treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / hwtracing / coresight / coresight-tmc-etr.c
blob625882bc8b08fe778ebbeaf170ca404cef2bac1e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
22 struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @head - handle->head at the beginning of the session.
36 * @nr_pages - Number of pages in the ring buffer.
37 * @pages - Array of Pages in the ring buffer.
39 struct etr_perf_buffer {
40 struct tmc_drvdata *drvdata;
41 struct etr_buf *etr_buf;
42 pid_t pid;
43 bool snapshot;
44 unsigned long head;
45 int nr_pages;
46 void **pages;
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
52 /* Lower limit for ETR hardware buffer */
53 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
59 * contain more than one SG buffer and tables.
61 * A table entry has the following format:
63 * ---Bit31------------Bit4-------Bit1-----Bit0--
64 * | Address[39:12] | SBZ | Entry Type |
65 * ----------------------------------------------
67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
68 * always zero.
70 * Entry type:
71 * b00 - Reserved.
72 * b01 - Last entry in the tables, points to 4K page buffer.
73 * b10 - Normal entry, points to 4K page buffer.
74 * b11 - Link. The address points to the base of next table.
77 typedef u32 sgte_t;
79 #define ETR_SG_PAGE_SHIFT 12
80 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
81 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
82 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
83 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
85 #define ETR_SG_ET_MASK 0x3
86 #define ETR_SG_ET_LAST 0x1
87 #define ETR_SG_ET_NORMAL 0x2
88 #define ETR_SG_ET_LINK 0x3
90 #define ETR_SG_ADDR_SHIFT 4
92 #define ETR_SG_ENTRY(addr, type) \
93 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
94 (type & ETR_SG_ET_MASK))
96 #define ETR_SG_ADDR(entry) \
97 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
98 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
101 * struct etr_sg_table : ETR SG Table
102 * @sg_table: Generic SG Table holding the data/table pages.
103 * @hwaddr: hwaddress used by the TMC, which is the base
104 * address of the table.
106 struct etr_sg_table {
107 struct tmc_sg_table *sg_table;
108 dma_addr_t hwaddr;
112 * tmc_etr_sg_table_entries: Total number of table entries required to map
113 * @nr_pages system pages.
115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
117 * with the last entry pointing to another page of table entries.
118 * If we spill over to a new page for mapping 1 entry, we could as
119 * well replace the link entry of the previous page with the last entry.
121 static inline unsigned long __attribute_const__
122 tmc_etr_sg_table_entries(int nr_pages)
124 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
125 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
127 * If we spill over to a new page for 1 entry, we could as well
128 * make it the LAST entry in the previous page, skipping the Link
129 * address.
131 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
132 nr_sglinks--;
133 return nr_sgpages + nr_sglinks;
137 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
138 * and map the device address @addr to an offset within the virtual
139 * contiguous buffer.
141 static long
142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
144 int i;
145 dma_addr_t page_start;
147 for (i = 0; i < tmc_pages->nr_pages; i++) {
148 page_start = tmc_pages->daddrs[i];
149 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
150 return i * PAGE_SIZE + (addr - page_start);
153 return -EINVAL;
157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
158 * If the pages were not allocated in tmc_pages_alloc(), we would
159 * simply drop the refcount.
161 static void tmc_pages_free(struct tmc_pages *tmc_pages,
162 struct device *dev, enum dma_data_direction dir)
164 int i;
165 struct device *real_dev = dev->parent;
167 for (i = 0; i < tmc_pages->nr_pages; i++) {
168 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
169 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
170 PAGE_SIZE, dir);
171 if (tmc_pages->pages && tmc_pages->pages[i])
172 __free_page(tmc_pages->pages[i]);
175 kfree(tmc_pages->pages);
176 kfree(tmc_pages->daddrs);
177 tmc_pages->pages = NULL;
178 tmc_pages->daddrs = NULL;
179 tmc_pages->nr_pages = 0;
183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
184 * If @pages is not NULL, the list of page virtual addresses are
185 * used as the data pages. The pages are then dma_map'ed for @dev
186 * with dma_direction @dir.
188 * Returns 0 upon success, else the error number.
190 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
191 struct device *dev, int node,
192 enum dma_data_direction dir, void **pages)
194 int i, nr_pages;
195 dma_addr_t paddr;
196 struct page *page;
197 struct device *real_dev = dev->parent;
199 nr_pages = tmc_pages->nr_pages;
200 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
201 GFP_KERNEL);
202 if (!tmc_pages->daddrs)
203 return -ENOMEM;
204 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
205 GFP_KERNEL);
206 if (!tmc_pages->pages) {
207 kfree(tmc_pages->daddrs);
208 tmc_pages->daddrs = NULL;
209 return -ENOMEM;
212 for (i = 0; i < nr_pages; i++) {
213 if (pages && pages[i]) {
214 page = virt_to_page(pages[i]);
215 /* Hold a refcount on the page */
216 get_page(page);
217 } else {
218 page = alloc_pages_node(node,
219 GFP_KERNEL | __GFP_ZERO, 0);
221 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
222 if (dma_mapping_error(real_dev, paddr))
223 goto err;
224 tmc_pages->daddrs[i] = paddr;
225 tmc_pages->pages[i] = page;
227 return 0;
228 err:
229 tmc_pages_free(tmc_pages, dev, dir);
230 return -ENOMEM;
233 static inline long
234 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
236 return tmc_pages_get_offset(&sg_table->data_pages, addr);
239 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
241 if (sg_table->table_vaddr)
242 vunmap(sg_table->table_vaddr);
243 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
246 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
248 if (sg_table->data_vaddr)
249 vunmap(sg_table->data_vaddr);
250 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
253 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
255 tmc_free_table_pages(sg_table);
256 tmc_free_data_pages(sg_table);
260 * Alloc pages for the table. Since this will be used by the device,
261 * allocate the pages closer to the device (i.e, dev_to_node(dev)
262 * rather than the CPU node).
