303 vc4_encoder
->type
== VC4_ENCODER_TYPE_DSI1
);
304 u32 format
= is_dsi
? PV_CONTROL_FORMAT_DSIV_24
: PV_CONTROL_FORMAT_24
;
306 /* Reset the PV fifo. */
307 CRTC_WRITE(PV_CONTROL
, 0);
308 CRTC_WRITE(PV_CONTROL
, PV_CONTROL_FIFO_CLR
| PV_CONTROL_EN
);
309 CRTC_WRITE(PV_CONTROL
, 0);
312 VC4_SET_FIELD((mode
->htotal
-
313 mode
->hsync_end
) * pixel_rep
,
315 VC4_SET_FIELD((mode
->hsync_end
-
316 mode
->hsync_start
) * pixel_rep
,
319 VC4_SET_FIELD((mode
->hsync_start
-
320 mode
->hdisplay
) * pixel_rep
,
322 VC4_SET_FIELD(mode
->hdisplay
* pixel_rep
, PV_HORZB_HACTIVE
));
325 VC4_SET_FIELD(mode
->crtc_vtotal
- mode
->crtc_vsync_end
,
327 VC4_SET_FIELD(mode
->crtc_vsync_end
- mode
->crtc_vsync_start
,
330 VC4_SET_FIELD(mode
->crtc_vsync_start
- mode
->crtc_vdisplay
,
332 VC4_SET_FIELD(mode
->crtc_vdisplay
, PV_VERTB_VACTIVE
));
335 CRTC_WRITE(PV_VERTA_EVEN
,
336 VC4_SET_FIELD(mode
->crtc_vtotal
-
337 mode
->crtc_vsync_end
- 1,
339 VC4_SET_FIELD(mode
->crtc_vsync_end
-
340 mode
->crtc_vsync_start
,
342 CRTC_WRITE(PV_VERTB_EVEN
,
343 VC4_SET_FIELD(mode
->crtc_vsync_start
-
346 VC4_SET_FIELD(mode
->crtc_vdisplay
, PV_VERTB_VACTIVE
));
348 /* We set up first field even mode for HDMI. VEC's
349 * NTSC mode would want first field odd instead, once
350 * we support it (to do so, set ODD_FIRST and put the
351 * delay in VSYNCD_EVEN instead).
353 CRTC_WRITE(PV_V_CONTROL
,
354 PV_VCONTROL_CONTINUOUS
|
355 (is_dsi
? PV_VCONTROL_DSI
: 0) |
356 PV_VCONTROL_INTERLACE
|
357 VC4_SET_FIELD(mode
->htotal
* pixel_rep
/ 2,
358 PV_VCONTROL_ODD_DELAY
));
359 CRTC_WRITE(PV_VSYNCD_EVEN
, 0);
361 CRTC_WRITE(PV_V_CONTROL
,
362 PV_VCONTROL_CONTINUOUS
|
363 (is_dsi
? PV_VCONTROL_DSI
: 0));
366 CRTC_WRITE(PV_HACT_ACT
, mode
->hdisplay
* pixel_rep
);
368 CRTC_WRITE(PV_CONTROL
,
369 VC4_SET_FIELD(format
, PV_CONTROL_FORMAT
) |
370 VC4_SET_FIELD(vc4_get_fifo_full_level(format
),
371 PV_CONTROL_FIFO_LEVEL
) |
372 VC4_SET_FIELD(pixel_rep
- 1, PV_CONTROL_PIXEL_REP
) |
373 PV_CONTROL_CLR_AT_START
|
374 PV_CONTROL_TRIGGER_UNDERFLOW
|
375 PV_CONTROL_WAIT_HSTART
|
376 VC4_SET_FIELD(vc4_encoder
->clock_select
,
377 PV_CONTROL_CLK_SELECT
) |
378 PV_CONTROL_FIFO_CLR
|
382 static void vc4_crtc_mode_set_nofb(struct drm_crtc
*crtc
)
384 struct drm_device
*dev
= crtc
->dev
;
385 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
386 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
387 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
388 struct drm_display_mode
*mode
= &crtc
->state
->adjusted_mode
;
389 bool interlace
= mode
->flags
& DRM_MODE_FLAG_INTERLACE
;
390 bool debug_dump_regs
= false;
392 if (debug_dump_regs
) {
393 struct drm_printer p
= drm_info_printer(&vc4_crtc
->pdev
->dev
);
394 dev_info(&vc4_crtc
->pdev
->dev
, "CRTC %d regs before:\n",
395 drm_crtc_index(crtc
));
396 drm_print_regset32(&p
, &vc4_crtc
->regset
);
399 if (vc4_crtc
->channel
== 2) {
404 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
