treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_dsi.c
blobfd8a2eb60505389e637c6bb88ce29570f66adc88
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Broadcom
4 */
6 /**
7 * DOC: VC4 DSI0/DSI1 module
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11 * controller.
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
18 * hopefully present.
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
44 #define DSI_CMD_FIFO_DEPTH 16
45 #define DSI_PIX_FIFO_DEPTH 256
46 #define DSI_PIX_FIFO_WIDTH 4
48 #define DSI0_CTRL 0x00
50 /* Command packet control. */
51 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
52 #define DSI1_TXPKT1C 0x04
53 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
54 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
55 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
56 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
58 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
59 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
60 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
61 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
62 /* Primary display where cmdfifo provides part of the payload and
63 * pixelvalve the rest.
65 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
66 /* Secondary display where cmdfifo provides part of the payload and
67 * pixfifo the rest.
69 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
71 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
72 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
74 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
75 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
76 /* Command only. Uses TXPKT1H and DISPLAY_NO */
77 # define DSI_TXPKT1C_CMD_CTRL_TX 0
78 /* Command with BTA for either ack or read data. */
79 # define DSI_TXPKT1C_CMD_CTRL_RX 1
80 /* Trigger according to TRIG_CMD */
81 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
82 /* BTA alone for getting error status after a command, or a TE trigger
83 * without a previous command.
85 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
87 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
88 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
89 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
90 # define DSI_TXPKT1C_CMD_EN BIT(0)
92 /* Command packet header. */
93 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
94 #define DSI1_TXPKT1H 0x08
95 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
96 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
97 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
98 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
99 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
100 # define DSI_TXPKT1H_BC_DT_SHIFT 0
102 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
103 #define DSI1_RXPKT1H 0x14
104 # define DSI_RXPKT1H_CRC_ERR BIT(31)
105 # define DSI_RXPKT1H_DET_ERR BIT(30)
106 # define DSI_RXPKT1H_ECC_ERR BIT(29)
107 # define DSI_RXPKT1H_COR_ERR BIT(28)
108 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
109 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
110 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
111 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
112 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
113 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
114 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
115 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
116 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
117 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
118 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
119 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
121 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
122 #define DSI1_RXPKT2H 0x18
123 # define DSI_RXPKT1H_DET_ERR BIT(30)
124 # define DSI_RXPKT1H_ECC_ERR BIT(29)
125 # define DSI_RXPKT1H_COR_ERR BIT(28)
126 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
127 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
128 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
129 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
130 # define DSI_RXPKT1H_DT_SHIFT 0
132 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
133 #define DSI1_TXPKT_CMD_FIFO 0x1c
135 #define DSI0_DISP0_CTRL 0x18
136 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
137 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
138 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
139 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
140 # define DSI_DISP0_LP_STOP_DISABLE 0
141 # define DSI_DISP0_LP_STOP_PERLINE 1
142 # define DSI_DISP0_LP_STOP_PERFRAME 2
144 /* Transmit RGB pixels and null packets only during HACTIVE, instead
145 * of going to LP-STOP.
147 # define DSI_DISP_HACTIVE_NULL BIT(10)
148 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
149 # define DSI_DISP_VBLP_CTRL BIT(9)
150 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
151 # define DSI_DISP_HFP_CTRL BIT(8)
152 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
153 # define DSI_DISP_HBP_CTRL BIT(7)
154 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
155 # define DSI_DISP0_CHANNEL_SHIFT 5
156 /* Enables end events for HSYNC/VSYNC, not just start events. */
157 # define DSI_DISP0_ST_END BIT(4)
158 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
159 # define DSI_DISP0_PFORMAT_SHIFT 2
160 # define DSI_PFORMAT_RGB565 0
161 # define DSI_PFORMAT_RGB666_PACKED 1
162 # define DSI_PFORMAT_RGB666 2
163 # define DSI_PFORMAT_RGB888 3
164 /* Default is VIDEO mode. */
165 # define DSI_DISP0_COMMAND_MODE BIT(1)
166 # define DSI_DISP0_ENABLE BIT(0)
168 #define DSI0_DISP1_CTRL 0x1c
169 #define DSI1_DISP1_CTRL 0x2c
170 /* Format of the data written to TXPKT_PIX_FIFO. */
171 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
172 # define DSI_DISP1_PFORMAT_SHIFT 1
173 # define DSI_DISP1_PFORMAT_16BIT 0
174 # define DSI_DISP1_PFORMAT_24BIT 1
175 # define DSI_DISP1_PFORMAT_32BIT_LE 2
176 # define DSI_DISP1_PFORMAT_32BIT_BE 3
178 /* DISP1 is always command mode. */
179 # define DSI_DISP1_ENABLE BIT(0)
181 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
183 #define DSI0_INT_STAT 0x24
184 #define DSI0_INT_EN 0x28
185 # define DSI1_INT_PHY_D3_ULPS BIT(30)
186 # define DSI1_INT_PHY_D3_STOP BIT(29)
187 # define DSI1_INT_PHY_D2_ULPS BIT(28)
188 # define DSI1_INT_PHY_D2_STOP BIT(27)
189 # define DSI1_INT_PHY_D1_ULPS BIT(26)
190 # define DSI1_INT_PHY_D1_STOP BIT(25)
191 # define DSI1_INT_PHY_D0_ULPS BIT(24)
192 # define DSI1_INT_PHY_D0_STOP BIT(23)
193 # define DSI1_INT_FIFO_ERR BIT(22)
194 # define DSI1_INT_PHY_DIR_RTF BIT(21)
195 # define DSI1_INT_PHY_RXLPDT BIT(20)
196 # define DSI1_INT_PHY_RXTRIG BIT(19)
197 # define DSI1_INT_PHY_D0_LPDT BIT(18)
198 # define DSI1_INT_PHY_DIR_FTR BIT(17)
200 /* Signaled when the clock lane enters the given state. */
201 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
202 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
203 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
205 /* Signaled on timeouts */
206 # define DSI1_INT_PR_TO BIT(13)
207 # define DSI1_INT_TA_TO BIT(12)
208 # define DSI1_INT_LPRX_TO BIT(11)
209 # define DSI1_INT_HSTX_TO BIT(10)
211 /* Contention on a line when trying to drive the line low */
212 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
213 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
215 /* Control error: incorrect line state sequence on data lane 0. */
216 # define DSI1_INT_ERR_CONTROL BIT(7)
217 /* LPDT synchronization error (bits received not a multiple of 8. */
219 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
220 /* Signaled after receiving an error packet from the display in
221 * response to a read.
