1 // SPDX-License-Identifier: GPL-2.0-only
3 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
5 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
7 * There are three ways that this I2C controller can be driven:
9 * - Raw control of the SDA and SCK signals.
11 * This corresponds to MODE_RAW, which takes control of the signals
12 * directly for a certain number of clock cycles (the INT_TIMING
13 * interrupt can be used for timing).
15 * - Atomic commands. A low level I2C symbol (such as generate
16 * start/stop/ack/nack bit, generate byte, receive byte, and receive
17 * ACK) is given to the hardware, with detection of completion by bits
18 * in the LINESTAT register.
20 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
21 * state machine in the interrupt handler to compose/react to I2C
22 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
23 * which emits a simple fixed sequence of atomic mode commands.
25 * Due to software control, the use of atomic commands usually results
26 * in suboptimal use of the bus, with gaps between the I2C symbols while
27 * the driver decides what to do next.
29 * - Automatic mode. A bus address, and whether to read/write is
30 * specified, and the hardware takes care of the I2C state machine,
31 * using a FIFO to send/receive bytes of data to an I2C slave. The
32 * driver just has to keep the FIFO drained or filled in response to the
33 * appropriate FIFO interrupts.
35 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
36 * with control of repeated start bits between I2C messages.
38 * Use of automatic mode and the FIFO can make much more efficient use
39 * of the bus compared to individual atomic commands, with potentially
40 * no wasted time between I2C symbols or I2C messages.
42 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
43 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
44 * the bus), MODE_ATOMIC must be used since automatic mode is normally
45 * started by the writing of data into the FIFO.
47 * The other modes are used in specific circumstances where MODE_ATOMIC and
48 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
49 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
50 * it is in a sane state.
52 * Notice that the driver implements a timer-based timeout mechanism.
53 * The reason for this mechanism is to reduce the number of interrupts
54 * received in automatic mode.
56 * The driver would get a slave event and transaction done interrupts for
57 * each atomic mode command that gets completed. However, these events are
58 * not needed in automatic mode, becase those atomic mode commands are
59 * managed automatically by the hardware.
61 * In practice, normal I2C transactions will be complete well before you
62 * get the timer interrupt, as the timer is re-scheduled during FIFO
63 * maintenance and disabled after the transaction is complete.
65 * In this way normal automatic mode operation isn't impacted by
66 * unnecessary interrupts, but the exceptional abort condition can still be
67 * detected (with a slight delay).
70 #include <linux/bitops.h>
71 #include <linux/clk.h>
72 #include <linux/completion.h>
73 #include <linux/err.h>
74 #include <linux/i2c.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
78 #include <linux/kernel.h>
79 #include <linux/module.h>
80 #include <linux/of_platform.h>
81 #include <linux/platform_device.h>
82 #include <linux/pm_runtime.h>
83 #include <linux/slab.h>
84 #include <linux/timer.h>
86 /* Register offsets */
88 #define SCB_STATUS_REG 0x00
89 #define SCB_OVERRIDE_REG 0x04
90 #define SCB_READ_ADDR_REG 0x08
91 #define SCB_READ_COUNT_REG 0x0c
92 #define SCB_WRITE_ADDR_REG 0x10
93 #define SCB_READ_DATA_REG 0x14
94 #define SCB_WRITE_DATA_REG 0x18
95 #define SCB_FIFO_STATUS_REG 0x1c
96 #define SCB_CONTROL_SOFT_RESET 0x1f
97 #define SCB_CLK_SET_REG 0x3c
98 #define SCB_INT_STATUS_REG 0x40
99 #define SCB_INT_CLEAR_REG 0x44
100 #define SCB_INT_MASK_REG 0x48
101 #define SCB_CONTROL_REG 0x4c
102 #define SCB_TIME_TPL_REG 0x50
103 #define SCB_TIME_TPH_REG 0x54
104 #define SCB_TIME_TP2S_REG 0x58
105 #define SCB_TIME_TBI_REG 0x60
106 #define SCB_TIME_TSL_REG 0x64
107 #define SCB_TIME_TDL_REG 0x68
108 #define SCB_TIME_TSDL_REG 0x6c
109 #define SCB_TIME_TSDH_REG 0x70
110 #define SCB_READ_XADDR_REG 0x74
111 #define SCB_WRITE_XADDR_REG 0x78
112 #define SCB_WRITE_COUNT_REG 0x7c
113 #define SCB_CORE_REV_REG 0x80
114 #define SCB_TIME_TCKH_REG 0x84
115 #define SCB_TIME_TCKL_REG 0x88
116 #define SCB_FIFO_FLUSH_REG 0x8c
117 #define SCB_READ_FIFO_REG 0x94
118 #define SCB_CLEAR_REG 0x98
120 /* SCB_CONTROL_REG bits */
122 #define SCB_CONTROL_CLK_ENABLE 0x1e0
123 #define SCB_CONTROL_TRANSACTION_HALT 0x200
125 #define FIFO_READ_FULL BIT(0)
126 #define FIFO_READ_EMPTY BIT(1)
127 #define FIFO_WRITE_FULL BIT(2)
128 #define FIFO_WRITE_EMPTY BIT(3)
130 /* SCB_CLK_SET_REG bits */
131 #define SCB_FILT_DISABLE BIT(31)
132 #define SCB_FILT_BYPASS BIT(30)
133 #define SCB_FILT_INC_MASK 0x7f
134 #define SCB_FILT_INC_SHIFT 16
135 #define SCB_INC_MASK 0x7f
136 #define SCB_INC_SHIFT 8
138 /* SCB_INT_*_REG bits */
140 #define INT_BUS_INACTIVE BIT(0)
141 #define INT_UNEXPECTED_START BIT(1)
142 #define INT_SCLK_LOW_TIMEOUT BIT(2)
143 #define INT_SDAT_LOW_TIMEOUT BIT(3)
144 #define INT_WRITE_ACK_ERR BIT(4)
145 #define INT_ADDR_ACK_ERR BIT(5)
146 #define INT_FIFO_FULL BIT(9)
147 #define INT_FIFO_FILLING BIT(10)