406 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
408 * DSP3 is connected to FIFO2 unless the transposer is
409 * enabled. In this case, FIFO 2 is directly accessed by the
410 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
413 if (vc4_state
->feed_txp
)
414 dsp3_mux
= VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX
);
416 dsp3_mux
= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX
);
418 dispctrl
= HVS_READ(SCALER_DISPCTRL
) &
419 ~SCALER_DISPCTRL_DSP3_MUX_MASK
;
420 HVS_WRITE(SCALER_DISPCTRL
, dispctrl
| dsp3_mux
);
423 if (!vc4_state
->feed_txp
)
424 vc4_crtc_config_pv(crtc
);
426 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc
->channel
),
427 SCALER_DISPBKGND_AUTOHS
|
428 SCALER_DISPBKGND_GAMMA
|
429 (interlace
? SCALER_DISPBKGND_INTERLACE
: 0));
431 /* Reload the LUT, since the SRAMs would have been disabled if
432 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
434 vc4_crtc_lut_load(crtc
);
436 if (debug_dump_regs
) {
437 struct drm_printer p
= drm_info_printer(&vc4_crtc
->pdev
->dev
);
438 dev_info(&vc4_crtc
->pdev
->dev
, "CRTC %d regs after:\n",
439 drm_crtc_index(crtc
));
440 drm_print_regset32(&p
, &vc4_crtc
->regset
);
444 static void require_hvs_enabled(struct drm_device
*dev
)
446 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
448 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL
) & SCALER_DISPCTRL_ENABLE
) !=
449 SCALER_DISPCTRL_ENABLE
);
452 static void vc4_crtc_atomic_disable(struct drm_crtc
*crtc
,
453 struct drm_crtc_state
*old_state
)
455 struct drm_device
*dev
= crtc
->dev
;
456 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
457 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
458 u32 chan
= vc4_crtc
->channel
;
460 require_hvs_enabled(dev
);
462 /* Disable vblank irq handling before crtc is disabled. */
463 drm_crtc_vblank_off(crtc
);
465 CRTC_WRITE(PV_V_CONTROL
,
466 CRTC_READ(PV_V_CONTROL
) & ~PV_VCONTROL_VIDEN
);
467 ret
= wait_for(!(CRTC_READ(PV_V_CONTROL
) & PV_VCONTROL_VIDEN
), 1);
468 WARN_ONCE(ret
, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
470 if (HVS_READ(SCALER_DISPCTRLX(chan
)) &
471 SCALER_DISPCTRLX_ENABLE
) {
472 HVS_WRITE(SCALER_DISPCTRLX(chan
),
473 SCALER_DISPCTRLX_RESET
);
475 /* While the docs say that reset is self-clearing, it
476 * seems it doesn't actually.
478 HVS_WRITE(SCALER_DISPCTRLX(chan
), 0);
481 /* Once we leave, the scaler should be disabled and its fifo empty. */
483 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan
)) & SCALER_DISPCTRLX_RESET
);
485 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan
)),
486 SCALER_DISPSTATX_MODE
) !=
487 SCALER_DISPSTATX_MODE_DISABLED
);
489 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan
)) &
490 (SCALER_DISPSTATX_FULL
| SCALER_DISPSTATX_EMPTY
)) !=
491 SCALER_DISPSTATX_EMPTY
);
494 * Make sure we issue a vblank event after disabling the CRTC if
495 * someone was waiting it.
