treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-bcm-iproc.c
blob30efb7913b2e1b1dd7975348cce1c963d87ae7b5
1 /*
2 * Copyright (C) 2014 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #define IDM_CTRL_DIRECT_OFFSET 0x00
25 #define CFG_OFFSET 0x00
26 #define CFG_RESET_SHIFT 31
27 #define CFG_EN_SHIFT 30
28 #define CFG_SLAVE_ADDR_0_SHIFT 28
29 #define CFG_M_RETRY_CNT_SHIFT 16
30 #define CFG_M_RETRY_CNT_MASK 0x0f
32 #define TIM_CFG_OFFSET 0x04
33 #define TIM_CFG_MODE_400_SHIFT 31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT 24
35 #define TIM_RAND_SLAVE_STRETCH_MASK 0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f
39 #define S_CFG_SMBUS_ADDR_OFFSET 0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT 24
42 #define S_CFG_NIC_SMB_ADDR3_MASK 0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT 16
45 #define S_CFG_NIC_SMB_ADDR2_MASK 0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT 8
48 #define S_CFG_NIC_SMB_ADDR1_MASK 0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT 0
51 #define S_CFG_NIC_SMB_ADDR0_MASK 0x7f
53 #define M_FIFO_CTRL_OFFSET 0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT 31
55 #define M_FIFO_TX_FLUSH_SHIFT 30
56 #define M_FIFO_RX_CNT_SHIFT 16
57 #define M_FIFO_RX_CNT_MASK 0x7f
58 #define M_FIFO_RX_THLD_SHIFT 8
59 #define M_FIFO_RX_THLD_MASK 0x3f
61 #define S_FIFO_CTRL_OFFSET 0x10
62 #define S_FIFO_RX_FLUSH_SHIFT 31
63 #define S_FIFO_TX_FLUSH_SHIFT 30
64 #define S_FIFO_RX_CNT_SHIFT 16
65 #define S_FIFO_RX_CNT_MASK 0x7f
66 #define S_FIFO_RX_THLD_SHIFT 8
67 #define S_FIFO_RX_THLD_MASK 0x3f
69 #define M_CMD_OFFSET 0x30
70 #define M_CMD_START_BUSY_SHIFT 31
71 #define M_CMD_STATUS_SHIFT 25
72 #define M_CMD_STATUS_MASK 0x07
73 #define M_CMD_STATUS_SUCCESS 0x0
74 #define M_CMD_STATUS_LOST_ARB 0x1
75 #define M_CMD_STATUS_NACK_ADDR 0x2
76 #define M_CMD_STATUS_NACK_DATA 0x3
77 #define M_CMD_STATUS_TIMEOUT 0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN 0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL 0x6
80 #define M_CMD_PROTOCOL_SHIFT 9
81 #define M_CMD_PROTOCOL_MASK 0xf
82 #define M_CMD_PROTOCOL_BLK_WR 0x7
83 #define M_CMD_PROTOCOL_BLK_RD 0x8
84 #define M_CMD_PROTOCOL_PROCESS 0xa
85 #define M_CMD_PEC_SHIFT 8
86 #define M_CMD_RD_CNT_SHIFT 0
87 #define M_CMD_RD_CNT_MASK 0xff
89 #define S_CMD_OFFSET 0x34
90 #define S_CMD_START_BUSY_SHIFT 31
91 #define S_CMD_STATUS_SHIFT 23
92 #define S_CMD_STATUS_MASK 0x07
93 #define S_CMD_STATUS_SUCCESS 0x0
94 #define S_CMD_STATUS_TIMEOUT 0x5
96 #define IE_OFFSET 0x38
97 #define IE_M_RX_FIFO_FULL_SHIFT 31
98 #define IE_M_RX_THLD_SHIFT 30
99 #define IE_M_START_BUSY_SHIFT 28
100 #define IE_M_TX_UNDERRUN_SHIFT 27
101 #define IE_S_RX_FIFO_FULL_SHIFT 26
102 #define IE_S_RX_THLD_SHIFT 25
103 #define IE_S_RX_EVENT_SHIFT 24
104 #define IE_S_START_BUSY_SHIFT 23
105 #define IE_S_TX_UNDERRUN_SHIFT 22
106 #define IE_S_RD_EVENT_SHIFT 21
108 #define IS_OFFSET 0x3c
109 #define IS_M_RX_FIFO_FULL_SHIFT 31
110 #define IS_M_RX_THLD_SHIFT 30
111 #define IS_M_START_BUSY_SHIFT 28
112 #define IS_M_TX_UNDERRUN_SHIFT 27
113 #define IS_S_RX_FIFO_FULL_SHIFT 26
114 #define IS_S_RX_THLD_SHIFT 25
115 #define IS_S_RX_EVENT_SHIFT 24
116 #define IS_S_START_BUSY_SHIFT 23
117 #define IS_S_TX_UNDERRUN_SHIFT 22
118 #define IS_S_RD_EVENT_SHIFT 21
120 #define M_TX_OFFSET 0x40
121 #define M_TX_WR_STATUS_SHIFT 31
122 #define M_TX_DATA_SHIFT 0
123 #define M_TX_DATA_MASK 0xff
125 #define M_RX_OFFSET 0x44
126 #define M_RX_STATUS_SHIFT 30
127 #define M_RX_STATUS_MASK 0x03
128 #define M_RX_PEC_ERR_SHIFT 29
129 #define M_RX_DATA_SHIFT 0
130 #define M_RX_DATA_MASK 0xff
132 #define S_TX_OFFSET 0x48
133 #define S_TX_WR_STATUS_SHIFT 31
134 #define S_TX_DATA_SHIFT 0
135 #define S_TX_DATA_MASK 0xff
137 #define S_RX_OFFSET 0x4c
138 #define S_RX_STATUS_SHIFT 30
139 #define S_RX_STATUS_MASK 0x03
140 #define S_RX_PEC_ERR_SHIFT 29
141 #define S_RX_DATA_SHIFT 0
142 #define S_RX_DATA_MASK 0xff
144 #define I2C_TIMEOUT_MSEC 50000
145 #define M_TX_RX_FIFO_SIZE 64
146 #define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1)
148 #define M_RX_MAX_READ_LEN 255
149 #define M_RX_FIFO_THLD_VALUE 50
151 #define IE_M_ALL_INTERRUPT_SHIFT 27
152 #define IE_M_ALL_INTERRUPT_MASK 0x1e
154 #define SLAVE_READ_WRITE_BIT_MASK 0x1
