1 // SPDX-License-Identifier: GPL-2.0
3 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
5 * Copyright (C) 2011 Weinmann Medical GmbH
6 * Author: Nikolaus Voss <n.voss@weinmann.de>
8 * Evolved from original work by:
9 * Copyright (C) 2004 Rick Bronson
10 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
12 * Borrowed heavily from original work by:
13 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/platform_data/dma-atmel.h>
28 #include <linux/pm_runtime.h>
32 void at91_init_twi_bus_master(struct at91_twi_dev
*dev
)
34 struct at91_twi_pdata
*pdata
= dev
->pdata
;
37 /* FIFO should be enabled immediately after the software reset */
39 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_FIFOEN
);
40 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_MSEN
);
41 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SVDIS
);
42 at91_twi_write(dev
, AT91_TWI_CWGR
, dev
->twi_cwgr_reg
);
44 /* enable digital filter */
45 if (pdata
->has_dig_filtr
&& dev
->enable_dig_filt
)
46 filtr
|= AT91_TWI_FILTR_FILT
;
48 /* enable advanced digital filter */
49 if (pdata
->has_adv_dig_filtr
&& dev
->enable_dig_filt
)
50 filtr
|= AT91_TWI_FILTR_FILT
|
51 (AT91_TWI_FILTR_THRES(dev
->filter_width
) &
52 AT91_TWI_FILTR_THRES_MASK
);
54 /* enable analog filter */
55 if (pdata
->has_ana_filtr
&& dev
->enable_ana_filt
)
56 filtr
|= AT91_TWI_FILTR_PADFEN
;
59 at91_twi_write(dev
, AT91_TWI_FILTR
, filtr
);
63 * Calculate symmetric clock as stated in datasheet:
64 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
66 static void at91_calc_twi_clock(struct at91_twi_dev
*dev
)
68 int ckdiv
, cdiv
, div
, hold
= 0, filter_width
= 0;
69 struct at91_twi_pdata
*pdata
= dev
->pdata
;
70 int offset
= pdata
->clk_offset
;
71 int max_ckdiv
= pdata
->clk_max_div
;
72 struct i2c_timings timings
, *t
= &timings
;
74 i2c_parse_fw_timings(dev
->dev
, t
, true);
76 div
= max(0, (int)DIV_ROUND_UP(clk_get_rate(dev
->clk
),
77 2 * t
->bus_freq_hz
) - offset
);
78 ckdiv
= fls(div
>> 8);
81 if (ckdiv
> max_ckdiv
) {
82 dev_warn(dev
->dev
, "%d exceeds ckdiv max value which is %d.\n",
88 if (pdata
->has_hold_field
) {
90 * hold time = HOLD + 3 x T_peripheral_clock
91 * Use clk rate in kHz to prevent overflows when computing
94 hold
= DIV_ROUND_UP(t
->sda_hold_ns
95 * (clk_get_rate(dev
->clk
) / 1000), 1000000);
99 if (hold
> AT91_TWI_CWGR_HOLD_MAX
) {
101 "HOLD field set to its maximum value (%d instead of %d)\n",
102 AT91_TWI_CWGR_HOLD_MAX
, hold
);
103 hold
= AT91_TWI_CWGR_HOLD_MAX
;
107 if (pdata
->has_adv_dig_filtr
) {
109 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX
112 filter_width
= DIV_ROUND_UP(t
->digital_filter_width_ns
113 * (clk_get_rate(dev
->clk
) / 1000), 1000000);
114 if (filter_width
> AT91_TWI_FILTR_THRES_MAX
) {
116 "Filter threshold set to its maximum value (%d instead of %d)\n",
117 AT91_TWI_FILTR_THRES_MAX
, filter_width
);
118 filter_width
= AT91_TWI_FILTR_THRES_MAX
;
122 dev
->twi_cwgr_reg
= (ckdiv
<< 16) | (cdiv
<< 8) | cdiv
123 | AT91_TWI_CWGR_HOLD(hold
);
125 dev
->filter_width
= filter_width
;
127 dev_dbg(dev
->dev
, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
128 cdiv
, ckdiv
, hold
, t
->sda_hold_ns
, filter_width
,
129 t
->digital_filter_width_ns
);
132 static void at91_twi_dma_cleanup(struct at91_twi_dev
*dev
)
134 struct at91_twi_dma
*dma
= &dev
->dma
;
136 at91_twi_irq_save(dev
);
138 if (dma
->xfer_in_progress
) {
139 if (dma
->direction
== DMA_FROM_DEVICE
)
140 dmaengine_terminate_all(dma