497 if (crtc
->state
->event
) {
500 spin_lock_irqsave(&dev
->event_lock
, flags
);
501 drm_crtc_send_vblank_event(crtc
, crtc
->state
->event
);
502 crtc
->state
->event
= NULL
;
503 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
507 void vc4_crtc_txp_armed(struct drm_crtc_state
*state
)
509 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
511 vc4_state
->txp_armed
= true;
514 static void vc4_crtc_update_dlist(struct drm_crtc
*crtc
)
516 struct drm_device
*dev
= crtc
->dev
;
517 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
518 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
519 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
521 if (crtc
->state
->event
) {
524 crtc
->state
->event
->pipe
= drm_crtc_index(crtc
);
526 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
528 spin_lock_irqsave(&dev
->event_lock
, flags
);
530 if (!vc4_state
->feed_txp
|| vc4_state
->txp_armed
) {
531 vc4_crtc
->event
= crtc
->state
->event
;
532 crtc
->state
->event
= NULL
;
535 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc
->channel
),
536 vc4_state
->mm
.start
);
538 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
540 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc
->channel
),
541 vc4_state
->mm
.start
);
545 static void vc4_crtc_atomic_enable(struct drm_crtc
*crtc
,
546 struct drm_crtc_state
*old_state
)
548 struct drm_device
*dev
= crtc
->dev
;
549 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
550 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
551 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
552 struct drm_display_mode
*mode
= &crtc
->state
->adjusted_mode
;
554 require_hvs_enabled(dev
);
556 /* Enable vblank irq handling before crtc is started otherwise
557 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
559 drm_crtc_vblank_on(crtc
);
560 vc4_crtc_update_dlist(crtc
);
562 /* Turn on the scaler, which will wait for vstart to start
564 * When feeding the transposer, we should operate in oneshot
567 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc
->channel
),
568 VC4_SET_FIELD(mode
->hdisplay
, SCALER_DISPCTRLX_WIDTH
) |
569 VC4_SET_FIELD(mode
->vdisplay
, SCALER_DISPCTRLX_HEIGHT
) |
570 SCALER_DISPCTRLX_ENABLE
|
571 (vc4_state
->feed_txp
? SCALER_DISPCTRLX_ONESHOT
: 0));
573 /* When feeding the transposer block the pixelvalve is unneeded and
574 * should not be enabled.
576 if (!vc4_state
->feed_txp
)
577 CRTC_WRITE(PV_V_CONTROL
,
578 CRTC_READ(PV_V_CONTROL
) | PV_VCONTROL_VIDEN
);
581 static enum drm_mode_status
vc4_crtc_mode_valid(struct drm_crtc
*crtc
,
582 const struct drm_display_mode
*mode
)
584 /* Do not allow doublescan modes from user space */
585 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) {
586 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
588 return MODE_NO_DBLESCAN
;
594 void vc4_crtc_get_margins(struct drm_crtc_state
*state
,
595 unsigned int *left
, unsigned int *right
,
596 unsigned int *top
, unsigned int *bottom
)
598 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
599 struct drm_connector_state
*conn_state
;
600 struct drm_connector
*conn
;
603 *left
= vc4_state
->margins
.left
;
604 *right
= vc4_state
->margins
.right
;
605 *top
= vc4_state
->margins
.top
;
606 *bottom
= vc4_state
->margins
.bottom
;
608 /* We have to interate over all new connector states because
609 * vc4_crtc_get_margins() might be called before
610 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
613 for_each_new_connector_in_state(state
->state
, conn
, conn_state
, i
) {
614 if (conn_state
->crtc
!= state
->crtc
)
617 *left
= conn_state
->tv
.margins
.left
;
618 *right
= conn_state
->tv
.margins
.right
;
619 *top
= conn_state
->tv
.margins
.top
;
620 *bottom
= conn_state
->tv
.margins
.bottom
;
625 static int vc4_crtc_atomic_check(struct drm_crtc
*crtc
,
626 struct drm_crtc_state
*state
)
628 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
629 struct drm_device
*dev
= crtc
->dev
;
630 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
631 struct drm_plane
*plane
;
633 const struct drm_plane_state
*plane_state
;
634 struct drm_connector
*conn
;
635 struct drm_connector_state
*conn_state
;
639 /* The pixelvalve can only feed one encoder (and encoders are
640 * 1:1 with connectors.)
642 if (hweight32(state
->connector_mask
) > 1)
645 drm_atomic_crtc_state_for_each_plane_state(plane
, plane_state
, state
)
646 dlist_count
+= vc4_plane_dlist_size(plane_state
);
648 dlist_count
++; /* Account for SCALER_CTL0_END. */
650 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, flags
);
651 ret
= drm_mm_insert_node(&vc4
->hvs
->dlist_mm
, &vc4_state
->mm
,
653 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, flags
);
657 for_each_new_connector_in_state(state
->state
, conn
, conn_state
, i
) {
658 if (conn_state
->crtc
!= crtc
)
661 /* The writeback connector is implemented using the transposer
662 * block which is directly taking its data from the HVS FIFO.