223 # define DSI1_INT_RXPKT2 BIT(5)
224 /* Signaled after receiving a packet. The header and optional short
225 * response will be in RXPKT1H, and a long response will be in the
226 * RXPKT_FIFO.
228 # define DSI1_INT_RXPKT1 BIT(4)
229 # define DSI1_INT_TXPKT2_DONE BIT(3)
230 # define DSI1_INT_TXPKT2_END BIT(2)
231 /* Signaled after all repeats of TXPKT1 are transferred. */
232 # define DSI1_INT_TXPKT1_DONE BIT(1)
233 /* Signaled after each TXPKT1 repeat is scheduled. */
234 # define DSI1_INT_TXPKT1_END BIT(0)
236 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
237 DSI1_INT_ERR_CONTROL | \
238 DSI1_INT_ERR_CONT_LP0 | \
239 DSI1_INT_ERR_CONT_LP1 | \
240 DSI1_INT_HSTX_TO | \
241 DSI1_INT_LPRX_TO | \
242 DSI1_INT_TA_TO | \
243 DSI1_INT_PR_TO)
245 #define DSI0_STAT 0x2c
246 #define DSI0_HSTX_TO_CNT 0x30
247 #define DSI0_LPRX_TO_CNT 0x34
248 #define DSI0_TA_TO_CNT 0x38
249 #define DSI0_PR_TO_CNT 0x3c
250 #define DSI0_PHYC 0x40
251 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
252 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
253 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
254 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
255 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
256 # define DSI1_PHYC_CLANE_ULPS BIT(17)
257 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
258 # define DSI_PHYC_DLANE3_ULPS BIT(13)
259 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
260 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
261 # define DSI0_PHYC_CLANE_ULPS BIT(9)
262 # define DSI_PHYC_DLANE2_ULPS BIT(9)
263 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
264 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
265 # define DSI_PHYC_DLANE1_ULPS BIT(5)
266 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
267 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
268 # define DSI_PHYC_DLANE0_ULPS BIT(1)
269 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
271 #define DSI0_HS_CLT0 0x44
272 #define DSI0_HS_CLT1 0x48
273 #define DSI0_HS_CLT2 0x4c
274 #define DSI0_HS_DLT3 0x50
275 #define DSI0_HS_DLT4 0x54
276 #define DSI0_HS_DLT5 0x58
277 #define DSI0_HS_DLT6 0x5c
278 #define DSI0_HS_DLT7 0x60
280 #define DSI0_PHY_AFEC0 0x64
281 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
282 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
283 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
284 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
285 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
286 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
287 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
288 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
289 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
290 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
291 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
292 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
293 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
294 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
296 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
298 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
300 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
301 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
302 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
303 # define DSI1_PHY_AFEC0_RESET BIT(13)
304 # define DSI1_PHY_AFEC0_PD BIT(12)
305 # define DSI0_PHY_AFEC0_RESET BIT(11)
306 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
307 # define DSI0_PHY_AFEC0_PD BIT(10)
308 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
309 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
310 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
311 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
312 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
313 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
314 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
315 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
316 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
318 #define DSI0_PHY_AFEC1 0x68
319 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
320 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
321 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
322 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
323 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
324 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
326 #define DSI0_TST_SEL 0x6c
327 #define DSI0_TST_MON 0x70
328 #define DSI0_ID 0x74
329 # define DSI_ID_VALUE 0x00647369
331 #define DSI1_CTRL 0x00
332 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
333 # define DSI_CTRL_HS_CLKC_SHIFT 14
334 # define DSI_CTRL_HS_CLKC_BYTE 0
335 # define DSI_CTRL_HS_CLKC_DDR2 1
336 # define DSI_CTRL_HS_CLKC_DDR 2
338 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
339 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
340 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
341 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
342 # define DSI_CTRL_CAL_BYTE BIT(9)
343 # define DSI_CTRL_INV_BYTE BIT(8)
344 # define DSI_CTRL_CLR_LDF BIT(7)
345 # define DSI0_CTRL_CLR_PBCF BIT(6)
346 # define DSI1_CTRL_CLR_RXF BIT(6)
347 # define DSI0_CTRL_CLR_CPBCF BIT(5)
348 # define DSI1_CTRL_CLR_PDF BIT(5)
349 # define DSI0_CTRL_CLR_PDF BIT(4)
350 # define DSI1_CTRL_CLR_CDF BIT(4)
351 # define DSI0_CTRL_CLR_CDF BIT(3)
352 # define DSI0_CTRL_CTRL2 BIT(2)
353 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
354 # define DSI0_CTRL_CTRL1 BIT(1)
355 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
356 # define DSI0_CTRL_CTRL0 BIT(0)
357 # define DSI1_CTRL_EN BIT(0)
358 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
359 DSI0_CTRL_CLR_PBCF | \
360 DSI0_CTRL_CLR_CPBCF | \
361 DSI0_CTRL_CLR_PDF | \
362 DSI0_CTRL_CLR_CDF)
363 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
364 DSI1_CTRL_CLR_RXF | \
365 DSI1_CTRL_CLR_PDF | \
366 DSI1_CTRL_CLR_CDF)
368 #define DSI1_TXPKT2C 0x0c
369 #define DSI1_TXPKT2H 0x10
370 #define DSI1_TXPKT_PIX_FIFO 0x20
371 #define DSI1_RXPKT_FIFO 0x24
372 #define DSI1_DISP0_CTRL 0x28
373 #define DSI1_INT_STAT 0x30
374 #define DSI1_INT_EN 0x34
375 /* State reporting bits. These mostly behave like INT_STAT, where
376 * writing a 1 clears the bit.
