treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / iio / dac / ad5755.c
blobb9175fb4c8abbc644ce87c98a2143bf59aedff19
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AD5755, AD5755-1, AD5757, AD5735, AD5737 Digital to analog converters driver
5 * Copyright 2012 Analog Devices Inc.
6 */
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/spi/spi.h>
13 #include <linux/slab.h>
14 #include <linux/sysfs.h>
15 #include <linux/delay.h>
16 #include <linux/of.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 #include <linux/platform_data/ad5755.h>
21 #define AD5755_NUM_CHANNELS 4
23 #define AD5755_ADDR(x) ((x) << 16)
25 #define AD5755_WRITE_REG_DATA(chan) (chan)
26 #define AD5755_WRITE_REG_GAIN(chan) (0x08 | (chan))
27 #define AD5755_WRITE_REG_OFFSET(chan) (0x10 | (chan))
28 #define AD5755_WRITE_REG_CTRL(chan) (0x1c | (chan))
30 #define AD5755_READ_REG_DATA(chan) (chan)
31 #define AD5755_READ_REG_CTRL(chan) (0x4 | (chan))
32 #define AD5755_READ_REG_GAIN(chan) (0x8 | (chan))
33 #define AD5755_READ_REG_OFFSET(chan) (0xc | (chan))
34 #define AD5755_READ_REG_CLEAR(chan) (0x10 | (chan))
35 #define AD5755_READ_REG_SLEW(chan) (0x14 | (chan))
36 #define AD5755_READ_REG_STATUS 0x18
37 #define AD5755_READ_REG_MAIN 0x19
38 #define AD5755_READ_REG_DC_DC 0x1a
40 #define AD5755_CTRL_REG_SLEW 0x0
41 #define AD5755_CTRL_REG_MAIN 0x1
42 #define AD5755_CTRL_REG_DAC 0x2
43 #define AD5755_CTRL_REG_DC_DC 0x3
44 #define AD5755_CTRL_REG_SW 0x4
46 #define AD5755_READ_FLAG 0x800000
48 #define AD5755_NOOP 0x1CE000
50 #define AD5755_DAC_INT_EN BIT(8)
51 #define AD5755_DAC_CLR_EN BIT(7)
52 #define AD5755_DAC_OUT_EN BIT(6)
53 #define AD5755_DAC_INT_CURRENT_SENSE_RESISTOR BIT(5)
54 #define AD5755_DAC_DC_DC_EN BIT(4)
55 #define AD5755_DAC_VOLTAGE_OVERRANGE_EN BIT(3)
57 #define AD5755_DC_DC_MAXV 0
58 #define AD5755_DC_DC_FREQ_SHIFT 2
59 #define AD5755_DC_DC_PHASE_SHIFT 4
60 #define AD5755_EXT_DC_DC_COMP_RES BIT(6)
62 #define AD5755_SLEW_STEP_SIZE_SHIFT 0
63 #define AD5755_SLEW_RATE_SHIFT 3
64 #define AD5755_SLEW_ENABLE BIT(12)
66 /**
67 * struct ad5755_chip_info - chip specific information
68 * @channel_template: channel specification
69 * @calib_shift: shift for the calibration data registers
70 * @has_voltage_out: whether the chip has voltage outputs
72 struct ad5755_chip_info {
73 const struct iio_chan_spec channel_template;
74 unsigned int calib_shift;
75 bool has_voltage_out;
78 /**
79 * struct ad5755_state - driver instance specific data
80 * @spi: spi device the driver is attached to
81 * @chip_info: chip model specific constants, available modes etc
82 * @pwr_down: bitmask which contains hether a channel is powered down or not
83 * @ctrl: software shadow of the channel ctrl registers
84 * @channels: iio channel spec for the device
85 * @data: spi transfer buffers
87 struct ad5755_state {
88 struct spi_device *spi;
89 const struct ad5755_chip_info *chip_info;
90 unsigned int pwr_down;
91 unsigned int ctrl[AD5755_NUM_CHANNELS];
92 struct iio_chan_spec channels[AD5755_NUM_CHANNELS];
95 * DMA (thus cache coherency maintenance) requires the
96 * transfer buffers to live in their own cache lines.