264 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
266 int rc;
267 struct tmc_pages *table_pages = &sg_table->table_pages;
269 rc = tmc_pages_alloc(table_pages, sg_table->dev,
270 dev_to_node(sg_table->dev),
271 DMA_TO_DEVICE, NULL);
272 if (rc)
273 return rc;
274 sg_table->table_vaddr = vmap(table_pages->pages,
275 table_pages->nr_pages,
276 VM_MAP,
277 PAGE_KERNEL);
278 if (!sg_table->table_vaddr)
279 rc = -ENOMEM;
280 else
281 sg_table->table_daddr = table_pages->daddrs[0];
282 return rc;
285 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
287 int rc;
289 /* Allocate data pages on the node requested by the caller */
290 rc = tmc_pages_alloc(&sg_table->data_pages,
291 sg_table->dev, sg_table->node,
292 DMA_FROM_DEVICE, pages);
293 if (!rc) {
294 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
295 sg_table->data_pages.nr_pages,
296 VM_MAP,
297 PAGE_KERNEL);
298 if (!sg_table->data_vaddr)
299 rc = -ENOMEM;
301 return rc;
305 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
306 * and data buffers. TMC writes to the data buffers and reads from the SG
307 * Table pages.
309 * @dev - Coresight device to which page should be DMA mapped.
310 * @node - Numa node for mem allocations
311 * @nr_tpages - Number of pages for the table entries.
312 * @nr_dpages - Number of pages for Data buffer.
313 * @pages - Optional list of virtual address of pages.
315 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
316 int node,
317 int nr_tpages,
318 int nr_dpages,
319 void **pages)
321 long rc;
322 struct tmc_sg_table *sg_table;
324 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
325 if (!sg_table)
326 return ERR_PTR(-ENOMEM);
327 sg_table->data_pages.nr_pages = nr_dpages;
328 sg_table->table_pages.nr_pages = nr_tpages;
329 sg_table->node = node;
330 sg_table->dev = dev;
332 rc = tmc_alloc_data_pages(sg_table, pages);
333 if (!rc)
334 rc = tmc_alloc_table_pages(sg_table);
335 if (rc) {
336 tmc_free_sg_table(sg_table);
337 kfree(sg_table);
338 return ERR_PTR(rc);
341 return sg_table;
345 * tmc_sg_table_sync_data_range: Sync the data buffer written
346 * by the device from @offset upto a @size bytes.
348 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
349 u64 offset, u64 size)
351 int i, index, start;
352 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
353 struct device *real_dev = table->dev->parent;
354 struct tmc_pages *data = &table->data_pages;
356 start = offset >> PAGE_SHIFT;
357 for (i = start; i < (start + npages); i++) {
358 index = i % data->nr_pages;
359 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
360 PAGE_SIZE, DMA_FROM_DEVICE);
364 /* tmc_sg_sync_table: Sync the page table */
365 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
367 int i;
368 struct device *real_dev = sg_table->dev->parent;
369 struct tmc_pages *table_pages = &sg_table->table_pages;
371 for (i = 0; i < table_pages->nr_pages; i++)
372 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
373 PAGE_SIZE, DMA_TO_DEVICE);
377 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
378 * in the SG buffer. The @bufpp is updated to point to the buffer.
379 * Returns :
380 * the length of linear data available at @offset.
381 * or
382 * <= 0 if no data is available.
384 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
385 u64 offset, size_t len, char **bufpp)
387 size_t size;
388 int pg_idx = offset >> PAGE_SHIFT;
389 int pg_offset = offset & (PAGE_SIZE - 1);
390 struct tmc_pages *data_pages = &sg_table->data_pages;
392 size = tmc_sg_table_buf_size(sg_table);
393 if (offset >= size)
394 return -EINVAL;
396 /* Make sure we don't go beyond the end */
397 len = (len < (size - offset)) ? len : size - offset;
398 /* Respect the page boundaries */
399 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
400 if (len > 0)
401 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
402 return len;
405 #ifdef ETR_SG_DEBUG
406 /* Map a dma address to virtual address */
407 static unsigned long
408 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
409 dma_addr_t addr, bool table)
411 long offset;
412 unsigned long base;
413 struct tmc_pages *tmc_pages;
415 if (table) {
416 tmc_pages = &sg_table->table_pages;
417 base = (unsigned long)sg_table->table_vaddr;
418 } else {
419 tmc_pages = &sg_table->data_pages;
420 base = (unsigned long)sg_table->data_vaddr;
423 offset = tmc_pages_get_offset(tmc_pages, addr);
424 if (offset < 0)
425 return 0;
426 return base + offset;
429 /* Dump the given sg_table */
430 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
432 sgte_t *ptr;
433 int i = 0;
434 dma_addr_t addr;
435 struct tmc_sg_table *sg_table = etr_table->sg_table;
437 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
438 etr_table->hwaddr, true);
439 while (ptr) {
440 addr = ETR_SG_ADDR(*ptr);
441 switch (ETR_SG_ET(*ptr)) {
442 case ETR_SG_ET_NORMAL:
443 dev_dbg(sg_table->dev,
444 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
445 ptr++;
446 break;
447 case ETR_SG_ET_LINK:
448 dev_dbg(sg_table->dev,
449 "%05d: *** %p\t:{L} 0x%llx ***\n",
450 i, ptr, addr);
451 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
452 addr, true);
453 break;
454 case ETR_SG_ET_LAST:
455 dev_dbg(sg_table->dev,
456 "%05d: ### %p\t:[L] 0x%llx ###\n",
457 i, ptr, addr);
458 return;
459 default:
460 dev_dbg(sg_table->dev,
461 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
462 i, ptr, addr);
463 return;
465 i++;
467 dev_dbg(sg_table->dev, "******* End of Table *****\n");
469 #else
470 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
471 #endif
474 * Populate the SG Table page table entries from table/data
475 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
476 * So does a Table page. So we keep track of indices of the tables
477 * in each system page and move the pointers accordingly.
