1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for I2C adapter in Rockchip RK3xxx SoC
5 * Max Schwarz <max.schwarz@online.de>
6 * based on the patches by Rockchip Inc.
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/platform_device.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/spinlock.h>
20 #include <linux/clk.h>
21 #include <linux/wait.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/regmap.h>
24 #include <linux/math64.h>
28 #define REG_CON 0x00 /* control register */
29 #define REG_CLKDIV 0x04 /* clock divisor register */
30 #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */
31 #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */
32 #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */
33 #define REG_MRXCNT 0x14 /* number of bytes to be received */
34 #define REG_IEN 0x18 /* interrupt enable */
35 #define REG_IPD 0x1c /* interrupt pending */
36 #define REG_FCNT 0x20 /* finished count */
38 /* Data buffer offsets */
39 #define TXBUFFER_BASE 0x100
40 #define RXBUFFER_BASE 0x200
43 #define REG_CON_EN BIT(0)
45 REG_CON_MOD_TX
= 0, /* transmit data */
46 REG_CON_MOD_REGISTER_TX
, /* select register and restart */
47 REG_CON_MOD_RX
, /* receive data */
48 REG_CON_MOD_REGISTER_RX
, /* broken: transmits read addr AND writes
51 #define REG_CON_MOD(mod) ((mod) << 1)
52 #define REG_CON_MOD_MASK (BIT(1) | BIT(2))
53 #define REG_CON_START BIT(3)
54 #define REG_CON_STOP BIT(4)
55 #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
56 #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */
58 #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
60 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
61 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
62 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
64 /* REG_MRXADDR bits */
65 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
67 /* REG_IEN/REG_IPD bits */
68 #define REG_INT_BTF BIT(0) /* a byte was transmitted */
69 #define REG_INT_BRF BIT(1) /* a byte was received */
70 #define REG_INT_MBTF BIT(2) /* master data transmit finished */
71 #define REG_INT_MBRF BIT(3) /* master data receive finished */
72 #define REG_INT_START BIT(4) /* START condition generated */
73 #define REG_INT_STOP BIT(5) /* STOP condition generated */
74 #define REG_INT_NAKRCV BIT(6) /* NACK received */
75 #define REG_INT_ALL 0x7f
78 #define WAIT_TIMEOUT 1000 /* ms */
79 #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */
82 * struct i2c_spec_values:
83 * @min_hold_start_ns: min hold time (repeated) START condition
84 * @min_low_ns: min LOW period of the SCL clock
85 * @min_high_ns: min HIGH period of the SCL cloc
86 * @min_setup_start_ns: min set-up time for a repeated START conditio
87 * @max_data_hold_ns: max data hold time
88 * @min_data_setup_ns: min data set-up time
89 * @min_setup_stop_ns: min set-up time for STOP condition
90 * @min_hold_buffer_ns: min bus free time between a STOP and
93 struct i2c_spec_values
{
94 unsigned long min_hold_start_ns
;
95 unsigned long min_low_ns
;
96 unsigned long min_high_ns
;
97 unsigned long min_setup_start_ns
;
98 unsigned long max_data_hold_ns
;
99 unsigned long min_data_setup_ns
;
100 unsigned long min_setup_stop_ns
;
101 unsigned long min_hold_buffer_ns
;
104 static const struct i2c_spec_values standard_mode_spec
= {
105 .min_hold_start_ns
= 4000,
108 .min_setup_start_ns
= 4700,
109 .max_data_hold_ns
= 3450,
110 .min_data_setup_ns
= 250,
111 .min_setup_stop_ns
= 4000,
112 .min_hold_buffer_ns
= 4700,
115 static const struct i2c_spec_values fast_mode_spec
= {
116 .min_hold_start_ns
= 600,
119 .min_setup_start_ns
= 600,
120 .max_data_hold_ns
= 900,
121 .min_data_setup_ns
= 100,
122 .min_setup_stop_ns
= 600,
123 .min_hold_buffer_ns
= 1300,
126 static const struct i2c_spec_values fast_mode_plus_spec
= {
127 .min_hold_start_ns
= 260,
130 .min_setup_start_ns
= 260,
131 .max_data_hold_ns
= 400,
132 .min_data_setup_ns
= 50,
133 .min_setup_stop_ns
= 260,
134 .min_hold_buffer_ns
= 500,
138 * struct rk3x_i2c_calced_timings:
139 * @div_low: Divider output for low
140 * @div_high: Divider output for high
141 * @tuning: Used to adjust setup/hold data time,
142 * setup/hold start time and setup stop time for
143 * v1's calc_timings, the tuning should all be 0
144 * for old hardware anyone using v0's calc_timings.