148 #define INT_FIFO_EMPTY BIT(11)
149 #define INT_FIFO_EMPTYING BIT(12)
150 #define INT_TRANSACTION_DONE BIT(15)
151 #define INT_SLAVE_EVENT BIT(16)
152 #define INT_MASTER_HALTED BIT(17)
153 #define INT_TIMING BIT(18)
154 #define INT_STOP_DETECTED BIT(19)
156 #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
158 /* Level interrupts need clearing after handling instead of before */
159 #define INT_LEVEL 0x01e00
161 /* Don't allow any interrupts while the clock may be off */
162 #define INT_ENABLE_MASK_INACTIVE 0x00000
164 /* Interrupt masks for the different driver modes */
166 #define INT_ENABLE_MASK_RAW INT_TIMING
168 #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
173 #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
175 INT_WRITE_ACK_ERR | \
179 INT_MASTER_HALTED | \
182 #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
186 /* SCB_STATUS_REG fields */
188 #define LINESTAT_SCLK_LINE_STATUS BIT(0)
189 #define LINESTAT_SCLK_EN BIT(1)
190 #define LINESTAT_SDAT_LINE_STATUS BIT(2)
191 #define LINESTAT_SDAT_EN BIT(3)
192 #define LINESTAT_DET_START_STATUS BIT(4)
193 #define LINESTAT_DET_STOP_STATUS BIT(5)
194 #define LINESTAT_DET_ACK_STATUS BIT(6)
195 #define LINESTAT_DET_NACK_STATUS BIT(7)
196 #define LINESTAT_BUS_IDLE BIT(8)
197 #define LINESTAT_T_DONE_STATUS BIT(9)
198 #define LINESTAT_SCLK_OUT_STATUS BIT(10)
199 #define LINESTAT_SDAT_OUT_STATUS BIT(11)
200 #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
201 #define LINESTAT_START_BIT_DET BIT(13)
202 #define LINESTAT_STOP_BIT_DET BIT(14)
203 #define LINESTAT_ACK_DET BIT(15)
204 #define LINESTAT_NACK_DET BIT(16)
205 #define LINESTAT_INPUT_HELD_V BIT(17)
206 #define LINESTAT_ABORT_DET BIT(18)
207 #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208 #define LINESTAT_INPUT_DATA 0xff000000
209 #define LINESTAT_INPUT_DATA_SHIFT 24
211 #define LINESTAT_CLEAR_SHIFT 13
212 #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
214 /* SCB_OVERRIDE_REG fields */
216 #define OVERRIDE_SCLK_OVR BIT(0)
217 #define OVERRIDE_SCLKEN_OVR BIT(1)
218 #define OVERRIDE_SDAT_OVR BIT(2)
219 #define OVERRIDE_SDATEN_OVR BIT(3)
220 #define OVERRIDE_MASTER BIT(9)
221 #define OVERRIDE_LINE_OVR_EN BIT(10)
222 #define OVERRIDE_DIRECT BIT(11)
223 #define OVERRIDE_CMD_SHIFT 4
224 #define OVERRIDE_CMD_MASK 0x1f
225 #define OVERRIDE_DATA_SHIFT 24
227 #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
229 #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
230 OVERRIDE_SCLKEN_OVR | \
232 #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
234 #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
235 OVERRIDE_SDATEN_OVR | \
238 /* OVERRIDE_CMD values */
240 #define CMD_PAUSE 0x00
241 #define CMD_GEN_DATA 0x01
242 #define CMD_GEN_START 0x02
243 #define CMD_GEN_STOP 0x03
244 #define CMD_GEN_ACK 0x04
245 #define CMD_GEN_NACK 0x05
246 #define CMD_RET_DATA 0x08
247 #define CMD_RET_ACK 0x09
249 /* Fixed timing values */
251 #define TIMEOUT_TBI 0x0
252 #define TIMEOUT_TSL 0xffff
253 #define TIMEOUT_TDL 0x0
255 /* Transaction timeout */
257 #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
260 * Worst incs are 1 (innacurate) and 16*256 (irregular).
261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262 * in the middle of the valid range (0-127).
264 #define SCB_OPT_INC 64
266 /* Setup the clock enable filtering for 25 ns */
267 #define SCB_FILT_GLITCH 25
270 * Bits to return from interrupt handler functions for different modes.
271 * This delays completion until we've finished with the registers, so that the
272 * function waiting for completion can safely disable the clock to save power.
274 #define ISR_COMPLETE_M BIT(31)
275 #define ISR_FATAL_M BIT(30)
276 #define ISR_WAITSTOP BIT(29)
277 #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
278 #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279 #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
281 #define IMG_I2C_PM_TIMEOUT 1000 /* ms */
294 /* Timing parameters for i2c modes (in ns) */
295 struct img_i2c_timings
{
297 unsigned int max_bitrate
;
298 unsigned int tckh
, tckl
, tsdh
, tsdl
;
299 unsigned int tp2s
, tpl
, tph
;
302 /* The timings array must be ordered from slower to faster */
303 static struct img_i2c_timings timings
[] = {
307 .max_bitrate
= 100000,
319 .max_bitrate
= 400000,
331 static u8 img_i2c_reset_seq
[] = { CMD_GEN_START
,
337 /* Just issue a stop (after an abort condition) */
338 static u8 img_i2c_stop_seq
[] = { CMD_GEN_STOP
,
341 /* We're interested in different interrupts depending on the mode */
342 static unsigned int img_i2c_int_enable_by_mode
[] = {
343 [MODE_INACTIVE
] = INT_ENABLE_MASK_INACTIVE
,
344 [MODE_RAW
] = INT_ENABLE_MASK_RAW
,
345 [MODE_ATOMIC
] = INT_ENABLE_MASK_ATOMIC
,
346 [MODE_AUTOMATIC
] = INT_ENABLE_MASK_AUTOMATIC
,
347 [MODE_SEQUENCE
] = INT_ENABLE_MASK_ATOMIC
,
349 [MODE_WAITSTOP
] = INT_ENABLE_MASK_WAITSTOP
,
353 /* Atomic command names */
354 static const char * const img_i2c_atomic_cmd_names
[] = {
355 [CMD_PAUSE
] = "PAUSE",
356 [CMD_GEN_DATA
] = "GEN_DATA",
357 [CMD_GEN_START
] = "GEN_START",
358 [CMD_GEN_STOP
] = "GEN_STOP",
359 [CMD_GEN_ACK
] = "GEN_ACK",
360 [CMD_GEN_NACK
] = "GEN_NACK",
361 [CMD_RET_DATA
] = "RET_DATA",
362 [CMD_RET_ACK
] = "RET_ACK",
366 struct i2c_adapter adap
;
371 * The scb core clock is used to get the input frequency, and to disable
372 * it after every set of transactions to save some power.