99 union {
100 __be32 d32;
101 u8 d8[4];
102 } data[2] ____cacheline_aligned;
105 enum ad5755_type {
106 ID_AD5755,
107 ID_AD5757,
108 ID_AD5735,
109 ID_AD5737,
112 #ifdef CONFIG_OF
113 static const int ad5755_dcdc_freq_table[][2] = {
114 { 250000, AD5755_DC_DC_FREQ_250kHZ },
115 { 410000, AD5755_DC_DC_FREQ_410kHZ },
116 { 650000, AD5755_DC_DC_FREQ_650kHZ }
119 static const int ad5755_dcdc_maxv_table[][2] = {
120 { 23000000, AD5755_DC_DC_MAXV_23V },
121 { 24500000, AD5755_DC_DC_MAXV_24V5 },
122 { 27000000, AD5755_DC_DC_MAXV_27V },
123 { 29500000, AD5755_DC_DC_MAXV_29V5 },
126 static const int ad5755_slew_rate_table[][2] = {
127 { 64000, AD5755_SLEW_RATE_64k },
128 { 32000, AD5755_SLEW_RATE_32k },
129 { 16000, AD5755_SLEW_RATE_16k },
130 { 8000, AD5755_SLEW_RATE_8k },
131 { 4000, AD5755_SLEW_RATE_4k },
132 { 2000, AD5755_SLEW_RATE_2k },
133 { 1000, AD5755_SLEW_RATE_1k },
134 { 500, AD5755_SLEW_RATE_500 },
135 { 250, AD5755_SLEW_RATE_250 },
136 { 125, AD5755_SLEW_RATE_125 },
137 { 64, AD5755_SLEW_RATE_64 },
138 { 32, AD5755_SLEW_RATE_32 },
139 { 16, AD5755_SLEW_RATE_16 },
140 { 8, AD5755_SLEW_RATE_8 },
141 { 4, AD5755_SLEW_RATE_4 },
142 { 0, AD5755_SLEW_RATE_0_5 },
145 static const int ad5755_slew_step_table[][2] = {
146 { 256, AD5755_SLEW_STEP_SIZE_256 },
147 { 128, AD5755_SLEW_STEP_SIZE_128 },
148 { 64, AD5755_SLEW_STEP_SIZE_64 },
149 { 32, AD5755_SLEW_STEP_SIZE_32 },
150 { 16, AD5755_SLEW_STEP_SIZE_16 },
151 { 4, AD5755_SLEW_STEP_SIZE_4 },
152 { 2, AD5755_SLEW_STEP_SIZE_2 },
153 { 1, AD5755_SLEW_STEP_SIZE_1 },
155 #endif
157 static int ad5755_write_unlocked(struct iio_dev *indio_dev,
158 unsigned int reg, unsigned int val)
160 struct ad5755_state *st = iio_priv(indio_dev);
162 st->data[0].d32 = cpu_to_be32((reg << 16) | val);
164 return spi_write(st->spi, &st->data[0].d8[1], 3);
167 static int ad5755_write_ctrl_unlocked(struct iio_dev *indio_dev,
168 unsigned int channel, unsigned int reg, unsigned int val)
170 return ad5755_write_unlocked(indio_dev,
171 AD5755_WRITE_REG_CTRL(channel), (reg << 13) | val);
174 static int ad5755_write(struct iio_dev *indio_dev, unsigned int reg,
175 unsigned int val)
177 int ret;
179 mutex_lock(&indio_dev->mlock);
180 ret = ad5755_write_unlocked(indio_dev, reg, val);
181 mutex_unlock(&indio_dev->mlock);
183 return ret;
186 static int ad5755_write_ctrl(struct iio_dev *indio_dev, unsigned int channel,
187 unsigned int reg, unsigned int val)
189 int ret;
191 mutex_lock(&indio_dev->mlock);
192 ret = ad5755_write_ctrl_unlocked(indio_dev, channel, reg, val);
193 mutex_unlock(&indio_dev->mlock);
195 return ret;
198 static int ad5755_read(struct iio_dev *indio_dev, unsigned int addr)
200 struct ad5755_state *st = iio_priv(indio_dev);
201 int ret;
202 struct spi_transfer t[] = {
204 .tx_buf = &st->data[0].d8[1],
205 .len = 3,
206 .cs_change = 1,
207 }, {
208 .tx_buf = &st->data[1].d8[1],
209 .rx_buf = &st->data[1].d8[1],
210 .len = 3,
214 mutex_lock(&indio_dev->mlock);
216 st->data[0].d32 = cpu_to_be32(AD5755_READ_FLAG | (addr << 16));
217 st->data[1].d32 = cpu_to_be32(AD5755_NOOP);
219 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
220 if (ret >= 0)
221 ret = be32_to_cpu(st->data[1].d32) & 0xffff;
223 mutex_unlock(&indio_dev->mlock);
225 return ret;
