1 // SPDX-License-Identifier: GPL-2.0+
3 * Freescale MXS I2C bus driver
5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
8 * based on a (non-working) driver which was:
10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
23 #include <linux/stmp_device.h>
25 #include <linux/of_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
29 #define DRIVER_NAME "mxs-i2c"
31 #define MXS_I2C_CTRL0 (0x00)
32 #define MXS_I2C_CTRL0_SET (0x04)
33 #define MXS_I2C_CTRL0_CLR (0x08)
35 #define MXS_I2C_CTRL0_SFTRST 0x80000000
36 #define MXS_I2C_CTRL0_RUN 0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION 0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF)
46 #define MXS_I2C_TIMING0 (0x10)
47 #define MXS_I2C_TIMING1 (0x20)
48 #define MXS_I2C_TIMING2 (0x30)
50 #define MXS_I2C_CTRL1 (0x40)
51 #define MXS_I2C_CTRL1_SET (0x44)
52 #define MXS_I2C_CTRL1_CLR (0x48)
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01
64 #define MXS_I2C_STAT (0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY 0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400
69 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
73 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000
75 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80 MXS_I2C_CTRL1_SLAVE_IRQ)
83 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \
84 MXS_I2C_CTRL0_PRE_SEND_START | \
85 MXS_I2C_CTRL0_MASTER_MODE | \
86 MXS_I2C_CTRL0_DIRECTION | \
87 MXS_I2C_CTRL0_XFER_COUNT(1))
89 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \
90 MXS_I2C_CTRL0_MASTER_MODE | \
91 MXS_I2C_CTRL0_DIRECTION)
93 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94 MXS_I2C_CTRL0_MASTER_MODE)
96 enum mxs_i2c_devtype
{
103 * struct mxs_i2c_dev - per device, private MXS-I2C data
105 * @dev: driver model device node
106 * @dev_type: distinguish i.MX23/i.MX28 features
107 * @regs: IO registers pointer
108 * @cmd_complete: completion object for transaction wait
109 * @cmd_err: error code for last transaction
110 * @adapter: i2c subsystem adapter node
114 enum mxs_i2c_devtype dev_type
;
116 struct completion cmd_complete
;
118 struct i2c_adapter adapter
;
124 /* DMA support components */
125 struct dma_chan
*dmach
;
126 uint32_t pio_data
[2];
128 struct scatterlist sg_io
[2];
132 static int mxs_i2c_reset(struct mxs_i2c_dev
*i2c
)
134 int ret
= stmp_reset_block(i2c
->regs
);
139 * Configure timing for the I2C block. The I2C TIMING2 register has to
140 * be programmed with this particular magic number. The rest is derived
141 * from the XTAL speed and requested I2C speed.
143 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
145 writel(i2c
->timing0
, i2c
->regs
+ MXS_I2C_TIMING0
);
146 writel(i2c
->timing1
, i2c
->regs
+ MXS_I2C_TIMING1
);
147 writel(i2c
->timing2
, i2c
->regs
+ MXS_I2C_TIMING2
);
149 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_SET
);
154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev
*i2c
)
157 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
158 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
160 dma_unmap_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
164 static void mxs_i2c_dma_irq_callback(void *param
)
166 struct mxs_i2c_dev
*i2c
= param
;
168 complete(&i2c
->cmd_complete
);
169 mxs_i2c_dma_finish(i2c
);
172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter
*adap
,
173 struct i2c_msg
*msg
, uint32_t flags
)
175 struct dma_async_tx_descriptor
*desc
;
176 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
178 i2c
->addr_data
= i2c_8bit_addr_from_msg(msg
);
180 if (msg
->flags
& I2C_M_RD
) {
181 i2c
->dma_read
= true;
187 /* Queue the PIO register write transfer. */
188 i2c
->pio_data
[0] = MXS_CMD_I2C_SELECT
;
189 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
190 (struct scatterlist
*)&i2c
->pio_data
[0],
191 1, DMA_TRANS_NONE
, 0);
194 "Failed to get PIO reg. write descriptor.\n");
195 goto select_init_pio_fail
;
198 /* Queue the DMA data transfer. */
199 sg_init_one(&i2c
->sg_io
[0], &i2c
->addr_data
, 1);