146 struct rk3x_i2c_calced_timings
{
147 unsigned long div_low
;
148 unsigned long div_high
;
152 enum rk3x_i2c_state
{
161 * struct rk3x_i2c_soc_data:
162 * @grf_offset: offset inside the grf regmap for setting the i2c type
163 * @calc_timings: Callback function for i2c timing information calculated
165 struct rk3x_i2c_soc_data
{
167 int (*calc_timings
)(unsigned long, struct i2c_timings
*,
168 struct rk3x_i2c_calced_timings
*);
172 * struct rk3x_i2c - private data of the controller
173 * @adap: corresponding I2C adapter
174 * @dev: device for this controller
175 * @soc_data: related soc data struct
176 * @regs: virtual memory area
177 * @clk: function clk for rk3399 or function & Bus clks for others
178 * @pclk: Bus clk for rk3399
179 * @clk_rate_nb: i2c clk rate change notify
180 * @t: I2C known timing information
181 * @lock: spinlock for the i2c bus
182 * @wait: the waitqueue to wait for i2c transfer
183 * @busy: the condition for the event to wait for
184 * @msg: current i2c message
185 * @addr: addr of i2c slave device
186 * @mode: mode of i2c transfer
187 * @is_last_msg: flag determines whether it is the last msg in this transfer
188 * @state: state of i2c transfer
189 * @processed: byte length which has been send or received
190 * @error: error code for i2c transfer
193 struct i2c_adapter adap
;
195 const struct rk3x_i2c_soc_data
*soc_data
;
197 /* Hardware resources */
201 struct notifier_block clk_rate_nb
;
204 struct i2c_timings t
;
206 /* Synchronization & notification */
208 wait_queue_head_t wait
;
211 /* Current message */
217 /* I2C state machine */
218 enum rk3x_i2c_state state
;
219 unsigned int processed
;
223 static inline void i2c_writel(struct rk3x_i2c
*i2c
, u32 value
,
226 writel(value
, i2c
->regs
+ offset
);
229 static inline u32
i2c_readl(struct rk3x_i2c
*i2c
, unsigned int offset
)
231 return readl(i2c
->regs
+ offset
);
234 /* Reset all interrupt pending bits */
235 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c
*i2c
)
237 i2c_writel(i2c
, REG_INT_ALL
, REG_IPD
);
241 * Generate a START condition, which triggers a REG_INT_START interrupt.
243 static void rk3x_i2c_start(struct rk3x_i2c
*i2c
)
245 u32 val
= i2c_readl(i2c
, REG_CON
) & REG_CON_TUNING_MASK
;
247 i2c_writel(i2c
, REG_INT_START
, REG_IEN
);
249 /* enable adapter with correct mode, send START condition */
250 val
|= REG_CON_EN
| REG_CON_MOD(i2c
->mode
) | REG_CON_START
;
252 /* if we want to react to NACK, set ACTACK bit */
253 if (!(i2c
->msg
->flags
& I2C_M_IGNORE_NAK
))
254 val
|= REG_CON_ACTACK
;
256 i2c_writel(i2c
, val
, REG_CON
);
260 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
262 * @error: Error code to return in rk3x_i2c_xfer
264 static void rk3x_i2c_stop(struct rk3x_i2c
*i2c
, int error
)
272 if (i2c
->is_last_msg
) {
273 /* Enable stop interrupt */
274 i2c_writel(i2c
, REG_INT_STOP
, REG_IEN
);
276 i2c
->state
= STATE_STOP
;
278 ctrl
= i2c_readl(i2c
, REG_CON
);
279 ctrl
|= REG_CON_STOP
;
280 i2c_writel(i2c
, ctrl
, REG_CON
);
282 /* Signal rk3x_i2c_xfer to start the next message. */
284 i2c
->state
= STATE_IDLE
;
287 * The HW is actually not capable of REPEATED START. But we can
288 * get the intended effect by resetting its internal state
289 * and issuing an ordinary START.
291 ctrl
= i2c_readl(i2c
, REG_CON
) & REG_CON_TUNING_MASK
;
292 i2c_writel(i2c
, ctrl
, REG_CON
);
294 /* signal that we are finished with the current msg */
300 * Setup a read according to i2c->msg
302 static void rk3x_i2c_prepare_read(struct rk3x_i2c
*i2c
)
304 unsigned int len
= i2c
->msg
->len
- i2c
->processed
;
307 con
= i2c_readl(i2c
, REG_CON
);
310 * The hw can read up to 32 bytes at a time. If we need more than one
311 * chunk, send an ACK after the last byte of the current chunk.
315 con
&= ~REG_CON_LASTACK
;
317 con
|= REG_CON_LASTACK
;
320 /* make sure we are in plain RX mode if we read a second chunk */
321 if (i2c
->processed
!= 0) {
322 con
&= ~REG_CON_MOD_MASK
;
323 con
|= REG_CON_MOD(REG_CON_MOD_RX
);
326 i2c_writel(i2c
, con
, REG_CON
);
327 i2c_writel(i2c
, len
, REG_MRXCNT
);
331 * Fill the transmit buffer with data from i2c->msg
333 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c
*i2c
)
340 for (i
= 0; i
< 8; ++i
) {
342 for (j
= 0; j
< 4; ++j
) {
343 if ((i2c
->processed
== i2c
->msg
->len
) && (cnt
!= 0))
346 if (i2c
->processed
== 0 && cnt
== 0)
347 byte
= (i2c
->addr
& 0x7f) << 1;
349 byte
= i2c
->msg
->buf
[i2c
->processed
++];
351 val
|= byte
<< (j
* 8);