374 struct clk
*scb_clk
, *sys_clk
;
375 unsigned int bitrate
;
376 bool need_wr_rd_fence
;
379 struct completion msg_complete
;
380 spinlock_t lock
; /* lock before doing anything with the state */
383 /* After the last transaction, wait for a stop bit */
387 enum img_i2c_mode mode
;
388 u32 int_enable
; /* depends on mode */
389 u32 line_status
; /* line status over command */
392 * To avoid slave event interrupts in automatic mode, use a timer to
393 * poll the abort condition if we don't get an interrupt for too long.
395 struct timer_list check_timer
;
398 /* atomic mode state */
404 /* Sequence: either reset or stop. See img_i2c_sequence. */
408 unsigned int raw_timeout
;
411 static int img_i2c_runtime_suspend(struct device
*dev
);
412 static int img_i2c_runtime_resume(struct device
*dev
);
414 static void img_i2c_writel(struct img_i2c
*i2c
, u32 offset
, u32 value
)
416 writel(value
, i2c
->base
+ offset
);
419 static u32
img_i2c_readl(struct img_i2c
*i2c
, u32 offset
)
421 return readl(i2c
->base
+ offset
);
425 * The code to read from the master read fifo, and write to the master
426 * write fifo, checks a bit in an SCB register before every byte to
427 * ensure that the fifo is not full (write fifo) or empty (read fifo).
428 * Due to clock domain crossing inside the SCB block the updated value
429 * of this bit is only visible after 2 cycles.
431 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
432 * revision register), and it's called after reading from or writing to the
433 * fifos to ensure that subsequent reads of the fifo status bits do not read
436 static void img_i2c_wr_rd_fence(struct img_i2c
*i2c
)
438 if (i2c
->need_wr_rd_fence
) {
439 img_i2c_writel(i2c
, SCB_CORE_REV_REG
, 0);
440 img_i2c_writel(i2c
, SCB_CORE_REV_REG
, 0);
444 static void img_i2c_switch_mode(struct img_i2c
*i2c
, enum img_i2c_mode mode
)
447 i2c
->int_enable
= img_i2c_int_enable_by_mode
[mode
];
448 i2c
->line_status
= 0;
451 static void img_i2c_raw_op(struct img_i2c
*i2c
)
453 i2c
->raw_timeout
= 0;
454 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
,
455 OVERRIDE_SCLKEN_OVR
|
456 OVERRIDE_SDATEN_OVR
|
458 OVERRIDE_LINE_OVR_EN
|
460 ((i2c
->at_cur_cmd
& OVERRIDE_CMD_MASK
) << OVERRIDE_CMD_SHIFT
) |
461 (i2c
->at_cur_data
<< OVERRIDE_DATA_SHIFT
));
464 static const char *img_i2c_atomic_op_name(unsigned int cmd
)
466 if (unlikely(cmd
>= ARRAY_SIZE(img_i2c_atomic_cmd_names
)))
468 return img_i2c_atomic_cmd_names
[cmd
];
471 /* Send a single atomic mode command to the hardware */
472 static void img_i2c_atomic_op(struct img_i2c
*i2c
, int cmd
, u8 data
)
474 i2c
->at_cur_cmd
= cmd
;
475 i2c
->at_cur_data
= data
;
477 /* work around lack of data setup time when generating data */
478 if (cmd
== CMD_GEN_DATA
&& i2c
->mode
== MODE_ATOMIC
) {
479 u32 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
481 if (line_status
& LINESTAT_SDAT_LINE_STATUS
&& !(data
& 0x80)) {
482 /* hold the data line down for a moment */
483 img_i2c_switch_mode(i2c
, MODE_RAW
);
489 dev_dbg(i2c
->adap
.dev
.parent
,
490 "atomic cmd=%s (%d) data=%#x\n",
491 img_i2c_atomic_op_name(cmd
), cmd
, data
);
492 i2c
->at_t_done
= (cmd
== CMD_RET_DATA
|| cmd
== CMD_RET_ACK
);
493 i2c
->at_slave_event
= false;
494 i2c
->line_status
= 0;
496 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
,
497 ((cmd
& OVERRIDE_CMD_MASK
) << OVERRIDE_CMD_SHIFT
) |
500 (data
<< OVERRIDE_DATA_SHIFT
));
503 /* Start a transaction in atomic mode */
504 static void img_i2c_atomic_start(struct img_i2c
*i2c
)
506 img_i2c_switch_mode(i2c
, MODE_ATOMIC
);
507 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
508 img_i2c_atomic_op(i2c
, CMD_GEN_START
, 0x00);
511 static void img_i2c_soft_reset(struct img_i2c
*i2c
)
514 img_i2c_writel(i2c
, SCB_CONTROL_REG
, 0);
515 img_i2c_writel(i2c
, SCB_CONTROL_REG
,
516 SCB_CONTROL_CLK_ENABLE
| SCB_CONTROL_SOFT_RESET
);
520 * Enable or release transaction halt for control of repeated starts.
521 * In version 3.3 of the IP when transaction halt is set, an interrupt
522 * will be generated after each byte of a transfer instead of after
523 * every transfer but before the stop bit.
524 * Due to this behaviour we have to be careful that every time we
525 * release the transaction halt we have to re-enable it straight away
526 * so that we only process a single byte, not doing so will result in
527 * all remaining bytes been processed and a stop bit being issued,
528 * which will prevent us having a repeated start.