200 dma_map_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
201 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, &i2c
->sg_io
[0], 1,
203 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
206 "Failed to get DMA data write descriptor.\n");
207 goto select_init_dma_fail
;
214 /* Queue the PIO register write transfer. */
215 i2c
->pio_data
[1] = flags
| MXS_CMD_I2C_READ
|
216 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
);
217 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
218 (struct scatterlist
*)&i2c
->pio_data
[1],
219 1, DMA_TRANS_NONE
, DMA_PREP_INTERRUPT
);
222 "Failed to get PIO reg. write descriptor.\n");
223 goto select_init_dma_fail
;
226 /* Queue the DMA data transfer. */
227 sg_init_one(&i2c
->sg_io
[1], msg
->buf
, msg
->len
);
228 dma_map_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
229 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, &i2c
->sg_io
[1], 1,
231 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
234 "Failed to get DMA data write descriptor.\n");
235 goto read_init_dma_fail
;
238 i2c
->dma_read
= false;
244 /* Queue the PIO register write transfer. */
245 i2c
->pio_data
[0] = flags
| MXS_CMD_I2C_WRITE
|
246 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
+ 1);
247 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
248 (struct scatterlist
*)&i2c
->pio_data
[0],
249 1, DMA_TRANS_NONE
, 0);
252 "Failed to get PIO reg. write descriptor.\n");
253 goto write_init_pio_fail
;
256 /* Queue the DMA data transfer. */
257 sg_init_table(i2c
->sg_io
, 2);
258 sg_set_buf(&i2c
->sg_io
[0], &i2c
->addr_data
, 1);
259 sg_set_buf(&i2c
->sg_io
[1], msg
->buf
, msg
->len
);
260 dma_map_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
261 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, i2c
->sg_io
, 2,
263 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
266 "Failed to get DMA data write descriptor.\n");
267 goto write_init_dma_fail
;
272 * The last descriptor must have this callback,
273 * to finish the DMA transaction.
275 desc
->callback
= mxs_i2c_dma_irq_callback
;
276 desc
->callback_param
= i2c
;
278 /* Start the transfer. */
279 dmaengine_submit(desc
);
280 dma_async_issue_pending(i2c
->dmach
);
285 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
286 select_init_dma_fail
:
287 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
288 select_init_pio_fail
:
289 dmaengine_terminate_all(i2c
->dmach
);
292 /* Write failpath. */
294 dma_unmap_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
296 dmaengine_terminate_all(i2c
->dmach
);
300 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev
*i2c
)
302 unsigned long timeout
= jiffies
+ msecs_to_jiffies(1000);
304 while (readl(i2c
->regs
+ MXS_I2C_CTRL0
) & MXS_I2C_CTRL0_RUN
) {
305 if (readl(i2c
->regs
+ MXS_I2C_CTRL1
) &
306 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
308 if (time_after(jiffies
, timeout
))
316 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev
*i2c
)
320 state
= readl(i2c
->regs
+ MXS_I2C_CTRL1_CLR
) & MXS_I2C_IRQ_MASK
;
322 if (state
& MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
323 i2c
->cmd_err
= -ENXIO
;
324 else if (state
& (MXS_I2C_CTRL1_EARLY_TERM_IRQ
|
325 MXS_I2C_CTRL1_MASTER_LOSS_IRQ
|
326 MXS_I2C_CTRL1_SLAVE_STOP_IRQ
|
327 MXS_I2C_CTRL1_SLAVE_IRQ
))
333 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev
*i2c
, u32 cmd
)
337 writel(cmd
, i2c
->regs
+ MXS_I2C_CTRL0
);
339 /* readback makes sure the write is latched into hardware */
340 reg
= readl(i2c
->regs
+ MXS_I2C_CTRL0
);
341 reg
|= MXS_I2C_CTRL0_RUN
;
342 writel(reg
, i2c
->regs
+ MXS_I2C_CTRL0
);
346 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
347 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
348 * must be written during PIO mode operation. First, the CTRL0 register has
349 * to be programmed with all the necessary bits but the RUN bit. Then the
350 * payload has to be written into the DATA register. Finally, the transmission
351 * is executed by setting the RUN bit in CTRL0.