155 #define SLAVE_READ_WRITE_BIT_SHIFT 0x1
156 #define SLAVE_MAX_SIZE_TRANSACTION 64
157 #define SLAVE_CLOCK_STRETCH_TIME 25
159 #define IE_S_ALL_INTERRUPT_SHIFT 21
160 #define IE_S_ALL_INTERRUPT_MASK 0x3f
162 enum i2c_slave_read_status {
163 I2C_SLAVE_RX_FIFO_EMPTY = 0,
164 I2C_SLAVE_RX_START,
165 I2C_SLAVE_RX_DATA,
166 I2C_SLAVE_RX_END,
169 enum bus_speed_index {
170 I2C_SPD_100K = 0,
171 I2C_SPD_400K,
174 enum bcm_iproc_i2c_type {
175 IPROC_I2C,
176 IPROC_I2C_NIC
179 struct bcm_iproc_i2c_dev {
180 struct device *device;
181 enum bcm_iproc_i2c_type type;
182 int irq;
184 void __iomem *base;
185 void __iomem *idm_base;
187 u32 ape_addr_mask;
189 /* lock for indirect access through IDM */
190 spinlock_t idm_lock;
192 struct i2c_adapter adapter;
193 unsigned int bus_speed;
195 struct completion done;
196 int xfer_is_done;
198 struct i2c_msg *msg;
200 struct i2c_client *slave;
202 /* bytes that have been transferred */
203 unsigned int tx_bytes;
204 /* bytes that have been read */
205 unsigned int rx_bytes;
206 unsigned int thld_bytes;
210 * Can be expanded in the future if more interrupt status bits are utilized
212 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
213 | BIT(IS_M_RX_THLD_SHIFT))
215 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
216 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
217 | BIT(IS_S_TX_UNDERRUN_SHIFT))
219 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
220 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
221 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
222 bool enable);
224 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
225 u32 offset)
227 u32 val;
229 if (iproc_i2c->idm_base) {
230 spin_lock(&iproc_i2c->idm_lock);
231 writel(iproc_i2c->ape_addr_mask,
232 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
233 val = readl(iproc_i2c->base + offset);
234 spin_unlock(&iproc_i2c->idm_lock);
235 } else {
236 val = readl(iproc_i2c->base + offset);
239 return val;
242 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
243 u32 offset, u32 val)
245 if (iproc_i2c->idm_base) {
246 spin_lock(&iproc_i2c->idm_lock);
247 writel(iproc_i2c->ape_addr_mask,
248 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
249 writel(val, iproc_i2c->base + offset);
250 spin_unlock(&iproc_i2c->idm_lock);
251 } else {
252 writel(val, iproc_i2c->base + offset);
256 static void bcm_iproc_i2c_slave_init(
257 struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
259 u32 val;
261 if (need_reset) {
262 /* put controller in reset */
263 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
264 val |= BIT(CFG_RESET_SHIFT);
265 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
267 /* wait 100 usec per spec */
268 udelay(100);
270 /* bring controller out of reset */
271 val &= ~(BIT(CFG_RESET_SHIFT));
272 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
275 /* flush TX/RX FIFOs */
276 val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
277 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
279 /* Maximum slave stretch time */
280 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
281 val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
282 val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
283 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
285 /* Configure the slave address */
286 val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
287 val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
288 val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
289 val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
290 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
292 /* clear all pending slave interrupts */
293 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
295 /* Enable interrupt register to indicate a valid byte in receive fifo */
296 val = BIT(IE_S_RX_EVENT_SHIFT);
297 /* Enable interrupt register for the Slave BUSY command */
298 val |= BIT(IE_S_START_BUSY_SHIFT);
299 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
302 static void bcm_iproc_i2c_check_slave_status(
303 struct bcm_iproc_i2c_dev *iproc_i2c)
305 u32 val;
307 val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
308 /* status is valid only when START_BUSY is cleared after it was set */