530 static void img_i2c_transaction_halt(struct img_i2c
*i2c
, bool t_halt
)
534 if (i2c
->t_halt
== t_halt
)
536 i2c
->t_halt
= t_halt
;
537 val
= img_i2c_readl(i2c
, SCB_CONTROL_REG
);
539 val
|= SCB_CONTROL_TRANSACTION_HALT
;
541 val
&= ~SCB_CONTROL_TRANSACTION_HALT
;
542 img_i2c_writel(i2c
, SCB_CONTROL_REG
, val
);
545 /* Drain data from the FIFO into the buffer (automatic mode) */
546 static void img_i2c_read_fifo(struct img_i2c
*i2c
)
548 while (i2c
->msg
.len
) {
552 img_i2c_wr_rd_fence(i2c
);
553 fifo_status
= img_i2c_readl(i2c
, SCB_FIFO_STATUS_REG
);
554 if (fifo_status
& FIFO_READ_EMPTY
)
557 data
= img_i2c_readl(i2c
, SCB_READ_DATA_REG
);
558 *i2c
->msg
.buf
= data
;
560 img_i2c_writel(i2c
, SCB_READ_FIFO_REG
, 0xff);
566 /* Fill the FIFO with data from the buffer (automatic mode) */
567 static void img_i2c_write_fifo(struct img_i2c
*i2c
)
569 while (i2c
->msg
.len
) {
572 img_i2c_wr_rd_fence(i2c
);
573 fifo_status
= img_i2c_readl(i2c
, SCB_FIFO_STATUS_REG
);
574 if (fifo_status
& FIFO_WRITE_FULL
)
577 img_i2c_writel(i2c
, SCB_WRITE_DATA_REG
, *i2c
->msg
.buf
);
582 /* Disable fifo emptying interrupt if nothing more to write */
584 i2c
->int_enable
&= ~INT_FIFO_EMPTYING
;
587 /* Start a read transaction in automatic mode */
588 static void img_i2c_read(struct img_i2c
*i2c
)
590 img_i2c_switch_mode(i2c
, MODE_AUTOMATIC
);
592 i2c
->int_enable
|= INT_SLAVE_EVENT
;
594 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
595 img_i2c_writel(i2c
, SCB_READ_ADDR_REG
, i2c
->msg
.addr
);
596 img_i2c_writel(i2c
, SCB_READ_COUNT_REG
, i2c
->msg
.len
);
598 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
601 /* Start a write transaction in automatic mode */
602 static void img_i2c_write(struct img_i2c
*i2c
)
604 img_i2c_switch_mode(i2c
, MODE_AUTOMATIC
);
606 i2c
->int_enable
|= INT_SLAVE_EVENT
;
608 img_i2c_writel(i2c
, SCB_WRITE_ADDR_REG
, i2c
->msg
.addr
);
609 img_i2c_writel(i2c
, SCB_WRITE_COUNT_REG
, i2c
->msg
.len
);
611 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
612 img_i2c_write_fifo(i2c
);
614 /* img_i2c_write_fifo() may modify int_enable */
615 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
619 * Indicate that the transaction is complete. This is called from the
620 * ISR to wake up the waiting thread, after which the ISR must not
621 * access any more SCB registers.
623 static void img_i2c_complete_transaction(struct img_i2c
*i2c
, int status
)
625 img_i2c_switch_mode(i2c
, MODE_INACTIVE
);
627 i2c
->msg_status
= status
;
628 img_i2c_transaction_halt(i2c
, false);
630 complete(&i2c
->msg_complete
);
633 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c
*i2c
,
634 u32 int_status
, u32 line_status
)
636 /* Stay in raw mode for this, so we don't just loop infinitely */
637 img_i2c_atomic_op(i2c
, i2c
->at_cur_cmd
, i2c
->at_cur_data
);
638 img_i2c_switch_mode(i2c
, MODE_ATOMIC
);
642 static unsigned int img_i2c_raw(struct img_i2c
*i2c
, u32 int_status
,
645 if (int_status
& INT_TIMING
) {
646 if (i2c
->raw_timeout
== 0)
647 return img_i2c_raw_atomic_delay_handler(i2c
,
648 int_status
, line_status
);
654 static unsigned int img_i2c_sequence(struct img_i2c
*i2c
, u32 int_status
)
656 static const unsigned int continue_bits
[] = {
657 [CMD_GEN_START
] = LINESTAT_START_BIT_DET
,
658 [CMD_GEN_DATA
] = LINESTAT_INPUT_HELD_V
,
659 [CMD_RET_ACK
] = LINESTAT_ACK_DET
| LINESTAT_NACK_DET
,
660 [CMD_RET_DATA
] = LINESTAT_INPUT_HELD_V
,
661 [CMD_GEN_STOP
] = LINESTAT_STOP_BIT_DET
,
666 if (int_status
& INT_SLAVE_EVENT
)
667 i2c
->at_slave_event
= true;
668 if (int_status
& INT_TRANSACTION_DONE
)
669 i2c
->at_t_done
= true;
671 if (!i2c
->at_slave_event
|| !i2c
->at_t_done
)
674 /* wait if no continue bits are set */
675 if (i2c
->at_cur_cmd
>= 0 &&
676 i2c
->at_cur_cmd
< ARRAY_SIZE(continue_bits
)) {
677 unsigned int cont_bits
= continue_bits
[i2c
->at_cur_cmd
];
680 cont_bits
|= LINESTAT_ABORT_DET
;
681 if (!(i2c
->line_status
& cont_bits
))
686 /* follow the sequence of commands in i2c->seq */
687 next_cmd
= *i2c
->seq
;
690 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
, 0);
691 return ISR_COMPLETE(0);
693 /* when generating data, the next byte is the data */
694 if (next_cmd
== CMD_GEN_DATA
) {
696 next_data
= *i2c
->seq
;
699 img_i2c_atomic_op(i2c
, next_cmd
, next_data
);
704 static void img_i2c_reset_start(struct img_i2c
*i2c
)
706 /* Initiate the magic dance */
707 img_i2c_switch_mode(i2c
, MODE_SEQUENCE
);
708 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
709 i2c
->seq
= img_i2c_reset_seq
;
710 i2c
->at_slave_event
= true;
711 i2c
->at_t_done
= true;
712 i2c
->at_cur_cmd
= -1;
714 /* img_i2c_reset_seq isn't empty so the following won't fail */
715 img_i2c_sequence(i2c
, 0);
718 static void img_i2c_stop_start(struct img_i2c
*i2c
)
720 /* Initiate a stop bit sequence */
721 img_i2c_switch_mode(i2c
, MODE_SEQUENCE
);
722 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
723 i2c
->seq
= img_i2c_stop_seq
;
724 i2c
->at_slave_event
= true;
725 i2c
->at_t_done
= true;
726 i2c
->at_cur_cmd
= -1;