353 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev
*i2c
, u32 cmd
,
356 writel(cmd
, i2c
->regs
+ MXS_I2C_CTRL0
);
358 if (i2c
->dev_type
== MXS_I2C_V1
)
359 writel(MXS_I2C_CTRL0_PIO_MODE
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
361 writel(data
, i2c
->regs
+ MXS_I2C_DATA(i2c
));
362 writel(MXS_I2C_CTRL0_RUN
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
365 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter
*adap
,
366 struct i2c_msg
*msg
, uint32_t flags
)
368 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
369 uint32_t addr_data
= i2c_8bit_addr_from_msg(msg
);
371 int i
, ret
, xlen
= 0, xmit
= 0;
374 /* Mute IRQs coming from this block. */
375 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
379 * - Enable CTRL0::PIO_MODE (1 << 24)
380 * - Enable CTRL1::ACK_MODE (1 << 27)
382 * WARNING! The MX23 is broken in some way, even if it claims
383 * to support PIO, when we try to transfer any amount of data
384 * that is not aligned to 4 bytes, the DMA engine will have
385 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
386 * transfer. This in turn will mess up the next transfer as
387 * the block it emit one byte write onto the bus terminated
388 * with a NAK+STOP. A possible workaround is to reset the IP
389 * block after every PIO transmission, which might just work.
391 * NOTE: The CTRL0::PIO_MODE description is important, since
392 * it outlines how the PIO mode is really supposed to work.
394 if (msg
->flags
& I2C_M_RD
) {
398 * This transfer MUST be limited to 4 bytes maximum. It is not
399 * possible to transfer more than four bytes via PIO, since we
400 * can not in any way make sure we can read the data from the
401 * DATA register fast enough. Besides, the RX FIFO is only four
402 * bytes deep, thus we can only really read up to four bytes at
403 * time. Finally, there is no bit indicating us that new data
404 * arrived at the FIFO and can thus be fetched from the DATA
407 BUG_ON(msg
->len
> 4);
409 /* SELECT command. */
410 mxs_i2c_pio_trigger_write_cmd(i2c
, MXS_CMD_I2C_SELECT
,
413 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
416 "PIO: Failed to send SELECT command!\n");
421 mxs_i2c_pio_trigger_cmd(i2c
,
422 MXS_CMD_I2C_READ
| flags
|
423 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
));
425 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
428 "PIO: Failed to send READ command!\n");
432 data
= readl(i2c
->regs
+ MXS_I2C_DATA(i2c
));
433 for (i
= 0; i
< msg
->len
; i
++) {
434 msg
->buf
[i
] = data
& 0xff;
439 * PIO WRITE transfer:
441 * The code below implements clock stretching to circumvent
442 * the possibility of kernel not being able to supply data
443 * fast enough. It is possible to transfer arbitrary amount
444 * of data using PIO write.
448 * The LSB of data buffer is the first byte blasted across
449 * the bus. Higher order bytes follow. Thus the following
453 data
= addr_data
<< 24;
455 /* Start the transfer with START condition. */
456 start
= MXS_I2C_CTRL0_PRE_SEND_START
;
458 /* If the transfer is long, use clock stretching. */
460 start
|= MXS_I2C_CTRL0_RETAIN_CLOCK
;
462 for (i
= 0; i
< msg
->len
; i
++) {
464 data
|= (msg
->buf
[i
] << 24);
468 /* This is the last transfer of the message. */
469 if (i
+ 1 == msg
->len
) {
470 /* Add optional STOP flag. */
472 /* Remove RETAIN_CLOCK bit. */
473 start
&= ~MXS_I2C_CTRL0_RETAIN_CLOCK
;