355 i2c_writel(i2c
, val
, TXBUFFER_BASE
+ 4 * i
);
357 if (i2c
->processed
== i2c
->msg
->len
)
361 i2c_writel(i2c
, cnt
, REG_MTXCNT
);
365 /* IRQ handlers for individual states */
367 static void rk3x_i2c_handle_start(struct rk3x_i2c
*i2c
, unsigned int ipd
)
369 if (!(ipd
& REG_INT_START
)) {
370 rk3x_i2c_stop(i2c
, -EIO
);
371 dev_warn(i2c
->dev
, "unexpected irq in START: 0x%x\n", ipd
);
372 rk3x_i2c_clean_ipd(i2c
);
377 i2c_writel(i2c
, REG_INT_START
, REG_IPD
);
379 /* disable start bit */
380 i2c_writel(i2c
, i2c_readl(i2c
, REG_CON
) & ~REG_CON_START
, REG_CON
);
382 /* enable appropriate interrupts and transition */
383 if (i2c
->mode
== REG_CON_MOD_TX
) {
384 i2c_writel(i2c
, REG_INT_MBTF
| REG_INT_NAKRCV
, REG_IEN
);
385 i2c
->state
= STATE_WRITE
;
386 rk3x_i2c_fill_transmit_buf(i2c
);
388 /* in any other case, we are going to be reading. */
389 i2c_writel(i2c
, REG_INT_MBRF
| REG_INT_NAKRCV
, REG_IEN
);
390 i2c
->state
= STATE_READ
;
391 rk3x_i2c_prepare_read(i2c
);
395 static void rk3x_i2c_handle_write(struct rk3x_i2c
*i2c
, unsigned int ipd
)
397 if (!(ipd
& REG_INT_MBTF
)) {
398 rk3x_i2c_stop(i2c
, -EIO
);
399 dev_err(i2c
->dev
, "unexpected irq in WRITE: 0x%x\n", ipd
);
400 rk3x_i2c_clean_ipd(i2c
);
405 i2c_writel(i2c
, REG_INT_MBTF
, REG_IPD
);
407 /* are we finished? */
408 if (i2c
->processed
== i2c
->msg
->len
)
409 rk3x_i2c_stop(i2c
, i2c
->error
);
411 rk3x_i2c_fill_transmit_buf(i2c
);
414 static void rk3x_i2c_handle_read(struct rk3x_i2c
*i2c
, unsigned int ipd
)
417 unsigned int len
= i2c
->msg
->len
- i2c
->processed
;
418 u32
uninitialized_var(val
);
421 /* we only care for MBRF here. */
422 if (!(ipd
& REG_INT_MBRF
))
426 i2c_writel(i2c
, REG_INT_MBRF
, REG_IPD
);
428 /* Can only handle a maximum of 32 bytes at a time */
432 /* read the data from receive buffer */
433 for (i
= 0; i
< len
; ++i
) {
435 val
= i2c_readl(i2c
, RXBUFFER_BASE
+ (i
/ 4) * 4);
437 byte
= (val
>> ((i
% 4) * 8)) & 0xff;
438 i2c
->msg
->buf
[i2c
->processed
++] = byte
;
441 /* are we finished? */
442 if (i2c
->processed
== i2c
->msg
->len
)
443 rk3x_i2c_stop(i2c
, i2c
->error
);
445 rk3x_i2c_prepare_read(i2c
);
448 static void rk3x_i2c_handle_stop(struct rk3x_i2c
*i2c
, unsigned int ipd
)
452 if (!(ipd
& REG_INT_STOP
)) {
453 rk3x_i2c_stop(i2c
, -EIO
);
454 dev_err(i2c
->dev
, "unexpected irq in STOP: 0x%x\n", ipd
);
455 rk3x_i2c_clean_ipd(i2c
);
460 i2c_writel(i2c
, REG_INT_STOP
, REG_IPD
);
462 /* disable STOP bit */
463 con
= i2c_readl(i2c
, REG_CON
);
464 con
&= ~REG_CON_STOP
;
465 i2c_writel(i2c
, con
, REG_CON
);
468 i2c
->state
= STATE_IDLE
;
470 /* signal rk3x_i2c_xfer that we are finished */
474 static irqreturn_t
rk3x_i2c_irq(int irqno
, void *dev_id
)
476 struct rk3x_i2c
*i2c
= dev_id
;
479 spin_lock(&i2c
->lock
);
481 ipd
= i2c_readl(i2c
, REG_IPD
);
482 if (i2c
->state
== STATE_IDLE
) {
483 dev_warn(i2c
->dev
, "irq in STATE_IDLE, ipd = 0x%x\n", ipd
);
484 rk3x_i2c_clean_ipd(i2c
);
488 dev_dbg(i2c
->dev
, "IRQ: state %d, ipd: %x\n", i2c
->state
, ipd
);
490 /* Clean interrupt bits we don't care about */
491 ipd
&= ~(REG_INT_BRF
| REG_INT_BTF
);
493 if (ipd
& REG_INT_NAKRCV
) {
495 * We got a NACK in the last operation. Depending on whether
496 * IGNORE_NAK is set, we have to stop the operation and report
499 i2c_writel(i2c
, REG_INT_NAKRCV
, REG_IPD
);
501 ipd
&= ~REG_INT_NAKRCV
;
503 if (!(i2c
->msg
->flags
& I2C_M_IGNORE_NAK
))
504 rk3x_i2c_stop(i2c
, -ENXIO
);
507 /* is there anything left to handle? */
508 if ((ipd
& REG_INT_ALL
) == 0)
511 switch (i2c
->state
) {
513 rk3x_i2c_handle_start(i2c
, ipd
);
516 rk3x_i2c_handle_write(i2c
, ipd
);
519 rk3x_i2c_handle_read(i2c
, ipd
);
522 rk3x_i2c_handle_stop(i2c
, ipd
);
529 spin_unlock(&i2c
->lock
);
534 * Get timing values of I2C specification
536 * @speed: Desired SCL frequency
538 * Returns: Matched i2c spec values.
540 static const struct i2c_spec_values
*rk3x_i2c_get_spec(unsigned int speed
)
543 return &standard_mode_spec
;
544 else if (speed
<= 400000)
545 return &fast_mode_spec
;
547 return &fast_mode_plus_spec
;
551 * Calculate divider values for desired SCL frequency
553 * @clk_rate: I2C input clock rate
554 * @t: Known I2C timing information
555 * @t_calc: Caculated rk3x private timings that would be written into regs
557 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
558 * a best-effort divider value is returned in divs. If the target rate is
559 * too high, we silently use the highest possible rate.