378 #define DSI1_STAT 0x38
379 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
380 # define DSI1_STAT_PHY_D3_STOP BIT(30)
381 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
382 # define DSI1_STAT_PHY_D2_STOP BIT(28)
383 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
384 # define DSI1_STAT_PHY_D1_STOP BIT(26)
385 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
386 # define DSI1_STAT_PHY_D0_STOP BIT(24)
387 # define DSI1_STAT_FIFO_ERR BIT(23)
388 # define DSI1_STAT_PHY_RXLPDT BIT(22)
389 # define DSI1_STAT_PHY_RXTRIG BIT(21)
390 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
391 /* Set when in forward direction */
392 # define DSI1_STAT_PHY_DIR BIT(19)
393 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
394 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
395 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
396 # define DSI1_STAT_PR_TO BIT(15)
397 # define DSI1_STAT_TA_TO BIT(14)
398 # define DSI1_STAT_LPRX_TO BIT(13)
399 # define DSI1_STAT_HSTX_TO BIT(12)
400 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
401 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
402 # define DSI1_STAT_ERR_CONTROL BIT(9)
403 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
404 # define DSI1_STAT_RXPKT2 BIT(7)
405 # define DSI1_STAT_RXPKT1 BIT(6)
406 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
407 # define DSI1_STAT_TXPKT2_DONE BIT(4)
408 # define DSI1_STAT_TXPKT2_END BIT(3)
409 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
410 # define DSI1_STAT_TXPKT1_DONE BIT(1)
411 # define DSI1_STAT_TXPKT1_END BIT(0)
413 #define DSI1_HSTX_TO_CNT 0x3c
414 #define DSI1_LPRX_TO_CNT 0x40
415 #define DSI1_TA_TO_CNT 0x44
416 #define DSI1_PR_TO_CNT 0x48
417 #define DSI1_PHYC 0x4c
419 #define DSI1_HS_CLT0 0x50
420 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
421 # define DSI_HS_CLT0_CZERO_SHIFT 18
422 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
423 # define DSI_HS_CLT0_CPRE_SHIFT 9
424 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
425 # define DSI_HS_CLT0_CPREP_SHIFT 0
427 #define DSI1_HS_CLT1 0x54
428 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
429 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
430 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
431 # define DSI_HS_CLT1_CPOST_SHIFT 0
433 #define DSI1_HS_CLT2 0x58
434 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
435 # define DSI_HS_CLT2_WUP_SHIFT 0
437 #define DSI1_HS_DLT3 0x5c
438 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
439 # define DSI_HS_DLT3_EXIT_SHIFT 18
440 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
441 # define DSI_HS_DLT3_ZERO_SHIFT 9
442 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
443 # define DSI_HS_DLT3_PRE_SHIFT 0
445 #define DSI1_HS_DLT4 0x60
446 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
447 # define DSI_HS_DLT4_ANLAT_SHIFT 18
448 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
449 # define DSI_HS_DLT4_TRAIL_SHIFT 9
450 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
451 # define DSI_HS_DLT4_LPX_SHIFT 0
453 #define DSI1_HS_DLT5 0x64
454 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
455 # define DSI_HS_DLT5_INIT_SHIFT 0
457 #define DSI1_HS_DLT6 0x68
458 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
459 # define DSI_HS_DLT6_TA_GET_SHIFT 24
460 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
461 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
462 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
463 # define DSI_HS_DLT6_TA_GO_SHIFT 8
464 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
465 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
467 #define DSI1_HS_DLT7 0x6c
468 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
469 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
471 #define DSI1_PHY_AFEC0 0x70
473 #define DSI1_PHY_AFEC1 0x74
474 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
478 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
482 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
485 #define DSI1_TST_SEL 0x78
486 #define DSI1_TST_MON 0x7c
487 #define DSI1_PHY_TST1 0x80
488 #define DSI1_PHY_TST2 0x84
489 #define DSI1_PHY_FIFO_STAT 0x88
490 /* Actually, all registers in the range that aren't otherwise claimed
491 * will return the ID.
493 #define DSI1_ID 0x8c
495 /* General DSI hardware state. */
496 struct vc4_dsi {
497 struct platform_device *pdev;
499 struct mipi_dsi_host dsi_host;
500 struct drm_encoder *encoder;
501 struct drm_bridge *bridge;
502 struct list_head bridge_chain;
504 void __iomem *regs;
506 struct dma_chan *reg_dma_chan;
507 dma_addr_t reg_dma_paddr;
508 u32 *reg_dma_mem;
509 dma_addr_t reg_paddr;
511 /* Whether we're on bcm2835's DSI0 or DSI1. */
512 int port;
514 /* DSI channel for the panel we're connected to. */
515 u32 channel;
516 u32 lanes;
517 u32 format;
518 u32 divider;
519 u32 mode_flags;
521 /* Input clock from CPRMAN to the digital PHY, for the DSI
522 * escape clock.
524 struct clk *escape_clock;
526 /* Input clock to the analog PHY, used to generate the DSI bit
527 * clock.
529 struct clk *pll_phy_clock;
531 /* HS Clocks generated within the DSI analog PHY. */
532 struct clk_fixed_factor phy_clocks[3];
534 struct clk_hw_onecell_data *clk_onecell;
536 /* Pixel clock output to the pixelvalve, generated from the HS
537 * clock.
