treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / iio / accel / sca3000.c
blob66d768d971e1e6212219b219673399f9fe4eded0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
5 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
7 * See industrialio/accels/sca3000.h for comments.
8 */
10 #include <linux/interrupt.h>
11 #include <linux/fs.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/spi/spi.h>
16 #include <linux/sysfs.h>
17 #include <linux/module.h>
18 #include <linux/uaccess.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/kfifo_buf.h>
25 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
26 #define SCA3000_READ_REG(a) ((a) << 2)
28 #define SCA3000_REG_REVID_ADDR 0x00
29 #define SCA3000_REG_REVID_MAJOR_MASK GENMASK(8, 4)
30 #define SCA3000_REG_REVID_MINOR_MASK GENMASK(3, 0)
32 #define SCA3000_REG_STATUS_ADDR 0x02
33 #define SCA3000_LOCKED BIT(5)
34 #define SCA3000_EEPROM_CS_ERROR BIT(1)
35 #define SCA3000_SPI_FRAME_ERROR BIT(0)
37 /* All reads done using register decrement so no need to directly access LSBs */
38 #define SCA3000_REG_X_MSB_ADDR 0x05
39 #define SCA3000_REG_Y_MSB_ADDR 0x07
40 #define SCA3000_REG_Z_MSB_ADDR 0x09
42 #define SCA3000_REG_RING_OUT_ADDR 0x0f
44 /* Temp read untested - the e05 doesn't have the sensor */
45 #define SCA3000_REG_TEMP_MSB_ADDR 0x13
47 #define SCA3000_REG_MODE_ADDR 0x14
48 #define SCA3000_MODE_PROT_MASK 0x28
49 #define SCA3000_REG_MODE_RING_BUF_ENABLE BIT(7)
50 #define SCA3000_REG_MODE_RING_BUF_8BIT BIT(6)
53 * Free fall detection triggers an interrupt if the acceleration
54 * is below a threshold for equivalent of 25cm drop
56 #define SCA3000_REG_MODE_FREE_FALL_DETECT BIT(4)
57 #define SCA3000_REG_MODE_MEAS_MODE_NORMAL 0x00
58 #define SCA3000_REG_MODE_MEAS_MODE_OP_1 0x01
59 #define SCA3000_REG_MODE_MEAS_MODE_OP_2 0x02
62 * In motion detection mode the accelerations are band pass filtered
63 * (approx 1 - 25Hz) and then a programmable threshold used to trigger
64 * and interrupt.
66 #define SCA3000_REG_MODE_MEAS_MODE_MOT_DET 0x03
67 #define SCA3000_REG_MODE_MODE_MASK 0x03
69 #define SCA3000_REG_BUF_COUNT_ADDR 0x15
71 #define SCA3000_REG_INT_STATUS_ADDR 0x16
72 #define SCA3000_REG_INT_STATUS_THREE_QUARTERS BIT(7)
73 #define SCA3000_REG_INT_STATUS_HALF BIT(6)
75 #define SCA3000_INT_STATUS_FREE_FALL BIT(3)
76 #define SCA3000_INT_STATUS_Y_TRIGGER BIT(2)
77 #define SCA3000_INT_STATUS_X_TRIGGER BIT(1)
78 #define SCA3000_INT_STATUS_Z_TRIGGER BIT(0)
80 /* Used to allow access to multiplexed registers */
81 #define SCA3000_REG_CTRL_SEL_ADDR 0x18
82 /* Only available for SCA3000-D03 and SCA3000-D01 */
83 #define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01
84 #define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02
85 #define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03
86 #define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04
87 #define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05
89 * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
90 * will not function
92 #define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B
94 #define SCA3000_REG_OUT_CTRL_PROT_MASK 0xE0
95 #define SCA3000_REG_OUT_CTRL_BUF_X_EN 0x10
96 #define SCA3000_REG_OUT_CTRL_BUF_Y_EN 0x08
97 #define SCA3000_REG_OUT_CTRL_BUF_Z_EN 0x04
98 #define SCA3000_REG_OUT_CTRL_BUF_DIV_MASK 0x03
99 #define SCA3000_REG_OUT_CTRL_BUF_DIV_4 0x02
100 #define SCA3000_REG_OUT_CTRL_BUF_DIV_2 0x01
104 * Control which motion detector interrupts are on.
105 * For now only OR combinations are supported.
107 #define SCA3000_MD_CTRL_PROT_MASK 0xC0
108 #define SCA3000_MD_CTRL_OR_Y BIT(0)
109 #define SCA3000_MD_CTRL_OR_X BIT(1)
110 #define SCA3000_MD_CTRL_OR_Z BIT(2)
111 /* Currently unsupported */
112 #define SCA3000_MD_CTRL_AND_Y BIT(3)
113 #define SCA3000_MD_CTRL_AND_X BIT(4)
114 #define SCA3000_MD_CTRL_AND_Z BIT(5)
117 * Some control registers of complex access methods requiring this register to
118 * be used to remove a lock.
120 #define SCA3000_REG_UNLOCK_ADDR 0x1e
122 #define SCA3000_REG_INT_MASK_ADDR 0x21
123 #define SCA3000_REG_INT_MASK_PROT_MASK 0x1C
125 #define SCA3000_REG_INT_MASK_RING_THREE_QUARTER BIT(7)
126 #define SCA3000_REG_INT_MASK_RING_HALF BIT(6)
128 #define SCA3000_REG_INT_MASK_ALL_INTS 0x02
129 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH 0x01
130 #define SCA3000_REG_INT_MASK_ACTIVE_LOW 0x00
131 /* Values of multiplexed registers (write to ctrl_data after select) */
132 #define SCA3000_REG_CTRL_DATA_ADDR 0x22
135 * Measurement modes available on some sca3000 series chips. Code assumes others
136 * may become available in the future.
