treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / hwmon / hwmon-vid.c
blob8ae68dfa75b23a7156e184f7e7bd668dc66475f5
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * hwmon-vid.c - VID/VRM/VRD voltage conversions
5 * Copyright (c) 2004 Rudolf Marek <r.marek@assembler.cz>
7 * Partly imported from i2c-vid.h of the lm_sensors project
8 * Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
9 * With assistance from Trent Piepho <xyzzy@speakeasy.org>
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/hwmon-vid.h>
19 * Common code for decoding VID pins.
21 * References:
23 * For VRM 8.4 to 9.1, "VRM x.y DC-DC Converter Design Guidelines",
24 * available at http://developer.intel.com/.
26 * For VRD 10.0 and up, "VRD x.y Design Guide",
27 * available at http://developer.intel.com/.
29 * AMD Athlon 64 and AMD Opteron Processors, AMD Publication 26094,
30 * http://support.amd.com/us/Processor_TechDocs/26094.PDF
31 * Table 74. VID Code Voltages
32 * This corresponds to an arbitrary VRM code of 24 in the functions below.
33 * These CPU models (K8 revision <= E) have 5 VID pins. See also:
34 * Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Publication 25759,
35 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf
37 * AMD NPT Family 0Fh Processors, AMD Publication 32559,
38 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
39 * Table 71. VID Code Voltages
40 * This corresponds to an arbitrary VRM code of 25 in the functions below.
41 * These CPU models (K8 revision >= F) have 6 VID pins. See also:
42 * Revision Guide for AMD NPT Family 0Fh Processors, AMD Publication 33610,
43 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
45 * The 17 specification is in fact Intel Mobile Voltage Positioning -
46 * (IMVP-II). You can find more information in the datasheet of Max1718
47 * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2452
49 * The 13 specification corresponds to the Intel Pentium M series. There
50 * doesn't seem to be any named specification for these. The conversion
51 * tables are detailed directly in the various Pentium M datasheets:
52 * http://www.intel.com/design/intarch/pentiumm/docs_pentiumm.htm
54 * The 14 specification corresponds to Intel Core series. There
55 * doesn't seem to be any named specification for these. The conversion
56 * tables are detailed directly in the various Pentium Core datasheets:
57 * http://www.intel.com/design/mobile/datashts/309221.htm
59 * The 110 (VRM 11) specification corresponds to Intel Conroe based series.
60 * http://www.intel.com/design/processor/applnots/313214.htm
64 * vrm is the VRM/VRD document version multiplied by 10.
65 * val is the 4-bit or more VID code.
66 * Returned value is in mV to avoid floating point in the kernel.
67 * Some VID have some bits in uV scale, this is rounded to mV.
69 int vid_from_reg(int val, u8 vrm)
71 int vid;
73 switch (vrm) {
75 case 100: /* VRD 10.0 */
76 /* compute in uV, round to mV */
77 val &= 0x3f;
78 if ((val & 0x1f) == 0x1f)
79 return 0;
80 if ((val & 0x1f) <= 0x09 || val == 0x0a)
81 vid = 1087500 - (val & 0x1f) * 25000;
82 else
83 vid = 1862500 - (val & 0x1f) * 25000;
84 if (val & 0x20)
85 vid -= 12500;
86 return (vid + 500) / 1000;
88 case 110: /* Intel Conroe */
89 /* compute in uV, round to mV */
90 val &= 0xff;
91 if (val < 0x02 || val > 0xb2)
92 return 0;