561 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate
,
562 struct i2c_timings
*t
,
563 struct rk3x_i2c_calced_timings
*t_calc
)
565 unsigned long min_low_ns
, min_high_ns
;
566 unsigned long max_low_ns
, min_total_ns
;
568 unsigned long clk_rate_khz
, scl_rate_khz
;
570 unsigned long min_low_div
, min_high_div
;
571 unsigned long max_low_div
;
573 unsigned long min_div_for_hold
, min_total_div
;
574 unsigned long extra_div
, extra_low_div
, ideal_low_div
;
576 unsigned long data_hold_buffer_ns
= 50;
577 const struct i2c_spec_values
*spec
;
580 /* Only support standard-mode and fast-mode */
581 if (WARN_ON(t
->bus_freq_hz
> 400000))
582 t
->bus_freq_hz
= 400000;
584 /* prevent scl_rate_khz from becoming 0 */
585 if (WARN_ON(t
->bus_freq_hz
< 1000))
586 t
->bus_freq_hz
= 1000;
589 * min_low_ns: The minimum number of ns we need to hold low to
590 * meet I2C specification, should include fall time.
591 * min_high_ns: The minimum number of ns we need to hold high to
592 * meet I2C specification, should include rise time.
593 * max_low_ns: The maximum number of ns we can hold low to meet
596 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
597 * This is because the i2c host on Rockchip holds the data line
598 * for half the low time.
600 spec
= rk3x_i2c_get_spec(t
->bus_freq_hz
);
601 min_high_ns
= t
->scl_rise_ns
+ spec
->min_high_ns
;
604 * Timings for repeated start:
605 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
606 * - controller appears to keep SCL high for 2x programmed clk high.
608 * We need to account for those rules in picking our "high" time so
609 * we meet tSU;STA and tHD;STA times.
611 min_high_ns
= max(min_high_ns
, DIV_ROUND_UP(
612 (t
->scl_rise_ns
+ spec
->min_setup_start_ns
) * 1000, 875));
613 min_high_ns
= max(min_high_ns
, DIV_ROUND_UP(
614 (t
->scl_rise_ns
+ spec
->min_setup_start_ns
+ t
->sda_fall_ns
+
615 spec
->min_high_ns
), 2));
617 min_low_ns
= t
->scl_fall_ns
+ spec
->min_low_ns
;
618 max_low_ns
= spec
->max_data_hold_ns
* 2 - data_hold_buffer_ns
;
619 min_total_ns
= min_low_ns
+ min_high_ns
;
621 /* Adjust to avoid overflow */
622 clk_rate_khz
= DIV_ROUND_UP(clk_rate
, 1000);
623 scl_rate_khz
= t
->bus_freq_hz
/ 1000;
626 * We need the total div to be >= this number
627 * so we don't clock too fast.
629 min_total_div
= DIV_ROUND_UP(clk_rate_khz
, scl_rate_khz
* 8);
631 /* These are the min dividers needed for min hold times. */
632 min_low_div
= DIV_ROUND_UP(clk_rate_khz
* min_low_ns
, 8 * 1000000);
633 min_high_div
= DIV_ROUND_UP(clk_rate_khz
* min_high_ns
, 8 * 1000000);
634 min_div_for_hold
= (min_low_div
+ min_high_div
);
637 * This is the maximum divider so we don't go over the maximum.
638 * We don't round up here (we round down) since this is a maximum.
640 max_low_div
= clk_rate_khz
* max_low_ns
/ (8 * 1000000);
642 if (min_low_div
> max_low_div
) {
644 "Conflicting, min_low_div %lu, max_low_div %lu\n",
645 min_low_div
, max_low_div
);
646 max_low_div
= min_low_div
;
649 if (min_div_for_hold
> min_total_div
) {
651 * Time needed to meet hold requirements is important.
654 t_calc
->div_low
= min_low_div
;
655 t_calc
->div_high
= min_high_div
;
658 * We've got to distribute some time among the low and high
659 * so we don't run too fast.
661 extra_div
= min_total_div
- min_div_for_hold
;
664 * We'll try to split things up perfectly evenly,
665 * biasing slightly towards having a higher div
666 * for low (spend more time low).
668 ideal_low_div
= DIV_ROUND_UP(clk_rate_khz
* min_low_ns
,
669 scl_rate_khz
* 8 * min_total_ns
);
671 /* Don't allow it to go over the maximum */
672 if (ideal_low_div
> max_low_div
)
673 ideal_low_div
= max_low_div
;
676 * Handle when the ideal low div is going to take up
679 if (ideal_low_div
> min_low_div
+ extra_div
)
680 ideal_low_div
= min_low_div
+ extra_div
;
682 /* Give low the "ideal" and give high whatever extra is left */
683 extra_low_div
= ideal_low_div
- min_low_div
;
684 t_calc
->div_low
= ideal_low_div
;
685 t_calc
->div_high
= min_high_div
+ (extra_div
- extra_low_div
);
689 * Adjust to the fact that the hardware has an implicit "+1".
690 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
695 /* Give the tuning value 0, that would not update con register */
697 /* Maximum divider supported by hw is 0xffff */
698 if (t_calc
->div_low
> 0xffff) {
699 t_calc
->div_low
= 0xffff;
703 if (t_calc
->div_high
> 0xffff) {
704 t_calc
->div_high
= 0xffff;
712 * Calculate timing values for desired SCL frequency
714 * @clk_rate: I2C input clock rate
715 * @t: Known I2C timing information
716 * @t_calc: Caculated rk3x private timings that would be written into regs
718 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
719 * a best-effort divider value is returned in divs. If the target rate is
720 * too high, we silently use the highest possible rate.