539 struct clk *pixel_clock;
541 struct completion xfer_completion;
542 int xfer_result;
544 struct debugfs_regset32 regset;
547 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
549 static inline void
550 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
552 struct dma_chan *chan = dsi->reg_dma_chan;
553 struct dma_async_tx_descriptor *tx;
554 dma_cookie_t cookie;
555 int ret;
557 /* DSI0 should be able to write normally. */
558 if (!chan) {
559 writel(val, dsi->regs + offset);
560 return;
563 *dsi->reg_dma_mem = val;
565 tx = chan->device->device_prep_dma_memcpy(chan,
566 dsi->reg_paddr + offset,
567 dsi->reg_dma_paddr,
568 4, 0);
569 if (!tx) {
570 DRM_ERROR("Failed to set up DMA register write\n");
571 return;
574 cookie = tx->tx_submit(tx);
575 ret = dma_submit_error(cookie);
576 if (ret) {
577 DRM_ERROR("Failed to submit DMA: %d\n", ret);
578 return;
580 ret = dma_sync_wait(chan, cookie);
581 if (ret)
582 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
585 #define DSI_READ(offset) readl(dsi->regs + (offset))
586 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
587 #define DSI_PORT_READ(offset) \
588 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
589 #define DSI_PORT_WRITE(offset, val) \
590 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
591 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
593 /* VC4 DSI encoder KMS struct */
594 struct vc4_dsi_encoder {
595 struct vc4_encoder base;
596 struct vc4_dsi *dsi;
599 static inline struct vc4_dsi_encoder *
600 to_vc4_dsi_encoder(struct drm_encoder *encoder)
602 return container_of(encoder, struct vc4_dsi_encoder, base.base);
605 static const struct debugfs_reg32 dsi0_regs[] = {
606 VC4_REG32(DSI0_CTRL),
607 VC4_REG32(DSI0_STAT),
608 VC4_REG32(DSI0_HSTX_TO_CNT),
609 VC4_REG32(DSI0_LPRX_TO_CNT),
610 VC4_REG32(DSI0_TA_TO_CNT),
611 VC4_REG32(DSI0_PR_TO_CNT),
612 VC4_REG32(DSI0_DISP0_CTRL),
613 VC4_REG32(DSI0_DISP1_CTRL),
614 VC4_REG32(DSI0_INT_STAT),
615 VC4_REG32(DSI0_INT_EN),
616 VC4_REG32(DSI0_PHYC),
617 VC4_REG32(DSI0_HS_CLT0),
618 VC4_REG32(DSI0_HS_CLT1),
619 VC4_REG32(DSI0_HS_CLT2),
620 VC4_REG32(DSI0_HS_DLT3),
621 VC4_REG32(DSI0_HS_DLT4),
622 VC4_REG32(DSI0_HS_DLT5),
623 VC4_REG32(DSI0_HS_DLT6),
624 VC4_REG32(DSI0_HS_DLT7),
625 VC4_REG32(DSI0_PHY_AFEC0),
626 VC4_REG32(DSI0_PHY_AFEC1),
627 VC4_REG32(DSI0_ID),
630 static const struct debugfs_reg32 dsi1_regs[] = {
631 VC4_REG32(DSI1_CTRL),
632 VC4_REG32(DSI1_STAT),
633 VC4_REG32(DSI1_HSTX_TO_CNT),
634 VC4_REG32(DSI1_LPRX_TO_CNT),
635 VC4_REG32(DSI1_TA_TO_CNT),
636 VC4_REG32(DSI1_PR_TO_CNT),
637 VC4_REG32(DSI1_DISP0_CTRL),
638 VC4_REG32(DSI1_DISP1_CTRL),
639 VC4_REG32(DSI1_INT_STAT),
640 VC4_REG32(DSI1_INT_EN),
641 VC4_REG32(DSI1_PHYC),
642 VC4_REG32(DSI1_HS_CLT0),
643 VC4_REG32(DSI1_HS_CLT1),
644 VC4_REG32(DSI1_HS_CLT2),
645 VC4_REG32(DSI1_HS_DLT3),
646 VC4_REG32(DSI1_HS_DLT4),
647 VC4_REG32(DSI1_HS_DLT5),
648 VC4_REG32(DSI1_HS_DLT6),
649 VC4_REG32(DSI1_HS_DLT7),
650 VC4_REG32(DSI1_PHY_AFEC0),
651 VC4_REG32(DSI1_PHY_AFEC1),
652 VC4_REG32(DSI1_ID),
655 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
657 drm_encoder_cleanup(encoder);
660 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
661 .destroy = vc4_dsi_encoder_destroy,
664 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
666 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
668 if (latch)
669 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
670 else
671 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
673 DSI_PORT_WRITE(PHY_AFEC0, afec0);
676 /* Enters or exits Ultra Low Power State. */
677 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
679 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
680 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
681 DSI_PHYC_DLANE0_ULPS |
682 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
683 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
684 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
685 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
686 DSI1_STAT_PHY_D0_ULPS |
687 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
688 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
689 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
690 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
691 DSI1_STAT_PHY_D0_STOP |
692 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
693 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
694 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
695 int ret;
696 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
697 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
699 if (ulps == ulps_currently_enabled)
700 return;
702 DSI_PORT_WRITE(STAT, stat_ulps);
703 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
704 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
705 if (ret) {
706 dev_warn(&dsi->pdev->dev,
707 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
708 DSI_PORT_READ(STAT));
709 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
710 vc4_dsi_latch_ulps(dsi, false);
711 return;
714 /* The DSI module can't be disabled while the module is
715 * generating ULPS state. So, to be able to disable the
716 * module, we have the AFE latch the ULPS state and continue
717 * on to having the module enter STOP.
719 vc4_dsi_latch_ulps(dsi, ulps);
721 DSI_PORT_WRITE(STAT, stat_stop);
722 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
723 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
724 if (ret) {
725 dev_warn(&dsi->pdev->dev,
726 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
727 DSI_PORT_READ(STAT));
728 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
729 return;
733 static u32
734 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
736 /* The HS timings have to be rounded up to a multiple of 8
737 * because we're using the byte clock.
739 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
742 /* ESC always runs at 100Mhz. */
743 #define ESC_TIME_NS 10
745 static u32
746 dsi_esc_timing(u32 ns)
748 return DIV_ROUND_UP(ns, ESC_TIME_NS);
751 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
753 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
754 struct vc4_dsi *dsi = vc4_encoder->dsi;
755 struct device *dev = &dsi->pdev->dev;
756 struct drm_bridge *iter;
758 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
759 if (iter->funcs->disable)
760 iter->funcs->disable(iter);
763 vc4_dsi_ulps(dsi, true);
765 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
766 if (iter->funcs->post_disable)
767 iter->funcs->post_disable(iter);
770 clk_disable_unprepare(dsi->pll_phy_clock);
771 clk_disable_unprepare(dsi->escape_clock);
772 clk_disable_unprepare(dsi->pixel_clock);
774 pm_runtime_put(dev);
777 /* Extends the mode's blank intervals to handle BCM2835's integer-only
778 * DSI PLL divider.
780 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
781 * driver since most peripherals are hanging off of the PLLD_PER
782 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
783 * the pixel clock), only has an integer divider off of DSI.
785 * To get our panel mode to refresh at the expected 60Hz, we need to
786 * extend the horizontal blank time. This means we drive a
787 * higher-than-expected clock rate to the panel, but that's what the
788 * firmware does too.
790 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
791 const struct drm_display_mode *mode,
792 struct drm_display_mode *adjusted_mode)
794 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
795 struct vc4_dsi *dsi = vc4_encoder->dsi;
796 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
797 unsigned long parent_rate = clk_get_rate(phy_parent);
798 unsigned long pixel_clock_hz = mode->clock * 1000;
799 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
800 int divider;
802 /* Find what divider gets us a faster clock than the requested
803 * pixel clock.
805 for (divider = 1; divider < 8; divider++) {
806 if (parent_rate / divider < pll_clock) {
807 divider--;
808 break;
812 /* Now that we've picked a PLL divider, calculate back to its
813 * pixel clock.
