1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for Lineage Compact Power Line series of power entry modules.
5 * Copyright (C) 2010, 2011 Ericsson AB.
8 * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/jiffies.h>
22 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
23 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
25 * The devices are nominally PMBus compliant. However, most standard PMBus
26 * commands are not supported. Specifically, all hardware monitoring and
27 * status reporting commands are non-standard. For this reason, a standard
28 * PMBus driver can not be used.
30 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
31 * To ensure device access, this driver should only be used as client driver
32 * to the pca9541 I2C master selector driver.
36 #define PEM_OPERATION 0x01
37 #define PEM_CLEAR_INFO_FLAGS 0x03
38 #define PEM_VOUT_COMMAND 0x21
39 #define PEM_VOUT_OV_FAULT_LIMIT 0x40
40 #define PEM_READ_DATA_STRING 0xd0
41 #define PEM_READ_INPUT_STRING 0xdc
42 #define PEM_READ_FIRMWARE_REV 0xdd
43 #define PEM_READ_RUN_TIMER 0xde
44 #define PEM_FAN_HI_SPEED 0xdf
45 #define PEM_FAN_NORMAL_SPEED 0xe0
46 #define PEM_READ_FAN_SPEED 0xe1
48 /* offsets in data string */
49 #define PEM_DATA_STATUS_2 0
50 #define PEM_DATA_STATUS_1 1
51 #define PEM_DATA_ALARM_2 2
52 #define PEM_DATA_ALARM_1 3
53 #define PEM_DATA_VOUT_LSB 4
54 #define PEM_DATA_VOUT_MSB 5
55 #define PEM_DATA_CURRENT 6
56 #define PEM_DATA_TEMP 7
58 /* Virtual entries, to report constants */
59 #define PEM_DATA_TEMP_MAX 10
60 #define PEM_DATA_TEMP_CRIT 11
62 /* offsets in input string */
63 #define PEM_INPUT_VOLTAGE 0
64 #define PEM_INPUT_POWER_LSB 1
65 #define PEM_INPUT_POWER_MSB 2
67 /* offsets in fan data */
68 #define PEM_FAN_ADJUSTMENT 0
69 #define PEM_FAN_FAN1 1
70 #define PEM_FAN_FAN2 2
71 #define PEM_FAN_FAN3 3
73 /* Status register bits */
74 #define STS1_OUTPUT_ON (1 << 0)
75 #define STS1_LEDS_FLASHING (1 << 1)
76 #define STS1_EXT_FAULT (1 << 2)
77 #define STS1_SERVICE_LED_ON (1 << 3)
78 #define STS1_SHUTDOWN_OCCURRED (1 << 4)
79 #define STS1_INT_FAULT (1 << 5)
80 #define STS1_ISOLATION_TEST_OK (1 << 6)
82 #define STS2_ENABLE_PIN_HI (1 << 0)
83 #define STS2_DATA_OUT_RANGE (1 << 1)
84 #define STS2_RESTARTED_OK (1 << 1)
85 #define STS2_ISOLATION_TEST_FAIL (1 << 3)
86 #define STS2_HIGH_POWER_CAP (1 << 4)
87 #define STS2_INVALID_INSTR (1 << 5)
88 #define STS2_WILL_RESTART (1 << 6)
89 #define STS2_PEC_ERR (1 << 7)
91 /* Alarm register bits */
92 #define ALRM1_VIN_OUT_LIMIT (1 << 0)
93 #define ALRM1_VOUT_OUT_LIMIT (1 << 1)
94 #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
95 #define ALRM1_VIN_OVERCURRENT (1 << 3)
96 #define ALRM1_TEMP_WARNING (1 << 4)
97 #define ALRM1_TEMP_SHUTDOWN (1 << 5)
98 #define ALRM1_PRIMARY_FAULT (1 << 6)
99 #define ALRM1_POWER_LIMIT (1 << 7)
101 #define ALRM2_5V_OUT_LIMIT (1 << 1)
102 #define ALRM2_TEMP_FAULT (1 << 2)