309 if (val & BIT(S_CMD_START_BUSY_SHIFT))
310 return;
312 val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
313 if (val == S_CMD_STATUS_TIMEOUT) {
314 dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
316 /* re-initialize i2c for recovery */
317 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
318 bcm_iproc_i2c_slave_init(iproc_i2c, true);
319 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
323 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
324 u32 status)
326 u32 val;
327 u8 value, rx_status;
329 /* Slave RX byte receive */
330 if (status & BIT(IS_S_RX_EVENT_SHIFT)) {
331 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
332 rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
333 if (rx_status == I2C_SLAVE_RX_START) {
334 /* Start of SMBUS for Master write */
335 i2c_slave_event(iproc_i2c->slave,
336 I2C_SLAVE_WRITE_REQUESTED, &value);
338 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
339 value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
340 i2c_slave_event(iproc_i2c->slave,
341 I2C_SLAVE_WRITE_RECEIVED, &value);
342 } else if (status & BIT(IS_S_RD_EVENT_SHIFT)) {
343 /* Start of SMBUS for Master Read */
344 i2c_slave_event(iproc_i2c->slave,
345 I2C_SLAVE_READ_REQUESTED, &value);
346 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
348 val = BIT(S_CMD_START_BUSY_SHIFT);
349 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
352 * Enable interrupt for TX FIFO becomes empty and
353 * less than PKT_LENGTH bytes were output on the SMBUS
355 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
356 val |= BIT(IE_S_TX_UNDERRUN_SHIFT);
357 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
358 } else {
359 /* Master write other than start */
360 value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
361 i2c_slave_event(iproc_i2c->slave,
362 I2C_SLAVE_WRITE_RECEIVED, &value);
364 } else if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
365 /* Master read other than start */
366 i2c_slave_event(iproc_i2c->slave,
367 I2C_SLAVE_READ_PROCESSED, &value);
369 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
370 val = BIT(S_CMD_START_BUSY_SHIFT);
371 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
374 /* Stop */
375 if (status & BIT(IS_S_START_BUSY_SHIFT)) {
376 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
378 * Enable interrupt for TX FIFO becomes empty and
379 * less than PKT_LENGTH bytes were output on the SMBUS
381 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
382 val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
383 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
386 /* clear interrupt status */
387 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
389 bcm_iproc_i2c_check_slave_status(iproc_i2c);
390 return true;
393 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
395 struct i2c_msg *msg = iproc_i2c->msg;
396 uint32_t val;
398 /* Read valid data from RX FIFO */
399 while (iproc_i2c->rx_bytes < msg->len) {
400 val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
402 /* rx fifo empty */
403 if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
404 break;
406 msg->buf[iproc_i2c->rx_bytes] =
407 (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
408 iproc_i2c->rx_bytes++;
412 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
414 struct i2c_msg *msg = iproc_i2c->msg;
415 unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
416 unsigned int i;
417 u32 val;
419 /* can only fill up to the FIFO size */
420 tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
421 for (i = 0; i < tx_bytes; i++) {
422 /* start from where we left over */
423 unsigned int idx = iproc_i2c->tx_bytes + i;
425 val = msg->buf[idx];
427 /* mark the last byte */
428 if (idx == msg->len - 1) {
429 val |= BIT(M_TX_WR_STATUS_SHIFT);
431 if (iproc_i2c->irq) {
432 u32 tmp;
435 * Since this is the last byte, we should now
436 * disable TX FIFO underrun interrupt
438 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
439 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
440 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
441 tmp);
445 /* load data into TX FIFO */
446 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