815 pll_clock = parent_rate / divider;
816 pixel_clock_hz = pll_clock / dsi->divider;
818 adjusted_mode->clock = pixel_clock_hz / 1000;
820 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
821 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
822 mode->clock;
823 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
824 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
826 return true;
829 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
831 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
832 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
833 struct vc4_dsi *dsi = vc4_encoder->dsi;
834 struct device *dev = &dsi->pdev->dev;
835 bool debug_dump_regs = false;
836 struct drm_bridge *iter;
837 unsigned long hs_clock;
838 u32 ui_ns;
839 /* Minimum LP state duration in escape clock cycles. */
840 u32 lpx = dsi_esc_timing(60);
841 unsigned long pixel_clock_hz = mode->clock * 1000;
842 unsigned long dsip_clock;
843 unsigned long phy_clock;
844 int ret;
846 ret = pm_runtime_get_sync(dev);
847 if (ret) {
848 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
849 return;
852 if (debug_dump_regs) {
853 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
854 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
855 drm_print_regset32(&p, &dsi->regset);
858 /* Round up the clk_set_rate() request slightly, since
859 * PLLD_DSI1 is an integer divider and its rate selection will
860 * never round up.
862 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
863 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
864 if (ret) {
865 dev_err(&dsi->pdev->dev,
866 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
869 /* Reset the DSI and all its fifos. */
870 DSI_PORT_WRITE(CTRL,
871 DSI_CTRL_SOFT_RESET_CFG |
872 DSI_PORT_BIT(CTRL_RESET_FIFOS));
874 DSI_PORT_WRITE(CTRL,
875 DSI_CTRL_HSDT_EOT_DISABLE |
876 DSI_CTRL_RX_LPDT_EOT_DISABLE);
878 /* Clear all stat bits so we see what has happened during enable. */
879 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
881 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
882 if (dsi->port == 0) {
883 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
884 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
886 if (dsi->lanes < 2)
887 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
889 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
890 afec0 |= DSI0_PHY_AFEC0_RESET;
892 DSI_PORT_WRITE(PHY_AFEC0, afec0);
894 DSI_PORT_WRITE(PHY_AFEC1,
895 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
896 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
897 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
898 } else {
899 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
900 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
901 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
902 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
903 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
904 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
905 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
907 if (dsi->lanes < 4)
908 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
909 if (dsi->lanes < 3)
910 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
911 if (dsi->lanes < 2)
912 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
914 afec0 |= DSI1_PHY_AFEC0_RESET;
916 DSI_PORT_WRITE(PHY_AFEC0, afec0);
918 DSI_PORT_WRITE(PHY_AFEC1, 0);
920 /* AFEC reset hold time */
921 mdelay(1);
924 ret = clk_prepare_enable(dsi->escape_clock);
925 if (ret) {
926 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
927 return;
930 ret = clk_prepare_enable(dsi->pll_phy_clock);
931 if (ret) {
932 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
933 return;
936 hs_clock = clk_get_rate(dsi->pll_phy_clock);
938 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
939 * not the pixel clock rate. DSIxP take from the APHY's byte,
940 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
941 * that rate. Separately, a value derived from PIX_CLK_DIV
942 * and HS_CLKC is fed into the PV to divide down to the actual
943 * pixel clock for pushing pixels into DSI.
945 dsip_clock = phy_clock / 8;
946 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
947 if (ret) {
948 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
949 dsip_clock, ret);
952 ret = clk_prepare_enable(dsi->pixel_clock);
953 if (ret) {
954 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
955 return;
958 /* How many ns one DSI unit interval is. Note that the clock
959 * is DDR, so there's an extra divide by 2.
961 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
963 DSI_PORT_WRITE(HS_CLT0,
964 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
965 DSI_HS_CLT0_CZERO) |
966 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
967 DSI_HS_CLT0_CPRE) |
968 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
969 DSI_HS_CLT0_CPREP));
971 DSI_PORT_WRITE(HS_CLT1,
972 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
973 DSI_HS_CLT1_CTRAIL) |
974 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
975 DSI_HS_CLT1_CPOST));
977 DSI_PORT_WRITE(HS_CLT2,
978 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
979 DSI_HS_CLT2_WUP));
981 DSI_PORT_WRITE(HS_DLT3,
982 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
983 DSI_HS_DLT3_EXIT) |
984 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
985 DSI_HS_DLT3_ZERO) |
986 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
987 DSI_HS_DLT3_PRE));
989 DSI_PORT_WRITE(HS_DLT4,
990 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
991 DSI_HS_DLT4_LPX) |
992 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
993 dsi_hs_timing(ui_ns, 60, 4)),
994 DSI_HS_DLT4_TRAIL) |
995 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
997 /* T_INIT is how long STOP is driven after power-up to
998 * indicate to the slave (also coming out of power-up) that
999 * master init is complete, and should be greater than the
1000 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1001 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1002 * T_INIT,SLAVE, while allowing protocols on top of it to give
1003 * greater minimums. The vc4 firmware uses an extremely
1004 * conservative 5ms, and we maintain that here.
1006 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1007 5 * 1000 * 1000, 0),
1008 DSI_HS_DLT5_INIT));
1010 DSI_PORT_WRITE(HS_DLT6,
1011 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1012 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1013 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1014 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1016 DSI_PORT_WRITE(HS_DLT7,
1017 VC4_SET_FIELD(dsi_esc_timing(1000000),
1018 DSI_HS_DLT7_LP_WUP));
1020 DSI_PORT_WRITE(PHYC,
1021 DSI_PHYC_DLANE0_ENABLE |
1022 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1023 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1024 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1025 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1026 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1027 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1028 (dsi->port == 0 ?
1029 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1030 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1032 DSI_PORT_WRITE(CTRL,
1033 DSI_PORT_READ(CTRL) |
1034 DSI_CTRL_CAL_BYTE);
1036 /* HS timeout in HS clock cycles: disabled. */
1037 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1038 /* LP receive timeout in HS clocks. */
1039 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1040 /* Bus turnaround timeout */
1041 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1042 /* Display reset sequence timeout */
1043 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1045 /* Set up DISP1 for transferring long command payloads through
1046 * the pixfifo.