664 if (conn
->connector_type
== DRM_MODE_CONNECTOR_WRITEBACK
) {
665 state
->no_vblank
= true;
666 vc4_state
->feed_txp
= true;
668 state
->no_vblank
= false;
669 vc4_state
->feed_txp
= false;
672 vc4_state
->margins
.left
= conn_state
->tv
.margins
.left
;
673 vc4_state
->margins
.right
= conn_state
->tv
.margins
.right
;
674 vc4_state
->margins
.top
= conn_state
->tv
.margins
.top
;
675 vc4_state
->margins
.bottom
= conn_state
->tv
.margins
.bottom
;
682 static void vc4_crtc_atomic_flush(struct drm_crtc
*crtc
,
683 struct drm_crtc_state
*old_state
)
685 struct drm_device
*dev
= crtc
->dev
;
686 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
687 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
688 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
689 struct drm_plane
*plane
;
690 struct vc4_plane_state
*vc4_plane_state
;
691 bool debug_dump_regs
= false;
692 bool enable_bg_fill
= false;
693 u32 __iomem
*dlist_start
= vc4
->hvs
->dlist
+ vc4_state
->mm
.start
;
694 u32 __iomem
*dlist_next
= dlist_start
;
696 if (debug_dump_regs
) {
697 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc
));
698 vc4_hvs_dump_state(dev
);
701 /* Copy all the active planes' dlist contents to the hardware dlist. */
702 drm_atomic_crtc_for_each_plane(plane
, crtc
) {
703 /* Is this the first active plane? */
704 if (dlist_next
== dlist_start
) {
705 /* We need to enable background fill when a plane
706 * could be alpha blending from the background, i.e.
707 * where no other plane is underneath. It suffices to
708 * consider the first active plane here since we set
709 * needs_bg_fill such that either the first plane
710 * already needs it or all planes on top blend from
711 * the first or a lower plane.
713 vc4_plane_state
= to_vc4_plane_state(plane
->state
);
714 enable_bg_fill
= vc4_plane_state
->needs_bg_fill
;
717 dlist_next
+= vc4_plane_write_dlist(plane
, dlist_next
);
720 writel(SCALER_CTL0_END
, dlist_next
);
723 WARN_ON_ONCE(dlist_next
- dlist_start
!= vc4_state
->mm
.size
);
726 /* This sets a black background color fill, as is the case
727 * with other DRM drivers.
729 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc
->channel
),
730 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc
->channel
)) |
731 SCALER_DISPBKGND_FILL
);
733 /* Only update DISPLIST if the CRTC was already running and is not
735 * vc4_crtc_enable() takes care of updating the dlist just after
736 * re-enabling VBLANK interrupts and before enabling the engine.
737 * If the CRTC is being disabled, there's no point in updating this
740 if (crtc
->state
->active
&& old_state
->active
)
741 vc4_crtc_update_dlist(crtc
);
743 if (crtc
->state
->color_mgmt_changed
) {
744 u32 dispbkgndx
= HVS_READ(SCALER_DISPBKGNDX(vc4_crtc
->channel
));
746 if (crtc
->state
->gamma_lut
) {
747 vc4_crtc_update_gamma_lut(crtc
);
748 dispbkgndx
|= SCALER_DISPBKGND_GAMMA
;
750 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
751 * in hardware, which is the same as a linear lut that
752 * DRM expects us to use in absence of a user lut.
754 dispbkgndx
&= ~SCALER_DISPBKGND_GAMMA
;
756 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc
->channel
), dispbkgndx
);
759 if (debug_dump_regs
) {
760 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc
));
761 vc4_hvs_dump_state(dev
);
765 static int vc4_enable_vblank(struct drm_crtc
*crtc
)
767 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
769 CRTC_WRITE(PV_INTEN
, PV_INT_VFP_START
);
774 static void vc4_disable_vblank(struct drm_crtc
*crtc
)
776 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
778 CRTC_WRITE(PV_INTEN
, 0);
781 static void vc4_crtc_handle_page_flip(struct vc4_crtc
*vc4_crtc
)
783 struct drm_crtc
*crtc
= &vc4_crtc
->base
;
784 struct drm_device
*dev
= crtc
->dev
;
785 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
786 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
787 u32 chan
= vc4_crtc
->channel
;
790 spin_lock_irqsave(&dev
->event_lock
, flags
);
791 if (vc4_crtc
->event
&&
792 (vc4_state
->mm
.start
== HVS_READ(SCALER_DISPLACTX(chan
)) ||
793 vc4_state
->feed_txp
)) {
794 drm_crtc_send_vblank_event(crtc
, vc4_crtc
->event
);
795 vc4_crtc
->event
= NULL
;
796 drm_crtc_vblank_put(crtc
);
798 /* Wait for the page flip to unmask the underrun to ensure that
799 * the display list was updated by the hardware. Before that
800 * happens, the HVS will be using the previous display list with
801 * the CRTC and encoder already reconfigured, leading to
802 * underruns. This can be seen when reconfiguring the CRTC.