138 * Bypass - Bypass the low-pass filter in the signal channel so as to increase
139 * signal bandwidth.
141 * Narrow - Narrow low-pass filtering of the signal channel and half output
142 * data rate by decimation.
144 * Wide - Widen low-pass filtering of signal channel to increase bandwidth
146 #define SCA3000_OP_MODE_BYPASS 0x01
147 #define SCA3000_OP_MODE_NARROW 0x02
148 #define SCA3000_OP_MODE_WIDE 0x04
149 #define SCA3000_MAX_TX 6
150 #define SCA3000_MAX_RX 2
153 * struct sca3000_state - device instance state information
154 * @us: the associated spi device
155 * @info: chip variant information
156 * @last_timestamp: the timestamp of the last event
157 * @mo_det_use_count: reference counter for the motion detection unit
158 * @lock: lock used to protect elements of sca3000_state
159 * and the underlying device state.
160 * @tx: dma-able transmit buffer
161 * @rx: dma-able receive buffer
163 struct sca3000_state {
164 struct spi_device *us;
165 const struct sca3000_chip_info *info;
166 s64 last_timestamp;
167 int mo_det_use_count;
168 struct mutex lock;
169 /* Can these share a cacheline ? */
170 u8 rx[384] ____cacheline_aligned;
171 u8 tx[6] ____cacheline_aligned;
175 * struct sca3000_chip_info - model dependent parameters
176 * @scale: scale * 10^-6
177 * @temp_output: some devices have temperature sensors.
178 * @measurement_mode_freq: normal mode sampling frequency
179 * @measurement_mode_3db_freq: 3db cutoff frequency of the low pass filter for
180 * the normal measurement mode.
181 * @option_mode_1: first optional mode. Not all models have one
182 * @option_mode_1_freq: option mode 1 sampling frequency
183 * @option_mode_1_3db_freq: 3db cutoff frequency of the low pass filter for
184 * the first option mode.
185 * @option_mode_2: second optional mode. Not all chips have one
186 * @option_mode_2_freq: option mode 2 sampling frequency
187 * @option_mode_2_3db_freq: 3db cutoff frequency of the low pass filter for
188 * the second option mode.
189 * @mod_det_mult_xz: Bit wise multipliers to calculate the threshold
190 * for motion detection in the x and z axis.
191 * @mod_det_mult_y: Bit wise multipliers to calculate the threshold
192 * for motion detection in the y axis.
194 * This structure is used to hold information about the functionality of a given
195 * sca3000 variant.
197 struct sca3000_chip_info {
198 unsigned int scale;
199 bool temp_output;
200 int measurement_mode_freq;
201 int measurement_mode_3db_freq;
202 int option_mode_1;
203 int option_mode_1_freq;
204 int option_mode_1_3db_freq;
205 int option_mode_2;
206 int option_mode_2_freq;
207 int option_mode_2_3db_freq;
208 int mot_det_mult_xz[6];
209 int mot_det_mult_y[7];
212 enum sca3000_variant {
213 d01,
214 e02,
215 e04,
216 e05,
220 * Note where option modes are not defined, the chip simply does not
221 * support any.
222 * Other chips in the sca3000 series use i2c and are not included here.
224 * Some of these devices are only listed in the family data sheet and
225 * do not actually appear to be available.
227 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
228 [d01] = {
229 .scale = 7357,
230 .temp_output = true,
231 .measurement_mode_freq = 250,
232 .measurement_mode_3db_freq = 45,
233 .option_mode_1 = SCA3000_OP_MODE_BYPASS,
234 .option_mode_1_freq = 250,
235 .option_mode_1_3db_freq = 70,
236 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
237 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
239 [e02] = {
240 .scale = 9810,
241 .measurement_mode_freq = 125,
242 .measurement_mode_3db_freq = 40,
243 .option_mode_1 = SCA3000_OP_MODE_NARROW,
244 .option_mode_1_freq = 63,
245 .option_mode_1_3db_freq = 11,
246 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
247 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
249 [e04] = {
250 .scale = 19620,
251 .measurement_mode_freq = 100,
252 .measurement_mode_3db_freq = 38,
253 .option_mode_1 = SCA3000_OP_MODE_NARROW,
254 .option_mode_1_freq = 50,
255 .option_mode_1_3db_freq = 9,
256 .option_mode_2 = SCA3000_OP_MODE_WIDE,
257 .option_mode_2_freq = 400,
258 .option_mode_2_3db_freq = 70,
259 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
260 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
262 [e05] = {
263 .scale = 61313,
264 .measurement_mode_freq = 200,
265 .measurement_mode_3db_freq = 60,
266 .option_mode_1 = SCA3000_OP_MODE_NARROW,
267 .option_mode_1_freq = 50,
268 .option_mode_1_3db_freq = 9,
269 .option_mode_2 = SCA3000_OP_MODE_WIDE,
270 .option_mode_2_freq = 400,
271 .option_mode_2_3db_freq = 75,
272 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
273 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
277 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
279 st->tx[0] = SCA3000_WRITE_REG(address);
280 st->tx[1] = val;
281 return spi_write(st->us, st->tx, 2);
284 static int sca3000_read_data_short(struct sca3000_state *st,
285 u8 reg_address_high,
286 int len)
288 struct spi_transfer xfer[2] = {
290 .len = 1,
291 .tx_buf = st->tx,
292 }, {
293 .len = len,
294 .rx_buf = st->rx,
297 st->tx[0] = SCA3000_READ_REG(reg_address_high);
299 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
303 * sca3000_reg_lock_on() - test if the ctrl register lock is on
304 * @st: Driver specific device instance data.