228 static int ad5755_update_dac_ctrl(struct iio_dev *indio_dev,
229 unsigned int channel, unsigned int set, unsigned int clr)
231 struct ad5755_state *st = iio_priv(indio_dev);
232 int ret;
234 st->ctrl[channel] |= set;
235 st->ctrl[channel] &= ~clr;
237 ret = ad5755_write_ctrl_unlocked(indio_dev, channel,
238 AD5755_CTRL_REG_DAC, st->ctrl[channel]);
240 return ret;
243 static int ad5755_set_channel_pwr_down(struct iio_dev *indio_dev,
244 unsigned int channel, bool pwr_down)
246 struct ad5755_state *st = iio_priv(indio_dev);
247 unsigned int mask = BIT(channel);
249 mutex_lock(&indio_dev->mlock);
251 if ((bool)(st->pwr_down & mask) == pwr_down)
252 goto out_unlock;
254 if (!pwr_down) {
255 st->pwr_down &= ~mask;
256 ad5755_update_dac_ctrl(indio_dev, channel,
257 AD5755_DAC_INT_EN | AD5755_DAC_DC_DC_EN, 0);
258 udelay(200);
259 ad5755_update_dac_ctrl(indio_dev, channel,
260 AD5755_DAC_OUT_EN, 0);
261 } else {
262 st->pwr_down |= mask;
263 ad5755_update_dac_ctrl(indio_dev, channel,
264 0, AD5755_DAC_INT_EN | AD5755_DAC_OUT_EN |
265 AD5755_DAC_DC_DC_EN);
268 out_unlock:
269 mutex_unlock(&indio_dev->mlock);
271 return 0;
274 static const int ad5755_min_max_table[][2] = {
275 [AD5755_MODE_VOLTAGE_0V_5V] = { 0, 5000 },
276 [AD5755_MODE_VOLTAGE_0V_10V] = { 0, 10000 },
277 [AD5755_MODE_VOLTAGE_PLUSMINUS_5V] = { -5000, 5000 },
278 [AD5755_MODE_VOLTAGE_PLUSMINUS_10V] = { -10000, 10000 },
279 [AD5755_MODE_CURRENT_4mA_20mA] = { 4, 20 },
280 [AD5755_MODE_CURRENT_0mA_20mA] = { 0, 20 },
281 [AD5755_MODE_CURRENT_0mA_24mA] = { 0, 24 },
284 static void ad5755_get_min_max(struct ad5755_state *st,
285 struct iio_chan_spec const *chan, int *min, int *max)
287 enum ad5755_mode mode = st->ctrl[chan->channel] & 7;
288 *min = ad5755_min_max_table[mode][0];
289 *max = ad5755_min_max_table[mode][1];
292 static inline int ad5755_get_offset(struct ad5755_state *st,
293 struct iio_chan_spec const *chan)
295 int min, max;
297 ad5755_get_min_max(st, chan, &min, &max);
298 return (min * (1 << chan->scan_type.realbits)) / (max - min);
301 static int ad5755_chan_reg_info(struct ad5755_state *st,
302 struct iio_chan_spec const *chan, long info, bool write,
303 unsigned int *reg, unsigned int *shift, unsigned int *offset)
305 switch (info) {
306 case IIO_CHAN_INFO_RAW:
307 if (write)
308 *reg = AD5755_WRITE_REG_DATA(chan->address);
309 else
310 *reg = AD5755_READ_REG_DATA(chan->address);
311 *shift = chan->scan_type.shift;
312 *offset = 0;
313 break;
314 case IIO_CHAN_INFO_CALIBBIAS:
315 if (write)
316 *reg = AD5755_WRITE_REG_OFFSET(chan->address);
317 else
318 *reg = AD5755_READ_REG_OFFSET(chan->address);
319 *shift = st->chip_info->calib_shift;
320 *offset = 32768;
321 break;
322 case IIO_CHAN_INFO_CALIBSCALE:
323 if (write)
324 *reg = AD5755_WRITE_REG_GAIN(chan->address);
325 else
326 *reg = AD5755_READ_REG_GAIN(chan->address);
327 *shift = st->chip_info->calib_shift;
328 *offset = 0;
329 break;
330 default:
331 return -EINVAL;
334 return 0;
337 static int ad5755_read_raw(struct iio_dev *indio_dev,
338 const struct iio_chan_spec *chan, int *val, int *val2, long info)
340 struct ad5755_state *st = iio_priv(indio_dev);
341 unsigned int reg, shift, offset;
342 int min, max;
343 int ret;
345 switch (info) {
346 case IIO_CHAN_INFO_SCALE:
347 ad5755_get_min_max(st, chan, &min, &max);
348 *val = max - min;
349 *val2 = chan->scan_type.realbits;
350 return IIO_VAL_FRACTIONAL_LOG2;
351 case IIO_CHAN_INFO_OFFSET:
352 *val = ad5755_get_offset(st, chan);
353 return IIO_VAL_INT;
354 default:
355 ret = ad5755_chan_reg_info(st, chan, info, false,
356 &reg, &shift, &offset);
357 if (ret)
358 return ret;
360 ret = ad5755_read(indio_dev, reg);
361 if (ret < 0)
362 return ret;
364 *val = (ret - offset) >> shift;
366 return IIO_VAL_INT;
369 return -EINVAL;
372 static int ad5755_write_raw(struct iio_dev *indio_dev,
373 const struct iio_chan_spec *chan, int val, int val2, long info)
375 struct ad5755_state *st = iio_priv(indio_dev);
376 unsigned int shift, reg, offset;
377 int ret;
379 ret = ad5755_chan_reg_info(st, chan, info, true,
380 &reg, &shift, &offset);
381 if (ret)
382 return ret;
384 val <<= shift;
385 val += offset;
387 if (val < 0 || val > 0xffff)
388 return -EINVAL;
390 return ad5755_write(indio_dev, reg, val);
393 static ssize_t ad5755_read_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
394 const struct iio_chan_spec *chan, char *buf)
396 struct ad5755_state *st = iio_priv(indio_dev);
398 return sprintf(buf, "%d\n",
399 (bool)(st->pwr_down & (1 << chan->channel)));
402 static ssize_t ad5755_write_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
403 struct iio_chan_spec const *chan, const char *buf, size_t len)
405 bool pwr_down;
406 int ret;
408 ret = strtobool(buf, &pwr_down);
409 if (ret)
410 return ret;
412 ret = ad5755_set_channel_pwr_down(indio_dev, chan->channel, pwr_down);
413 return ret ? ret : len;
416 static const struct iio_info ad5755_info = {
417 .read_raw = ad5755_read_raw,
418 .write_raw = ad5755_write_raw,
421 static const struct iio_chan_spec_ext_info ad5755_ext_info[] = {
423 .name = "powerdown",
424 .read = ad5755_read_powerdown,
425 .write = ad5755_write_powerdown,
426 .shared = IIO_SEPARATE,
428 { },
431 #define AD5755_CHANNEL(_bits) { \
432 .indexed = 1, \
433 .output = 1, \
434 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
435 BIT(IIO_CHAN_INFO_SCALE) | \
436 BIT(IIO_CHAN_INFO_OFFSET) | \
437 BIT(IIO_CHAN_INFO_CALIBSCALE) | \
438 BIT(IIO_CHAN_INFO_CALIBBIAS), \
439 .scan_type = { \
440 .sign = 'u', \
441 .realbits = (_bits), \
442 .storagebits = 16, \
443 .shift = 16 - (_bits), \
444 }, \
445 .ext_info = ad5755_ext_info, \
448 static const struct ad5755_chip_info ad5755_chip_info_tbl[] = {
449 [ID_AD5735] = {
450 .channel_template = AD5755_CHANNEL(14),
451 .has_voltage_out = true,
452 .calib_shift = 4,
454 [ID_AD5737] = {
455 .channel_template = AD5755_CHANNEL(14),
456 .has_voltage_out = false,
457 .calib_shift = 4,
459 [ID_AD5755] = {
460 .channel_template = AD5755_CHANNEL(16),
461 .has_voltage_out = true,
462 .calib_shift = 0,
464 [ID_AD5757] = {
465 .channel_template = AD5755_CHANNEL(16),
466 .has_voltage_out = false,
467 .calib_shift = 0,
471 static bool ad5755_is_valid_mode(struct ad5755_state *st, enum ad5755_mode mode)
473 switch (mode) {
474 case AD5755_MODE_VOLTAGE_0V_5V:
475 case AD5755_MODE_VOLTAGE_0V_10V:
476 case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
477 case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
478 return st->chip_info->has_voltage_out;
479 case AD5755_MODE_CURRENT_4mA_20mA:
480 case AD5755_MODE_CURRENT_0mA_20mA:
481 case AD5755_MODE_CURRENT_0mA_24mA:
482 return true;
483 default:
484 return false;
488 static int ad5755_setup_pdata(struct iio_dev *indio_dev,
489 const struct ad5755_platform_data *pdata)
491 struct ad5755_state *st = iio_priv(indio_dev);
492 unsigned int val;
493 unsigned int i;
494 int ret;
496 if (pdata->dc_dc_phase > AD5755_DC_DC_PHASE_90_DEGREE ||
497 pdata->dc_dc_freq > AD5755_DC_DC_FREQ_650kHZ ||
498 pdata->dc_dc_maxv > AD5755_DC_DC_MAXV_29V5)
499 return -EINVAL;
501 val = pdata->dc_dc_maxv << AD5755_DC_DC_MAXV;
502 val |= pdata->dc_dc_freq << AD5755_DC_DC_FREQ_SHIFT;
503 val |= pdata->dc_dc_phase << AD5755_DC_DC_PHASE_SHIFT;
504 if (pdata->ext_dc_dc_compenstation_resistor)
505 val |= AD5755_EXT_DC_DC_COMP_RES;
507 ret = ad5755_write_ctrl(indio_dev, 0, AD5755_CTRL_REG_DC_DC, val);
508 if (ret < 0)
509 return ret;
511 for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
512 val = pdata->dac[i].slew.step_size <<
513 AD5755_SLEW_STEP_SIZE_SHIFT;
514 val |= pdata->dac[i].slew.rate <<
515 AD5755_SLEW_RATE_SHIFT;
516 if (pdata->dac[i].slew.enable)
517 val |= AD5755_SLEW_ENABLE;
519 ret = ad5755_write_ctrl(indio_dev, i,
520 AD5755_CTRL_REG_SLEW, val);
521 if (ret < 0)
522 return ret;
525 for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
526 if (!ad5755_is_valid_mode(st, pdata->dac[i].mode))
527 return -EINVAL;
529 val = 0;
530 if (!pdata->dac[i].ext_current_sense_resistor)
531 val |= AD5755_DAC_INT_CURRENT_SENSE_RESISTOR;
532 if (pdata->dac[i].enable_voltage_overrange)
533 val |= AD5755_DAC_VOLTAGE_OVERRANGE_EN;
534 val |= pdata->dac[i].mode;
536 ret = ad5755_update_dac_ctrl(indio_dev, i, val, 0);
537 if (ret < 0)
538 return ret;
541 return 0;
544 static bool ad5755_is_voltage_mode(enum ad5755_mode mode)
546 switch (mode) {
547 case AD5755_MODE_VOLTAGE_0V_5V:
548 case AD5755_MODE_VOLTAGE_0V_10V:
549 case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
550 case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
551 return true;
552 default:
553 return false;
557 static int ad5755_init_channels(struct iio_dev *indio_dev,
558 const struct ad5755_platform_data *pdata)
560 struct ad5755_state *st = iio_priv(indio_dev);
561 struct iio_chan_spec *channels = st->channels;
562 unsigned int i;
564 for (i = 0; i < AD5755_NUM_CHANNELS; ++i) {
565 channels[i] = st->chip_info->channel_template;
566 channels[i].channel = i;
567 channels[i].address = i;
568 if (pdata && ad5755_is_voltage_mode(pdata->dac[i].mode))
569 channels[i].type = IIO_VOLTAGE;
570 else
571 channels[i].type = IIO_CURRENT;
574 indio_dev->channels = channels;
576 return 0;
579 #define AD5755_DEFAULT_DAC_PDATA { \
580 .mode = AD5755_MODE_CURRENT_4mA_20mA, \
581 .ext_current_sense_resistor = true, \
582 .enable_voltage_overrange = false, \
583 .slew = { \
584 .enable = false, \
585 .rate = AD5755_SLEW_RATE_64k, \
586 .step_size = AD5755_SLEW_STEP_SIZE_1, \
587 }, \
590 static const struct ad5755_platform_data ad5755_default_pdata = {
591 .ext_dc_dc_compenstation_resistor = false,
592 .dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE,
593 .dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ,
594 .dc_dc_maxv = AD5755_DC_DC_MAXV_23V,
595 .dac = {
596 [0] = AD5755_DEFAULT_DAC_PDATA,