721 * The following formulas are v1's method to calculate timings.
725 * s = sda_update_config + 1;
726 * u = start_setup_config + 1;
727 * p = stop_setup_config + 1;
733 * tHD;sda = (l * s + 1) * T;
734 * tSU;sda = [(8 - s) * l + 1] * T;
735 * tI2C = 8 * (l + h) * T;
737 * tSU;sta = (8h * u + 1) * T;
738 * tHD;sta = [8h * (u + 1) - 1] * T;
739 * tSU;sto = (8h * p + 1) * T;
741 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate
,
742 struct i2c_timings
*t
,
743 struct rk3x_i2c_calced_timings
*t_calc
)
745 unsigned long min_low_ns
, min_high_ns
;
746 unsigned long min_setup_start_ns
, min_setup_data_ns
;
747 unsigned long min_setup_stop_ns
, max_hold_data_ns
;
749 unsigned long clk_rate_khz
, scl_rate_khz
;
751 unsigned long min_low_div
, min_high_div
;
753 unsigned long min_div_for_hold
, min_total_div
;
754 unsigned long extra_div
, extra_low_div
;
755 unsigned long sda_update_cfg
, stp_sta_cfg
, stp_sto_cfg
;
757 const struct i2c_spec_values
*spec
;
760 /* Support standard-mode, fast-mode and fast-mode plus */
761 if (WARN_ON(t
->bus_freq_hz
> 1000000))
762 t
->bus_freq_hz
= 1000000;
764 /* prevent scl_rate_khz from becoming 0 */
765 if (WARN_ON(t
->bus_freq_hz
< 1000))
766 t
->bus_freq_hz
= 1000;
769 * min_low_ns: The minimum number of ns we need to hold low to
770 * meet I2C specification, should include fall time.
771 * min_high_ns: The minimum number of ns we need to hold high to
772 * meet I2C specification, should include rise time.
774 spec
= rk3x_i2c_get_spec(t
->bus_freq_hz
);
776 /* calculate min-divh and min-divl */
777 clk_rate_khz
= DIV_ROUND_UP(clk_rate
, 1000);
778 scl_rate_khz
= t
->bus_freq_hz
/ 1000;
779 min_total_div
= DIV_ROUND_UP(clk_rate_khz
, scl_rate_khz
* 8);
781 min_high_ns
= t
->scl_rise_ns
+ spec
->min_high_ns
;
782 min_high_div
= DIV_ROUND_UP(clk_rate_khz
* min_high_ns
, 8 * 1000000);
784 min_low_ns
= t
->scl_fall_ns
+ spec
->min_low_ns
;
785 min_low_div
= DIV_ROUND_UP(clk_rate_khz
* min_low_ns
, 8 * 1000000);
788 * Final divh and divl must be greater than 0, otherwise the
789 * hardware would not output the i2c clk.
791 min_high_div
= (min_high_div
< 1) ? 2 : min_high_div
;
792 min_low_div
= (min_low_div
< 1) ? 2 : min_low_div
;
794 /* These are the min dividers needed for min hold times. */
795 min_div_for_hold
= (min_low_div
+ min_high_div
);
798 * This is the maximum divider so we don't go over the maximum.
799 * We don't round up here (we round down) since this is a maximum.
801 if (min_div_for_hold
>= min_total_div
) {
803 * Time needed to meet hold requirements is important.
806 t_calc
->div_low
= min_low_div
;
807 t_calc
->div_high
= min_high_div
;
810 * We've got to distribute some time among the low and high
811 * so we don't run too fast.
812 * We'll try to split things up by the scale of min_low_div and
813 * min_high_div, biasing slightly towards having a higher div
814 * for low (spend more time low).
816 extra_div
= min_total_div
- min_div_for_hold
;
817 extra_low_div
= DIV_ROUND_UP(min_low_div
* extra_div
,
820 t_calc
->div_low
= min_low_div
+ extra_low_div
;
821 t_calc
->div_high
= min_high_div
+ (extra_div
- extra_low_div
);
825 * calculate sda data hold count by the rules, data_upd_st:3
826 * is a appropriate value to reduce calculated times.