306 * Lock must be held.
308 static int sca3000_reg_lock_on(struct sca3000_state *st)
310 int ret;
312 ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
313 if (ret < 0)
314 return ret;
316 return !(st->rx[0] & SCA3000_LOCKED);
320 * __sca3000_unlock_reg_lock() - unlock the control registers
321 * @st: Driver specific device instance data.
323 * Note the device does not appear to support doing this in a single transfer.
324 * This should only ever be used as part of ctrl reg read.
325 * Lock must be held before calling this
327 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
329 struct spi_transfer xfer[3] = {
331 .len = 2,
332 .cs_change = 1,
333 .tx_buf = st->tx,
334 }, {
335 .len = 2,
336 .cs_change = 1,
337 .tx_buf = st->tx + 2,
338 }, {
339 .len = 2,
340 .tx_buf = st->tx + 4,
343 st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
344 st->tx[1] = 0x00;
345 st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
346 st->tx[3] = 0x50;
347 st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
348 st->tx[5] = 0xA0;
350 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
354 * sca3000_write_ctrl_reg() write to a lock protect ctrl register
355 * @st: Driver specific device instance data.
356 * @sel: selects which registers we wish to write to
357 * @val: the value to be written
359 * Certain control registers are protected against overwriting by the lock
360 * register and use a shared write address. This function allows writing of
361 * these registers.
362 * Lock must be held.
364 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
365 u8 sel,
366 uint8_t val)
368 int ret;
370 ret = sca3000_reg_lock_on(st);
371 if (ret < 0)
372 goto error_ret;
373 if (ret) {
374 ret = __sca3000_unlock_reg_lock(st);
375 if (ret)
376 goto error_ret;
379 /* Set the control select register */
380 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
381 if (ret)
382 goto error_ret;
384 /* Write the actual value into the register */
385 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
387 error_ret:
388 return ret;
392 * sca3000_read_ctrl_reg() read from lock protected control register.
393 * @st: Driver specific device instance data.
394 * @ctrl_reg: Which ctrl register do we want to read.
396 * Lock must be held.
398 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
399 u8 ctrl_reg)
401 int ret;
403 ret = sca3000_reg_lock_on(st);
404 if (ret < 0)
405 goto error_ret;
406 if (ret) {
407 ret = __sca3000_unlock_reg_lock(st);
408 if (ret)
409 goto error_ret;
411 /* Set the control select register */
412 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
413 if (ret)
414 goto error_ret;
415 ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
416 if (ret)
417 goto error_ret;
418 return st->rx[0];
419 error_ret:
420 return ret;
424 * sca3000_show_rev() - sysfs interface to read the chip revision number
425 * @indio_dev: Device instance specific generic IIO data.
426 * Driver specific device instance data can be obtained via
427 * via iio_priv(indio_dev)
429 static int sca3000_print_rev(struct iio_dev *indio_dev)
431 int ret;
432 struct sca3000_state *st = iio_priv(indio_dev);
434 mutex_lock(&st->lock);
435 ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
436 if (ret < 0)
437 goto error_ret;
438 dev_info(&indio_dev->dev,
439 "sca3000 revision major=%lu, minor=%lu\n",
440 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
441 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
442 error_ret:
443 mutex_unlock(&st->lock);
445 return ret;
448 static ssize_t
449 sca3000_show_available_3db_freqs(struct device *dev,
450 struct device_attribute *attr,
451 char *buf)
453 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
454 struct sca3000_state *st = iio_priv(indio_dev);
455 int len;
457 len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
458 if (st->info->option_mode_1)
459 len += sprintf(buf + len, " %d",
460 st->info->option_mode_1_3db_freq);
461 if (st->info->option_mode_2)
462 len += sprintf(buf + len, " %d",
463 st->info->option_mode_2_3db_freq);
464 len += sprintf(buf + len, "\n");
466 return len;
469 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
470 S_IRUGO, sca3000_show_available_3db_freqs,
471 NULL, 0);
473 static const struct iio_event_spec sca3000_event = {
474 .type = IIO_EV_TYPE_MAG,
475 .dir = IIO_EV_DIR_RISING,
476 .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
480 * Note the hack in the number of bits to pretend we have 2 more than
481 * we do in the fifo.
483 #define SCA3000_CHAN(index, mod) \
485 .type = IIO_ACCEL, \
486 .modified = 1, \
487 .channel2 = mod, \
488 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
489 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
490 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
491 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
492 .address = index, \
493 .scan_index = index, \
494 .scan_type = { \
495 .sign = 's', \
496 .realbits = 13, \
497 .storagebits = 16, \
498 .shift = 3, \
499 .endianness = IIO_BE, \
500 }, \
501 .event_spec = &sca3000_event, \
502 .num_event_specs = 1, \
505 static const struct iio_event_spec sca3000_freefall_event_spec = {
506 .type = IIO_EV_TYPE_MAG,
507 .dir = IIO_EV_DIR_FALLING,
508 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
509 BIT(IIO_EV_INFO_PERIOD),
512 static const struct iio_chan_spec sca3000_channels[] = {
513 SCA3000_CHAN(0, IIO_MOD_X),
514 SCA3000_CHAN(1, IIO_MOD_Y),
515 SCA3000_CHAN(2, IIO_MOD_Z),
517 .type = IIO_ACCEL,
518 .modified = 1,
519 .channel2 = IIO_MOD_X_AND_Y_AND_Z,
520 .scan_index = -1, /* Fake channel */
521 .event_spec = &sca3000_freefall_event_spec,
522 .num_event_specs = 1,
526 static const struct iio_chan_spec sca3000_channels_with_temp[] = {
527 SCA3000_CHAN(0, IIO_MOD_X),
528 SCA3000_CHAN(1, IIO_MOD_Y),
529 SCA3000_CHAN(2, IIO_MOD_Z),
531 .type = IIO_TEMP,
532 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
533 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
534 BIT(IIO_CHAN_INFO_OFFSET),
535 /* No buffer support */
536 .scan_index = -1,
539 .type = IIO_ACCEL,
540 .modified = 1,
541 .channel2 = IIO_MOD_X_AND_Y_AND_Z,
542 .scan_index = -1, /* Fake channel */
543 .event_spec = &sca3000_freefall_event_spec,
544 .num_event_specs = 1,
548 static u8 sca3000_addresses[3][3] = {
549 [0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
550 SCA3000_MD_CTRL_OR_X},
551 [1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
552 SCA3000_MD_CTRL_OR_Y},
553 [2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
554 SCA3000_MD_CTRL_OR_Z},
558 * __sca3000_get_base_freq() - obtain mode specific base frequency
559 * @st: Private driver specific device instance specific state.