479 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
480 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
482 dma_addr_t paddr;
483 int i, type, nr_entries;
484 int tpidx = 0; /* index to the current system table_page */
485 int sgtidx = 0; /* index to the sg_table within the current syspage */
486 int sgtentry = 0; /* the entry within the sg_table */
487 int dpidx = 0; /* index to the current system data_page */
488 int spidx = 0; /* index to the SG page within the current data page */
489 sgte_t *ptr; /* pointer to the table entry to fill */
490 struct tmc_sg_table *sg_table = etr_table->sg_table;
491 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
492 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
494 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
496 * Use the contiguous virtual address of the table to update entries.
498 ptr = sg_table->table_vaddr;
500 * Fill all the entries, except the last entry to avoid special
501 * checks within the loop.
503 for (i = 0; i < nr_entries - 1; i++) {
504 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
506 * Last entry in a sg_table page is a link address to
507 * the next table page. If this sg_table is the last
508 * one in the system page, it links to the first
509 * sg_table in the next system page. Otherwise, it
510 * links to the next sg_table page within the system
511 * page.
513 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
514 paddr = table_daddrs[tpidx + 1];
515 } else {
516 paddr = table_daddrs[tpidx] +
517 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
519 type = ETR_SG_ET_LINK;
520 } else {
522 * Update the indices to the data_pages to point to the
523 * next sg_page in the data buffer.
525 type = ETR_SG_ET_NORMAL;
526 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
527 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
528 dpidx++;
530 *ptr++ = ETR_SG_ENTRY(paddr, type);
532 * Move to the next table pointer, moving the table page index
533 * if necessary
535 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
536 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
537 tpidx++;
541 /* Set up the last entry, which is always a data pointer */
542 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
543 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
547 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
548 * populate the table.
550 * @dev - Device pointer for the TMC
551 * @node - NUMA node where the memory should be allocated
552 * @size - Total size of the data buffer
553 * @pages - Optional list of page virtual address
555 static struct etr_sg_table *
556 tmc_init_etr_sg_table(struct device *dev, int node,
557 unsigned long size, void **pages)
559 int nr_entries, nr_tpages;
560 int nr_dpages = size >> PAGE_SHIFT;
561 struct tmc_sg_table *sg_table;
562 struct etr_sg_table *etr_table;
564 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
565 if (!etr_table)
566 return ERR_PTR(-ENOMEM);
567 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
568 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
570 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
571 if (IS_ERR(sg_table)) {
572 kfree(etr_table);
573 return ERR_CAST(sg_table);
576 etr_table->sg_table = sg_table;
577 /* TMC should use table base address for DBA */
578 etr_table->hwaddr = sg_table->table_daddr;
579 tmc_etr_sg_table_populate(etr_table);
580 /* Sync the table pages for the HW */
581 tmc_sg_table_sync_table(sg_table);
582 tmc_etr_sg_table_dump(etr_table);
584 return etr_table;
588 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
590 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
591 struct etr_buf *etr_buf, int node,
592 void **pages)
594 struct etr_flat_buf *flat_buf;
595 struct device *real_dev = drvdata->csdev->dev.parent;
597 /* We cannot reuse existing pages for flat buf */
598 if (pages)
599 return -EINVAL;
601 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
602 if (!flat_buf)
603 return -ENOMEM;
605 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
606 &flat_buf->daddr, GFP_KERNEL);
607 if (!flat_buf->vaddr) {
608 kfree(flat_buf);
609 return -ENOMEM;
612 flat_buf->size = etr_buf->size;
613 flat_buf->dev = &drvdata->csdev->dev;
614 etr_buf->hwaddr = flat_buf->daddr;
615 etr_buf->mode = ETR_MODE_FLAT;
616 etr_buf->private = flat_buf;
617 return 0;
620 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
622 struct etr_flat_buf *flat_buf = etr_buf->private;
624 if (flat_buf && flat_buf->daddr) {
625 struct device *real_dev = flat_buf->dev->parent;
627 dma_free_coherent(real_dev, flat_buf->size,
628 flat_buf->vaddr, flat_buf->daddr);
630 kfree(flat_buf);
633 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
636 * Adjust the buffer to point to the beginning of the trace data
637 * and update the available trace data.
639 etr_buf->offset = rrp - etr_buf->hwaddr;
640 if (etr_buf->full)
641 etr_buf->len = etr_buf->size;
642 else
643 etr_buf->len = rwp - rrp;
646 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
647 u64 offset, size_t len, char **bufpp)
649 struct etr_flat_buf *flat_buf = etr_buf->private;
651 *bufpp = (char *)flat_buf->vaddr + offset;
653 * tmc_etr_buf_get_data already adjusts the length to handle
654 * buffer wrapping around.
656 return len;
659 static const struct etr_buf_operations etr_flat_buf_ops = {
660 .alloc = tmc_etr_alloc_flat_buf,
661 .free = tmc_etr_free_flat_buf,
662 .sync = tmc_etr_sync_flat_buf,
663 .get_data = tmc_etr_get_data_flat_buf,
667 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
668 * appropriately.