728 /* img_i2c_stop_seq isn't empty so the following won't fail */
729 img_i2c_sequence(i2c
, 0);
732 static unsigned int img_i2c_atomic(struct img_i2c
*i2c
,
739 if (int_status
& INT_SLAVE_EVENT
)
740 i2c
->at_slave_event
= true;
741 if (int_status
& INT_TRANSACTION_DONE
)
742 i2c
->at_t_done
= true;
744 if (!i2c
->at_slave_event
|| !i2c
->at_t_done
)
745 goto next_atomic_cmd
;
746 if (i2c
->line_status
& LINESTAT_ABORT_DET
) {
747 dev_dbg(i2c
->adap
.dev
.parent
, "abort condition detected\n");
748 next_cmd
= CMD_GEN_STOP
;
749 i2c
->msg_status
= -EIO
;
750 goto next_atomic_cmd
;
753 /* i2c->at_cur_cmd may have completed */
754 switch (i2c
->at_cur_cmd
) {
756 next_cmd
= CMD_GEN_DATA
;
757 next_data
= i2c_8bit_addr_from_msg(&i2c
->msg
);
760 if (i2c
->line_status
& LINESTAT_INPUT_HELD_V
)
761 next_cmd
= CMD_RET_ACK
;
764 if (i2c
->line_status
& LINESTAT_ACK_DET
||
765 (i2c
->line_status
& LINESTAT_NACK_DET
&&
766 i2c
->msg
.flags
& I2C_M_IGNORE_NAK
)) {
767 if (i2c
->msg
.len
== 0) {
768 next_cmd
= CMD_GEN_STOP
;
769 } else if (i2c
->msg
.flags
& I2C_M_RD
) {
770 next_cmd
= CMD_RET_DATA
;
772 next_cmd
= CMD_GEN_DATA
;
773 next_data
= *i2c
->msg
.buf
;
777 } else if (i2c
->line_status
& LINESTAT_NACK_DET
) {
778 i2c
->msg_status
= -EIO
;
779 next_cmd
= CMD_GEN_STOP
;
783 if (i2c
->line_status
& LINESTAT_INPUT_HELD_V
) {
784 *i2c
->msg
.buf
= (i2c
->line_status
&
786 >> LINESTAT_INPUT_DATA_SHIFT
;
790 next_cmd
= CMD_GEN_ACK
;
792 next_cmd
= CMD_GEN_NACK
;
796 if (i2c
->line_status
& LINESTAT_ACK_DET
) {
797 next_cmd
= CMD_RET_DATA
;
799 i2c
->msg_status
= -EIO
;
800 next_cmd
= CMD_GEN_STOP
;
804 next_cmd
= CMD_GEN_STOP
;
807 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
, 0);
808 return ISR_COMPLETE(0);
810 dev_err(i2c
->adap
.dev
.parent
, "bad atomic command %d\n",
812 i2c
->msg_status
= -EIO
;
813 next_cmd
= CMD_GEN_STOP
;
818 if (next_cmd
!= -1) {
819 /* don't actually stop unless we're the last transaction */
820 if (next_cmd
== CMD_GEN_STOP
&& !i2c
->msg_status
&&
822 return ISR_COMPLETE(0);
823 img_i2c_atomic_op(i2c
, next_cmd
, next_data
);
829 * Timer function to check if something has gone wrong in automatic mode (so we
830 * don't have to handle so many interrupts just to catch an exception).
832 static void img_i2c_check_timer(struct timer_list
*t
)
834 struct img_i2c
*i2c
= from_timer(i2c
, t
, check_timer
);
836 unsigned int line_status
;
838 spin_lock_irqsave(&i2c
->lock
, flags
);
839 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
841 /* check for an abort condition */
842 if (line_status
& LINESTAT_ABORT_DET
) {
843 dev_dbg(i2c
->adap
.dev
.parent
,
844 "abort condition detected by check timer\n");
845 /* enable slave event interrupt mask to trigger irq */
846 img_i2c_writel(i2c
, SCB_INT_MASK_REG
,
847 i2c
->int_enable
| INT_SLAVE_EVENT
);
850 spin_unlock_irqrestore(&i2c
->lock
, flags
);
853 static unsigned int img_i2c_auto(struct img_i2c
*i2c
,
854 unsigned int int_status
,
855 unsigned int line_status
)
857 if (int_status
& (INT_WRITE_ACK_ERR
| INT_ADDR_ACK_ERR
))
858 return ISR_COMPLETE(EIO
);
860 if (line_status
& LINESTAT_ABORT_DET
) {
861 dev_dbg(i2c
->adap
.dev
.parent
, "abort condition detected\n");
862 /* empty the read fifo */
863 if ((i2c
->msg
.flags
& I2C_M_RD
) &&
864 (int_status
& INT_FIFO_FULL_FILLING
))
865 img_i2c_read_fifo(i2c
);
866 /* use atomic mode and try to force a stop bit */
867 i2c
->msg_status
= -EIO
;
868 img_i2c_stop_start(i2c
);
872 /* Enable transaction halt on start bit */
873 if (!i2c
->last_msg
&& line_status
& LINESTAT_START_BIT_DET
) {
874 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
875 /* we're no longer interested in the slave event */
876 i2c
->int_enable
&= ~INT_SLAVE_EVENT
;
879 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
881 if (int_status
& INT_STOP_DETECTED
) {
882 /* Drain remaining data in FIFO and complete transaction */
883 if (i2c
->msg
.flags
& I2C_M_RD
)
884 img_i2c_read_fifo(i2c
);
885 return ISR_COMPLETE(0);
888 if (i2c
->msg
.flags
& I2C_M_RD
) {
889 if (int_status
& (INT_FIFO_FULL_FILLING
| INT_MASTER_HALTED
)) {
890 img_i2c_read_fifo(i2c
);
891 if (i2c
->msg
.len
== 0)
895 if (int_status
& (INT_FIFO_EMPTY
| INT_MASTER_HALTED
)) {
896 if ((int_status
& INT_FIFO_EMPTY
) &&
899 img_i2c_write_fifo(i2c
);
902 if (int_status
& INT_MASTER_HALTED
) {
904 * Release and then enable transaction halt, to
905 * allow only a single byte to proceed.
907 img_i2c_transaction_halt(i2c
, false);
908 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
914 static irqreturn_t
img_i2c_isr(int irq
, void *dev_id
)
916 struct img_i2c
*i2c
= (struct img_i2c
*)dev_id
;
917 u32 int_status
, line_status
;
918 /* We handle transaction completion AFTER accessing registers */
921 /* Read interrupt status register. */
922 int_status
= img_i2c_readl(i2c
, SCB_INT_STATUS_REG
);
923 /* Clear detected interrupts. */
924 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, int_status
);
927 * Read line status and clear it until it actually is clear. We have
928 * to be careful not to lose any line status bits that get latched.