560 * @info: chip type specific information.
561 * @base_freq: Base frequency for the current measurement mode.
563 * lock must be held
565 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
566 const struct sca3000_chip_info *info,
567 int *base_freq)
569 int ret;
571 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
572 if (ret)
573 goto error_ret;
574 switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
575 case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
576 *base_freq = info->measurement_mode_freq;
577 break;
578 case SCA3000_REG_MODE_MEAS_MODE_OP_1:
579 *base_freq = info->option_mode_1_freq;
580 break;
581 case SCA3000_REG_MODE_MEAS_MODE_OP_2:
582 *base_freq = info->option_mode_2_freq;
583 break;
584 default:
585 ret = -EINVAL;
587 error_ret:
588 return ret;
592 * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
593 * @st: Private driver specific device instance specific state.
594 * @val: The frequency read back.
596 * lock must be held
598 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
600 int ret;
602 ret = __sca3000_get_base_freq(st, st->info, val);
603 if (ret)
604 return ret;
606 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
607 if (ret < 0)
608 return ret;
610 if (*val > 0) {
611 ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
612 switch (ret) {
613 case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
614 *val /= 2;
615 break;
616 case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
617 *val /= 4;
618 break;
622 return 0;
626 * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
627 * @st: Private driver specific device instance specific state.
628 * @val: The frequency desired.
630 * lock must be held
632 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
634 int ret, base_freq, ctrlval;
636 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
637 if (ret)
638 return ret;
640 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
641 if (ret < 0)
642 return ret;
644 ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
646 if (val == base_freq / 2)
647 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
648 if (val == base_freq / 4)
649 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
650 else if (val != base_freq)
651 return -EINVAL;
653 return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
654 ctrlval);
657 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
659 int ret;
661 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
662 if (ret)
663 return ret;
665 /* mask bottom 2 bits - only ones that are relevant */
666 st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
667 switch (st->rx[0]) {
668 case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
669 *val = st->info->measurement_mode_3db_freq;
670 return IIO_VAL_INT;
671 case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
672 return -EBUSY;
673 case SCA3000_REG_MODE_MEAS_MODE_OP_1:
674 *val = st->info->option_mode_1_3db_freq;
675 return IIO_VAL_INT;
676 case SCA3000_REG_MODE_MEAS_MODE_OP_2:
677 *val = st->info->option_mode_2_3db_freq;
678 return IIO_VAL_INT;
679 default:
680 return -EINVAL;
684 static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
686 int ret;
687 int mode;
689 if (val == st->info->measurement_mode_3db_freq)
690 mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
691 else if (st->info->option_mode_1 &&
692 (val == st->info->option_mode_1_3db_freq))
693 mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
694 else if (st->info->option_mode_2 &&
695 (val == st->info->option_mode_2_3db_freq))
696 mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
697 else
698 return -EINVAL;
699 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
700 if (ret)
701 return ret;
703 st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
704 st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
706 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
709 static int sca3000_read_raw(struct iio_dev *indio_dev,
710 struct iio_chan_spec const *chan,
711 int *val,
712 int *val2,
713 long mask)
715 struct sca3000_state *st = iio_priv(indio_dev);
716 int ret;
717 u8 address;
719 switch (mask) {
720 case IIO_CHAN_INFO_RAW:
721 mutex_lock(&st->lock);
722 if (chan->type == IIO_ACCEL) {
723 if (st->mo_det_use_count) {
724 mutex_unlock(&st->lock);
725 return -EBUSY;
727 address = sca3000_addresses[chan->address][0];
728 ret = sca3000_read_data_short(st, address, 2);
729 if (ret < 0) {
730 mutex_unlock(&st->lock);
731 return ret;
733 *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
734 *val = ((*val) << (sizeof(*val) * 8 - 13)) >>
735 (sizeof(*val) * 8 - 13);
736 } else {
737 /* get the temperature when available */
738 ret = sca3000_read_data_short(st,
739 SCA3000_REG_TEMP_MSB_ADDR,
741 if (ret < 0) {
742 mutex_unlock(&st->lock);
743 return ret;
745 *val = ((st->rx[0] & 0x3F) << 3) |
746 ((st->rx[1] & 0xE0) >> 5);
748 mutex_unlock(&st->lock);
749 return IIO_VAL_INT;
750 case IIO_CHAN_INFO_SCALE:
751 *val = 0;
752 if (chan->type == IIO_ACCEL)
753 *val2 = st->info->scale;
754 else /* temperature */
755 *val2 = 555556;
756 return IIO_VAL_INT_PLUS_MICRO;
757 case IIO_CHAN_INFO_OFFSET:
758 *val = -214;
759 *val2 = 600000;
760 return IIO_VAL_INT_PLUS_MICRO;
761 case IIO_CHAN_INFO_SAMP_FREQ:
762 mutex_lock(&st->lock);
763 ret = sca3000_read_raw_samp_freq(st, val);
764 mutex_unlock(&st->lock);
765 return ret ? ret : IIO_VAL_INT;
766 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
767 mutex_lock(&st->lock);
768 ret = sca3000_read_3db_freq(st, val);
769 mutex_unlock(&st->lock);
770 return ret;
771 default:
772 return -EINVAL;
776 static int sca3000_write_raw(struct iio_dev *indio_dev,
777 struct iio_chan_spec const *chan,
778 int val, int val2, long mask)
780 struct sca3000_state *st = iio_priv(indio_dev);
781 int ret;
783 switch (mask) {
784 case IIO_CHAN_INFO_SAMP_FREQ:
785 if (val2)
786 return -EINVAL;
787 mutex_lock(&st->lock);
788 ret = sca3000_write_raw_samp_freq(st, val);
789 mutex_unlock(&st->lock);
790 return ret;
791 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
792 if (val2)
793 return -EINVAL;
794 mutex_lock(&st->lock);
795 ret = sca3000_write_3db_freq(st, val);
796 mutex_unlock(&st->lock);
797 return ret;
798 default:
799 return -EINVAL;
802 return ret;
806 * sca3000_read_av_freq() - sysfs function to get available frequencies
807 * @dev: Device structure for this device.