477 /* Four bytes are ready in the "data" variable. */
481 /* Nothing interesting happened, continue stuffing. */
486 * Compute the size of the transfer and shift the
489 * i = (4k + 0) .... xlen = 2
490 * i = (4k + 1) .... xlen = 3
491 * i = (4k + 2) .... xlen = 4
492 * i = (4k + 3) .... xlen = 1
500 data
>>= (4 - xlen
) * 8;
503 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
505 start
& MXS_I2C_CTRL0_PRE_SEND_START
? "S" : "",
506 start
& MXS_I2C_CTRL0_POST_SEND_STOP
? "E" : "",
507 start
& MXS_I2C_CTRL0_RETAIN_CLOCK
? "C" : "");
509 writel(MXS_I2C_DEBUG0_DMAREQ
,
510 i2c
->regs
+ MXS_I2C_DEBUG0_CLR(i2c
));
512 mxs_i2c_pio_trigger_write_cmd(i2c
,
513 start
| MXS_I2C_CTRL0_MASTER_MODE
|
514 MXS_I2C_CTRL0_DIRECTION
|
515 MXS_I2C_CTRL0_XFER_COUNT(xlen
), data
);
517 /* The START condition is sent only once. */
518 start
&= ~MXS_I2C_CTRL0_PRE_SEND_START
;
520 /* Wait for the end of the transfer. */
521 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
524 "PIO: Failed to finish WRITE cmd!\n");
528 /* Check NAK here. */
529 ret
= readl(i2c
->regs
+ MXS_I2C_STAT
) &
530 MXS_I2C_STAT_GOT_A_NAK
;
538 /* make sure we capture any occurred error into cmd_err */
539 ret
= mxs_i2c_pio_check_error_state(i2c
);
542 /* Clear any dangling IRQs and re-enable interrupts. */
543 writel(MXS_I2C_IRQ_MASK
, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
544 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_SET
);
546 /* Clear the PIO_MODE on i.MX23 */
547 if (i2c
->dev_type
== MXS_I2C_V1
)
548 writel(MXS_I2C_CTRL0_PIO_MODE
, i2c
->regs
+ MXS_I2C_CTRL0_CLR
);
554 * Low level master read/write transaction.
556 static int mxs_i2c_xfer_msg(struct i2c_adapter
*adap
, struct i2c_msg
*msg
,
559 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
563 unsigned long time_left
;
565 flags
= stop
? MXS_I2C_CTRL0_POST_SEND_STOP
: 0;
567 dev_dbg(i2c
->dev
, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
568 msg
->addr
, msg
->len
, msg
->flags
, stop
);
571 * The MX28 I2C IP block can only do PIO READ for transfer of to up
572 * 4 bytes of length. The write transfer is not limited as it can use
573 * clock stretching to avoid FIFO underruns.
575 if ((msg
->flags
& I2C_M_RD
) && (msg
->len
<= 4))
577 if (!(msg
->flags
& I2C_M_RD
) && (msg
->len
< 7))
582 ret
= mxs_i2c_pio_setup_xfer(adap
, msg
, flags
);
583 /* No need to reset the block if NAK was received. */
584 if (ret
&& (ret
!= -ENXIO
))
587 reinit_completion(&i2c
->cmd_complete
);
588 ret
= mxs_i2c_dma_setup_xfer(adap
, msg
, flags
);
592 time_left
= wait_for_completion_timeout(&i2c
->cmd_complete
,
593 msecs_to_jiffies(1000));
602 * If the transfer fails with a NAK from the slave the
603 * controller halts until it gets told to return to idle state.
605 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK
,
606 i2c
->regs
+ MXS_I2C_CTRL1_SET
);
611 * The i.MX23 is strange. After each and every operation, it's I2C IP
612 * block must be reset, otherwise the IP block will misbehave. This can
613 * be observed on the bus by the block sending out one single byte onto
614 * the bus. In case such an error happens, bit 27 will be set in the
615 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
616 * and is marked as "TBD" instead. To reset this bit to a correct state,
617 * reset the whole block. Since the block reset does not take long, do
618 * reset the block after every transfer to play safe.