1048 DSI_PORT_WRITE(DISP1_CTRL,
1049 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1050 DSI_DISP1_PFORMAT) |
1051 DSI_DISP1_ENABLE);
1053 /* Ungate the block. */
1054 if (dsi->port == 0)
1055 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1056 else
1057 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1059 /* Bring AFE out of reset. */
1060 if (dsi->port == 0) {
1061 } else {
1062 DSI_PORT_WRITE(PHY_AFEC0,
1063 DSI_PORT_READ(PHY_AFEC0) &
1064 ~DSI1_PHY_AFEC0_RESET);
1067 vc4_dsi_ulps(dsi, false);
1069 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1070 if (iter->funcs->pre_enable)
1071 iter->funcs->pre_enable(iter);
1074 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1075 DSI_PORT_WRITE(DISP0_CTRL,
1076 VC4_SET_FIELD(dsi->divider,
1077 DSI_DISP0_PIX_CLK_DIV) |
1078 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1079 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1080 DSI_DISP0_LP_STOP_CTRL) |
1081 DSI_DISP0_ST_END |
1082 DSI_DISP0_ENABLE);
1083 } else {
1084 DSI_PORT_WRITE(DISP0_CTRL,
1085 DSI_DISP0_COMMAND_MODE |
1086 DSI_DISP0_ENABLE);
1089 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1090 if (iter->funcs->enable)
1091 iter->funcs->enable(iter);
1094 if (debug_dump_regs) {
1095 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1096 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1097 drm_print_regset32(&p, &dsi->regset);
1101 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1102 const struct mipi_dsi_msg *msg)
1104 struct vc4_dsi *dsi = host_to_dsi(host);
1105 struct mipi_dsi_packet packet;
1106 u32 pkth = 0, pktc = 0;
1107 int i, ret;
1108 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1109 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1111 mipi_dsi_create_packet(&packet, msg);
1113 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1114 pkth |= VC4_SET_FIELD(packet.header[1] |
1115 (packet.header[2] << 8),
1116 DSI_TXPKT1H_BC_PARAM);
1117 if (is_long) {
1118 /* Divide data across the various FIFOs we have available.
1119 * The command FIFO takes byte-oriented data, but is of
1120 * limited size. The pixel FIFO (never actually used for
1121 * pixel data in reality) is word oriented, and substantially
1122 * larger. So, we use the pixel FIFO for most of the data,
1123 * sending the residual bytes in the command FIFO at the start.
1125 * With this arrangement, the command FIFO will never get full.
1127 if (packet.payload_length <= 16) {
1128 cmd_fifo_len = packet.payload_length;
1129 pix_fifo_len = 0;
1130 } else {
1131 cmd_fifo_len = (packet.payload_length %
1132 DSI_PIX_FIFO_WIDTH);
1133 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1134 DSI_PIX_FIFO_WIDTH);
1137 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1139 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1142 if (msg->rx_len) {
1143 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1144 DSI_TXPKT1C_CMD_CTRL);
1145 } else {
1146 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1147 DSI_TXPKT1C_CMD_CTRL);
1150 for (i = 0; i < cmd_fifo_len; i++)
1151 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1152 for (i = 0; i < pix_fifo_len; i++) {
1153 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1155 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1156 pix[0] |
1157 pix[1] << 8 |
1158 pix[2] << 16 |
1159 pix[3] << 24);
1162 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1163 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1164 if (is_long)
1165 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1167 /* Send one copy of the packet. Larger repeats are used for pixel
1168 * data in command mode.
1170 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1172 pktc |= DSI_TXPKT1C_CMD_EN;
1173 if (pix_fifo_len) {
1174 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1175 DSI_TXPKT1C_DISPLAY_NO);
1176 } else {
1177 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1178 DSI_TXPKT1C_DISPLAY_NO);
1181 /* Enable the appropriate interrupt for the transfer completion. */
1182 dsi->xfer_result = 0;
1183 reinit_completion(&dsi->xfer_completion);
1184 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1185 if (msg->rx_len) {
1186 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1187 DSI1_INT_PHY_DIR_RTF));
1188 } else {
1189 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1190 DSI1_INT_TXPKT1_DONE));
1193 /* Send the packet. */
1194 DSI_PORT_WRITE(TXPKT1H, pkth);
1195 DSI_PORT_WRITE(TXPKT1C, pktc);
1197 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1198 msecs_to_jiffies(1000))) {
1199 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1200 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1201 DSI_PORT_READ(INT_STAT));
1202 ret = -ETIMEDOUT;
1203 } else {
1204 ret = dsi->xfer_result;
1207 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1209 if (ret)
1210 goto reset_fifo_and_return;
1212 if (ret == 0 && msg->rx_len) {
1213 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1214 u8 *msg_rx = msg->rx_buf;
1216 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1217 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1218 DSI_RXPKT1H_BC_PARAM);
1220 if (rxlen != msg->rx_len) {
1221 DRM_ERROR("DSI returned %db, expecting %db\n",
1222 rxlen, (int)msg->rx_len);
1223 ret = -ENXIO;
1224 goto reset_fifo_and_return;
1227 for (i = 0; i < msg->rx_len; i++)
1228 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1229 } else {
1230 /* FINISHME: Handle AWER */
1232 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1233 DSI_RXPKT1H_SHORT_0);
1234 if (msg->rx_len > 1) {
1235 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1236 DSI_RXPKT1H_SHORT_1);
1241 return ret;
1243 reset_fifo_and_return:
1244 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1246 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1247 udelay(1);
1248 DSI_PORT_WRITE(CTRL,
1249 DSI_PORT_READ(CTRL) |
1250 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1252 DSI_PORT_WRITE(TXPKT1C, 0);
1253 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1254 return ret;
1257 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1258 struct mipi_dsi_device *device)
1260 struct vc4_dsi *dsi = host_to_dsi(host);
1262 dsi->lanes = device->lanes;
1263 dsi->channel = device->channel;
1264 dsi->mode_flags = device->mode_flags;
1266 switch (device->format) {
1267 case MIPI_DSI_FMT_RGB888:
1268 dsi->format = DSI_PFORMAT_RGB888;
1269 dsi->divider = 24 / dsi->lanes;
1270 break;
1271 case MIPI_DSI_FMT_RGB666:
1272 dsi->format = DSI_PFORMAT_RGB666;
1273 dsi->divider = 24 / dsi->lanes;
1274 break;
1275 case MIPI_DSI_FMT_RGB666_PACKED:
1276 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1277 dsi->divider = 18 / dsi->lanes;
1278 break;
1279 case MIPI_DSI_FMT_RGB565:
1280 dsi->format = DSI_PFORMAT_RGB565;
1281 dsi->divider = 16 / dsi->lanes;
1282 break;
1283 default:
1284 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1285 dsi->format);
1286 return 0;
1289 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1290 dev_err(&dsi->pdev->dev,
1291 "Only VIDEO mode panels supported currently.\n");
1292 return 0;
1295 return 0;
1298 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1299 struct mipi_dsi_device *device)
1301 return 0;
1304 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1305 .attach = vc4_dsi_host_attach,
1306 .detach = vc4_dsi_host_detach,
1307 .transfer = vc4_dsi_host_transfer,
1310 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1311 .disable = vc4_dsi_encoder_disable,
1312 .enable = vc4_dsi_encoder_enable,
1313 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1316 static const struct of_device_id vc4_dsi_dt_match[] = {
1317 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1321 static void dsi_handle_error(struct vc4_dsi *dsi,
1322 irqreturn_t *ret, u32 stat, u32 bit,
1323 const char *type)
1325 if (!(stat & bit))
1326 return;
1328 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1329 *ret = IRQ_HANDLED;
1333 * Initial handler for port 1 where we need the reg_dma workaround.