808 * @attr: Description of the attribute.
809 * @buf: Incoming string
811 * The later modes are only relevant to the ring buffer - and depend on current
812 * mode. Note that data sheet gives rather wide tolerances for these so integer
813 * division will give good enough answer and not all chips have them specified
814 * at all.
816 static ssize_t sca3000_read_av_freq(struct device *dev,
817 struct device_attribute *attr,
818 char *buf)
820 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
821 struct sca3000_state *st = iio_priv(indio_dev);
822 int len = 0, ret, val;
824 mutex_lock(&st->lock);
825 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
826 val = st->rx[0];
827 mutex_unlock(&st->lock);
828 if (ret)
829 goto error_ret;
831 switch (val & SCA3000_REG_MODE_MODE_MASK) {
832 case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
833 len += sprintf(buf + len, "%d %d %d\n",
834 st->info->measurement_mode_freq,
835 st->info->measurement_mode_freq / 2,
836 st->info->measurement_mode_freq / 4);
837 break;
838 case SCA3000_REG_MODE_MEAS_MODE_OP_1:
839 len += sprintf(buf + len, "%d %d %d\n",
840 st->info->option_mode_1_freq,
841 st->info->option_mode_1_freq / 2,
842 st->info->option_mode_1_freq / 4);
843 break;
844 case SCA3000_REG_MODE_MEAS_MODE_OP_2:
845 len += sprintf(buf + len, "%d %d %d\n",
846 st->info->option_mode_2_freq,
847 st->info->option_mode_2_freq / 2,
848 st->info->option_mode_2_freq / 4);
849 break;
851 return len;
852 error_ret:
853 return ret;
857 * Should only really be registered if ring buffer support is compiled in.
858 * Does no harm however and doing it right would add a fair bit of complexity
860 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
863 * sca3000_read_event_value() - query of a threshold or period
865 static int sca3000_read_event_value(struct iio_dev *indio_dev,
866 const struct iio_chan_spec *chan,
867 enum iio_event_type type,
868 enum iio_event_direction dir,
869 enum iio_event_info info,
870 int *val, int *val2)
872 struct sca3000_state *st = iio_priv(indio_dev);
873 long ret;
874 int i;
876 switch (info) {
877 case IIO_EV_INFO_VALUE:
878 mutex_lock(&st->lock);
879 ret = sca3000_read_ctrl_reg(st,
880 sca3000_addresses[chan->address][1]);
881 mutex_unlock(&st->lock);
882 if (ret < 0)
883 return ret;
884 *val = 0;
885 if (chan->channel2 == IIO_MOD_Y)
886 for_each_set_bit(i, &ret,
887 ARRAY_SIZE(st->info->mot_det_mult_y))
888 *val += st->info->mot_det_mult_y[i];
889 else
890 for_each_set_bit(i, &ret,
891 ARRAY_SIZE(st->info->mot_det_mult_xz))
892 *val += st->info->mot_det_mult_xz[i];
894 return IIO_VAL_INT;
895 case IIO_EV_INFO_PERIOD:
896 *val = 0;
897 *val2 = 226000;
898 return IIO_VAL_INT_PLUS_MICRO;
899 default:
900 return -EINVAL;
905 * sca3000_write_value() - control of threshold and period
906 * @indio_dev: Device instance specific IIO information.
907 * @chan: Description of the channel for which the event is being
908 * configured.
909 * @type: The type of event being configured, here magnitude rising
910 * as everything else is read only.
911 * @dir: Direction of the event (here rising)
912 * @info: What information about the event are we configuring.
913 * Here the threshold only.
914 * @val: Integer part of the value being written..
915 * @val2: Non integer part of the value being written. Here always 0.