670 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
671 struct etr_buf *etr_buf, int node,
672 void **pages)
674 struct etr_sg_table *etr_table;
675 struct device *dev = &drvdata->csdev->dev;
677 etr_table = tmc_init_etr_sg_table(dev, node,
678 etr_buf->size, pages);
679 if (IS_ERR(etr_table))
680 return -ENOMEM;
681 etr_buf->hwaddr = etr_table->hwaddr;
682 etr_buf->mode = ETR_MODE_ETR_SG;
683 etr_buf->private = etr_table;
684 return 0;
687 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
689 struct etr_sg_table *etr_table = etr_buf->private;
691 if (etr_table) {
692 tmc_free_sg_table(etr_table->sg_table);
693 kfree(etr_table);
697 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
698 size_t len, char **bufpp)
700 struct etr_sg_table *etr_table = etr_buf->private;
702 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
705 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
707 long r_offset, w_offset;
708 struct etr_sg_table *etr_table = etr_buf->private;
709 struct tmc_sg_table *table = etr_table->sg_table;
711 /* Convert hw address to offset in the buffer */
712 r_offset = tmc_sg_get_data_page_offset(table, rrp);
713 if (r_offset < 0) {
714 dev_warn(table->dev,
715 "Unable to map RRP %llx to offset\n", rrp);
716 etr_buf->len = 0;
717 return;
720 w_offset = tmc_sg_get_data_page_offset(table, rwp);
721 if (w_offset < 0) {
722 dev_warn(table->dev,
723 "Unable to map RWP %llx to offset\n", rwp);
724 etr_buf->len = 0;
725 return;
728 etr_buf->offset = r_offset;
729 if (etr_buf->full)
730 etr_buf->len = etr_buf->size;
731 else
732 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
733 w_offset - r_offset;
734 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
737 static const struct etr_buf_operations etr_sg_buf_ops = {
738 .alloc = tmc_etr_alloc_sg_buf,
739 .free = tmc_etr_free_sg_buf,
740 .sync = tmc_etr_sync_sg_buf,
741 .get_data = tmc_etr_get_data_sg_buf,
745 * TMC ETR could be connected to a CATU device, which can provide address
746 * translation service. This is represented by the Output port of the TMC
747 * (ETR) connected to the input port of the CATU.
749 * Returns : coresight_device ptr for the CATU device if a CATU is found.
750 * : NULL otherwise.
752 struct coresight_device *
753 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
755 int i;
756 struct coresight_device *tmp, *etr = drvdata->csdev;
758 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
759 return NULL;
761 for (i = 0; i < etr->pdata->nr_outport; i++) {
762 tmp = etr->pdata->conns[i].child_dev;
763 if (tmp && coresight_is_catu_device(tmp))
764 return tmp;
767 return NULL;
770 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
771 struct etr_buf *etr_buf)
773 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
775 if (catu && helper_ops(catu)->enable)
776 return helper_ops(catu)->enable(catu, etr_buf);
777 return 0;
780 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
782 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
784 if (catu && helper_ops(catu)->disable)
785 helper_ops(catu)->disable(catu, drvdata->etr_buf);
788 static const struct etr_buf_operations *etr_buf_ops[] = {
789 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
790 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
791 [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU)
792 ? &etr_catu_buf_ops : NULL,
795 static inline int tmc_etr_mode_alloc_buf(int mode,
796 struct tmc_drvdata *drvdata,
797 struct etr_buf *etr_buf, int node,
798 void **pages)
800 int rc = -EINVAL;
802 switch (mode) {
803 case ETR_MODE_FLAT:
804 case ETR_MODE_ETR_SG:
805 case ETR_MODE_CATU:
806 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
807 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
808 node, pages);
809 if (!rc)
810 etr_buf->ops = etr_buf_ops[mode];
811 return rc;
812 default:
813 return -EINVAL;
818 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
819 * @drvdata : ETR device details.
820 * @size : size of the requested buffer.
821 * @flags : Required properties for the buffer.
822 * @node : Node for memory allocations.
823 * @pages : An optional list of pages.
825 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
826 ssize_t size, int flags,
827 int node, void **pages)
829 int rc = -ENOMEM;
830 bool has_etr_sg, has_iommu;
831 bool has_sg, has_catu;
832 struct etr_buf *etr_buf;
833 struct device *dev = &drvdata->csdev->dev;
835 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
836 has_iommu = iommu_get_domain_for_dev(dev->parent);
837 has_catu = !!tmc_etr_get_catu_device(drvdata);
839 has_sg = has_catu || has_etr_sg;
841 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
842 if (!etr_buf)
843 return ERR_PTR(-ENOMEM);
845 etr_buf->size = size;
848 * If we have to use an existing list of pages, we cannot reliably
849 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
850 * we use the contiguous DMA memory if at least one of the following
851 * conditions is true:
852 * a) The ETR cannot use Scatter-Gather.
853 * b) we have a backing IOMMU
854 * c) The requested memory size is smaller (< 1M).
856 * Fallback to available mechanisms.
859 if (!pages &&
860 (!has_sg || has_iommu || size < SZ_1M))
861 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
862 etr_buf, node, pages);
863 if (rc && has_etr_sg)
864 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
865 etr_buf, node, pages);
866 if (rc && has_catu)
867 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
868 etr_buf, node, pages);
869 if (rc) {
870 kfree(etr_buf);
871 return ERR_PTR(rc);
874 refcount_set(&etr_buf->refcount, 1);
875 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
876 (unsigned long)size >> 10, etr_buf->mode);
877 return etr_buf;
880 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
882 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
883 etr_buf->ops->free(etr_buf);
884 kfree(etr_buf);
888 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
889 * with a maximum of @len bytes.