620 if (i2c
->dev_type
== MXS_I2C_V1
)
623 dev_dbg(i2c
->dev
, "Done with err=%d\n", ret
);
628 dev_dbg(i2c
->dev
, "Timeout!\n");
629 mxs_i2c_dma_finish(i2c
);
630 ret
= mxs_i2c_reset(i2c
);
637 static int mxs_i2c_xfer(struct i2c_adapter
*adap
, struct i2c_msg msgs
[],
643 for (i
= 0; i
< num
; i
++) {
644 err
= mxs_i2c_xfer_msg(adap
, &msgs
[i
], i
== (num
- 1));
652 static u32
mxs_i2c_func(struct i2c_adapter
*adap
)
654 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
657 static irqreturn_t
mxs_i2c_isr(int this_irq
, void *dev_id
)
659 struct mxs_i2c_dev
*i2c
= dev_id
;
660 u32 stat
= readl(i2c
->regs
+ MXS_I2C_CTRL1
) & MXS_I2C_IRQ_MASK
;
665 if (stat
& MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
666 i2c
->cmd_err
= -ENXIO
;
667 else if (stat
& (MXS_I2C_CTRL1_EARLY_TERM_IRQ
|
668 MXS_I2C_CTRL1_MASTER_LOSS_IRQ
|
669 MXS_I2C_CTRL1_SLAVE_STOP_IRQ
| MXS_I2C_CTRL1_SLAVE_IRQ
))
670 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
673 writel(stat
, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
678 static const struct i2c_algorithm mxs_i2c_algo
= {
679 .master_xfer
= mxs_i2c_xfer
,
680 .functionality
= mxs_i2c_func
,
683 static const struct i2c_adapter_quirks mxs_i2c_quirks
= {
684 .flags
= I2C_AQ_NO_ZERO_LEN
,
687 static void mxs_i2c_derive_timing(struct mxs_i2c_dev
*i2c
, uint32_t speed
)
689 /* The I2C block clock runs at 24MHz */
690 const uint32_t clk
= 24000000;
692 uint16_t high_count
, low_count
, rcv_count
, xmit_count
;
693 uint32_t bus_free
, leadin
;
694 struct device
*dev
= i2c
->dev
;
696 divider
= DIV_ROUND_UP(clk
, speed
);
700 * limit the divider, so that min(low_count, high_count)
705 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
706 speed
/ 1000, speed
% 1000,
707 clk
/ divider
/ 1000, clk
/ divider
% 1000);
708 } else if (divider
> 1897) {
710 * limit the divider, so that max(low_count, high_count)
715 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
716 speed
/ 1000, speed
% 1000,
717 clk
/ divider
/ 1000, clk
/ divider
% 1000);
721 * The I2C spec specifies the following timing data:
722 * standard mode fast mode Bitfield name
723 * tLOW (SCL LOW period) 4700 ns 1300 ns
724 * tHIGH (SCL HIGH period) 4000 ns 600 ns
725 * tSU;DAT (data setup time) 250 ns 100 ns
726 * tHD;STA (START hold time) 4000 ns 600 ns
727 * tBUF (bus free time) 4700 ns 1300 ns
729 * The hardware (of the i.MX28 at least) seems to add 2 additional
730 * clock cycles to the low_count and 7 cycles to the high_count.
731 * This is compensated for by subtracting the respective constants
732 * from the values written to the timing registers.
734 if (speed
> 100000) {
736 low_count
= DIV_ROUND_CLOSEST(divider
* 13, (13 + 6));
737 high_count
= DIV_ROUND_CLOSEST(divider
* 6, (13 + 6));
738 leadin
= DIV_ROUND_UP(600 * (clk
/ 1000000), 1000);
739 bus_free
= DIV_ROUND_UP(1300 * (clk
/ 1000000), 1000);
742 low_count
= DIV_ROUND_CLOSEST(divider
* 47, (47 + 40));
743 high_count
= DIV_ROUND_CLOSEST(divider
* 40, (47 + 40));
744 leadin
= DIV_ROUND_UP(4700 * (clk
/ 1000000), 1000);
745 bus_free
= DIV_ROUND_UP(4700 * (clk
/ 1000000), 1000);
747 rcv_count
= high_count
* 3 / 8;
748 xmit_count
= low_count
* 3 / 8;
751 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
752 speed
, clk
/ divider
, divider
, low_count
, high_count
,