917 static int sca3000_write_event_value(struct iio_dev *indio_dev,
918 const struct iio_chan_spec *chan,
919 enum iio_event_type type,
920 enum iio_event_direction dir,
921 enum iio_event_info info,
922 int val, int val2)
924 struct sca3000_state *st = iio_priv(indio_dev);
925 int ret;
926 int i;
927 u8 nonlinear = 0;
929 if (chan->channel2 == IIO_MOD_Y) {
930 i = ARRAY_SIZE(st->info->mot_det_mult_y);
931 while (i > 0)
932 if (val >= st->info->mot_det_mult_y[--i]) {
933 nonlinear |= (1 << i);
934 val -= st->info->mot_det_mult_y[i];
936 } else {
937 i = ARRAY_SIZE(st->info->mot_det_mult_xz);
938 while (i > 0)
939 if (val >= st->info->mot_det_mult_xz[--i]) {
940 nonlinear |= (1 << i);
941 val -= st->info->mot_det_mult_xz[i];
945 mutex_lock(&st->lock);
946 ret = sca3000_write_ctrl_reg(st,
947 sca3000_addresses[chan->address][1],
948 nonlinear);
949 mutex_unlock(&st->lock);
951 return ret;
954 static struct attribute *sca3000_attributes[] = {
955 &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
956 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
957 NULL,
960 static const struct attribute_group sca3000_attribute_group = {
961 .attrs = sca3000_attributes,
964 static int sca3000_read_data(struct sca3000_state *st,
965 u8 reg_address_high,
966 u8 *rx,
967 int len)
969 int ret;
970 struct spi_transfer xfer[2] = {
972 .len = 1,
973 .tx_buf = st->tx,
974 }, {
975 .len = len,
976 .rx_buf = rx,
980 st->tx[0] = SCA3000_READ_REG(reg_address_high);
981 ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
982 if (ret) {
983 dev_err(get_device(&st->us->dev), "problem reading register");
984 return ret;
987 return 0;
991 * sca3000_ring_int_process() - ring specific interrupt handling.
992 * @val: Value of the interrupt status register.
993 * @indio_dev: Device instance specific IIO device structure.
995 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
997 struct sca3000_state *st = iio_priv(indio_dev);
998 int ret, i, num_available;
1000 mutex_lock(&st->lock);
1002 if (val & SCA3000_REG_INT_STATUS_HALF) {
1003 ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1005 if (ret)
1006 goto error_ret;
1007 num_available = st->rx[0];
1009 * num_available is the total number of samples available
1010 * i.e. number of time points * number of channels.
1012 ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1013 num_available * 2);
1014 if (ret)
1015 goto error_ret;
1016 for (i = 0; i < num_available / 3; i++) {
1018 * Dirty hack to cover for 11 bit in fifo, 13 bit
1019 * direct reading.
1021 * In theory the bottom two bits are undefined.
1022 * In reality they appear to always be 0.
1024 iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1027 error_ret:
1028 mutex_unlock(&st->lock);
1032 * sca3000_event_handler() - handling ring and non ring events
1033 * @irq: The irq being handled.
1034 * @private: struct iio_device pointer for the device.
1036 * Ring related interrupt handler. Depending on event, push to
1037 * the ring buffer event chrdev or the event one.
1039 * This function is complicated by the fact that the devices can signify ring
1040 * and non ring events via the same interrupt line and they can only
1041 * be distinguished via a read of the relevant status register.
1043 static irqreturn_t sca3000_event_handler(int irq, void *private)
1045 struct iio_dev *indio_dev = private;
1046 struct sca3000_state *st = iio_priv(indio_dev);
1047 int ret, val;
1048 s64 last_timestamp = iio_get_time_ns(indio_dev);
1051 * Could lead if badly timed to an extra read of status reg,
1052 * but ensures no interrupt is missed.
1054 mutex_lock(&st->lock);
1055 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1056 val = st->rx[0];
1057 mutex_unlock(&st->lock);
1058 if (ret)
1059 goto done;
1061 sca3000_ring_int_process(val, indio_dev);
1063 if (val & SCA3000_INT_STATUS_FREE_FALL)
1064 iio_push_event(indio_dev,
1065 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1067 IIO_MOD_X_AND_Y_AND_Z,
1068 IIO_EV_TYPE_MAG,
1069 IIO_EV_DIR_FALLING),
1070 last_timestamp);
1072 if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1073 iio_push_event(indio_dev,
1074 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1076 IIO_MOD_Y,
1077 IIO_EV_TYPE_MAG,
1078 IIO_EV_DIR_RISING),
1079 last_timestamp);
1081 if (val & SCA3000_INT_STATUS_X_TRIGGER)
1082 iio_push_event(indio_dev,
1083 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1085 IIO_MOD_X,
1086 IIO_EV_TYPE_MAG,
1087 IIO_EV_DIR_RISING),
1088 last_timestamp);
1090 if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1091 iio_push_event(indio_dev,
1092 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1094 IIO_MOD_Z,
1095 IIO_EV_TYPE_MAG,
1096 IIO_EV_DIR_RISING),
1097 last_timestamp);
1099 done:
1100 return IRQ_HANDLED;
1104 * sca3000_read_event_config() what events are enabled
1106 static int sca3000_read_event_config(struct iio_dev *indio_dev,
1107 const struct iio_chan_spec *chan,
1108 enum iio_event_type type,
1109 enum iio_event_direction dir)
1111 struct sca3000_state *st = iio_priv(indio_dev);
1112 int ret;
1113 /* read current value of mode register */
1114 mutex_lock(&st->lock);
1116 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1117 if (ret)
1118 goto error_ret;
1120 switch (chan->channel2) {
1121 case IIO_MOD_X_AND_Y_AND_Z:
1122 ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1123 break;
1124 case IIO_MOD_X:
1125 case IIO_MOD_Y:
1126 case IIO_MOD_Z:
1128 * Motion detection mode cannot run at the same time as
1129 * acceleration data being read.