930 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
931 if (line_status
& LINESTAT_LATCHED
) {
932 img_i2c_writel(i2c
, SCB_CLEAR_REG
,
933 (line_status
& LINESTAT_LATCHED
)
934 >> LINESTAT_CLEAR_SHIFT
);
935 img_i2c_wr_rd_fence(i2c
);
938 spin_lock(&i2c
->lock
);
940 /* Keep track of line status bits received */
941 i2c
->line_status
&= ~LINESTAT_INPUT_DATA
;
942 i2c
->line_status
|= line_status
;
945 * Certain interrupts indicate that sclk low timeout is not
946 * a problem. If any of these are set, just continue.
948 if ((int_status
& INT_SCLK_LOW_TIMEOUT
) &&
949 !(int_status
& (INT_SLAVE_EVENT
|
952 dev_crit(i2c
->adap
.dev
.parent
,
953 "fatal: clock low timeout occurred %s addr 0x%02x\n",
954 (i2c
->msg
.flags
& I2C_M_RD
) ? "reading" : "writing",
956 hret
= ISR_FATAL(EIO
);
960 if (i2c
->mode
== MODE_ATOMIC
)
961 hret
= img_i2c_atomic(i2c
, int_status
, line_status
);
962 else if (i2c
->mode
== MODE_AUTOMATIC
)
963 hret
= img_i2c_auto(i2c
, int_status
, line_status
);
964 else if (i2c
->mode
== MODE_SEQUENCE
)
965 hret
= img_i2c_sequence(i2c
, int_status
);
966 else if (i2c
->mode
== MODE_WAITSTOP
&& (int_status
& INT_SLAVE_EVENT
) &&
967 (line_status
& LINESTAT_STOP_BIT_DET
))
968 hret
= ISR_COMPLETE(0);
969 else if (i2c
->mode
== MODE_RAW
)
970 hret
= img_i2c_raw(i2c
, int_status
, line_status
);
974 /* Clear detected level interrupts. */
975 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, int_status
& INT_LEVEL
);
978 if (hret
& ISR_WAITSTOP
) {
980 * Only wait for stop on last message.
981 * Also we may already have detected the stop bit.
983 if (!i2c
->last_msg
|| i2c
->line_status
& LINESTAT_STOP_BIT_DET
)
984 hret
= ISR_COMPLETE(0);
986 img_i2c_switch_mode(i2c
, MODE_WAITSTOP
);
989 /* now we've finished using regs, handle transaction completion */
990 if (hret
& ISR_COMPLETE_M
) {
991 int status
= -(hret
& ISR_STATUS_M
);
993 img_i2c_complete_transaction(i2c
, status
);
994 if (hret
& ISR_FATAL_M
)
995 img_i2c_switch_mode(i2c
, MODE_FATAL
);
998 /* Enable interrupts (int_enable may be altered by changing mode) */
999 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
1001 spin_unlock(&i2c
->lock
);
1006 /* Force a bus reset sequence and wait for it to complete */
1007 static int img_i2c_reset_bus(struct img_i2c
*i2c
)
1009 unsigned long flags
;
1010 unsigned long time_left
;
1012 spin_lock_irqsave(&i2c
->lock
, flags
);
1013 reinit_completion(&i2c
->msg_complete
);
1014 img_i2c_reset_start(i2c
);
1015 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1017 time_left
= wait_for_completion_timeout(&i2c
->msg_complete
,
1024 static int img_i2c_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msgs
,
1027 struct img_i2c
*i2c
= i2c_get_adapdata(adap
);
1028 bool atomic
= false;
1030 unsigned long time_left
;
1032 if (i2c
->mode
== MODE_SUSPEND
) {
1033 WARN(1, "refusing to service transaction in suspended state\n");
1037 if (i2c
->mode
== MODE_FATAL
)
1040 for (i
= 0; i
< num
; i
++) {
1042 * 0 byte reads are not possible because the slave could try
1043 * and pull the data line low, preventing a stop bit.
1045 if (!msgs
[i
].len
&& msgs
[i
].flags
& I2C_M_RD
)
1048 * 0 byte writes are possible and used for probing, but we
1049 * cannot do them in automatic mode, so use atomic mode
1052 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1056 (msgs
[i
].flags
& I2C_M_IGNORE_NAK
))
1060 ret
= pm_runtime_get_sync(adap
->dev
.parent
);
1064 for (i
= 0; i
< num
; i
++) {
1065 struct i2c_msg
*msg
= &msgs
[i
];
1066 unsigned long flags
;
1068 spin_lock_irqsave(&i2c
->lock
, flags
);
1071 * Make a copy of the message struct. We mustn't modify the
1072 * original or we'll confuse drivers and i2c-dev.
1075 i2c
->msg_status
= 0;
1078 * After the last message we must have waited for a stop bit.
1079 * Not waiting can cause problems when the clock is disabled
1080 * before the stop bit is sent, and the linux I2C interface
1081 * requires separate transfers not to joined with repeated
1084 i2c
->last_msg
= (i
== num
- 1);
1085 reinit_completion(&i2c
->msg_complete
);
1088 * Clear line status and all interrupts before starting a
1089 * transfer, as we may have unserviced interrupts from
1090 * previous transfers that might be handled in the context
1091 * of the new transfer.
1093 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, ~0);
1094 img_i2c_writel(i2c
, SCB_CLEAR_REG
, ~0);
1097 img_i2c_atomic_start(i2c
);
1100 * Enable transaction halt if not the last message in
1101 * the queue so that we can control repeated starts.
1103 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
1105 if (msg
->flags
& I2C_M_RD
)
1111 * Release and then enable transaction halt, to
1112 * allow only a single byte to proceed.
1113 * This doesn't have an effect on the initial transfer
1114 * but will allow the following transfers to start
1115 * processing if the previous transfer was marked as
1116 * complete while the i2c block was halted.