890 * Returns: The size of the linear data available @pos, with *bufpp
891 * updated to point to the buffer.
893 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
894 u64 offset, size_t len, char **bufpp)
896 /* Adjust the length to limit this transaction to end of buffer */
897 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
899 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
902 static inline s64
903 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
905 ssize_t len;
906 char *bufp;
908 len = tmc_etr_buf_get_data(etr_buf, offset,
909 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
910 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
911 return -EINVAL;
912 coresight_insert_barrier_packet(bufp);
913 return offset + CORESIGHT_BARRIER_PKT_SIZE;
917 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
918 * Makes sure the trace data is synced to the memory for consumption.
919 * @etr_buf->offset will hold the offset to the beginning of the trace data
920 * within the buffer, with @etr_buf->len bytes to consume.
922 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
924 struct etr_buf *etr_buf = drvdata->etr_buf;
925 u64 rrp, rwp;
926 u32 status;
928 rrp = tmc_read_rrp(drvdata);
929 rwp = tmc_read_rwp(drvdata);
930 status = readl_relaxed(drvdata->base + TMC_STS);
933 * If there were memory errors in the session, truncate the
934 * buffer.
936 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
937 dev_dbg(&drvdata->csdev->dev,
938 "tmc memory error detected, truncating buffer\n");
939 etr_buf->len = 0;
940 etr_buf->full = 0;
941 return;
944 etr_buf->full = status & TMC_STS_FULL;
946 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
948 etr_buf->ops->sync(etr_buf, rrp, rwp);
951 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
953 u32 axictl, sts;
954 struct etr_buf *etr_buf = drvdata->etr_buf;
956 CS_UNLOCK(drvdata->base);
958 /* Wait for TMCSReady bit to be set */
959 tmc_wait_for_tmcready(drvdata);
961 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
962 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
964 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
965 axictl &= ~TMC_AXICTL_CLEAR_MASK;
966 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
967 axictl |= TMC_AXICTL_AXCACHE_OS;
969 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
970 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
971 axictl |= TMC_AXICTL_ARCACHE_OS;
974 if (etr_buf->mode == ETR_MODE_ETR_SG)
975 axictl |= TMC_AXICTL_SCT_GAT_MODE;
977 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
978 tmc_write_dba(drvdata, etr_buf->hwaddr);
980 * If the TMC pointers must be programmed before the session,
981 * we have to set it properly (i.e, RRP/RWP to base address and
982 * STS to "not full").
984 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
985 tmc_write_rrp(drvdata, etr_buf->hwaddr);
986 tmc_write_rwp(drvdata, etr_buf->hwaddr);
987 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
988 writel_relaxed(sts, drvdata->base + TMC_STS);
991 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
992 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
993 TMC_FFCR_TRIGON_TRIGIN,
994 drvdata->base + TMC_FFCR);
995 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
996 tmc_enable_hw(drvdata);
998 CS_LOCK(drvdata->base);
1001 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1002 struct etr_buf *etr_buf)
1004 int rc;
1006 /* Callers should provide an appropriate buffer for use */
1007 if (WARN_ON(!etr_buf))
1008 return -EINVAL;
1010 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1011 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1012 return -EINVAL;
1014 if (WARN_ON(drvdata->etr_buf))
1015 return -EBUSY;
1018 * If this ETR is connected to a CATU, enable it before we turn
1019 * this on.
1021 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1022 if (rc)
1023 return rc;
1024 rc = coresight_claim_device(drvdata->base);
1025 if (!rc) {
1026 drvdata->etr_buf = etr_buf;
1027 __tmc_etr_enable_hw(drvdata);
1030 return rc;
1034 * Return the available trace data in the buffer (starts at etr_buf->offset,
1035 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1036 * also updating the @bufpp on where to find it. Since the trace data
1037 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1038 * @len returned to handle buffer wrapping around.
1040 * We are protected here by drvdata->reading != 0, which ensures the
1041 * sysfs_buf stays alive.
1043 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1044 loff_t pos, size_t len, char **bufpp)
1046 s64 offset;
1047 ssize_t actual = len;
1048 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1050 if (pos + actual > etr_buf->len)
1051 actual = etr_buf->len - pos;
1052 if (actual <= 0)
1053 return actual;
1055 /* Compute the offset from which we read the data */
1056 offset = etr_buf->offset + pos;
1057 if (offset >= etr_buf->size)
1058 offset -= etr_buf->size;
1059 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1062 static struct etr_buf *
1063 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1065 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1066 0, cpu_to_node(0), NULL);
1069 static void
1070 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1072 if (buf)
1073 tmc_free_etr_buf(buf);
1076 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1078 struct etr_buf *etr_buf = drvdata->etr_buf;
1080 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1081 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1082 drvdata->sysfs_buf = NULL;
1083 } else {
1084 tmc_sync_etr_buf(drvdata);
1086 * Insert barrier packets at the beginning, if there was
1087 * an overflow.
1089 if (etr_buf->full)
1090 tmc_etr_buf_insert_barrier_packet(etr_buf,
1091 etr_buf->offset);
1095 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1097 CS_UNLOCK(drvdata->base);
1099 tmc_flush_and_stop(drvdata);
1101 * When operating in sysFS mode the content of the buffer needs to be
1102 * read before the TMC is disabled.