1131 if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1132 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1133 ret = 0;
1134 } else {
1135 ret = sca3000_read_ctrl_reg(st,
1136 SCA3000_REG_CTRL_SEL_MD_CTRL);
1137 if (ret < 0)
1138 goto error_ret;
1139 /* only supporting logical or's for now */
1140 ret = !!(ret & sca3000_addresses[chan->address][2]);
1142 break;
1143 default:
1144 ret = -EINVAL;
1147 error_ret:
1148 mutex_unlock(&st->lock);
1150 return ret;
1153 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1155 struct sca3000_state *st = iio_priv(indio_dev);
1156 int ret;
1158 /* read current value of mode register */
1159 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1160 if (ret)
1161 return ret;
1163 /* if off and should be on */
1164 if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1165 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1166 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1167 /* if on and should be off */
1168 else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1169 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1170 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1171 else
1172 return 0;
1175 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1176 int state)
1178 struct sca3000_state *st = iio_priv(indio_dev);
1179 int ret, ctrlval;
1182 * First read the motion detector config to find out if
1183 * this axis is on
1185 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1186 if (ret < 0)
1187 return ret;
1188 ctrlval = ret;
1189 /* if off and should be on */
1190 if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1191 ret = sca3000_write_ctrl_reg(st,
1192 SCA3000_REG_CTRL_SEL_MD_CTRL,
1193 ctrlval |
1194 sca3000_addresses[axis][2]);
1195 if (ret)
1196 return ret;
1197 st->mo_det_use_count++;
1198 } else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1199 ret = sca3000_write_ctrl_reg(st,
1200 SCA3000_REG_CTRL_SEL_MD_CTRL,
1201 ctrlval &
1202 ~(sca3000_addresses[axis][2]));
1203 if (ret)
1204 return ret;
1205 st->mo_det_use_count--;
1208 /* read current value of mode register */
1209 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1210 if (ret)
1211 return ret;
1212 /* if off and should be on */
1213 if ((st->mo_det_use_count) &&
1214 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1215 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1216 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1217 (st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1218 | SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1219 /* if on and should be off */
1220 else if (!(st->mo_det_use_count) &&
1221 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1222 == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1223 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1224 st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1225 else
1226 return 0;
1230 * sca3000_write_event_config() - simple on off control for motion detector
1231 * @indio_dev: IIO device instance specific structure. Data specific to this
1232 * particular driver may be accessed via iio_priv(indio_dev).
1233 * @chan: Description of the channel whose event we are configuring.
1234 * @type: The type of event.
1235 * @dir: The direction of the event.
1236 * @state: Desired state of event being configured.
1238 * This is a per axis control, but enabling any will result in the
1239 * motion detector unit being enabled.
1240 * N.B. enabling motion detector stops normal data acquisition.
1241 * There is a complexity in knowing which mode to return to when
1242 * this mode is disabled. Currently normal mode is assumed.
1244 static int sca3000_write_event_config(struct iio_dev *indio_dev,
1245 const struct iio_chan_spec *chan,
1246 enum iio_event_type type,
1247 enum iio_event_direction dir,
1248 int state)
1250 struct sca3000_state *st = iio_priv(indio_dev);
1251 int ret;
1253 mutex_lock(&st->lock);
1254 switch (chan->channel2) {
1255 case IIO_MOD_X_AND_Y_AND_Z:
1256 ret = sca3000_freefall_set_state(indio_dev, state);
1257 break;
1259 case IIO_MOD_X:
1260 case IIO_MOD_Y:
1261 case IIO_MOD_Z:
1262 ret = sca3000_motion_detect_set_state(indio_dev,
1263 chan->address,
1264 state);
1265 break;
1266 default:
1267 ret = -EINVAL;
1268 break;
1270 mutex_unlock(&st->lock);
1272 return ret;
1275 static int sca3000_configure_ring(struct iio_dev *indio_dev)
1277 struct iio_buffer *buffer;
1279 buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
1280 if (!buffer)
1281 return -ENOMEM;
1283 iio_device_attach_buffer(indio_dev, buffer);
1284 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1286 return 0;
1289 static inline
1290 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1292 struct sca3000_state *st = iio_priv(indio_dev);
1293 int ret;
1295 mutex_lock(&st->lock);
1296 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1297 if (ret)
1298 goto error_ret;
1299 if (state) {
1300 dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1301 ret = sca3000_write_reg(st,
1302 SCA3000_REG_MODE_ADDR,
1303 (st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1304 } else
1305 ret = sca3000_write_reg(st,
1306 SCA3000_REG_MODE_ADDR,
1307 (st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1308 error_ret:
1309 mutex_unlock(&st->lock);
1311 return ret;
1315 * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1316 * @indio_dev: structure representing the IIO device. Device instance
1317 * specific state can be accessed via iio_priv(indio_dev).
1319 * Very simple enable function as the chip will allows normal reads
1320 * during ring buffer operation so as long as it is indeed running
1321 * before we notify the core, the precise ordering does not matter.
1323 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1325 int ret;
1326 struct sca3000_state *st = iio_priv(indio_dev);
1328 mutex_lock(&st->lock);
1330 /* Enable the 50% full interrupt */
1331 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1332 if (ret)
1333 goto error_unlock;
1334 ret = sca3000_write_reg(st,
1335 SCA3000_REG_INT_MASK_ADDR,
1336 st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1337 if (ret)
1338 goto error_unlock;
1340 mutex_unlock(&st->lock);
1342 return __sca3000_hw_ring_state_set(indio_dev, 1);
1344 error_unlock:
1345 mutex_unlock(&st->lock);
1347 return ret;
1350 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1352 int ret;
1353 struct sca3000_state *st = iio_priv(indio_dev);
1355 ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1356 if (ret)
1357 return ret;
1359 /* Disable the 50% full interrupt */
1360 mutex_lock(&st->lock);
1362 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1363 if (ret)
1364 goto unlock;
1365 ret = sca3000_write_reg(st,
1366 SCA3000_REG_INT_MASK_ADDR,
1367 st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1368 unlock:
1369 mutex_unlock(&st->lock);
1370 return ret;
1373 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1374 .preenable = &sca3000_hw_ring_preenable,
1375 .postdisable = &sca3000_hw_ring_postdisable,
1379 * sca3000_clean_setup() - get the device into a predictable state
1380 * @st: Device instance specific private data structure
1382 * Devices use flash memory to store many of the register values
1383 * and hence can come up in somewhat unpredictable states.