1334 * The register DMA writes sleep, so we can't do it in the top half.
1335 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1336 * parent interrupt contrller until our interrupt thread is done.
1338 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1340 struct vc4_dsi *dsi = data;
1341 u32 stat = DSI_PORT_READ(INT_STAT);
1343 if (!stat)
1344 return IRQ_NONE;
1346 return IRQ_WAKE_THREAD;
1350 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1351 * 1 where we need the reg_dma workaround.
1353 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1355 struct vc4_dsi *dsi = data;
1356 u32 stat = DSI_PORT_READ(INT_STAT);
1357 irqreturn_t ret = IRQ_NONE;
1359 DSI_PORT_WRITE(INT_STAT, stat);
1361 dsi_handle_error(dsi, &ret, stat,
1362 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1363 dsi_handle_error(dsi, &ret, stat,
1364 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1365 dsi_handle_error(dsi, &ret, stat,
1366 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1367 dsi_handle_error(dsi, &ret, stat,
1368 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1369 dsi_handle_error(dsi, &ret, stat,
1370 DSI1_INT_HSTX_TO, "HSTX timeout");
1371 dsi_handle_error(dsi, &ret, stat,
1372 DSI1_INT_LPRX_TO, "LPRX timeout");
1373 dsi_handle_error(dsi, &ret, stat,
1374 DSI1_INT_TA_TO, "turnaround timeout");
1375 dsi_handle_error(dsi, &ret, stat,
1376 DSI1_INT_PR_TO, "peripheral reset timeout");
1378 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1379 complete(&dsi->xfer_completion);
1380 ret = IRQ_HANDLED;
1381 } else if (stat & DSI1_INT_HSTX_TO) {
1382 complete(&dsi->xfer_completion);
1383 dsi->xfer_result = -ETIMEDOUT;
1384 ret = IRQ_HANDLED;
1387 return ret;
1391 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1392 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1393 * @dsi: DSI encoder
1395 static int
1396 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1398 struct device *dev = &dsi->pdev->dev;
1399 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1400 static const struct {
1401 const char *dsi0_name, *dsi1_name;
1402 int div;
1403 } phy_clocks[] = {
1404 { "dsi0_byte", "dsi1_byte", 8 },
1405 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1406 { "dsi0_ddr", "dsi1_ddr", 2 },
1408 int i;
1410 dsi->clk_onecell = devm_kzalloc(dev,
1411 sizeof(*dsi->clk_onecell) +
1412 ARRAY_SIZE(phy_clocks) *
1413 sizeof(struct clk_hw *),
1414 GFP_KERNEL);
1415 if (!dsi->clk_onecell)
1416 return -ENOMEM;
1417 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1419 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1420 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1421 struct clk_init_data init;
1422 int ret;
1424 /* We just use core fixed factor clock ops for the PHY
1425 * clocks. The clocks are actually gated by the
1426 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1427 * setting if we use the DDR/DDR2 clocks. However,
1428 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1429 * setting both our parent DSI PLL's rate and this
1430 * clock's rate, so it knows if DDR/DDR2 are going to
1431 * be used and could enable the gates itself.
1433 fix->mult = 1;
1434 fix->div = phy_clocks[i].div;
1435 fix->hw.init = &init;
1437 memset(&init, 0, sizeof(init));
1438 init.parent_names = &parent_name;
1439 init.num_parents = 1;
1440 if (dsi->port == 1)
1441 init.name = phy_clocks[i].dsi1_name;
1442 else
1443 init.name = phy_clocks[i].dsi0_name;
1444 init.ops = &clk_fixed_factor_ops;
1446 ret = devm_clk_hw_register(dev, &fix->hw);
1447 if (ret)
1448 return ret;
1450 dsi->clk_onecell->hws[i] = &fix->hw;
1453 return of_clk_add_hw_provider(dev->of_node,
1454 of_clk_hw_onecell_get,
1455 dsi->clk_onecell);
1458 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1460 struct platform_device *pdev = to_platform_device(dev);
1461 struct drm_device *drm = dev_get_drvdata(master);
1462 struct vc4_dev *vc4 = to_vc4_dev(drm);
1463 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1464 struct vc4_dsi_encoder *vc4_dsi_encoder;
1465 struct drm_panel *panel;
1466 const struct of_device_id *match;
1467 dma_cap_mask_t dma_mask;
1468 int ret;
1470 match = of_match_device(vc4_dsi_dt_match, dev);
1471 if (!match)
1472 return -ENODEV;
1474 dsi->port = (uintptr_t)match->data;
1476 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1477 GFP_KERNEL);
1478 if (!vc4_dsi_encoder)
1479 return -ENOMEM;
1481 INIT_LIST_HEAD(&dsi->bridge_chain);
1482 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1483 vc4_dsi_encoder->dsi = dsi;
1484 dsi->encoder = &vc4_dsi_encoder->base.base;
1486 dsi->regs = vc4_ioremap_regs(pdev, 0);
1487 if (IS_ERR(dsi->regs))
1488 return PTR_ERR(dsi->regs);
1490 dsi->regset.base = dsi->regs;
1491 if (dsi->port == 0) {
1492 dsi->regset.regs = dsi0_regs;
1493 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1494 } else {
1495 dsi->regset.regs = dsi1_regs;
1496 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1499 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1500 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1501 DSI_PORT_READ(ID), DSI_ID_VALUE);
1502 return -ENODEV;
1505 /* DSI1 has a broken AXI slave that doesn't respond to writes
1506 * from the ARM. It does handle writes from the DMA engine,
1507 * so set up a channel for talking to it.