828 for (sda_update_cfg
= 3; sda_update_cfg
> 0; sda_update_cfg
--) {
829 max_hold_data_ns
= DIV_ROUND_UP((sda_update_cfg
830 * (t_calc
->div_low
) + 1)
831 * 1000000, clk_rate_khz
);
832 min_setup_data_ns
= DIV_ROUND_UP(((8 - sda_update_cfg
)
833 * (t_calc
->div_low
) + 1)
834 * 1000000, clk_rate_khz
);
835 if ((max_hold_data_ns
< spec
->max_data_hold_ns
) &&
836 (min_setup_data_ns
> spec
->min_data_setup_ns
))
840 /* calculate setup start config */
841 min_setup_start_ns
= t
->scl_rise_ns
+ spec
->min_setup_start_ns
;
842 stp_sta_cfg
= DIV_ROUND_UP(clk_rate_khz
* min_setup_start_ns
843 - 1000000, 8 * 1000000 * (t_calc
->div_high
));
845 /* calculate setup stop config */
846 min_setup_stop_ns
= t
->scl_rise_ns
+ spec
->min_setup_stop_ns
;
847 stp_sto_cfg
= DIV_ROUND_UP(clk_rate_khz
* min_setup_stop_ns
848 - 1000000, 8 * 1000000 * (t_calc
->div_high
));
850 t_calc
->tuning
= REG_CON_SDA_CFG(--sda_update_cfg
) |
851 REG_CON_STA_CFG(--stp_sta_cfg
) |
852 REG_CON_STO_CFG(--stp_sto_cfg
);
857 /* Maximum divider supported by hw is 0xffff */
858 if (t_calc
->div_low
> 0xffff) {
859 t_calc
->div_low
= 0xffff;
863 if (t_calc
->div_high
> 0xffff) {
864 t_calc
->div_high
= 0xffff;
871 static void rk3x_i2c_adapt_div(struct rk3x_i2c
*i2c
, unsigned long clk_rate
)
873 struct i2c_timings
*t
= &i2c
->t
;
874 struct rk3x_i2c_calced_timings calc
;
875 u64 t_low_ns
, t_high_ns
;
880 ret
= i2c
->soc_data
->calc_timings(clk_rate
, t
, &calc
);
881 WARN_ONCE(ret
!= 0, "Could not reach SCL freq %u", t
->bus_freq_hz
);
883 clk_enable(i2c
->pclk
);
885 spin_lock_irqsave(&i2c
->lock
, flags
);
886 val
= i2c_readl(i2c
, REG_CON
);
887 val
&= ~REG_CON_TUNING_MASK
;
889 i2c_writel(i2c
, val
, REG_CON
);
890 i2c_writel(i2c
, (calc
.div_high
<< 16) | (calc
.div_low
& 0xffff),
892 spin_unlock_irqrestore(&i2c
->lock
, flags
);
894 clk_disable(i2c
->pclk
);
896 t_low_ns
= div_u64(((u64
)calc
.div_low
+ 1) * 8 * 1000000000, clk_rate
);
897 t_high_ns
= div_u64(((u64
)calc
.div_high
+ 1) * 8 * 1000000000,
900 "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
902 1000000000 / t
->bus_freq_hz
,
903 t_low_ns
, t_high_ns
);
907 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
908 * @nb: Pointer to notifier block
909 * @event: Notification reason
910 * @data: Pointer to notification data object
912 * The callback checks whether a valid bus frequency can be generated after the
913 * change. If so, the change is acknowledged, otherwise the change is aborted.
914 * New dividers are written to the HW in the pre- or post change notification
915 * depending on the scaling direction.
917 * Code adapted from i2c-cadence.c.
919 * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
920 * to acknowledge the change, NOTIFY_DONE if the notification is
921 * considered irrelevant.
923 static int rk3x_i2c_clk_notifier_cb(struct notifier_block
*nb
, unsigned long
926 struct clk_notifier_data
*ndata
= data
;
927 struct rk3x_i2c
*i2c
= container_of(nb
, struct rk3x_i2c
, clk_rate_nb
);
928 struct rk3x_i2c_calced_timings calc
;
931 case PRE_RATE_CHANGE
:
933 * Try the calculation (but don't store the result) ahead of
934 * time to see if we need to block the clock change. Timings
935 * shouldn't actually take effect until rk3x_i2c_adapt_div().
937 if (i2c
->soc_data
->calc_timings(ndata
->new_rate
, &i2c
->t
,
942 if (ndata
->new_rate
> ndata
->old_rate
)
943 rk3x_i2c_adapt_div(i2c
, ndata
->new_rate
);
946 case POST_RATE_CHANGE
:
948 if (ndata
->new_rate
< ndata
->old_rate
)
949 rk3x_i2c_adapt_div(i2c
, ndata
->new_rate
);
951 case ABORT_RATE_CHANGE
:
953 if (ndata
->new_rate
> ndata
->old_rate
)
954 rk3x_i2c_adapt_div(i2c
, ndata
->old_rate
);
962 * Setup I2C registers for an I2C operation specified by msgs, num.
964 * Must be called with i2c->lock held.
966 * @msgs: I2C msgs to process
967 * @num: Number of msgs
969 * returns: Number of I2C msgs processed or negative in case of error
971 static int rk3x_i2c_setup(struct rk3x_i2c
*i2c
, struct i2c_msg
*msgs
, int num
)
973 u32 addr
= (msgs
[0].addr
& 0x7f) << 1;
977 * The I2C adapter can issue a small (len < 4) write packet before
978 * reading. This speeds up SMBus-style register reads.
979 * The MRXADDR/MRXRADDR hold the slave address and the slave register
980 * address in this case.
983 if (num
>= 2 && msgs
[0].len
< 4 &&
984 !(msgs
[0].flags
& I2C_M_RD
) && (msgs
[1].flags
& I2C_M_RD
)) {
988 dev_dbg(i2c
->dev
, "Combined write/read from addr 0x%x\n",
991 /* Fill MRXRADDR with the register address(es) */
992 for (i
= 0; i
< msgs
[0].len
; ++i
) {
993 reg_addr
|= msgs
[0].buf
[i
] << (i
* 8);
994 reg_addr
|= REG_MRXADDR_VALID(i
);
997 /* msgs[0] is handled by hw. */
1000 i2c
->mode
= REG_CON_MOD_REGISTER_TX
;
1002 i2c_writel(i2c
, addr
| REG_MRXADDR_VALID(0), REG_MRXADDR
);
1003 i2c_writel(i2c
, reg_addr
, REG_MRXRADDR
);
1008 * We'll have to do it the boring way and process the msgs
1012 if (msgs
[0].flags
& I2C_M_RD
) {
1013 addr
|= 1; /* set read bit */
1016 * We have to transmit the slave addr first. Use
1017 * MOD_REGISTER_TX for that purpose.