1104 if (drvdata->mode == CS_MODE_SYSFS)
1105 tmc_etr_sync_sysfs_buf(drvdata);
1107 tmc_disable_hw(drvdata);
1109 CS_LOCK(drvdata->base);
1113 static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1115 __tmc_etr_disable_hw(drvdata);
1116 /* Disable CATU device if this ETR is connected to one */
1117 tmc_etr_disable_catu(drvdata);
1118 coresight_disclaim_device(drvdata->base);
1119 /* Reset the ETR buf used by hardware */
1120 drvdata->etr_buf = NULL;
1123 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1125 int ret = 0;
1126 unsigned long flags;
1127 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1128 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1131 * If we are enabling the ETR from disabled state, we need to make
1132 * sure we have a buffer with the right size. The etr_buf is not reset
1133 * immediately after we stop the tracing in SYSFS mode as we wait for
1134 * the user to collect the data. We may be able to reuse the existing
1135 * buffer, provided the size matches. Any allocation has to be done
1136 * with the lock released.
1138 spin_lock_irqsave(&drvdata->spinlock, flags);
1139 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1140 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1141 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1143 /* Allocate memory with the locks released */
1144 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1145 if (IS_ERR(new_buf))
1146 return PTR_ERR(new_buf);
1148 /* Let's try again */
1149 spin_lock_irqsave(&drvdata->spinlock, flags);
1152 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1153 ret = -EBUSY;
1154 goto out;
1158 * In sysFS mode we can have multiple writers per sink. Since this
1159 * sink is already enabled no memory is needed and the HW need not be
1160 * touched, even if the buffer size has changed.
1162 if (drvdata->mode == CS_MODE_SYSFS) {
1163 atomic_inc(csdev->refcnt);
1164 goto out;
1168 * If we don't have a buffer or it doesn't match the requested size,
1169 * use the buffer allocated above. Otherwise reuse the existing buffer.
1171 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1172 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1173 free_buf = sysfs_buf;
1174 drvdata->sysfs_buf = new_buf;
1177 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1178 if (!ret) {
1179 drvdata->mode = CS_MODE_SYSFS;
1180 atomic_inc(csdev->refcnt);
1182 out:
1183 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1185 /* Free memory outside the spinlock if need be */
1186 if (free_buf)
1187 tmc_etr_free_sysfs_buf(free_buf);
1189 if (!ret)
1190 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1192 return ret;
1196 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1197 * The size of the hardware buffer is dependent on the size configured
1198 * via sysfs and the perf ring buffer size. We prefer to allocate the
1199 * largest possible size, scaling down the size by half until it
1200 * reaches a minimum limit (1M), beyond which we give up.
1202 static struct etr_buf *
1203 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1204 int nr_pages, void **pages, bool snapshot)
1206 int node;
1207 struct etr_buf *etr_buf;
1208 unsigned long size;
1210 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1212 * Try to match the perf ring buffer size if it is larger
1213 * than the size requested via sysfs.
1215 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1216 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1217 0, node, NULL);
1218 if (!IS_ERR(etr_buf))
1219 goto done;
1223 * Else switch to configured size for this ETR
1224 * and scale down until we hit the minimum limit.
1226 size = drvdata->size;
1227 do {
1228 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1229 if (!IS_ERR(etr_buf))
1230 goto done;
1231 size /= 2;
1232 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1234 return ERR_PTR(-ENOMEM);
1236 done:
1237 return etr_buf;
1240 static struct etr_buf *
1241 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1242 struct perf_event *event, int nr_pages,
1243 void **pages, bool snapshot)
1245 int ret;
1246 pid_t pid = task_pid_nr(event->owner);
1247 struct etr_buf *etr_buf;
1249 retry:
1251 * An etr_perf_buffer is associated with an event and holds a reference
1252 * to the AUX ring buffer that was created for that event. In CPU-wide
1253 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1254 * buffer, share a sink. As such an etr_perf_buffer is created for each
1255 * event but a single etr_buf associated with the ETR is shared between
1256 * them. The last event in a trace session will copy the content of the
1257 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1258 * events are simply not used an freed as events are destoyed. We still
1259 * need to allocate a ring buffer for each event since we don't know
1260 * which event will be last.
1264 * The first thing to do here is check if an etr_buf has already been
1265 * allocated for this session. If so it is shared with this event,
1266 * otherwise it is created.
1268 mutex_lock(&drvdata->idr_mutex);
1269 etr_buf = idr_find(&drvdata->idr, pid);
1270 if (etr_buf) {
1271 refcount_inc(&etr_buf->refcount);
1272 mutex_unlock(&drvdata->idr_mutex);
1273 return etr_buf;
1276 /* If we made it here no buffer has been allocated, do so now. */
1277 mutex_unlock(&drvdata->idr_mutex);
1279 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1280 if (IS_ERR(etr_buf))
1281 return etr_buf;
1283 /* Now that we have a buffer, add it to the IDR. */
1284 mutex_lock(&drvdata->idr_mutex);
1285 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1286 mutex_unlock(&drvdata->idr_mutex);
1288 /* Another event with this session ID has allocated this buffer. */
1289 if (ret == -ENOSPC) {
1290 tmc_free_etr_buf(etr_buf);
1291 goto retry;
1294 /* The IDR can't allocate room for a new session, abandon ship. */
1295 if (ret == -ENOMEM) {
1296 tmc_free_etr_buf(etr_buf);
1297 return ERR_PTR(ret);
1301 return etr_buf;
1304 static struct etr_buf *
1305 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1306 struct perf_event *event, int nr_pages,
1307 void **pages, bool snapshot)
1310 * In per-thread mode the etr_buf isn't shared, so just go ahead
1311 * with memory allocation.