1118 img_i2c_transaction_halt(i2c
, false);
1119 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
1121 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1123 time_left
= wait_for_completion_timeout(&i2c
->msg_complete
,
1125 del_timer_sync(&i2c
->check_timer
);
1127 if (time_left
== 0) {
1128 dev_err(adap
->dev
.parent
, "i2c transfer timed out\n");
1129 i2c
->msg_status
= -ETIMEDOUT
;
1133 if (i2c
->msg_status
)
1137 pm_runtime_mark_last_busy(adap
->dev
.parent
);
1138 pm_runtime_put_autosuspend(adap
->dev
.parent
);
1140 return i2c
->msg_status
? i2c
->msg_status
: num
;
1143 static u32
img_i2c_func(struct i2c_adapter
*adap
)
1145 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
1148 static const struct i2c_algorithm img_i2c_algo
= {
1149 .master_xfer
= img_i2c_xfer
,
1150 .functionality
= img_i2c_func
,
1153 static int img_i2c_init(struct img_i2c
*i2c
)
1155 unsigned int clk_khz
, bitrate_khz
, clk_period
, tckh
, tckl
, tsdh
;
1156 unsigned int i
, data
, prescale
, inc
, int_bitrate
, filt
;
1157 struct img_i2c_timings timing
;
1161 ret
= pm_runtime_get_sync(i2c
->adap
.dev
.parent
);
1165 rev
= img_i2c_readl(i2c
, SCB_CORE_REV_REG
);
1166 if ((rev
& 0x00ffffff) < 0x00020200) {
1167 dev_info(i2c
->adap
.dev
.parent
,
1168 "Unknown hardware revision (%d.%d.%d.%d)\n",
1169 (rev
>> 24) & 0xff, (rev
>> 16) & 0xff,
1170 (rev
>> 8) & 0xff, rev
& 0xff);
1171 pm_runtime_mark_last_busy(i2c
->adap
.dev
.parent
);
1172 pm_runtime_put_autosuspend(i2c
->adap
.dev
.parent
);
1176 /* Fencing enabled by default. */
1177 i2c
->need_wr_rd_fence
= true;
1179 /* Determine what mode we're in from the bitrate */
1180 timing
= timings
[0];
1181 for (i
= 0; i
< ARRAY_SIZE(timings
); i
++) {
1182 if (i2c
->bitrate
<= timings
[i
].max_bitrate
) {
1183 timing
= timings
[i
];
1187 if (i2c
->bitrate
> timings
[ARRAY_SIZE(timings
) - 1].max_bitrate
) {
1188 dev_warn(i2c
->adap
.dev
.parent
,
1189 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1191 timings
[ARRAY_SIZE(timings
) - 1].max_bitrate
);
1192 timing
= timings
[ARRAY_SIZE(timings
) - 1];
1193 i2c
->bitrate
= timing
.max_bitrate
;
1196 bitrate_khz
= i2c
->bitrate
/ 1000;
1197 clk_khz
= clk_get_rate(i2c
->scb_clk
) / 1000;
1199 /* Find the prescale that would give us that inc (approx delay = 0) */
1200 prescale
= SCB_OPT_INC
* clk_khz
/ (256 * 16 * bitrate_khz
);
1201 prescale
= clamp_t(unsigned int, prescale
, 1, 8);
1202 clk_khz
/= prescale
;
1204 /* Setup the clock increment value */
1205 inc
= (256 * 16 * bitrate_khz
) / clk_khz
;
1208 * The clock generation logic allows to filter glitches on the bus.
1209 * This filter is able to remove bus glitches shorter than 50ns.
1210 * If the clock enable rate is greater than 20 MHz, no filtering
1211 * is required, so we need to disable it.
1212 * If it's between the 20-40 MHz range, there's no need to divide
1213 * the clock to get a filter.
1215 if (clk_khz
< 20000) {
1216 filt
= SCB_FILT_DISABLE
;
1217 } else if (clk_khz
< 40000) {
1218 filt
= SCB_FILT_BYPASS
;
1220 /* Calculate filter clock */
1221 filt
= (64000 / ((clk_khz
/ 1000) * SCB_FILT_GLITCH
));
1223 /* Scale up if needed */
1224 if (64000 % ((clk_khz
/ 1000) * SCB_FILT_GLITCH
))
1227 if (filt
> SCB_FILT_INC_MASK
)
1228 filt
= SCB_FILT_INC_MASK
;
1230 filt
= (filt
& SCB_FILT_INC_MASK
) << SCB_FILT_INC_SHIFT
;
1232 data
= filt
| ((inc
& SCB_INC_MASK
) << SCB_INC_SHIFT
) | (prescale
- 1);
1233 img_i2c_writel(i2c
, SCB_CLK_SET_REG
, data
);
1235 /* Obtain the clock period of the fx16 clock in ns */
1236 clk_period
= (256 * 1000000) / (clk_khz
* inc
);
1238 /* Calculate the bitrate in terms of internal clock pulses */
1239 int_bitrate
= 1000000 / (bitrate_khz
* clk_period
);
1240 if ((1000000 % (bitrate_khz
* clk_period
)) >=
1241 ((bitrate_khz
* clk_period
) / 2))
1245 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1246 * values from there if they don't meet minimum timing requirements
1248 tckh
= int_bitrate
/ 2;
1249 tckl
= int_bitrate
- tckh
;
1251 /* Adjust TCKH and TCKL values */
1252 data
= DIV_ROUND_UP(timing
.tckl
, clk_period
);
1256 tckh
= int_bitrate
- tckl
;
1265 img_i2c_writel(i2c
, SCB_TIME_TCKH_REG
, tckh
);
1266 img_i2c_writel(i2c
, SCB_TIME_TCKL_REG
, tckl
);
1268 /* Setup TSDH value */
1269 tsdh
= DIV_ROUND_UP(timing
.tsdh
, clk_period
);
1275 img_i2c_writel(i2c
, SCB_TIME_TSDH_REG
, data
);
1277 /* This value is used later */
1280 /* Setup TPL value */
1281 data
= timing
.tpl
/ clk_period
;
1284 img_i2c_writel(i2c
, SCB_TIME_TPL_REG
, data
);
1286 /* Setup TPH value */
1287 data
= timing
.tph
/ clk_period
;
1290 img_i2c_writel(i2c
, SCB_TIME_TPH_REG
, data
);
1292 /* Setup TSDL value to TPL + TSDH + 2 */
1293 img_i2c_writel(i2c
, SCB_TIME_TSDL_REG
, data
+ tsdh
+ 2);
1295 /* Setup TP2S value */
1296 data
= timing
.tp2s
/ clk_period
;
1299 img_i2c_writel(i2c
, SCB_TIME_TP2S_REG
, data
);
1301 img_i2c_writel(i2c
, SCB_TIME_TBI_REG
, TIMEOUT_TBI
);
1302 img_i2c_writel(i2c
, SCB_TIME_TSL_REG
, TIMEOUT_TSL
);
1303 img_i2c_writel(i2c