103 #define ALRM2_OV_LOW (1 << 3)
104 #define ALRM2_DCDC_TEMP_HIGH (1 << 4)
105 #define ALRM2_PRI_TEMP_HIGH (1 << 5)
106 #define ALRM2_NO_PRIMARY (1 << 6)
107 #define ALRM2_FAN_FAULT (1 << 7)
109 #define FIRMWARE_REV_LEN 4
110 #define DATA_STRING_LEN 9
111 #define INPUT_STRING_LEN 5 /* 4 for most devices */
112 #define FAN_SPEED_LEN 5
115 struct i2c_client
*client
;
116 const struct attribute_group
*groups
[4];
118 struct mutex update_lock
;
122 unsigned long last_updated
; /* in jiffies */
124 u8 firmware_rev
[FIRMWARE_REV_LEN
];
125 u8 data_string
[DATA_STRING_LEN
];
126 u8 input_string
[INPUT_STRING_LEN
];
127 u8 fan_speed
[FAN_SPEED_LEN
];
130 static int pem_read_block(struct i2c_client
*client
, u8 command
, u8
*data
,
133 u8 block_buffer
[I2C_SMBUS_BLOCK_MAX
];
136 result
= i2c_smbus_read_block_data(client
, command
, block_buffer
);
137 if (unlikely(result
< 0))
139 if (unlikely(result
== 0xff || result
!= data_len
)) {
143 memcpy(data
, block_buffer
, data_len
);
149 static struct pem_data
*pem_update_device(struct device
*dev
)
151 struct pem_data
*data
= dev_get_drvdata(dev
);
152 struct i2c_client
*client
= data
->client
;
153 struct pem_data
*ret
= data
;
155 mutex_lock(&data
->update_lock
);
157 if (time_after(jiffies
, data
->last_updated
+ HZ
) || !data
->valid
) {
160 /* Read data string */
161 result
= pem_read_block(client
, PEM_READ_DATA_STRING
,
163 sizeof(data
->data_string
));
164 if (unlikely(result
< 0)) {
165 ret
= ERR_PTR(result
);
169 /* Read input string */
170 if (data
->input_length
) {
171 result
= pem_read_block(client
, PEM_READ_INPUT_STRING
,
174 if (unlikely(result
< 0)) {
175 ret
= ERR_PTR(result
);
180 /* Read fan speeds */
181 if (data
->fans_supported
) {
182 result
= pem_read_block(client
, PEM_READ_FAN_SPEED
,
184 sizeof(data
->fan_speed
));
185 if (unlikely(result
< 0)) {
186 ret
= ERR_PTR(result
);
191 i2c_smbus_write_byte(client
, PEM_CLEAR_INFO_FLAGS
);
193 data
->last_updated
= jiffies
;
197 mutex_unlock(&data
->update_lock
);
201 static long pem_get_data(u8
*data
, int len
, int index
)
206 case PEM_DATA_VOUT_LSB
:
207 val
= (data
[index
] + (data
[index
+1] << 8)) * 5 / 2;
209 case PEM_DATA_CURRENT
:
210 val
= data
[index
] * 200;
213 val
= data
[index
] * 1000;
215 case PEM_DATA_TEMP_MAX
:
216 val
= 97 * 1000; /* 97 degrees C per datasheet */
218 case PEM_DATA_TEMP_CRIT
:
219 val
= 107 * 1000; /* 107 degrees C per datasheet */
228 static long pem_get_input(u8
*data
, int len
, int index
)
233 case PEM_INPUT_VOLTAGE
:
234 if (len
== INPUT_STRING_LEN
)
235 val
= (data
[index
] + (data
[index
+1] << 8) - 75) * 1000;
237 val
= (data
[index
] - 75) * 1000;
239 case PEM_INPUT_POWER_LSB
:
240 if (len
== INPUT_STRING_LEN
)
242 val
= (data
[index
] + (data
[index
+1] << 8)) * 1000000L;
251 static long pem_get_fan(u8
*data
, int len
, int index
)
259 val
= data
[index
] * 100;
269 * Show boolean, either a fault or an alarm.