804 vc4_hvs_unmask_underrun(dev
, vc4_crtc
->channel
);
806 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
809 void vc4_crtc_handle_vblank(struct vc4_crtc
*crtc
)
811 crtc
->t_vblank
= ktime_get();
812 drm_crtc_handle_vblank(&crtc
->base
);
813 vc4_crtc_handle_page_flip(crtc
);
816 static irqreturn_t
vc4_crtc_irq_handler(int irq
, void *data
)
818 struct vc4_crtc
*vc4_crtc
= data
;
819 u32 stat
= CRTC_READ(PV_INTSTAT
);
820 irqreturn_t ret
= IRQ_NONE
;
822 if (stat
& PV_INT_VFP_START
) {
823 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
824 vc4_crtc_handle_vblank(vc4_crtc
);
831 struct vc4_async_flip_state
{
832 struct drm_crtc
*crtc
;
833 struct drm_framebuffer
*fb
;
834 struct drm_framebuffer
*old_fb
;
835 struct drm_pending_vblank_event
*event
;
837 struct vc4_seqno_cb cb
;
840 /* Called when the V3D execution for the BO being flipped to is done, so that
841 * we can actually update the plane's address to point to it.
844 vc4_async_page_flip_complete(struct vc4_seqno_cb
*cb
)
846 struct vc4_async_flip_state
*flip_state
=
847 container_of(cb
, struct vc4_async_flip_state
, cb
);
848 struct drm_crtc
*crtc
= flip_state
->crtc
;
849 struct drm_device
*dev
= crtc
->dev
;
850 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
851 struct drm_plane
*plane
= crtc
->primary
;
853 vc4_plane_async_set_fb(plane
, flip_state
->fb
);
854 if (flip_state
->event
) {
857 spin_lock_irqsave(&dev
->event_lock
, flags
);
858 drm_crtc_send_vblank_event(crtc
, flip_state
->event
);
859 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
862 drm_crtc_vblank_put(crtc
);
863 drm_framebuffer_put(flip_state
->fb
);
865 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
866 * when the planes are updated through the async update path.
867 * FIXME: we should move to generic async-page-flip when it's
868 * available, so that we can get rid of this hand-made cleanup_fb()
871 if (flip_state
->old_fb
) {
872 struct drm_gem_cma_object
*cma_bo
;
875 cma_bo
= drm_fb_cma_get_gem_obj(flip_state
->old_fb
, 0);
876 bo
= to_vc4_bo(&cma_bo
->base
);
877 vc4_bo_dec_usecnt(bo
);
878 drm_framebuffer_put(flip_state
->old_fb
);
883 up(&vc4
->async_modeset
);
886 /* Implements async (non-vblank-synced) page flips.
888 * The page flip ioctl needs to return immediately, so we grab the
889 * modeset semaphore on the pipe, and queue the address update for
890 * when V3D is done with the BO being flipped to.
892 static int vc4_async_page_flip(struct drm_crtc
*crtc
,
893 struct drm_framebuffer
*fb
,
894 struct drm_pending_vblank_event
*event
,
897 struct drm_device
*dev
= crtc
->dev
;
898 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
899 struct drm_plane
*plane
= crtc
->primary
;
901 struct vc4_async_flip_state
*flip_state
;
902 struct drm_gem_cma_object
*cma_bo
= drm_fb_cma_get_gem_obj(fb
, 0);
903 struct vc4_bo
*bo
= to_vc4_bo(&cma_bo
->base
);
905 /* Increment the BO usecnt here, so that we never end up with an
906 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
907 * plane is later updated through the non-async path.