93 return (1600000 - (val - 2) * 6250 + 500) / 1000;
95 case 24: /* Athlon64 & Opteron */
96 val &= 0x1f;
97 if (val == 0x1f)
98 return 0;
99 /* fall through */
100 case 25: /* AMD NPT 0Fh */
101 val &= 0x3f;
102 return (val < 32) ? 1550 - 25 * val
103 : 775 - (25 * (val - 31)) / 2;
105 case 26: /* AMD family 10h to 15h, serial VID */
106 val &= 0x7f;
107 if (val >= 0x7c)
108 return 0;
109 return DIV_ROUND_CLOSEST(15500 - 125 * val, 10);
111 case 91: /* VRM 9.1 */
112 case 90: /* VRM 9.0 */
113 val &= 0x1f;
114 return val == 0x1f ? 0 :
115 1850 - val * 25;
117 case 85: /* VRM 8.5 */
118 val &= 0x1f;
119 return (val & 0x10 ? 25 : 0) +
120 ((val & 0x0f) > 0x04 ? 2050 : 1250) -
121 ((val & 0x0f) * 50);
123 case 84: /* VRM 8.4 */
124 val &= 0x0f;
125 /* fall through */
126 case 82: /* VRM 8.2 */
127 val &= 0x1f;
128 return val == 0x1f ? 0 :
129 val & 0x10 ? 5100 - (val) * 100 :
130 2050 - (val) * 50;
131 case 17: /* Intel IMVP-II */
132 val &= 0x1f;
133 return val & 0x10 ? 975 - (val & 0xF) * 25 :
134 1750 - val * 50;
135 case 13:
136 case 131:
137 val &= 0x3f;
138 /* Exception for Eden ULV 500 MHz */
139 if (vrm == 131 && val == 0x3f)
140 val++;
141 return 1708 - val * 16;
142 case 14: /* Intel Core */
143 /* compute in uV, round to mV */
144 val &= 0x7f;
145 return val > 0x77 ? 0 : (1500000 - (val * 12500) + 500) / 1000;
146 default: /* report 0 for unknown */
147 if (vrm)
148 pr_warn("Requested unsupported VRM version (%u)\n",
149 (unsigned int)vrm);
150 return 0;
153 EXPORT_SYMBOL(vid_from_reg);
156 * After this point is the code to automatically determine which
157 * VRM/VRD specification should be used depending on the CPU.
160 struct vrm_model {
161 u8 vendor;
162 u8 family;
163 u8 model_from;
164 u8 model_to;
165 u8 stepping_to;
166 u8 vrm_type;
169 #define ANY 0xFF
171 #ifdef CONFIG_X86
174 * The stepping_to parameter is highest acceptable stepping for current line.
175 * The model match must be exact for 4-bit values. For model values 0x10
176 * and above (extended model), all models below the parameter will match.
179 static struct vrm_model vrm_models[] = {
180 {X86_VENDOR_AMD, 0x6, 0x0, ANY, ANY, 90}, /* Athlon Duron etc */
181 {X86_VENDOR_AMD, 0xF, 0x0, 0x3F, ANY, 24}, /* Athlon 64, Opteron */
183 * In theory, all NPT family 0Fh processors have 6 VID pins and should
184 * thus use vrm 25, however in practice not all mainboards route the
185 * 6th VID pin because it is never needed. So we use the 5 VID pin
186 * variant (vrm 24) for the models which exist today.
188 {X86_VENDOR_AMD, 0xF, 0x40, 0x7F, ANY, 24}, /* NPT family 0Fh */
189 {X86_VENDOR_AMD, 0xF, 0x80, ANY, ANY, 25}, /* future fam. 0Fh */
190 {X86_VENDOR_AMD, 0x10, 0x0, ANY, ANY, 25}, /* NPT family 10h */
191 {X86_VENDOR_AMD, 0x11, 0x0, ANY, ANY, 26}, /* family 11h */
192 {X86_VENDOR_AMD, 0x12, 0x0, ANY, ANY, 26}, /* family 12h */
193 {X86_VENDOR_AMD, 0x14, 0x0, ANY, ANY, 26}, /* family 14h */
194 {X86_VENDOR_AMD, 0x15, 0x0, ANY, ANY, 26}, /* family 15h */
196 {X86_VENDOR_INTEL, 0x6, 0x0, 0x6, ANY, 82}, /* Pentium Pro,
197 * Pentium II, Xeon,
198 * Mobile Pentium,
199 * Celeron */
200 {X86_VENDOR_INTEL, 0x6, 0x7, 0x7, ANY, 84}, /* Pentium III, Xeon */
201 {X86_VENDOR_INTEL, 0x6, 0x8, 0x8, ANY, 82}, /* Pentium III, Xeon */
202 {X86_VENDOR_INTEL, 0x6, 0x9, 0x9, ANY, 13}, /* Pentium M (130 nm) */