270 * .nr points to the register, .index is the bit mask to check
272 static ssize_t
pem_bool_show(struct device
*dev
, struct device_attribute
*da
,
275 struct sensor_device_attribute_2
*attr
= to_sensor_dev_attr_2(da
);
276 struct pem_data
*data
= pem_update_device(dev
);
280 return PTR_ERR(data
);
282 status
= data
->data_string
[attr
->nr
] & attr
->index
;
283 return snprintf(buf
, PAGE_SIZE
, "%d\n", !!status
);
286 static ssize_t
pem_data_show(struct device
*dev
, struct device_attribute
*da
,
289 struct sensor_device_attribute
*attr
= to_sensor_dev_attr(da
);
290 struct pem_data
*data
= pem_update_device(dev
);
294 return PTR_ERR(data
);
296 value
= pem_get_data(data
->data_string
, sizeof(data
->data_string
),
299 return snprintf(buf
, PAGE_SIZE
, "%ld\n", value
);
302 static ssize_t
pem_input_show(struct device
*dev
, struct device_attribute
*da
,
305 struct sensor_device_attribute
*attr
= to_sensor_dev_attr(da
);
306 struct pem_data
*data
= pem_update_device(dev
);
310 return PTR_ERR(data
);
312 value
= pem_get_input(data
->input_string
, sizeof(data
->input_string
),
315 return snprintf(buf
, PAGE_SIZE
, "%ld\n", value
);
318 static ssize_t
pem_fan_show(struct device
*dev
, struct device_attribute
*da
,
321 struct sensor_device_attribute
*attr
= to_sensor_dev_attr(da
);
322 struct pem_data
*data
= pem_update_device(dev
);
326 return PTR_ERR(data
);
328 value
= pem_get_fan(data
->fan_speed
, sizeof(data
->fan_speed
),
331 return snprintf(buf
, PAGE_SIZE
, "%ld\n", value
);
335 static SENSOR_DEVICE_ATTR_RO(in1_input
, pem_data
, PEM_DATA_VOUT_LSB
);
336 static SENSOR_DEVICE_ATTR_2_RO(in1_alarm
, pem_bool
, PEM_DATA_ALARM_1
,
337 ALRM1_VOUT_OUT_LIMIT
);
338 static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm
, pem_bool
, PEM_DATA_ALARM_1
,
339 ALRM1_OV_VOLT_SHUTDOWN
);
340 static SENSOR_DEVICE_ATTR_RO(in2_input
, pem_input
, PEM_INPUT_VOLTAGE
);
341 static SENSOR_DEVICE_ATTR_2_RO(in2_alarm
, pem_bool
, PEM_DATA_ALARM_1
,
342 ALRM1_VIN_OUT_LIMIT
| ALRM1_PRIMARY_FAULT
);
345 static SENSOR_DEVICE_ATTR_RO(curr1_input
, pem_data
, PEM_DATA_CURRENT
);
346 static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm
, pem_bool
, PEM_DATA_ALARM_1
,
347 ALRM1_VIN_OVERCURRENT
);
350 static SENSOR_DEVICE_ATTR_RO(power1_input
, pem_input
, PEM_INPUT_POWER_LSB
);
351 static SENSOR_DEVICE_ATTR_2_RO(power1_alarm
, pem_bool
, PEM_DATA_ALARM_1
,
355 static SENSOR_DEVICE_ATTR_RO(fan1_input
, pem_fan
, PEM_FAN_FAN1
);
356 static SENSOR_DEVICE_ATTR_RO(fan2_input
, pem_fan
, PEM_FAN_FAN2
);
357 static SENSOR_DEVICE_ATTR_RO(fan3_input
, pem_fan
, PEM_FAN_FAN3
);
358 static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm
, pem_bool
, PEM_DATA_ALARM_2
,
362 static SENSOR_DEVICE_ATTR_RO(temp1_input
, pem_data
, PEM_DATA_TEMP
);
363 static SENSOR_DEVICE_ATTR_RO(temp1_max
, pem_data
, PEM_DATA_TEMP_MAX
);
364 static SENSOR_DEVICE_ATTR_RO(temp1_crit
, pem_data
, PEM_DATA_TEMP_CRIT
);
365 static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm
, pem_bool
, PEM_DATA_ALARM_1
,
367 static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm
, pem_bool
, PEM_DATA_ALARM_1
,
368 ALRM1_TEMP_SHUTDOWN
);
369 static SENSOR_DEVICE_ATTR_2_RO(temp1_fault
, pem_bool
, PEM_DATA_ALARM_2
,
372 static struct attribute
*pem_attributes
[] = {
373 &sensor_dev_attr_in1_input
.dev_attr
.attr
,
374 &sensor_dev_attr_in1_alarm
.dev_attr
.attr
,
375 &sensor_dev_attr_in1_crit_alarm
.dev_attr
.attr
,
376 &sensor_dev_attr_in2_alarm
.dev_attr
.attr
,
378 &sensor_dev_attr_curr1_alarm
.dev_attr
.attr
,
380 &sensor_dev_attr_power1_alarm
.dev_attr
.attr
,
382 &sensor_dev_attr_fan1_alarm
.dev_attr
.attr
,
384 &sensor_dev_attr_temp1_input