1313 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1316 static struct etr_buf *
1317 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1318 int nr_pages, void **pages, bool snapshot)
1320 if (event->cpu == -1)
1321 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1322 pages, snapshot);
1324 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1325 pages, snapshot);
1328 static struct etr_perf_buffer *
1329 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1330 int nr_pages, void **pages, bool snapshot)
1332 int node;
1333 struct etr_buf *etr_buf;
1334 struct etr_perf_buffer *etr_perf;
1336 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1338 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1339 if (!etr_perf)
1340 return ERR_PTR(-ENOMEM);
1342 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1343 if (!IS_ERR(etr_buf))
1344 goto done;
1346 kfree(etr_perf);
1347 return ERR_PTR(-ENOMEM);
1349 done:
1351 * Keep a reference to the ETR this buffer has been allocated for
1352 * in order to have access to the IDR in tmc_free_etr_buffer().
1354 etr_perf->drvdata = drvdata;
1355 etr_perf->etr_buf = etr_buf;
1357 return etr_perf;
1361 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1362 struct perf_event *event, void **pages,
1363 int nr_pages, bool snapshot)
1365 struct etr_perf_buffer *etr_perf;
1366 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1368 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1369 nr_pages, pages, snapshot);
1370 if (IS_ERR(etr_perf)) {
1371 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1372 return NULL;
1375 etr_perf->pid = task_pid_nr(event->owner);
1376 etr_perf->snapshot = snapshot;
1377 etr_perf->nr_pages = nr_pages;
1378 etr_perf->pages = pages;
1380 return etr_perf;
1383 static void tmc_free_etr_buffer(void *config)
1385 struct etr_perf_buffer *etr_perf = config;
1386 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1387 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1389 if (!etr_buf)
1390 goto free_etr_perf_buffer;
1392 mutex_lock(&drvdata->idr_mutex);
1393 /* If we are not the last one to use the buffer, don't touch it. */
1394 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1395 mutex_unlock(&drvdata->idr_mutex);
1396 goto free_etr_perf_buffer;
1399 /* We are the last one, remove from the IDR and free the buffer. */
1400 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1401 mutex_unlock(&drvdata->idr_mutex);
1404 * Something went very wrong if the buffer associated with this ID
1405 * is not the same in the IDR. Leak to avoid use after free.
1407 if (buf && WARN_ON(buf != etr_buf))
1408 goto free_etr_perf_buffer;
1410 tmc_free_etr_buf(etr_perf->etr_buf);
1412 free_etr_perf_buffer:
1413 kfree(etr_perf);
1417 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1418 * buffer to the perf ring buffer.
1420 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1421 unsigned long src_offset,
1422 unsigned long to_copy)
1424 long bytes;
1425 long pg_idx, pg_offset;
1426 unsigned long head = etr_perf->head;
1427 char **dst_pages, *src_buf;
1428 struct etr_buf *etr_buf = etr_perf->etr_buf;
1430 head = etr_perf->head;
1431 pg_idx = head >> PAGE_SHIFT;
1432 pg_offset = head & (PAGE_SIZE - 1);
1433 dst_pages = (char **)etr_perf->pages;
1435 while (to_copy > 0) {
1437 * In one iteration, we can copy minimum of :
1438 * 1) what is available in the source buffer,
1439 * 2) what is available in the source buffer, before it
1440 * wraps around.
1441 * 3) what is available in the destination page.
1442 * in one iteration.
1444 if (src_offset >= etr_buf->size)
1445 src_offset -= etr_buf->size;
1446 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1447 &src_buf);
1448 if (WARN_ON_ONCE(bytes <= 0))
1449 break;
1450 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1452 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1454 to_copy -= bytes;
1456 /* Move destination pointers */
1457 pg_offset += bytes;
1458 if (pg_offset == PAGE_SIZE) {
1459 pg_offset = 0;
1460 if (++pg_idx == etr_perf->nr_pages)
1461 pg_idx = 0;
1464 /* Move source pointers */
1465 src_offset += bytes;
1470 * tmc_update_etr_buffer : Update the perf ring buffer with the
1471 * available trace data. We use software double buffering at the moment.
1473 * TODO: Add support for reusing the perf ring buffer.
1475 static unsigned long
1476 tmc_update_etr_buffer(struct coresight_device *csdev,
1477 struct perf_output_handle *handle,
1478 void *config)
1480 bool lost = false;
1481 unsigned long flags, offset, size = 0;
1482 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1483 struct etr_perf_buffer *etr_perf = config;
1484 struct etr_buf *etr_buf = etr_perf->etr_buf;
1486 spin_lock_irqsave(&drvdata->spinlock, flags);
1488 /* Don't do anything if another tracer is using this sink */
1489 if (atomic_read(csdev->refcnt) != 1) {
1490 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1491 goto out;
1494 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1495 lost = true;
1496 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1497 goto out;
1500 CS_UNLOCK(drvdata->base);
1502 tmc_flush_and_stop(drvdata);
1503 tmc_sync_etr_buf(drvdata);
1505 CS_LOCK(drvdata->base);
1506 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1508 lost = etr_buf->full;
1509 offset = etr_buf->offset;
1510 size = etr_buf->len;
1513 * The ETR buffer may be bigger than the space available in the
1514 * perf ring buffer (handle->size). If so advance the offset so that we
1515 * get the latest trace data. In snapshot mode none of that matters
1516 * since we are expected to clobber stale data in favour of the latest
1517 * traces.
1519 if (!etr_perf->snapshot && size > handle->size) {
1520 u32 mask = tmc_get_memwidth_mask(drvdata);
1523 * Make sure the new size is aligned in accordance with the
1524 * requirement explained in function tmc_get_memwidth_mask().