->chan_rx
);
142 dmaengine_terminate_all(dma
->chan_tx
);
143 dma
->xfer_in_progress
= false;
145 if (dma
->buf_mapped
) {
146 dma_unmap_single(dev
->dev
, sg_dma_address(&dma
->sg
[0]),
147 dev
->buf_len
, dma
->direction
);
148 dma
->buf_mapped
= false;
151 at91_twi_irq_restore(dev
);
154 static void at91_twi_write_next_byte(struct at91_twi_dev
*dev
)
159 /* 8bit write works with and without FIFO */
160 writeb_relaxed(*dev
->buf
, dev
->base
+ AT91_TWI_THR
);
162 /* send stop when last byte has been written */
163 if (--dev
->buf_len
== 0) {
164 if (!dev
->use_alt_cmd
)
165 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
166 at91_twi_write(dev
, AT91_TWI_IDR
, AT91_TWI_TXRDY
);
169 dev_dbg(dev
->dev
, "wrote 0x%x, to go %zu\n", *dev
->buf
, dev
->buf_len
);
174 static void at91_twi_write_data_dma_callback(void *data
)
176 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
178 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
179 dev
->buf_len
, DMA_TO_DEVICE
);
182 * When this callback is called, THR/TX FIFO is likely not to be empty
183 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
184 * Status Register to be sure that the STOP bit has been sent and the
185 * transfer is completed. The NACK interrupt has already been enabled,
186 * we just have to enable TXCOMP one.
188 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
189 if (!dev
->use_alt_cmd
)
190 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
193 static void at91_twi_write_data_dma(struct at91_twi_dev
*dev
)
196 struct dma_async_tx_descriptor
*txdesc
;
197 struct at91_twi_dma
*dma
= &dev
->dma
;
198 struct dma_chan
*chan_tx
= dma
->chan_tx
;
199 unsigned int sg_len
= 1;
204 dma
->direction
= DMA_TO_DEVICE
;
206 at91_twi_irq_save(dev
);
207 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, dev
->buf_len
,
209 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
210 dev_err(dev
->dev
, "dma map failed\n");
213 dma
->buf_mapped
= true;
214 at91_twi_irq_restore(dev
);
216 if (dev
->fifo_size
) {
217 size_t part1_len
, part2_len
;
218 struct scatterlist
*sg
;
223 part1_len
= dev
->buf_len
& ~0x3;
225 sg
= &dma
->sg
[sg_len
++];
226 sg_dma_len(sg
) = part1_len
;
227 sg_dma_address(sg
) = dma_addr
;
230 part2_len
= dev
->buf_len
& 0x3;
232 sg
= &dma
->sg
[sg_len
++];
233 sg_dma_len(sg
) = part2_len
;
234 sg_dma_address(sg
) = dma_addr
+ part1_len
;
238 * DMA controller is triggered when at least 4 data can be
239 * written into the TX FIFO
241 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
242 fifo_mr
&= ~AT91_TWI_FMR_TXRDYM_MASK
;
243 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA
);
244 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
246 sg_dma_len(&dma
->sg
[0]) = dev
->buf_len
;
247 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
250 txdesc
= dmaengine_prep_slave_sg(chan_tx
, dma
->sg
, sg_len
,
252 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
254 dev_err(dev
->dev
, "dma prep slave sg failed\n");
258 txdesc
->callback
= at91_twi_write_data_dma_callback
;
259 txdesc
->callback_param
= dev
;
261 dma
->xfer_in_progress
= true;
262 dmaengine_submit(txdesc
);
263 dma_async_issue_pending(chan_tx
);
268 at91_twi_dma_cleanup(dev
);
271 static void at91_twi_read_next_byte(struct at91_twi_dev
*dev
)
274 * If we are in this case, it means there is garbage data in RHR, so
278 at91_twi_read(dev
, AT91_TWI_RHR
);
282 /* 8bit read works with and without FIFO */
283 *dev
->buf
= readb_relaxed(dev