1384 * Hence reset everything on driver load.
1386 static int sca3000_clean_setup(struct sca3000_state *st)
1388 int ret;
1390 mutex_lock(&st->lock);
1391 /* Ensure all interrupts have been acknowledged */
1392 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1393 if (ret)
1394 goto error_ret;
1396 /* Turn off all motion detection channels */
1397 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1398 if (ret < 0)
1399 goto error_ret;
1400 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1401 ret & SCA3000_MD_CTRL_PROT_MASK);
1402 if (ret)
1403 goto error_ret;
1405 /* Disable ring buffer */
1406 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1407 if (ret < 0)
1408 goto error_ret;
1409 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1410 (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1411 | SCA3000_REG_OUT_CTRL_BUF_X_EN
1412 | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1413 | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1414 | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1415 if (ret)
1416 goto error_ret;
1417 /* Enable interrupts, relevant to mode and set up as active low */
1418 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1419 if (ret)
1420 goto error_ret;
1421 ret = sca3000_write_reg(st,
1422 SCA3000_REG_INT_MASK_ADDR,
1423 (ret & SCA3000_REG_INT_MASK_PROT_MASK)
1424 | SCA3000_REG_INT_MASK_ACTIVE_LOW);
1425 if (ret)
1426 goto error_ret;
1428 * Select normal measurement mode, free fall off, ring off
1429 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1430 * as that occurs in one of the example on the datasheet
1432 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1433 if (ret)
1434 goto error_ret;
1435 ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1436 (st->rx[0] & SCA3000_MODE_PROT_MASK));
1438 error_ret:
1439 mutex_unlock(&st->lock);
1440 return ret;
1443 static const struct iio_info sca3000_info = {
1444 .attrs = &sca3000_attribute_group,
1445 .read_raw = &sca3000_read_raw,
1446 .write_raw = &sca3000_write_raw,
1447 .read_event_value = &sca3000_read_event_value,
1448 .write_event_value = &sca3000_write_event_value,
1449 .read_event_config = &sca3000_read_event_config,
1450 .write_event_config = &sca3000_write_event_config,
1453 static int sca3000_probe(struct spi_device *spi)
1455 int ret;
1456 struct sca3000_state *st;
1457 struct iio_dev *indio_dev;
1459 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1460 if (!indio_dev)
1461 return -ENOMEM;
1463 st = iio_priv(indio_dev);
1464 spi_set_drvdata(spi, indio_dev);
1465 st->us = spi;
1466 mutex_init(&st->lock);
1467 st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1468 ->driver_data];
1470 indio_dev->dev.parent = &spi->dev;
1471 indio_dev->name = spi_get_device_id(spi)->name;
1472 indio_dev->info = &sca3000_info;
1473 if (st->info->temp_output) {
1474 indio_dev->channels = sca3000_channels_with_temp;
1475 indio_dev->num_channels =
1476 ARRAY_SIZE(sca3000_channels_with_temp);
1477 } else {
1478 indio_dev->channels = sca3000_channels;
1479 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1481 indio_dev->modes = INDIO_DIRECT_MODE;
1483 ret = sca3000_configure_ring(indio_dev);
1484 if (ret)
1485 return ret;
1487 if (spi->irq) {
1488 ret = request_threaded_irq(spi->irq,
1489 NULL,
1490 &sca3000_event_handler,
1491 IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1492 "sca3000",
1493 indio_dev);
1494 if (ret)
1495 return ret;
1497 indio_dev->setup_ops = &sca3000_ring_setup_ops;
1498 ret = sca3000_clean_setup(st);
1499 if (ret)
1500 goto error_free_irq;
1502 ret = sca3000_print_rev(indio_dev);
1503 if (ret)
1504 goto error_free_irq;
1506 return iio_device_register(indio_dev);
1508 error_free_irq:
1509 if (spi->irq)
1510 free_irq(spi->irq, indio_dev);
1512 return ret;
1515 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1517 int ret;
1519 mutex_lock(&st->lock);
1520 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1521 if (ret)
1522 goto error_ret;
1523 ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1524 (st->rx[0] &
1525 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1526 SCA3000_REG_INT_MASK_RING_HALF |
1527 SCA3000_REG_INT_MASK_ALL_INTS)));
1528 error_ret:
1529 mutex_unlock(&st->lock);
1530 return ret;
1533 static int sca3000_remove(struct spi_device *spi)
1535 struct iio_dev *indio_dev = spi_get_drvdata(spi);
1536 struct sca3000_state *st = iio_priv(indio_dev);
1538 iio_device_unregister(indio_dev);
1540 /* Must ensure no interrupts can be generated after this! */
1541 sca3000_stop_all_interrupts(st);
1542 if (spi->irq)
1543 free_irq(spi->irq, indio_dev);
1545 return 0;
1548 static const struct spi_device_id sca3000_id[] = {
1549 {"sca3000_d01", d01},
1550 {"sca3000_e02", e02},
1551 {"sca3000_e04", e04},
1552 {"sca3000_e05", e05},
1555 MODULE_DEVICE_TABLE(spi, sca3000_id);
1557 static struct spi_driver sca3000_driver = {
1558 .driver = {
1559 .name = "sca3000",
1561 .probe = sca3000_probe,
1562 .remove = sca3000_remove,
1563 .id_table = sca3000_id,
1565 module_spi_driver(sca3000_driver);
1567 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1568 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1569 MODULE_LICENSE("GPL v2");