1509 if (dsi->port == 1) {
1510 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1511 &dsi->reg_dma_paddr,
1512 GFP_KERNEL);
1513 if (!dsi->reg_dma_mem) {
1514 DRM_ERROR("Failed to get DMA memory\n");
1515 return -ENOMEM;
1518 dma_cap_zero(dma_mask);
1519 dma_cap_set(DMA_MEMCPY, dma_mask);
1520 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1521 if (IS_ERR(dsi->reg_dma_chan)) {
1522 ret = PTR_ERR(dsi->reg_dma_chan);
1523 if (ret != -EPROBE_DEFER)
1524 DRM_ERROR("Failed to get DMA channel: %d\n",
1525 ret);
1526 return ret;
1529 /* Get the physical address of the device's registers. The
1530 * struct resource for the regs gives us the bus address
1531 * instead.
1533 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1534 0, NULL, NULL));
1537 init_completion(&dsi->xfer_completion);
1538 /* At startup enable error-reporting interrupts and nothing else. */
1539 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1540 /* Clear any existing interrupt state. */
1541 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1543 if (dsi->reg_dma_mem)
1544 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1545 vc4_dsi_irq_defer_to_thread_handler,
1546 vc4_dsi_irq_handler,
1547 IRQF_ONESHOT,
1548 "vc4 dsi", dsi);
1549 else
1550 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1551 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1552 if (ret) {
1553 if (ret != -EPROBE_DEFER)
1554 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1555 return ret;
1558 dsi->escape_clock = devm_clk_get(dev, "escape");
1559 if (IS_ERR(dsi->escape_clock)) {
1560 ret = PTR_ERR(dsi->escape_clock);
1561 if (ret != -EPROBE_DEFER)
1562 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1563 return ret;
1566 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1567 if (IS_ERR(dsi->pll_phy_clock)) {
1568 ret = PTR_ERR(dsi->pll_phy_clock);
1569 if (ret != -EPROBE_DEFER)
1570 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1571 return ret;
1574 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1575 if (IS_ERR(dsi->pixel_clock)) {
1576 ret = PTR_ERR(dsi->pixel_clock);
1577 if (ret != -EPROBE_DEFER)
1578 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1579 return ret;
1582 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1583 &panel, &dsi->bridge);
1584 if (ret) {
1585 /* If the bridge or panel pointed by dev->of_node is not
1586 * enabled, just return 0 here so that we don't prevent the DRM
1587 * dev from being registered. Of course that means the DSI
1588 * encoder won't be exposed, but that's not a problem since
1589 * nothing is connected to it.
1591 if (ret == -ENODEV)
1592 return 0;
1594 return ret;
1597 if (panel) {
1598 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1599 DRM_MODE_CONNECTOR_DSI);
1600 if (IS_ERR(dsi->bridge))
1601 return PTR_ERR(dsi->bridge);
1604 /* The esc clock rate is supposed to always be 100Mhz. */
1605 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1606 if (ret) {
1607 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1608 return ret;
1611 ret = vc4_dsi_init_phy_clocks(dsi);
1612 if (ret)
1613 return ret;
1615 if (dsi->port == 1)
1616 vc4->dsi1 = dsi;
1618 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1619 DRM_MODE_ENCODER_DSI, NULL);
1620 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1622 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1623 if (ret) {
1624 dev_err(dev, "bridge attach failed: %d\n", ret);
1625 return ret;
1627 /* Disable the atomic helper calls into the bridge. We
1628 * manually call the bridge pre_enable / enable / etc. calls
1629 * from our driver, since we need to sequence them within the
1630 * encoder's enable/disable paths.
1632 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1634 if (dsi->port == 0)
1635 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1636 else
1637 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1639 pm_runtime_enable(dev);
1641 return 0;
1644 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1645 void *data)
1647 struct drm_device *drm = dev_get_drvdata(master);
1648 struct vc4_dev *vc4 = to_vc4_dev(drm);
1649 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1651 if (dsi->bridge)
1652 pm_runtime_disable(dev);
1655 * Restore the bridge_chain so the bridge detach procedure can happen
1656 * normally.
1658 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1659 vc4_dsi_encoder_destroy(dsi->encoder);
1661 if (dsi->port == 1)
1662 vc4->dsi1 = NULL;
1665 static const struct component_ops vc4_dsi_ops = {
1666 .bind = vc4_dsi_bind,
1667 .unbind = vc4_dsi_unbind,
1670 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1672 struct device *dev = &pdev->dev;
1673 struct vc4_dsi *dsi;
1674 int ret;
1676 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1677 if (!dsi)
1678 return -ENOMEM;
1679 dev_set_drvdata(dev, dsi);
1681 dsi->pdev = pdev;
1683 /* Note, the initialization sequence for DSI and panels is
1684 * tricky. The component bind above won't get past its
1685 * -EPROBE_DEFER until the panel/bridge probes. The
1686 * panel/bridge will return -EPROBE_DEFER until it has a
1687 * mipi_dsi_host to register its device to. So, we register
1688 * the host during pdev probe time, so vc4 as a whole can then
1689 * -EPROBE_DEFER its component bind process until the panel
1690 * successfully attaches.
1692 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1693 dsi->dsi_host.dev = dev;
1694 mipi_dsi_host_register(&dsi->dsi_host);
1696 ret = component_add(&pdev->dev, &vc4_dsi_ops);
1697 if (ret) {
1698 mipi_dsi_host_unregister(&dsi->dsi_host);
1699 return ret;
1702 return 0;
1705 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1707 struct device *dev = &pdev->dev;
1708 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1710 component_del(&pdev->dev, &vc4_dsi_ops);
1711 mipi_dsi_host_unregister(&dsi->dsi_host);
1713 return 0;
1716 struct platform_driver vc4_dsi_driver = {
1717 .probe = vc4_dsi_dev_probe,
1718 .remove = vc4_dsi_dev_remove,
1719 .driver = {
1720 .name = "vc4_dsi",
1721 .of_match_table = vc4_dsi_dt_match,