908 * FIXME: we should move to generic async-page-flip when it's
909 * available, so that we can get rid of this hand-made prepare_fb()
912 ret
= vc4_bo_inc_usecnt(bo
);
916 flip_state
= kzalloc(sizeof(*flip_state
), GFP_KERNEL
);
918 vc4_bo_dec_usecnt(bo
);
922 drm_framebuffer_get(fb
);
924 flip_state
->crtc
= crtc
;
925 flip_state
->event
= event
;
927 /* Make sure all other async modesetes have landed. */
928 ret
= down_interruptible(&vc4
->async_modeset
);
930 drm_framebuffer_put(fb
);
931 vc4_bo_dec_usecnt(bo
);
936 /* Save the current FB before it's replaced by the new one in
937 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
938 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
940 * FIXME: we should move to generic async-page-flip when it's
941 * available, so that we can get rid of this hand-made cleanup_fb()
944 flip_state
->old_fb
= plane
->state
->fb
;
945 if (flip_state
->old_fb
)
946 drm_framebuffer_get(flip_state
->old_fb
);
948 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
950 /* Immediately update the plane's legacy fb pointer, so that later
951 * modeset prep sees the state that will be present when the semaphore
954 drm_atomic_set_fb_for_plane(plane
->state
, fb
);
956 vc4_queue_seqno_cb(dev
, &flip_state
->cb
, bo
->seqno
,
957 vc4_async_page_flip_complete
);
959 /* Driver takes ownership of state on successful async commit. */
963 static int vc4_page_flip(struct drm_crtc
*crtc
,
964 struct drm_framebuffer
*fb
,
965 struct drm_pending_vblank_event
*event
,
967 struct drm_modeset_acquire_ctx
*ctx
)
969 if (flags
& DRM_MODE_PAGE_FLIP_ASYNC
)
970 return vc4_async_page_flip(crtc
, fb
, event
, flags
);
972 return drm_atomic_helper_page_flip(crtc
, fb
, event
, flags
, ctx
);
975 static struct drm_crtc_state
*vc4_crtc_duplicate_state(struct drm_crtc
*crtc
)
977 struct vc4_crtc_state
*vc4_state
, *old_vc4_state
;
979 vc4_state
= kzalloc(sizeof(*vc4_state
), GFP_KERNEL
);
983 old_vc4_state
= to_vc4_crtc_state(crtc
->state
);
984 vc4_state
->feed_txp
= old_vc4_state
->feed_txp
;
985 vc4_state
->margins
= old_vc4_state
->margins
;
987 __drm_atomic_helper_crtc_duplicate_state(crtc
, &vc4_state
->base
);
988 return &vc4_state
->base
;
991 static void vc4_crtc_destroy_state(struct drm_crtc
*crtc
,
992 struct drm_crtc_state
*state
)
994 struct vc4_dev
*vc4
= to_vc4_dev(crtc
->dev
);
995 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
997 if (drm_mm_node_allocated(&vc4_state
->mm
)) {
1000 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, flags
);
1001 drm_mm_remove_node(&vc4_state
->mm
);
1002 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, flags
);
1006 drm_atomic_helper_crtc_destroy_state(crtc
, state
);
1010 vc4_crtc_reset(struct drm_crtc
*crtc
)
1013 vc4_crtc_destroy_state(crtc
, crtc
->state
);
1015 crtc
->state
= kzalloc(sizeof(struct vc4_crtc_state
), GFP_KERNEL
);
1017 crtc
->state
->crtc
= crtc
;
1020 static const struct drm_crtc_funcs vc4_crtc_funcs
= {
1021 .set_config
= drm_atomic_helper_set_config
,
1022 .destroy
= vc4_crtc_destroy
,
1023 .page_flip
= vc4_page_flip
,
1024 .set_property
= NULL
,
1025 .cursor_set
= NULL
, /* handled by drm_mode_cursor_universal */
1026 .cursor_move
= NULL
, /* handled by drm_mode_cursor_universal */
1027 .reset
= vc4_crtc_reset
,
1028 .atomic_duplicate_state
= vc4_crtc_duplicate_state
,
1029 .atomic_destroy_state
= vc4_crtc_destroy_state
,
1030 .gamma_set
= drm_atomic_helper_legacy_gamma_set
,
1031 .enable_vblank
= vc4_enable_vblank
,
1032 .disable_vblank
= vc4_disable_vblank
,
1035 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs
= {
1036 .mode_set_nofb
= vc4_crtc_mode_set_nofb
,
1037 .mode_valid
= vc4_crtc_mode_valid
,
1038 .atomic_check