203 {X86_VENDOR_INTEL, 0x6, 0xA, 0xA, ANY, 82}, /* Pentium III Xeon */
204 {X86_VENDOR_INTEL, 0x6, 0xB, 0xB, ANY, 85}, /* Tualatin */
205 {X86_VENDOR_INTEL, 0x6, 0xD, 0xD, ANY, 13}, /* Pentium M (90 nm) */
206 {X86_VENDOR_INTEL, 0x6, 0xE, 0xE, ANY, 14}, /* Intel Core (65 nm) */
207 {X86_VENDOR_INTEL, 0x6, 0xF, ANY, ANY, 110}, /* Intel Conroe and
208 * later */
209 {X86_VENDOR_INTEL, 0xF, 0x0, 0x0, ANY, 90}, /* P4 */
210 {X86_VENDOR_INTEL, 0xF, 0x1, 0x1, ANY, 90}, /* P4 Willamette */
211 {X86_VENDOR_INTEL, 0xF, 0x2, 0x2, ANY, 90}, /* P4 Northwood */
212 {X86_VENDOR_INTEL, 0xF, 0x3, ANY, ANY, 100}, /* Prescott and above
213 * assume VRD 10 */
215 {X86_VENDOR_CENTAUR, 0x6, 0x7, 0x7, ANY, 85}, /* Eden ESP/Ezra */
216 {X86_VENDOR_CENTAUR, 0x6, 0x8, 0x8, 0x7, 85}, /* Ezra T */
217 {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, 0x7, 85}, /* Nehemiah */
218 {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, ANY, 17}, /* C3-M, Eden-N */
219 {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, 0x7, 0}, /* No information */
220 {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, ANY, 13}, /* C7-M, C7,
221 * Eden (Esther) */
222 {X86_VENDOR_CENTAUR, 0x6, 0xD, 0xD, ANY, 134}, /* C7-D, C7-M, C7,
223 * Eden (Esther) */
227 * Special case for VIA model D: there are two different possible
228 * VID tables, so we have to figure out first, which one must be
229 * used. This resolves temporary drm value 134 to 14 (Intel Core
230 * 7-bit VID), 13 (Pentium M 6-bit VID) or 131 (Pentium M 6-bit VID
231 * + quirk for Eden ULV 500 MHz).
232 * Note: something similar might be needed for model A, I'm not sure.
234 static u8 get_via_model_d_vrm(void)
236 unsigned int vid, brand, __maybe_unused dummy;
237 static const char *brands[4] = {
238 "C7-M", "C7", "Eden", "C7-D"
241 rdmsr(0x198, dummy, vid);
242 vid &= 0xff;
244 rdmsr(0x1154, brand, dummy);
245 brand = ((brand >> 4) ^ (brand >> 2)) & 0x03;
247 if (vid > 0x3f) {
248 pr_info("Using %d-bit VID table for VIA %s CPU\n",
249 7, brands[brand]);
250 return 14;
251 } else {
252 pr_info("Using %d-bit VID table for VIA %s CPU\n",
253 6, brands[brand]);
254 /* Enable quirk for Eden */
255 return brand == 2 ? 131 : 13;
259 static u8 find_vrm(u8 family, u8 model, u8 stepping, u8 vendor)
261 int i;
263 for (i = 0; i < ARRAY_SIZE(vrm_models); i++) {
264 if (vendor == vrm_models[i].vendor &&
265 family == vrm_models[i].family &&
266 model >= vrm_models[i].model_from &&
267 model <= vrm_models[i].model_to &&
268 stepping <= vrm_models[i].stepping_to)
269 return vrm_models[i].vrm_type;
272 return 0;
275 u8 vid_which_vrm(void)
277 struct cpuinfo_x86 *c = &cpu_data(0);
278 u8 vrm_ret;
280 if (c->x86 < 6) /* Any CPU with family lower than 6 */
281 return 0; /* doesn't have VID */
283 vrm_ret = find_vrm(c->x86, c->x86_model, c->x86_stepping, c->x86_vendor);
284 if (vrm_ret == 134)
285 vrm_ret = get_via_model_d_vrm();
286 if (vrm_ret == 0)
287 pr_info("Unknown VRM version of your x86 CPU\n");
288 return vrm_ret;
291 /* and now for something completely different for the non-x86 world */
292 #else
293 u8 vid_which_vrm(void)
295 pr_info("Unknown VRM version of your CPU\n");
296 return 0;
298 #endif
299 EXPORT_SYMBOL(vid_which_vrm);
301 MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
303 MODULE_DESCRIPTION("hwmon-vid driver");
304 MODULE_LICENSE("GPL");