449 /* update number of transferred bytes */
450 iproc_i2c->tx_bytes += tx_bytes;
453 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
455 struct i2c_msg *msg = iproc_i2c->msg;
456 u32 bytes_left, val;
458 bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
459 bytes_left = msg->len - iproc_i2c->rx_bytes;
460 if (bytes_left == 0) {
461 if (iproc_i2c->irq) {
462 /* finished reading all data, disable rx thld event */
463 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
464 val &= ~BIT(IS_M_RX_THLD_SHIFT);
465 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
467 } else if (bytes_left < iproc_i2c->thld_bytes) {
468 /* set bytes left as threshold */
469 val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
470 val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
471 val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
472 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
473 iproc_i2c->thld_bytes = bytes_left;
476 * bytes_left >= iproc_i2c->thld_bytes,
477 * hence no need to change the THRESHOLD SET.
478 * It will remain as iproc_i2c->thld_bytes itself
482 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
483 u32 status)
485 /* TX FIFO is empty and we have more data to send */
486 if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
487 bcm_iproc_i2c_send(iproc_i2c);
489 /* RX FIFO threshold is reached and data needs to be read out */
490 if (status & BIT(IS_M_RX_THLD_SHIFT))
491 bcm_iproc_i2c_read(iproc_i2c);
493 /* transfer is done */
494 if (status & BIT(IS_M_START_BUSY_SHIFT)) {
495 iproc_i2c->xfer_is_done = 1;
496 if (iproc_i2c->irq)
497 complete(&iproc_i2c->done);
501 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
503 struct bcm_iproc_i2c_dev *iproc_i2c = data;
504 u32 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
505 bool ret;
506 u32 sl_status = status & ISR_MASK_SLAVE;
508 if (sl_status) {
509 ret = bcm_iproc_i2c_slave_isr(iproc_i2c, sl_status);
510 if (ret)
511 return IRQ_HANDLED;
512 else
513 return IRQ_NONE;
516 status &= ISR_MASK;
517 if (!status)
518 return IRQ_NONE;
520 /* process all master based events */
521 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
522 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
524 return IRQ_HANDLED;
527 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
529 u32 val;
531 /* put controller in reset */
532 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
533 val |= BIT(CFG_RESET_SHIFT);
534 val &= ~(BIT(CFG_EN_SHIFT));
535 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
537 /* wait 100 usec per spec */
538 udelay(100);
540 /* bring controller out of reset */
541 val &= ~(BIT(CFG_RESET_SHIFT));
542 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
544 /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
545 val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
546 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
547 /* disable all interrupts */
548 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
549 val &= ~(IE_M_ALL_INTERRUPT_MASK <<
550 IE_M_ALL_INTERRUPT_SHIFT);
551 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
553 /* clear all pending interrupts */
554 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
556 return 0;
559 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
560 bool enable)
562 u32 val;
564 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
565 if (enable)
566 val |= BIT(CFG_EN_SHIFT);
567 else
568 val &= ~BIT(CFG_EN_SHIFT);
569 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
572 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
573 struct i2c_msg *msg)
575 u32 val;
577 val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
578 val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
580 switch (val) {
581 case M_CMD_STATUS_SUCCESS:
582 return 0;
584 case M_CMD_STATUS_LOST_ARB:
585 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
586 return -EAGAIN;
588 case M_CMD_STATUS_NACK_ADDR:
589 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
590 return -ENXIO;
592 case M_CMD_STATUS_NACK_DATA:
593 dev_dbg(iproc_i2c->device, "NAK data\n");
594 return -ENXIO;
596 case M_CMD_STATUS_TIMEOUT:
597 dev_dbg(iproc_i2c->device, "bus timeout\n");
598 return -ETIMEDOUT;