.dev_attr
.attr
,
385 &sensor_dev_attr_temp1_max
.dev_attr
.attr
,
386 &sensor_dev_attr_temp1_crit
.dev_attr
.attr
,
387 &sensor_dev_attr_temp1_alarm
.dev_attr
.attr
,
388 &sensor_dev_attr_temp1_crit_alarm
.dev_attr
.attr
,
389 &sensor_dev_attr_temp1_fault
.dev_attr
.attr
,
394 static const struct attribute_group pem_group
= {
395 .attrs
= pem_attributes
,
398 static struct attribute
*pem_input_attributes
[] = {
399 &sensor_dev_attr_in2_input
.dev_attr
.attr
,
400 &sensor_dev_attr_curr1_input
.dev_attr
.attr
,
401 &sensor_dev_attr_power1_input
.dev_attr
.attr
,
405 static const struct attribute_group pem_input_group
= {
406 .attrs
= pem_input_attributes
,
409 static struct attribute
*pem_fan_attributes
[] = {
410 &sensor_dev_attr_fan1_input
.dev_attr
.attr
,
411 &sensor_dev_attr_fan2_input
.dev_attr
.attr
,
412 &sensor_dev_attr_fan3_input
.dev_attr
.attr
,
416 static const struct attribute_group pem_fan_group
= {
417 .attrs
= pem_fan_attributes
,
420 static int pem_probe(struct i2c_client
*client
,
421 const struct i2c_device_id
*id
)
423 struct i2c_adapter
*adapter
= client
->adapter
;
424 struct device
*dev
= &client
->dev
;
425 struct device
*hwmon_dev
;
426 struct pem_data
*data
;
429 if (!i2c_check_functionality(adapter
, I2C_FUNC_SMBUS_BLOCK_DATA
430 | I2C_FUNC_SMBUS_WRITE_BYTE
))
433 data
= devm_kzalloc(dev
, sizeof(*data
), GFP_KERNEL
);
437 data
->client
= client
;
438 mutex_init(&data
->update_lock
);
441 * We use the next two commands to determine if the device is really
444 ret
= pem_read_block(client
, PEM_READ_FIRMWARE_REV
,
445 data
->firmware_rev
, sizeof(data
->firmware_rev
));
449 ret
= i2c_smbus_write_byte(client
, PEM_CLEAR_INFO_FLAGS
);
453 dev_info(dev
, "Firmware revision %d.%d.%d\n",
454 data
->firmware_rev
[0], data
->firmware_rev
[1],
455 data
->firmware_rev
[2]);
458 data
->groups
[idx
++] = &pem_group
;
461 * Check if input readings are supported.
462 * This is the case if we can read input data,
463 * and if the returned data is not all zeros.
464 * Note that input alarms are always supported.
466 ret
= pem_read_block(client
, PEM_READ_INPUT_STRING
,
468 sizeof(data
->input_string
) - 1);
469 if (!ret
&& (data
->input_string
[0] || data
->input_string
[1] ||
470 data
->input_string
[2]))
471 data
->input_length
= sizeof(data
->input_string
) - 1;
473 /* Input string is one byte longer for some devices */
474 ret
= pem_read_block(client
, PEM_READ_INPUT_STRING
,
476 sizeof(data
->input_string
));
477 if (!ret
&& (data
->input_string
[0] || data
->input_string
[1] ||
478 data
->input_string
[2] || data
->input_string
[3]))
479 data
->input_length
= sizeof(data
->input_string
);
482 if (data
->input_length
)
483 data
->groups
[idx
++] = &pem_input_group
;
486 * Check if fan speed readings are supported.
487 * This is the case if we can read fan speed data,
488 * and if the returned data is not all zeros.
489 * Note that the fan alarm is always supported.
491 ret
= pem_read_block(client
, PEM_READ_FAN_SPEED
,
493 sizeof(data
->fan_speed
));
494 if (!ret
&& (data
->fan_speed
[0] || data
->fan_speed
[1] ||
495 data
->fan_speed
[2] || data
->fan_speed
[3])) {
496 data
->fans_supported
= true;
497 data
->groups
[idx
++] = &pem_fan_group
;
500 hwmon_dev
= devm_hwmon_device_register_with_groups(dev
, client
->name
,
502 return PTR_ERR_OR_ZERO(hwmon_dev
);
505 static const struct i2c_device_id pem_id
[] = {
509 MODULE_DEVICE_TABLE(i2c
, pem_id
);
511 static struct i2c_driver pem_driver
= {
513 .name
= "lineage_pem",
519 module_i2c_driver(pem_driver
);
521 MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
522 MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
523 MODULE_LICENSE("GPL");