= vc4_crtc_atomic_check
,
1039 .atomic_flush
= vc4_crtc_atomic_flush
,
1040 .atomic_enable
= vc4_crtc_atomic_enable
,
1041 .atomic_disable
= vc4_crtc_atomic_disable
,
1044 static const struct vc4_crtc_data pv0_data
= {
1046 .debugfs_name
= "crtc0_regs",
1048 [PV_CONTROL_CLK_SELECT_DSI
] = VC4_ENCODER_TYPE_DSI0
,
1049 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_DPI
,
1053 static const struct vc4_crtc_data pv1_data
= {
1055 .debugfs_name
= "crtc1_regs",
1057 [PV_CONTROL_CLK_SELECT_DSI
] = VC4_ENCODER_TYPE_DSI1
,
1058 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_SMI
,
1062 static const struct vc4_crtc_data pv2_data
= {
1064 .debugfs_name
= "crtc2_regs",
1066 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_HDMI
,
1067 [PV_CONTROL_CLK_SELECT_VEC
] = VC4_ENCODER_TYPE_VEC
,
1071 static const struct of_device_id vc4_crtc_dt_match
[] = {
1072 { .compatible
= "brcm,bcm2835-pixelvalve0", .data
= &pv0_data
},
1073 { .compatible
= "brcm,bcm2835-pixelvalve1", .data
= &pv1_data
},
1074 { .compatible
= "brcm,bcm2835-pixelvalve2", .data
= &pv2_data
},
1078 static void vc4_set_crtc_possible_masks(struct drm_device
*drm
,
1079 struct drm_crtc
*crtc
)
1081 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
1082 const struct vc4_crtc_data
*crtc_data
= vc4_crtc
->data
;
1083 const enum vc4_encoder_type
*encoder_types
= crtc_data
->encoder_types
;
1084 struct drm_encoder
*encoder
;
1086 drm_for_each_encoder(encoder
, drm
) {
1087 struct vc4_encoder
*vc4_encoder
;
1090 /* HVS FIFO2 can feed the TXP IP. */
1091 if (crtc_data
->hvs_channel
== 2 &&
1092 encoder
->encoder_type
== DRM_MODE_ENCODER_VIRTUAL
) {
1093 encoder
->possible_crtcs
|= drm_crtc_mask(crtc
);
1097 vc4_encoder
= to_vc4_encoder(encoder
);
1098 for (i
= 0; i
< ARRAY_SIZE(crtc_data
->encoder_types
); i
++) {
1099 if (vc4_encoder
->type
== encoder_types
[i
]) {
1100 vc4_encoder
->clock_select
= i
;
1101 encoder
->possible_crtcs
|= drm_crtc_mask(crtc
);
1109 vc4_crtc_get_cob_allocation(struct vc4_crtc
*vc4_crtc
)
1111 struct drm_device
*drm
= vc4_crtc
->base
.dev
;
1112 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
1113 u32 dispbase
= HVS_READ(SCALER_DISPBASEX(vc4_crtc
->channel
));
1114 /* Top/base are supposed to be 4-pixel aligned, but the
1115 * Raspberry Pi firmware fills the low bits (which are
1116 * presumably ignored).
1118 u32 top
= VC4_GET_FIELD(dispbase
, SCALER_DISPBASEX_TOP
) & ~3;
1119 u32 base
= VC4_GET_FIELD(dispbase
, SCALER_DISPBASEX_BASE
) & ~3;
1121 vc4_crtc
->cob_size
= top
- base
+ 4;
1124 static int vc4_crtc_bind(struct device
*dev
, struct device
*master
, void *data
)
1126 struct platform_device
*pdev
= to_platform_device(dev
);
1127 struct drm_device
*drm
= dev_get_drvdata(master
);
1128 struct vc4_crtc
*vc4_crtc
;
1129 struct drm_crtc
*crtc
;
1130 struct drm_plane
*primary_plane
, *cursor_plane
, *destroy_plane
, *temp
;
1131 const struct of_device_id
*match
;
1134 vc4_crtc
= devm_kzalloc(dev
, sizeof(*vc4_crtc
), GFP_KERNEL
);
1137 crtc
= &vc4_crtc
->base
;
1139 match
= of_match_device(vc4_crtc_dt_match
, dev
);
1142 vc4_crtc
->data
= match
->data
;
1143 vc4_crtc
->pdev
= pdev
;
1145 vc4_crtc
->regs
= vc4_ioremap_regs(pdev
, 0);
1146 if (IS_ERR(vc4_crtc
->regs
))
1147 return PTR_ERR(vc4_crtc
->regs
);
1149 vc4_crtc
->regset
.base
= vc4_crtc
->regs
;
1150 vc4_crtc
->regset
.regs
= crtc_regs
;
1151 vc4_crtc
->regset
.nregs
= ARRAY_SIZE(crtc_regs
);
1153 /* For now, we create just the primary and the legacy cursor
1154 * planes. We should be able to stack more planes on easily,
1155 * but to do that we would need to compute the bandwidth
1156 * requirement of the plane configuration, and reject ones
1157 * that will take too much.