->base
+ AT91_TWI_RHR
);
286 /* return if aborting, we only needed to read RHR to clear RXRDY*/
287 if (dev
->recv_len_abort
)
290 /* handle I2C_SMBUS_BLOCK_DATA */
291 if (unlikely(dev
->msg
->flags
& I2C_M_RECV_LEN
)) {
292 /* ensure length byte is a valid value */
293 if (*dev
->buf
<= I2C_SMBUS_BLOCK_MAX
&& *dev
->buf
> 0) {
294 dev
->msg
->flags
&= ~I2C_M_RECV_LEN
;
295 dev
->buf_len
+= *dev
->buf
;
296 dev
->msg
->len
= dev
->buf_len
+ 1;
297 dev_dbg(dev
->dev
, "received block length %zu\n",
300 /* abort and send the stop by reading one more byte */
301 dev
->recv_len_abort
= true;
306 /* send stop if second but last byte has been read */
307 if (!dev
->use_alt_cmd
&& dev
->buf_len
== 1)
308 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
310 dev_dbg(dev
->dev
, "read 0x%x, to go %zu\n", *dev
->buf
, dev
->buf_len
);
315 static void at91_twi_read_data_dma_callback(void *data
)
317 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
318 unsigned ier
= AT91_TWI_TXCOMP
;
320 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
321 dev
->buf_len
, DMA_FROM_DEVICE
);
323 if (!dev
->use_alt_cmd
) {
324 /* The last two bytes have to be read without using dma */
325 dev
->buf
+= dev
->buf_len
- 2;
327 ier
|= AT91_TWI_RXRDY
;
329 at91_twi_write(dev
, AT91_TWI_IER
, ier
);
332 static void at91_twi_read_data_dma(struct at91_twi_dev
*dev
)
335 struct dma_async_tx_descriptor
*rxdesc
;
336 struct at91_twi_dma
*dma
= &dev
->dma
;
337 struct dma_chan
*chan_rx
= dma
->chan_rx
;
340 buf_len
= (dev
->use_alt_cmd
) ? dev
->buf_len
: dev
->buf_len
- 2;
341 dma
->direction
= DMA_FROM_DEVICE
;
343 /* Keep in mind that we won't use dma to read the last two bytes */
344 at91_twi_irq_save(dev
);
345 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, buf_len
, DMA_FROM_DEVICE
);
346 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
347 dev_err(dev
->dev
, "dma map failed\n");
350 dma
->buf_mapped
= true;
351 at91_twi_irq_restore(dev
);
353 if (dev
->fifo_size
&& IS_ALIGNED(buf_len
, 4)) {
357 * DMA controller is triggered when at least 4 data can be
358 * read from the RX FIFO
360 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
361 fifo_mr
&= ~AT91_TWI_FMR_RXRDYM_MASK
;
362 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA
);
363 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
366 sg_dma_len(&dma
->sg
[0]) = buf_len
;
367 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
369 rxdesc
= dmaengine_prep_slave_sg(chan_rx
, dma
->sg
, 1, DMA_DEV_TO_MEM
,
370 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
372 dev_err(dev
->dev
, "dma prep slave sg failed\n");
376 rxdesc
->callback
= at91_twi_read_data_dma_callback
;
377 rxdesc
->callback_param
= dev
;
379 dma
->xfer_in_progress
= true;
380 dmaengine_submit(rxdesc
);
381 dma_async_issue_pending(dma
->chan_rx
);
386 at91_twi_dma_cleanup(dev
);
389 static irqreturn_t
atmel_twi_interrupt(int irq
, void *dev_id
)
391 struct at91_twi_dev
*dev
= dev_id
;
392 const unsigned status
= at91_twi_read(dev
, AT91_TWI_SR
);
393 const unsigned irqstatus
= status
& at91_twi_read(dev
, AT91_TWI_IMR
);
398 * In reception, the behavior of the twi device (before sama5d2) is
399 * weird. There is some magic about RXRDY flag! When a data has been
400 * almost received, the reception of a new one is anticipated if there
401 * is no stop command to send. That is the reason why ask for sending
402 * the stop command not on the last data but on the second last one.