600 case M_CMD_STATUS_FIFO_UNDERRUN:
601 dev_dbg(iproc_i2c->device, "FIFO under-run\n");
602 return -ENXIO;
604 case M_CMD_STATUS_RX_FIFO_FULL:
605 dev_dbg(iproc_i2c->device, "RX FIFO full\n");
606 return -ETIMEDOUT;
608 default:
609 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
611 /* re-initialize i2c for recovery */
612 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
613 bcm_iproc_i2c_init(iproc_i2c);
614 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
616 return -EIO;
620 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
621 struct i2c_msg *msg,
622 u32 cmd)
624 unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
625 u32 val, status;
626 int ret;
628 iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
630 if (iproc_i2c->irq) {
631 time_left = wait_for_completion_timeout(&iproc_i2c->done,
632 time_left);
633 /* disable all interrupts */
634 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
635 /* read it back to flush the write */
636 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
637 /* make sure the interrupt handler isn't running */
638 synchronize_irq(iproc_i2c->irq);
640 } else { /* polling mode */
641 unsigned long timeout = jiffies + time_left;
643 do {
644 status = iproc_i2c_rd_reg(iproc_i2c,
645 IS_OFFSET) & ISR_MASK;
646 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
647 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
649 if (time_after(jiffies, timeout)) {
650 time_left = 0;
651 break;
654 cpu_relax();
655 cond_resched();
656 } while (!iproc_i2c->xfer_is_done);
659 if (!time_left && !iproc_i2c->xfer_is_done) {
660 dev_err(iproc_i2c->device, "transaction timed out\n");
662 /* flush both TX/RX FIFOs */
663 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
664 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
665 return -ETIMEDOUT;
668 ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
669 if (ret) {
670 /* flush both TX/RX FIFOs */
671 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
672 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
673 return ret;
676 return 0;
680 * If 'process_call' is true, then this is a multi-msg transfer that requires
681 * a repeated start between the messages.
682 * More specifically, it must be a write (reg) followed by a read (data).
683 * The i2c quirks are set to enforce this rule.
685 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
686 struct i2c_msg *msgs, bool process_call)
688 int i;
689 u8 addr;
690 u32 val, tmp, val_intr_en;
691 unsigned int tx_bytes;
692 struct i2c_msg *msg = &msgs[0];
694 /* check if bus is busy */
695 if (!!(iproc_i2c_rd_reg(iproc_i2c,
696 M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
697 dev_warn(iproc_i2c->device, "bus is busy\n");
698 return -EBUSY;
701 iproc_i2c->msg = msg;
703 /* format and load slave address into the TX FIFO */
704 addr = i2c_8bit_addr_from_msg(msg);
705 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
708 * For a write transaction, load data into the TX FIFO. Only allow
709 * loading up to TX FIFO size - 1 bytes of data since the first byte
710 * has been used up by the slave address
712 tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
713 if (!(msg->flags & I2C_M_RD)) {
714 for (i = 0; i < tx_bytes; i++) {
715 val = msg->buf[i];
717 /* mark the last byte */
718 if (!process_call && (i == msg->len - 1))
719 val |= 1 << M_TX_WR_STATUS_SHIFT;
721 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
723 iproc_i2c->tx_bytes = tx_bytes;
726 /* Process the read message if this is process call */
727 if (process_call) {
728 msg++;
729 iproc_i2c->msg = msg; /* point to second msg */
732 * The last byte to be sent out should be a slave
733 * address with read operation
735 addr = i2c_8bit_addr_from_msg(msg);
736 /* mark it the last byte out */
737 val = addr | (1 << M_TX_WR_STATUS_SHIFT);
738 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
741 /* mark as incomplete before starting the transaction */
742 if (iproc_i2c->irq)
743 reinit_completion(&iproc_i2c->done);
745 iproc_i2c->xfer_is_done = 0;
748 * Enable the "start busy" interrupt, which will be triggered after the
749 * transaction is done, i.e., the internal start_busy bit, transitions
750 * from 1 to 0.