, SCB_TIME_TDL_REG
, TIMEOUT_TDL
);
1305 /* Take module out of soft reset and enable clocks */
1306 img_i2c_soft_reset(i2c
);
1308 /* Disable all interrupts */
1309 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, 0);
1311 /* Clear all interrupts */
1312 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, ~0);
1314 /* Clear the scb_line_status events */
1315 img_i2c_writel(i2c
, SCB_CLEAR_REG
, ~0);
1317 /* Enable interrupts */
1318 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
1320 /* Perform a synchronous sequence to reset the bus */
1321 ret
= img_i2c_reset_bus(i2c
);
1323 pm_runtime_mark_last_busy(i2c
->adap
.dev
.parent
);
1324 pm_runtime_put_autosuspend(i2c
->adap
.dev
.parent
);
1329 static int img_i2c_probe(struct platform_device
*pdev
)
1331 struct device_node
*node
= pdev
->dev
.of_node
;
1332 struct img_i2c
*i2c
;
1333 struct resource
*res
;
1337 i2c
= devm_kzalloc(&pdev
->dev
, sizeof(struct img_i2c
), GFP_KERNEL
);
1341 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1342 i2c
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1343 if (IS_ERR(i2c
->base
))
1344 return PTR_ERR(i2c
->base
);
1346 irq
= platform_get_irq(pdev
, 0);
1348 dev_err(&pdev
->dev
, "can't get irq number\n");
1352 i2c
->sys_clk
= devm_clk_get(&pdev
->dev
, "sys");
1353 if (IS_ERR(i2c
->sys_clk
)) {
1354 dev_err(&pdev
->dev
, "can't get system clock\n");
1355 return PTR_ERR(i2c
->sys_clk
);
1358 i2c
->scb_clk
= devm_clk_get(&pdev
->dev
, "scb");
1359 if (IS_ERR(i2c
->scb_clk
)) {
1360 dev_err(&pdev
->dev
, "can't get core clock\n");
1361 return PTR_ERR(i2c
->scb_clk
);
1364 ret
= devm_request_irq(&pdev
->dev
, irq
, img_i2c_isr
, 0,
1367 dev_err(&pdev
->dev
, "can't request irq %d\n", irq
);
1371 /* Set up the exception check timer */
1372 timer_setup(&i2c
->check_timer
, img_i2c_check_timer
, 0);
1374 i2c
->bitrate
= timings
[0].max_bitrate
;
1375 if (!of_property_read_u32(node
, "clock-frequency", &val
))
1378 i2c_set_adapdata(&i2c
->adap
, i2c
);
1379 i2c
->adap
.dev
.parent
= &pdev
->dev
;
1380 i2c
->adap
.dev
.of_node
= node
;
1381 i2c
->adap
.owner
= THIS_MODULE
;
1382 i2c
->adap
.algo
= &img_i2c_algo
;
1383 i2c
->adap
.retries
= 5;
1384 i2c
->adap
.nr
= pdev
->id
;
1385 snprintf(i2c
->adap
.name
, sizeof(i2c
->adap
.name
), "IMG SCB I2C");
1387 img_i2c_switch_mode(i2c
, MODE_INACTIVE
);
1388 spin_lock_init(&i2c
->lock
);
1389 init_completion(&i2c
->msg_complete
);
1391 platform_set_drvdata(pdev
, i2c
);
1393 pm_runtime_set_autosuspend_delay(&pdev
->dev
, IMG_I2C_PM_TIMEOUT
);
1394 pm_runtime_use_autosuspend(&pdev
->dev
);
1395 pm_runtime_enable(&pdev
->dev
);
1396 if (!pm_runtime_enabled(&pdev
->dev
)) {
1397 ret
= img_i2c_runtime_resume(&pdev
->dev
);
1402 ret
= img_i2c_init(i2c
);
1406 ret
= i2c_add_numbered_adapter(&i2c
->adap
);
1413 if (!pm_runtime_enabled(&pdev
->dev
))
1414 img_i2c_runtime_suspend(&pdev
->dev
);
1415 pm_runtime_disable(&pdev
->dev
);
1416 pm_runtime_dont_use_autosuspend(&pdev
->dev
);
1420 static int img_i2c_remove(struct platform_device
*dev
)
1422 struct img_i2c
*i2c
= platform_get_drvdata(dev
);
1424 i2c_del_adapter(&i2c
->adap
);
1425 pm_runtime_disable(&dev
->dev
);
1426 if (!pm_runtime_status_suspended(&dev
->dev
))
1427 img_i2c_runtime_suspend(&dev
->dev
);
1432 static int img_i2c_runtime_suspend(struct device
*dev
)
1434 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1436 clk_disable_unprepare(i2c
->scb_clk
);
1437 clk_disable_unprepare(i2c
->sys_clk
);
1442 static int img_i2c_runtime_resume(struct device
*dev
)
1444 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1447 ret
= clk_prepare_enable(i2c
->sys_clk
);
1449 dev_err(dev
, "Unable to enable sys clock\n");
1453 ret
= clk_prepare_enable(i2c
->scb_clk
);
1455 dev_err(dev
, "Unable to enable scb clock\n");
1456 clk_disable_unprepare(i2c
->sys_clk
);
1463 #ifdef CONFIG_PM_SLEEP
1464 static int img_i2c_suspend(struct device
*dev
)
1466 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1469 ret
= pm_runtime_force_suspend(dev
);
1473 img_i2c_switch_mode(i2c
, MODE_SUSPEND
);
1478 static int img_i2c_resume(struct device
*dev
)
1480 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1483 ret
= pm_runtime_force_resume(dev
);
1491 #endif /* CONFIG_PM_SLEEP */
1493 static const struct dev_pm_ops img_i2c_pm
= {
1494 SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend
,
1495 img_i2c_runtime_resume
,
1497 SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend
, img_i2c_resume
)
1500 static const struct of_device_id img_scb_i2c_match
[] = {
1501 { .compatible
= "img,scb-i2c" },
1504 MODULE_DEVICE_TABLE(of
, img_scb_i2c_match
);
1506 static struct platform_driver img_scb_i2c_driver
= {
1508 .name
= "img-i2c-scb",
1509 .of_match_table
= img_scb_i2c_match
,
1512 .probe
= img_i2c_probe
,
1513 .remove
= img_i2c_remove
,
1515 module_platform_driver(img_scb_i2c_driver
);
1517 MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1518 MODULE_DESCRIPTION("IMG host I2C driver");
1519 MODULE_LICENSE("GPL v2");