404 * Unfortunately, we could still have the RXRDY flag set even if the
405 * transfer is done and we have read the last data. It might happen
406 * when the i2c slave device sends too quickly data after receiving the
407 * ack from the master. The data has been almost received before having
408 * the order to send stop. In this case, sending the stop command could
409 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
410 * the RXRDY interrupt first in order to not keep garbage data in the
411 * Receive Holding Register for the next transfer.
413 if (irqstatus
& AT91_TWI_RXRDY
) {
415 * Read all available bytes at once by polling RXRDY usable w/
416 * and w/o FIFO. With FIFO enabled we could also read RXFL and
417 * avoid polling RXRDY.
420 at91_twi_read_next_byte(dev
);
421 } while (at91_twi_read(dev
, AT91_TWI_SR
) & AT91_TWI_RXRDY
);
425 * When a NACK condition is detected, the I2C controller sets the NACK,
426 * TXCOMP and TXRDY bits all together in the Status Register (SR).
428 * 1 - Handling NACK errors with CPU write transfer.
430 * In such case, we should not write the next byte into the Transmit
431 * Holding Register (THR) otherwise the I2C controller would start a new
432 * transfer and the I2C slave is likely to reply by another NACK.
434 * 2 - Handling NACK errors with DMA write transfer.
436 * By setting the TXRDY bit in the SR, the I2C controller also triggers
437 * the DMA controller to write the next data into the THR. Then the
438 * result depends on the hardware version of the I2C controller.
440 * 2a - Without support of the Alternative Command mode.
442 * This is the worst case: the DMA controller is triggered to write the
443 * next data into the THR, hence starting a new transfer: the I2C slave
444 * is likely to reply by another NACK.
445 * Concurrently, this interrupt handler is likely to be called to manage
446 * the first NACK before the I2C controller detects the second NACK and
447 * sets once again the NACK bit into the SR.
448 * When handling the first NACK, this interrupt handler disables the I2C
449 * controller interruptions, especially the NACK interrupt.
450 * Hence, the NACK bit is pending into the SR. This is why we should
451 * read the SR to clear all pending interrupts at the beginning of
452 * at91_do_twi_transfer() before actually starting a new transfer.
454 * 2b - With support of the Alternative Command mode.
456 * When a NACK condition is detected, the I2C controller also locks the
457 * THR (and sets the LOCK bit in the SR): even though the DMA controller
458 * is triggered by the TXRDY bit to write the next data into the THR,
459 * this data actually won't go on the I2C bus hence a second NACK is not
462 if (irqstatus
& (AT91_TWI_TXCOMP
| AT91_TWI_NACK
)) {
463 at91_disable_twi_interrupts(dev
);
464 complete(&dev
->cmd_complete
);
465 } else if (irqstatus
& AT91_TWI_TXRDY
) {
466 at91_twi_write_next_byte(dev
);
469 /* catch error flags */
470 dev
->transfer_status
|= status
;
475 static int at91_do_twi_transfer(struct at91_twi_dev
*dev
)
478 unsigned long time_left
;
479 bool has_unre_flag
= dev
->pdata
->has_unre_flag
;
480 bool has_alt_cmd
= dev
->pdata
->has_alt_cmd
;
483 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
484 * read flag but shows the state of the transmission at the time the
485 * Status Register is read. According to the programmer datasheet,
486 * TXCOMP is set when both holding register and internal shifter are
487 * empty and STOP condition has been sent.
488 * Consequently, we should enable NACK interrupt rather than TXCOMP to
489 * detect transmission failure.
490 * Indeed let's take the case of an i2c write command using DMA.
491 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
492 * TXCOMP bits are set together into the Status Register.