752 val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
755 * If TX data size is larger than the TX FIFO, need to enable TX
756 * underrun interrupt, which will be triggerred when the TX FIFO is
757 * empty. When that happens we can then pump more data into the FIFO
759 if (!process_call && !(msg->flags & I2C_M_RD) &&
760 msg->len > iproc_i2c->tx_bytes)
761 val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
764 * Now we can activate the transfer. For a read operation, specify the
765 * number of bytes to read
767 val = BIT(M_CMD_START_BUSY_SHIFT);
768 if (msg->flags & I2C_M_RD) {
769 u32 protocol;
771 iproc_i2c->rx_bytes = 0;
772 if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
773 iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
774 else
775 iproc_i2c->thld_bytes = msg->len;
777 /* set threshold value */
778 tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
779 tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
780 tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
781 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
783 /* enable the RX threshold interrupt */
784 val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
786 protocol = process_call ?
787 M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
789 val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
790 (msg->len << M_CMD_RD_CNT_SHIFT);
791 } else {
792 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
795 if (iproc_i2c->irq)
796 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
798 return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
801 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
802 struct i2c_msg msgs[], int num)
804 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
805 bool process_call = false;
806 int ret;
808 if (num == 2) {
809 /* Repeated start, use process call */
810 process_call = true;
811 if (msgs[1].flags & I2C_M_NOSTART) {
812 dev_err(iproc_i2c->device, "Invalid repeated start\n");
813 return -EOPNOTSUPP;
817 ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
818 if (ret) {
819 dev_dbg(iproc_i2c->device, "xfer failed\n");
820 return ret;
823 return num;
826 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
828 u32 val;
830 /* We do not support the SMBUS Quick command */
831 val = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
833 if (adap->algo->reg_slave)
834 val |= I2C_FUNC_SLAVE;
836 return val;
839 static struct i2c_algorithm bcm_iproc_algo = {
840 .master_xfer = bcm_iproc_i2c_xfer,
841 .functionality = bcm_iproc_i2c_functionality,
842 .reg_slave = bcm_iproc_i2c_reg_slave,
843 .unreg_slave = bcm_iproc_i2c_unreg_slave,
846 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
847 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
848 .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
849 .max_read_len = M_RX_MAX_READ_LEN,
852 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
854 unsigned int bus_speed;
855 u32 val;
856 int ret = of_property_read_u32(iproc_i2c->device->of_node,
857 "clock-frequency", &bus_speed);
858 if (ret < 0) {
859 dev_info(iproc_i2c->device,
860 "unable to interpret clock-frequency DT property\n");
861 bus_speed = 100000;
864 if (bus_speed < 100000) {
865 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
866 bus_speed);
867 dev_err(iproc_i2c->device,
868 "valid speeds are 100khz and 400khz\n");
869 return -EINVAL;
870 } else if (bus_speed < 400000) {
871 bus_speed = 100000;
872 } else {
873 bus_speed = 400000;
876 iproc_i2c->bus_speed = bus_speed;
877 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
878 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
879 val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
880 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
882 dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
884 return 0;
887 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
889 int irq, ret = 0;
890 struct bcm_iproc_i2c_dev *iproc_i2c;
891 struct i2c_adapter *adap;
892 struct resource *res;
894 iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
895 GFP_KERNEL);
896 if (!iproc_i2c)
897 return -ENOMEM;
899 platform_set_drvdata(pdev, iproc_i2c);
900 iproc_i2c->device = &pdev->dev;
901 iproc_i2c->type =
902 (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
903 init_completion(&iproc_i2c->done);
905 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
906 iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
907 if (IS_ERR(iproc_i2c->base))
908 return PTR_ERR(iproc_i2c->base);
910 if (iproc_i2c->type == IPROC_I2C_NIC) {
911 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
912 iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
913 res);
914 if (IS_ERR(iproc_i2c->idm_base))
915 return PTR_ERR(iproc_i2c->idm_base);
917 ret = of_property_read_u32(iproc_i2c->device->of_node,
918 "brcm,ape-hsls-addr-mask",
919 &iproc_i2c->ape_addr_mask);
920 if (ret < 0) {
921 dev_err(iproc_i2c->device,