1019 i2c
->mode
= REG_CON_MOD_REGISTER_TX
;
1020 i2c_writel(i2c
, addr
| REG_MRXADDR_VALID(0),
1022 i2c_writel(i2c
, 0, REG_MRXRADDR
);
1024 i2c
->mode
= REG_CON_MOD_TX
;
1027 i2c
->msg
= &msgs
[0];
1032 i2c
->addr
= msgs
[0].addr
;
1034 i2c
->state
= STATE_START
;
1038 rk3x_i2c_clean_ipd(i2c
);
1043 static int rk3x_i2c_xfer(struct i2c_adapter
*adap
,
1044 struct i2c_msg
*msgs
, int num
)
1046 struct rk3x_i2c
*i2c
= (struct rk3x_i2c
*)adap
->algo_data
;
1047 unsigned long timeout
, flags
;
1052 spin_lock_irqsave(&i2c
->lock
, flags
);
1054 clk_enable(i2c
->clk
);
1055 clk_enable(i2c
->pclk
);
1057 i2c
->is_last_msg
= false;
1060 * Process msgs. We can handle more than one message at once (see
1061 * rk3x_i2c_setup()).
1063 for (i
= 0; i
< num
; i
+= ret
) {
1064 ret
= rk3x_i2c_setup(i2c
, msgs
+ i
, num
- i
);
1067 dev_err(i2c
->dev
, "rk3x_i2c_setup() failed\n");
1072 i2c
->is_last_msg
= true;
1074 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1076 rk3x_i2c_start(i2c
);
1078 timeout
= wait_event_timeout(i2c
->wait
, !i2c
->busy
,
1079 msecs_to_jiffies(WAIT_TIMEOUT
));
1081 spin_lock_irqsave(&i2c
->lock
, flags
);
1084 dev_err(i2c
->dev
, "timeout, ipd: 0x%02x, state: %d\n",
1085 i2c_readl(i2c
, REG_IPD
), i2c
->state
);
1087 /* Force a STOP condition without interrupt */
1088 i2c_writel(i2c
, 0, REG_IEN
);
1089 val
= i2c_readl(i2c
, REG_CON
) & REG_CON_TUNING_MASK
;
1090 val
|= REG_CON_EN
| REG_CON_STOP
;
1091 i2c_writel(i2c
, val
, REG_CON
);
1093 i2c
->state
= STATE_IDLE
;
1105 clk_disable(i2c
->pclk
);
1106 clk_disable(i2c
->clk
);
1108 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1110 return ret
< 0 ? ret
: num
;
1113 static __maybe_unused
int rk3x_i2c_resume(struct device
*dev
)
1115 struct rk3x_i2c
*i2c
= dev_get_drvdata(dev
);
1117 rk3x_i2c_adapt_div(i2c
, clk_get_rate(i2c
->clk
));
1122 static u32
rk3x_i2c_func(struct i2c_adapter
*adap
)
1124 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
| I2C_FUNC_PROTOCOL_MANGLING
;
1127 static const struct i2c_algorithm rk3x_i2c_algorithm
= {
1128 .master_xfer
= rk3x_i2c_xfer
,
1129 .functionality
= rk3x_i2c_func
,
1132 static const struct rk3x_i2c_soc_data rv1108_soc_data
= {
1134 .calc_timings
= rk3x_i2c_v1_calc_timings
,
1137 static const struct rk3x_i2c_soc_data rk3066_soc_data
= {
1138 .grf_offset
= 0x154,
1139 .calc_timings
= rk3x_i2c_v0_calc_timings
,
1142 static const struct rk3x_i2c_soc_data rk3188_soc_data
= {
1143 .grf_offset
= 0x0a4,
1144 .calc_timings
= rk3x_i2c_v0_calc_timings
,
1147 static const struct rk3x_i2c_soc_data rk3228_soc_data
= {
1149 .calc_timings
= rk3x_i2c_v0_calc_timings
,
1152 static const struct rk3x_i2c_soc_data rk3288_soc_data
= {
1154 .calc_timings
= rk3x_i2c_v0_calc_timings
,
1157 static const struct rk3x_i2c_soc_data rk3399_soc_data
= {
1159 .calc_timings
= rk3x_i2c_v1_calc_timings
,
1162 static const struct of_device_id rk3x_i2c_match
[] = {
1164 .compatible
= "rockchip,rv1108-i2c",
1165 .data
= &rv1108_soc_data
1168 .compatible
= "rockchip,rk3066-i2c",
1169 .data
= &rk3066_soc_data
1172 .compatible
= "rockchip,rk3188-i2c",
1173 .data
= &rk3188_soc_data
1176 .compatible
= "rockchip,rk3228-i2c",
1177 .data
= &rk3228_soc_data
1180 .compatible
= "rockchip,rk3288-i2c",
1181 .data
= &rk3288_soc_data
1184 .compatible
= "rockchip,rk3399-i2c",
1185 .data
= &rk3399_soc_data
1189 MODULE_DEVICE_TABLE(of
, rk3x_i2c_match
);
1191 static int rk3x_i2c_probe(struct platform_device
*pdev
)
1193 struct device_node
*np
= pdev
->dev
.of_node
;
1194 const struct of_device_id
*match
;
1195 struct rk3x_i2c
*i2c
;
1196 struct resource
*mem
;
1201 unsigned long clk_rate
;
1203 i2c
= devm_kzalloc(&pdev
->dev
, sizeof(struct rk3x_i2c
), GFP_KERNEL
);
1207 match
= of_match_node(rk3x_i2c_match
, np
);
1208 i2c
->soc_data
= match
->data
;
1210 /* use common interface to get I2C timing properties */
1211 i2c_parse_fw_timings(&pdev
->dev
, &i2c
->t
, true);
1213 strlcpy(i2c
->adap
.name
, "rk3x-i2c", sizeof(i2c
->adap
.name
));
1214 i2c
->adap
.owner
= THIS_MODULE
;
1215 i2c
->adap
.algo
= &rk3x_i2c_algorithm
;
1216 i2c
->adap
.retries
= 3;
1217 i2c
->adap
.dev
.of_node
= np
;
1218 i2c
->adap
.algo_data
= i2c
;
1219 i2c
->adap
.dev
.parent
= &pdev
->dev
;
1221 i2c
->dev
= &pdev
->dev
;
1223 spin_lock_init(&i2c
->lock
);
1224 init_waitqueue_head(&i2c
->wait
);
1226 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1227 i2c
->regs
= devm_ioremap_resource(&pdev
->dev
, mem
);
1228 if (IS_ERR(i2c
->regs
))
1229 return PTR_ERR(i2c
->regs
);
1231 /* Try to set the I2C adapter number from dt */
1232 bus_nr
= of_alias_get_id(np
, "i2c");
1235 * Switch to new interface if the SoC also offers the old one.