1159 primary_plane
= vc4_plane_init(drm
, DRM_PLANE_TYPE_PRIMARY
);
1160 if (IS_ERR(primary_plane
)) {
1161 dev_err(dev
, "failed to construct primary plane\n");
1162 ret
= PTR_ERR(primary_plane
);
1166 drm_crtc_init_with_planes(drm
, crtc
, primary_plane
, NULL
,
1167 &vc4_crtc_funcs
, NULL
);
1168 drm_crtc_helper_add(crtc
, &vc4_crtc_helper_funcs
);
1169 vc4_crtc
->channel
= vc4_crtc
->data
->hvs_channel
;
1170 drm_mode_crtc_set_gamma_size(crtc
, ARRAY_SIZE(vc4_crtc
->lut_r
));
1171 drm_crtc_enable_color_mgmt(crtc
, 0, false, crtc
->gamma_size
);
1173 /* We support CTM, but only for one CRTC at a time. It's therefore
1174 * implemented as private driver state in vc4_kms, not here.
1176 drm_crtc_enable_color_mgmt(crtc
, 0, true, crtc
->gamma_size
);
1178 /* Set up some arbitrary number of planes. We're not limited
1179 * by a set number of physical registers, just the space in
1180 * the HVS (16k) and how small an plane can be (28 bytes).
1181 * However, each plane we set up takes up some memory, and
1182 * increases the cost of looping over planes, which atomic
1183 * modesetting does quite a bit. As a result, we pick a
1184 * modest number of planes to expose, that should hopefully
1185 * still cover any sane usecase.
1187 for (i
= 0; i
< 8; i
++) {
1188 struct drm_plane
*plane
=
1189 vc4_plane_init(drm
, DRM_PLANE_TYPE_OVERLAY
);
1194 plane
->possible_crtcs
= drm_crtc_mask(crtc
);
1197 /* Set up the legacy cursor after overlay initialization,
1198 * since we overlay planes on the CRTC in the order they were
1201 cursor_plane
= vc4_plane_init(drm
, DRM_PLANE_TYPE_CURSOR
);
1202 if (!IS_ERR(cursor_plane
)) {
1203 cursor_plane
->possible_crtcs
= drm_crtc_mask(crtc
);
1204 crtc
->cursor
= cursor_plane
;
1207 vc4_crtc_get_cob_allocation(vc4_crtc
);
1209 CRTC_WRITE(PV_INTEN
, 0);
1210 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
1211 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
1212 vc4_crtc_irq_handler
, 0, "vc4 crtc", vc4_crtc
);
1214 goto err_destroy_planes
;
1216 vc4_set_crtc_possible_masks(drm
, crtc
);
1218 for (i
= 0; i
< crtc
->gamma_size
; i
++) {
1219 vc4_crtc
->lut_r
[i
] = i
;
1220 vc4_crtc
->lut_g
[i
] = i
;
1221 vc4_crtc
->lut_b
[i
] = i
;
1224 platform_set_drvdata(pdev
, vc4_crtc
);
1226 vc4_debugfs_add_regset32(drm
, vc4_crtc
->data
->debugfs_name
,
1232 list_for_each_entry_safe(destroy_plane
, temp
,
1233 &drm
->mode_config
.plane_list
, head
) {
1234 if (destroy_plane
->possible_crtcs
== drm_crtc_mask(crtc
))
1235 destroy_plane
->funcs
->destroy(destroy_plane
);
1241 static void vc4_crtc_unbind(struct device
*dev
, struct device
*master
,
1244 struct platform_device
*pdev
= to_platform_device(dev
);
1245 struct vc4_crtc
*vc4_crtc
= dev_get_drvdata(dev
);
1247 vc4_crtc_destroy(&vc4_crtc
->base
);
1249 CRTC_WRITE(PV_INTEN
, 0);
1251 platform_set_drvdata(pdev
, NULL
);
1254 static const struct component_ops vc4_crtc_ops
= {
1255 .bind
= vc4_crtc_bind
,
1256 .unbind
= vc4_crtc_unbind
,
1259 static int vc4_crtc_dev_probe(struct platform_device
*pdev
)
1261 return component_add(&pdev
->dev
, &vc4_crtc_ops
);
1264 static int vc4_crtc_dev_remove(struct platform_device
*pdev
)
1266 component_del(&pdev
->dev
, &vc4_crtc_ops
);
1270 struct platform_driver vc4_crtc_driver
= {
1271 .probe
= vc4_crtc_dev_probe
,
1272 .remove
= vc4_crtc_dev_remove
,
1275 .of_match_table
= vc4_crtc_dt_match
,