922 "'brcm,ape-hsls-addr-mask' missing\n");
923 return -EINVAL;
926 spin_lock_init(&iproc_i2c->idm_lock);
928 /* no slave support */
929 bcm_iproc_algo.reg_slave = NULL;
930 bcm_iproc_algo.unreg_slave = NULL;
933 ret = bcm_iproc_i2c_init(iproc_i2c);
934 if (ret)
935 return ret;
937 ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
938 if (ret)
939 return ret;
941 irq = platform_get_irq(pdev, 0);
942 if (irq > 0) {
943 ret = devm_request_irq(iproc_i2c->device, irq,
944 bcm_iproc_i2c_isr, 0, pdev->name,
945 iproc_i2c);
946 if (ret < 0) {
947 dev_err(iproc_i2c->device,
948 "unable to request irq %i\n", irq);
949 return ret;
952 iproc_i2c->irq = irq;
953 } else {
954 dev_warn(iproc_i2c->device,
955 "no irq resource, falling back to poll mode\n");
958 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
960 adap = &iproc_i2c->adapter;
961 i2c_set_adapdata(adap, iproc_i2c);
962 snprintf(adap->name, sizeof(adap->name),
963 "Broadcom iProc (%s)",
964 of_node_full_name(iproc_i2c->device->of_node));
965 adap->algo = &bcm_iproc_algo;
966 adap->quirks = &bcm_iproc_i2c_quirks;
967 adap->dev.parent = &pdev->dev;
968 adap->dev.of_node = pdev->dev.of_node;
970 return i2c_add_adapter(adap);
973 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
975 struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
977 if (iproc_i2c->irq) {
979 * Make sure there's no pending interrupt when we remove the
980 * adapter
982 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
983 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
984 synchronize_irq(iproc_i2c->irq);
987 i2c_del_adapter(&iproc_i2c->adapter);
988 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
990 return 0;
993 #ifdef CONFIG_PM_SLEEP
995 static int bcm_iproc_i2c_suspend(struct device *dev)
997 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
999 if (iproc_i2c->irq) {
1001 * Make sure there's no pending interrupt when we go into
1002 * suspend
1004 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1005 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1006 synchronize_irq(iproc_i2c->irq);
1009 /* now disable the controller */
1010 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1012 return 0;
1015 static int bcm_iproc_i2c_resume(struct device *dev)
1017 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1018 int ret;
1019 u32 val;
1022 * Power domain could have been shut off completely in system deep
1023 * sleep, so re-initialize the block here
1025 ret = bcm_iproc_i2c_init(iproc_i2c);
1026 if (ret)
1027 return ret;
1029 /* configure to the desired bus speed */
1030 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1031 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1032 val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
1033 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1035 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1037 return 0;
1040 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1041 .suspend_late = &bcm_iproc_i2c_suspend,
1042 .resume_early = &bcm_iproc_i2c_resume
1045 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1046 #else
1047 #define BCM_IPROC_I2C_PM_OPS NULL
1048 #endif /* CONFIG_PM_SLEEP */
1051 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1053 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1055 if (iproc_i2c->slave)
1056 return -EBUSY;
1058 if (slave->flags & I2C_CLIENT_TEN)
1059 return -EAFNOSUPPORT;
1061 iproc_i2c->slave = slave;
1062 bcm_iproc_i2c_slave_init(iproc_i2c, false);
1063 return 0;
1066 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1068 u32 tmp;
1069 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1071 if (!iproc_i2c->slave)
1072 return -EINVAL;
1074 iproc_i2c->slave = NULL;
1076 /* disable all slave interrupts */
1077 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1078 tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1079 IE_S_ALL_INTERRUPT_SHIFT);
1080 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1082 /* Erase the slave address programmed */
1083 tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1084 tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1085 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1087 return 0;
1090 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1092 .compatible = "brcm,iproc-i2c",
1093 .data = (int *)IPROC_I2C,
1094 }, {
1095 .compatible = "brcm,iproc-nic-i2c",
1096 .data = (int *)IPROC_I2C_NIC,
1098 { /* sentinel */ }
1100 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1102 static struct platform_driver bcm_iproc_i2c_driver = {
1103 .driver = {
1104 .name = "bcm-iproc-i2c",
1105 .of_match_table = bcm_iproc_i2c_of_match,
1106 .pm = BCM_IPROC_I2C_PM_OPS,
1108 .probe = bcm_iproc_i2c_probe,
1109 .remove = bcm_iproc_i2c_remove,
1111 module_platform_driver(bcm_iproc_i2c_driver);
1113 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1114 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1115 MODULE_LICENSE("GPL v2");