1236 * The control bit is located in the GRF register space.
1238 if (i2c
->soc_data
->grf_offset
>= 0) {
1241 grf
= syscon_regmap_lookup_by_phandle(np
, "rockchip,grf");
1244 "rk3x-i2c needs 'rockchip,grf' property\n");
1245 return PTR_ERR(grf
);
1249 dev_err(&pdev
->dev
, "rk3x-i2c needs i2cX alias");
1253 /* 27+i: write mask, 11+i: value */
1254 value
= BIT(27 + bus_nr
) | BIT(11 + bus_nr
);
1256 ret
= regmap_write(grf
, i2c
->soc_data
->grf_offset
, value
);
1258 dev_err(i2c
->dev
, "Could not write to GRF: %d\n", ret
);
1264 irq
= platform_get_irq(pdev
, 0);
1266 dev_err(&pdev
->dev
, "cannot find rk3x IRQ\n");
1270 ret
= devm_request_irq(&pdev
->dev
, irq
, rk3x_i2c_irq
,
1271 0, dev_name(&pdev
->dev
), i2c
);
1273 dev_err(&pdev
->dev
, "cannot request IRQ\n");
1277 platform_set_drvdata(pdev
, i2c
);
1279 if (i2c
->soc_data
->calc_timings
== rk3x_i2c_v0_calc_timings
) {
1280 /* Only one clock to use for bus clock and peripheral clock */
1281 i2c
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1282 i2c
->pclk
= i2c
->clk
;
1284 i2c
->clk
= devm_clk_get(&pdev
->dev
, "i2c");
1285 i2c
->pclk
= devm_clk_get(&pdev
->dev
, "pclk");
1288 if (IS_ERR(i2c
->clk
)) {
1289 ret
= PTR_ERR(i2c
->clk
);
1290 if (ret
!= -EPROBE_DEFER
)
1291 dev_err(&pdev
->dev
, "Can't get bus clk: %d\n", ret
);
1294 if (IS_ERR(i2c
->pclk
)) {
1295 ret
= PTR_ERR(i2c
->pclk
);
1296 if (ret
!= -EPROBE_DEFER
)
1297 dev_err(&pdev
->dev
, "Can't get periph clk: %d\n", ret
);
1301 ret
= clk_prepare(i2c
->clk
);
1303 dev_err(&pdev
->dev
, "Can't prepare bus clk: %d\n", ret
);
1306 ret
= clk_prepare(i2c
->pclk
);
1308 dev_err(&pdev
->dev
, "Can't prepare periph clock: %d\n", ret
);
1312 i2c
->clk_rate_nb
.notifier_call
= rk3x_i2c_clk_notifier_cb
;
1313 ret
= clk_notifier_register(i2c
->clk
, &i2c
->clk_rate_nb
);
1315 dev_err(&pdev
->dev
, "Unable to register clock notifier\n");
1319 clk_rate
= clk_get_rate(i2c
->clk
);
1320 rk3x_i2c_adapt_div(i2c
, clk_rate
);
1322 ret
= i2c_add_adapter(&i2c
->adap
);
1324 goto err_clk_notifier
;
1329 clk_notifier_unregister(i2c
->clk
, &i2c
->clk_rate_nb
);
1331 clk_unprepare(i2c
->pclk
);
1333 clk_unprepare(i2c
->clk
);
1337 static int rk3x_i2c_remove(struct platform_device
*pdev
)
1339 struct rk3x_i2c
*i2c
= platform_get_drvdata(pdev
);
1341 i2c_del_adapter(&i2c
->adap
);
1343 clk_notifier_unregister(i2c
->clk
, &i2c
->clk_rate_nb
);
1344 clk_unprepare(i2c
->pclk
);
1345 clk_unprepare(i2c
->clk
);
1350 static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops
, NULL
, rk3x_i2c_resume
);
1352 static struct platform_driver rk3x_i2c_driver
= {
1353 .probe
= rk3x_i2c_probe
,
1354 .remove
= rk3x_i2c_remove
,
1357 .of_match_table
= rk3x_i2c_match
,
1358 .pm
= &rk3x_i2c_pm_ops
,
1362 module_platform_driver(rk3x_i2c_driver
);
1364 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1365 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1366 MODULE_LICENSE("GPL v2");