753 xmit_count
, rcv_count
, leadin
, bus_free
);
757 i2c
->timing0
= (high_count
<< 16) | rcv_count
;
758 i2c
->timing1
= (low_count
<< 16) | xmit_count
;
759 i2c
->timing2
= (bus_free
<< 16 | leadin
);
762 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev
*i2c
)
765 struct device
*dev
= i2c
->dev
;
766 struct device_node
*node
= dev
->of_node
;
769 ret
= of_property_read_u32(node
, "clock-frequency", &speed
);
771 dev_warn(dev
, "No I2C speed selected, using 100kHz\n");
775 mxs_i2c_derive_timing(i2c
, speed
);
780 static const struct platform_device_id mxs_i2c_devtype
[] = {
783 .driver_data
= MXS_I2C_V1
,
786 .driver_data
= MXS_I2C_V2
,
787 }, { /* sentinel */ }
789 MODULE_DEVICE_TABLE(platform
, mxs_i2c_devtype
);
791 static const struct of_device_id mxs_i2c_dt_ids
[] = {
792 { .compatible
= "fsl,imx23-i2c", .data
= &mxs_i2c_devtype
[0], },
793 { .compatible
= "fsl,imx28-i2c", .data
= &mxs_i2c_devtype
[1], },
796 MODULE_DEVICE_TABLE(of
, mxs_i2c_dt_ids
);
798 static int mxs_i2c_probe(struct platform_device
*pdev
)
800 const struct of_device_id
*of_id
=
801 of_match_device(mxs_i2c_dt_ids
, &pdev
->dev
);
802 struct device
*dev
= &pdev
->dev
;
803 struct mxs_i2c_dev
*i2c
;
804 struct i2c_adapter
*adap
;
807 i2c
= devm_kzalloc(dev
, sizeof(*i2c
), GFP_KERNEL
);
812 const struct platform_device_id
*device_id
= of_id
->data
;
813 i2c
->dev_type
= device_id
->driver_data
;
816 i2c
->regs
= devm_platform_ioremap_resource(pdev
, 0);
817 if (IS_ERR(i2c
->regs
))
818 return PTR_ERR(i2c
->regs
);
820 irq
= platform_get_irq(pdev
, 0);
824 err
= devm_request_irq(dev
, irq
, mxs_i2c_isr
, 0, dev_name(dev
), i2c
);
830 init_completion(&i2c
->cmd_complete
);
833 err
= mxs_i2c_get_ofdata(i2c
);
839 i2c
->dmach
= dma_request_slave_channel(dev
, "rx-tx");
841 dev_err(dev
, "Failed to request dma\n");
845 platform_set_drvdata(pdev
, i2c
);
847 /* Do reset to enforce correct startup after pinmuxing */
848 err
= mxs_i2c_reset(i2c
);
852 adap
= &i2c
->adapter
;
853 strlcpy(adap
->name
, "MXS I2C adapter", sizeof(adap
->name
));
854 adap
->owner
= THIS_MODULE
;
855 adap
->algo
= &mxs_i2c_algo
;
856 adap
->quirks
= &mxs_i2c_quirks
;
857 adap
->dev
.parent
= dev
;
859 adap
->dev
.of_node
= pdev
->dev
.of_node
;
860 i2c_set_adapdata(adap
, i2c
);
861 err
= i2c_add_numbered_adapter(adap
);
863 writel(MXS_I2C_CTRL0_SFTRST
,
864 i2c
->regs
+ MXS_I2C_CTRL0_SET
);
871 static int mxs_i2c_remove(struct platform_device
*pdev
)
873 struct mxs_i2c_dev
*i2c
= platform_get_drvdata(pdev
);
875 i2c_del_adapter(&i2c
->adapter
);
878 dma_release_channel(i2c
->dmach
);
880 writel(MXS_I2C_CTRL0_SFTRST
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
885 static struct platform_driver mxs_i2c_driver
= {
888 .of_match_table
= mxs_i2c_dt_ids
,
890 .probe
= mxs_i2c_probe
,
891 .remove
= mxs_i2c_remove
,
894 static int __init
mxs_i2c_init(void)
896 return platform_driver_register(&mxs_i2c_driver
);
898 subsys_initcall(mxs_i2c_init
);
900 static void __exit
mxs_i2c_exit(void)
902 platform_driver_unregister(&mxs_i2c_driver
);
904 module_exit(mxs_i2c_exit
);
906 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
907 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
908 MODULE_DESCRIPTION("MXS I2C Bus Driver");
909 MODULE_LICENSE("GPL");
910 MODULE_ALIAS("platform:" DRIVER_NAME
);