493 * LOCK is a clear on write bit, which is set to prevent the DMA
494 * controller from sending new data on the i2c bus after a NACK
495 * condition has happened. Once locked, this i2c peripheral stops
496 * triggering the DMA controller for new data but it is more than
497 * likely that a new DMA transaction is already in progress, writing
498 * into the Transmit Holding Register. Since the peripheral is locked,
499 * these new data won't be sent to the i2c bus but they will remain
500 * into the Transmit Holding Register, so TXCOMP bit is cleared.
501 * Then when the interrupt handler is called, the Status Register is
502 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
503 * manage the error properly, without waiting for timeout.
504 * This case can be reproduced easyly when writing into an at24 eeprom.
506 * Besides, the TXCOMP bit is already set before the i2c transaction
507 * has been started. For read transactions, this bit is cleared when
508 * writing the START bit into the Control Register. So the
509 * corresponding interrupt can safely be enabled just after.
510 * However for write transactions managed by the CPU, we first write
511 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
512 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
513 * the interrupt handler would be called immediately and the i2c command
514 * would be reported as completed.
515 * Also when a write transaction is managed by the DMA controller,
516 * enabling the TXCOMP interrupt in this function may lead to a race
517 * condition since we don't know whether the TXCOMP interrupt is enabled
518 * before or after the DMA has started to write into THR. So the TXCOMP
519 * interrupt is enabled later by at91_twi_write_data_dma_callback().
520 * Immediately after in that DMA callback, if the alternative command
521 * mode is not used, we still need to send the STOP condition manually
522 * writing the corresponding bit into the Control Register.
525 dev_dbg(dev
->dev
, "transfer: %s %zu bytes.\n",
526 (dev
->msg
->flags
& I2C_M_RD
) ? "read" : "write", dev
->buf_len
);
528 reinit_completion(&dev
->cmd_complete
);
529 dev
->transfer_status
= 0;
531 /* Clear pending interrupts, such as NACK. */
532 at91_twi_read(dev
, AT91_TWI_SR
);
534 if (dev
->fifo_size
) {
535 unsigned fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
537 /* Reset FIFO mode register */
538 fifo_mr
&= ~(AT91_TWI_FMR_TXRDYM_MASK
|
539 AT91_TWI_FMR_RXRDYM_MASK
);
540 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA
);
541 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA
);
542 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
545 at91_twi_write(dev
, AT91_TWI_CR
,
546 AT91_TWI_THRCLR
| AT91_TWI_RHRCLR
);
550 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_QUICK
);
551 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
552 } else if (dev
->msg
->flags
& I2C_M_RD
) {
553 unsigned start_flags
= AT91_TWI_START
;
555 /* if only one byte is to be read, immediately stop transfer */
556 if (!dev
->use_alt_cmd
&& dev
->buf_len
<= 1 &&
557 !(dev
->msg
->flags
& I2C_M_RECV_LEN
))
558 start_flags
|= AT91_TWI_STOP
;
559 at91_twi_write(dev
, AT91_TWI_CR
, start_flags
);
561 * When using dma without alternative command mode, the last
562 * byte has to be read manually in order to not send the stop
563 * command too late and then to receive extra data.
564 * In practice, there are some issues if you use the dma to
565 * read n-1 bytes because of latency.
566 * Reading n-2 bytes with dma and the two last ones manually
567 * seems to be the best solution.