1526 size = handle->size & mask;
1527 offset = etr_buf->offset + etr_buf->len - size;
1529 if (offset >= etr_buf->size)
1530 offset -= etr_buf->size;
1531 lost = true;
1534 /* Insert barrier packets at the beginning, if there was an overflow */
1535 if (lost)
1536 tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
1537 tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1540 * In snapshot mode we simply increment the head by the number of byte
1541 * that were written. User space function cs_etm_find_snapshot() will
1542 * figure out how many bytes to get from the AUX buffer based on the
1543 * position of the head.
1545 if (etr_perf->snapshot)
1546 handle->head += size;
1547 out:
1549 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1550 * captured buffer is expected to be truncated and 2) a full buffer
1551 * prevents the event from being re-enabled by the perf core,
1552 * resulting in stale data being send to user space.
1554 if (!etr_perf->snapshot && lost)
1555 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1556 return size;
1559 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1561 int rc = 0;
1562 pid_t pid;
1563 unsigned long flags;
1564 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1565 struct perf_output_handle *handle = data;
1566 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1568 spin_lock_irqsave(&drvdata->spinlock, flags);
1569 /* Don't use this sink if it is already claimed by sysFS */
1570 if (drvdata->mode == CS_MODE_SYSFS) {
1571 rc = -EBUSY;
1572 goto unlock_out;
1575 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1576 rc = -EINVAL;
1577 goto unlock_out;
1580 /* Get a handle on the pid of the process to monitor */
1581 pid = etr_perf->pid;
1583 /* Do not proceed if this device is associated with another session */
1584 if (drvdata->pid != -1 && drvdata->pid != pid) {
1585 rc = -EBUSY;
1586 goto unlock_out;
1589 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1592 * No HW configuration is needed if the sink is already in
1593 * use for this session.
1595 if (drvdata->pid == pid) {
1596 atomic_inc(csdev->refcnt);
1597 goto unlock_out;
1600 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1601 if (!rc) {
1602 /* Associate with monitored process. */
1603 drvdata->pid = pid;
1604 drvdata->mode = CS_MODE_PERF;
1605 drvdata->perf_buf = etr_perf->etr_buf;
1606 atomic_inc(csdev->refcnt);
1609 unlock_out:
1610 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1611 return rc;
1614 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1615 u32 mode, void *data)
1617 switch (mode) {
1618 case CS_MODE_SYSFS:
1619 return tmc_enable_etr_sink_sysfs(csdev);
1620 case CS_MODE_PERF:
1621 return tmc_enable_etr_sink_perf(csdev, data);
1624 /* We shouldn't be here */
1625 return -EINVAL;
1628 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1630 unsigned long flags;
1631 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1633 spin_lock_irqsave(&drvdata->spinlock, flags);
1635 if (drvdata->reading) {
1636 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1637 return -EBUSY;
1640 if (atomic_dec_return(csdev->refcnt)) {
1641 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1642 return -EBUSY;
1645 /* Complain if we (somehow) got out of sync */
1646 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1647 tmc_etr_disable_hw(drvdata);
1648 /* Dissociate from monitored process. */
1649 drvdata->pid = -1;
1650 drvdata->mode = CS_MODE_DISABLED;
1651 /* Reset perf specific data */
1652 drvdata->perf_buf = NULL;
1654 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1656 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1657 return 0;
1660 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1661 .enable = tmc_enable_etr_sink,
1662 .disable = tmc_disable_etr_sink,
1663 .alloc_buffer = tmc_alloc_etr_buffer,
1664 .update_buffer = tmc_update_etr_buffer,
1665 .free_buffer = tmc_free_etr_buffer,
1668 const struct coresight_ops tmc_etr_cs_ops = {
1669 .sink_ops = &tmc_etr_sink_ops,
1672 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1674 int ret = 0;
1675 unsigned long flags;
1677 /* config types are set a boot time and never change */
1678 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1679 return -EINVAL;
1681 spin_lock_irqsave(&drvdata->spinlock, flags);
1682 if (drvdata->reading) {
1683 ret = -EBUSY;
1684 goto out;
1688 * We can safely allow reads even if the ETR is operating in PERF mode,
1689 * since the sysfs session is captured in mode specific data.
1690 * If drvdata::sysfs_data is NULL the trace data has been read already.
1692 if (!drvdata->sysfs_buf) {
1693 ret = -EINVAL;
1694 goto out;
1697 /* Disable the TMC if we are trying to read from a running session. */
1698 if (drvdata->mode == CS_MODE_SYSFS)
1699 __tmc_etr_disable_hw(drvdata);
1701 drvdata->reading = true;
1702 out:
1703 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1705 return ret;
1708 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1710 unsigned long flags;
1711 struct etr_buf *sysfs_buf = NULL;
1713 /* config types are set a boot time and never change */
1714 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1715 return -EINVAL;
1717 spin_lock_irqsave(&drvdata->spinlock, flags);
1719 /* RE-enable the TMC if need be */
1720 if (drvdata->mode == CS_MODE_SYSFS) {
1722 * The trace run will continue with the same allocated trace
1723 * buffer. Since the tracer is still enabled drvdata::buf can't
1724 * be NULL.
1726 __tmc_etr_enable_hw(drvdata);
1727 } else {
1729 * The ETR is not tracing and the buffer was just read.
1730 * As such prepare to free the trace buffer.
1732 sysfs_buf = drvdata->sysfs_buf;
1733 drvdata->sysfs_buf = NULL;
1736 drvdata->reading = false;
1737 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1739 /* Free allocated memory out side of the spinlock */
1740 if (sysfs_buf)
1741 tmc_etr_free_sysfs_buf(sysfs_buf);
1743 return 0;