569 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
570 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
571 at91_twi_read_data_dma(dev
);
573 at91_twi_write(dev
, AT91_TWI_IER
,
579 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
580 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
581 at91_twi_write_data_dma(dev
);
583 at91_twi_write_next_byte(dev
);
584 at91_twi_write(dev
, AT91_TWI_IER
,
585 AT91_TWI_TXCOMP
| AT91_TWI_NACK
|
586 (dev
->buf_len
? AT91_TWI_TXRDY
: 0));
590 time_left
= wait_for_completion_timeout(&dev
->cmd_complete
,
591 dev
->adapter
.timeout
);
592 if (time_left
== 0) {
593 dev
->transfer_status
|= at91_twi_read(dev
, AT91_TWI_SR
);
594 dev_err(dev
->dev
, "controller timed out\n");
595 at91_init_twi_bus(dev
);
599 if (dev
->transfer_status
& AT91_TWI_NACK
) {
600 dev_dbg(dev
->dev
, "received nack\n");
604 if (dev
->transfer_status
& AT91_TWI_OVRE
) {
605 dev_err(dev
->dev
, "overrun while reading\n");
609 if (has_unre_flag
&& dev
->transfer_status
& AT91_TWI_UNRE
) {
610 dev_err(dev
->dev
, "underrun while writing\n");
614 if ((has_alt_cmd
|| dev
->fifo_size
) &&
615 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
616 dev_err(dev
->dev
, "tx locked\n");
620 if (dev
->recv_len_abort
) {
621 dev_err(dev
->dev
, "invalid smbus block length recvd\n");
626 dev_dbg(dev
->dev
, "transfer complete\n");
631 /* first stop DMA transfer if still in progress */
632 at91_twi_dma_cleanup(dev
);
633 /* then flush THR/FIFO and unlock TX if locked */
634 if ((has_alt_cmd
|| dev
->fifo_size
) &&
635 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
636 dev_dbg(dev
->dev
, "unlock tx\n");
637 at91_twi_write(dev
, AT91_TWI_CR
,
638 AT91_TWI_THRCLR
| AT91_TWI_LOCKCLR
);
643 static int at91_twi_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msg
, int num
)
645 struct at91_twi_dev
*dev
= i2c_get_adapdata(adap
);
647 unsigned int_addr_flag
= 0;
648 struct i2c_msg
*m_start
= msg
;
651 dev_dbg(&adap
->dev
, "at91_xfer: processing %d messages:\n", num
);
653 ret
= pm_runtime_get_sync(dev
->dev
);
658 int internal_address
= 0;
661 /* 1st msg is put into the internal address, start with 2nd */
663 for (i
= 0; i
< msg
->len
; ++i
) {
664 const unsigned addr
= msg
->buf
[msg
->len
- 1 - i
];
666 internal_address
|= addr
<< (8 * i
);
667 int_addr_flag
+= AT91_TWI_IADRSZ_1
;
669 at91_twi_write(dev
, AT91_TWI_IADR
, internal_address
);
672 dev
->use_alt_cmd
= false;
673 is_read
= (m_start
->flags
& I2C_M_RD
);
674 if (dev
->pdata
->has_alt_cmd
) {
675 if (m_start
->len
> 0 &&
676 m_start
->len
< AT91_I2C_MAX_ALT_CMD_DATA_SIZE
) {
677 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMEN
);
678 at91_twi_write(dev
, AT91_TWI_ACR
,
679 AT91_TWI_ACR_DATAL(m_start
->len
) |
680 ((is_read
) ? AT91_TWI_ACR_DIR
: 0));
681 dev
->use_alt_cmd
= true;
683 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMDIS
);
687 at91_twi_write(dev
, AT91_TWI_MMR
,
688 (m_start
->addr
<< 16) |
690 ((!dev
->use_alt_cmd
&& is_read
) ? AT91_TWI_MREAD
: 0));
692 dev
->buf_len
= m_start
->len
;
693 dev
->buf
= m_start
->buf
;
695 dev
->recv_len_abort
= false;
697 ret
= at91_do_twi_transfer(dev
);
699 ret
= (ret
< 0) ? ret
: num
;
701 pm_runtime_mark_last_busy(dev
->dev
);
702 pm_runtime_put_autosuspend(dev
->dev
);
708 * The hardware can handle at most two messages concatenated by a
709 * repeated start via it's internal address feature.
711 static const struct i2c_adapter_quirks at91_twi_quirks
= {
712 .flags
= I2C_AQ_COMB
| I2C_AQ_COMB_WRITE_FIRST
| I2C_AQ_COMB_SAME_ADDR
,
713 .max_comb_1st_msg_len
= 3,
716 static u32
at91_twi_func(struct i2c_adapter
*adapter
)
718 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
719 | I2C_FUNC_SMBUS_READ_BLOCK_DATA
;
722 static const struct i2c_algorithm at91_twi_algorithm
= {
723 .master_xfer
= at91_twi_xfer
,
724 .functionality
= at91_twi_func
,
727 static int at91_twi_configure_dma(struct at91_twi_dev
*dev
, u32 phy_addr
)
730 struct dma_slave_config slave_config
;
731 struct at91_twi_dma
*dma
= &dev
->dma
;
732 enum dma_slave_buswidth addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
735 * The actual width of the access will be chosen in
736 * dmaengine_prep_slave_sg():
737 * for each buffer in the scatter-gather list, if its size is aligned
738 * to addr_width then addr_width accesses will be performed to transfer
739 * the buffer. On the other hand, if the buffer size is not aligned to
740 * addr_width then the buffer is transferred using single byte accesses.
741 * Please refer to the Atmel eXtended DMA controller driver.
742 * When FIFOs are used, the TXRDYM threshold can always be set to
743 * trigger the XDMAC when at least 4 data can be written into the TX
744 * FIFO, even if single byte accesses are performed.
745 * However the RXRDYM threshold must be set to fit the access width,
746 * deduced from buffer length, so the XDMAC is triggered properly to
747 * read data from the RX FIFO.
750 addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
752 memset(&slave_config
, 0, sizeof(slave_config
));
753 slave_config
.src_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_RHR
;
754 slave_config
.src_addr_width
= addr_width
;
755 slave_config
.src_maxburst
= 1;
756 slave_config
.dst_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_THR
;
757 slave_config
.dst_addr_width
= addr_width
;
758 slave_config
.dst_maxburst
= 1;
759 slave_config
.device_fc
= false;
761 dma
->chan_tx
= dma_request_chan(dev
->dev
, "tx");
762 if (IS_ERR(dma
->chan_tx
)) {
763 ret
= PTR_ERR(dma
->chan_tx
);
768 dma
->chan_rx
= dma_request_chan(dev
->dev
, "rx");
769 if (IS_ERR(dma
->chan_rx
)) {
770 ret
= PTR_ERR(dma
->chan_rx
);
775 slave_config
.direction
= DMA_MEM_TO_DEV
;
776 if (dmaengine_slave_config(dma
->chan_tx
, &slave_config
)) {
777 dev_err(dev
->dev
, "failed to configure tx channel\n");
782 slave_config
.direction
= DMA_DEV_TO_MEM
;
783 if (dmaengine_slave_config(dma
->chan_rx
, &slave_config
)) {
784 dev_err(dev
->dev
, "failed to configure rx channel\n");
789 sg_init_table(dma
->sg
, 2);
790 dma
->buf_mapped
= false;
791 dma
->xfer_in_progress
= false;
794 dev_info(dev
->dev
, "using %s (tx) and %s (rx) for DMA transfers\n",
795 dma_chan_name(dma
->chan_tx
), dma_chan_name(dma
->chan_rx
));
800 if (ret
!= -EPROBE_DEFER
)
801 dev_info(dev
->dev
, "can't get DMA channel, continue without DMA support\n");
803 dma_release_channel(dma
->chan_rx
);
805 dma_release_channel(dma
->chan_tx
);
809 int at91_twi_probe_master(struct platform_device
*pdev
,
810 u32 phy_addr
, struct at91_twi_dev
*dev
)
814 init_completion(&dev
->cmd_complete
);
816 rc
= devm_request_irq(&pdev
->dev
, dev
->irq
, atmel_twi_interrupt
, 0,
817 dev_name(dev
->dev
), dev
);
819 dev_err(dev
->dev
, "Cannot get irq %d: %d\n", dev
->irq
, rc
);
823 if (dev
->dev
->of_node
) {
824 rc
= at91_twi_configure_dma(dev
, phy_addr
);
825 if (rc
== -EPROBE_DEFER
)
829 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
831 dev_info(dev
->dev
, "Using FIFO (%u data)\n", dev
->fifo_size
);
834 dev
->enable_dig_filt
= of_property_read_bool(pdev
->dev
.of_node
,
835 "i2c-digital-filter");
837 dev
->enable_ana_filt
= of_property_read_bool(pdev
->dev
.of_node
,
838 "i2c-analog-filter");
839 at91_calc_twi_clock(dev
);
841 dev
->adapter
.algo
= &at91_twi_algorithm
;
842 dev
->adapter
.quirks
= &at91_twi_quirks
;