597 [1] = AD5755_DEFAULT_DAC_PDATA,
598 [2] = AD5755_DEFAULT_DAC_PDATA,
599 [3] = AD5755_DEFAULT_DAC_PDATA,
603 #ifdef CONFIG_OF
604 static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
606 struct device_node *np = dev->of_node;
607 struct device_node *pp;
608 struct ad5755_platform_data *pdata;
609 unsigned int tmp;
610 unsigned int tmparray[3];
611 int devnr, i;
613 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
614 if (!pdata)
615 return NULL;
617 pdata->ext_dc_dc_compenstation_resistor =
618 of_property_read_bool(np, "adi,ext-dc-dc-compenstation-resistor");
620 if (!of_property_read_u32(np, "adi,dc-dc-phase", &tmp))
621 pdata->dc_dc_phase = tmp;
622 else
623 pdata->dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE;
625 pdata->dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ;
626 if (!of_property_read_u32(np, "adi,dc-dc-freq-hz", &tmp)) {
627 for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_freq_table); i++) {
628 if (tmp == ad5755_dcdc_freq_table[i][0]) {
629 pdata->dc_dc_freq = ad5755_dcdc_freq_table[i][1];
630 break;
634 if (i == ARRAY_SIZE(ad5755_dcdc_freq_table)) {
635 dev_err(dev,
636 "adi,dc-dc-freq out of range selecting 410kHz");
640 pdata->dc_dc_maxv = AD5755_DC_DC_MAXV_23V;
641 if (!of_property_read_u32(np, "adi,dc-dc-max-microvolt", &tmp)) {
642 for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_maxv_table); i++) {
643 if (tmp == ad5755_dcdc_maxv_table[i][0]) {
644 pdata->dc_dc_maxv = ad5755_dcdc_maxv_table[i][1];
645 break;
648 if (i == ARRAY_SIZE(ad5755_dcdc_maxv_table)) {
649 dev_err(dev,
650 "adi,dc-dc-maxv out of range selecting 23V");
654 devnr = 0;
655 for_each_child_of_node(np, pp) {
656 if (devnr >= AD5755_NUM_CHANNELS) {
657 dev_err(dev,
658 "There is to many channels defined in DT\n");
659 goto error_out;
662 if (!of_property_read_u32(pp, "adi,mode", &tmp))
663 pdata->dac[devnr].mode = tmp;
664 else
665 pdata->dac[devnr].mode = AD5755_MODE_CURRENT_4mA_20mA;
667 pdata->dac[devnr].ext_current_sense_resistor =
668 of_property_read_bool(pp, "adi,ext-current-sense-resistor");
670 pdata->dac[devnr].enable_voltage_overrange =
671 of_property_read_bool(pp, "adi,enable-voltage-overrange");
673 if (!of_property_read_u32_array(pp, "adi,slew", tmparray, 3)) {
674 pdata->dac[devnr].slew.enable = tmparray[0];
676 pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
677 for (i = 0; i < ARRAY_SIZE(ad5755_slew_rate_table); i++) {
678 if (tmparray[1] == ad5755_slew_rate_table[i][0]) {
679 pdata->dac[devnr].slew.rate =
680 ad5755_slew_rate_table[i][1];
681 break;
684 if (i == ARRAY_SIZE(ad5755_slew_rate_table)) {
685 dev_err(dev,
686 "channel %d slew rate out of range selecting 64kHz",
687 devnr);
690 pdata->dac[devnr].slew.step_size = AD5755_SLEW_STEP_SIZE_1;
691 for (i = 0; i < ARRAY_SIZE(ad5755_slew_step_table); i++) {
692 if (tmparray[2] == ad5755_slew_step_table[i][0]) {
693 pdata->dac[devnr].slew.step_size =
694 ad5755_slew_step_table[i][1];
695 break;
698 if (i == ARRAY_SIZE(ad5755_slew_step_table)) {
699 dev_err(dev,
700 "channel %d slew step size out of range selecting 1 LSB",
701 devnr);
703 } else {
704 pdata->dac[devnr].slew.enable = false;
705 pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
706 pdata->dac[devnr].slew.step_size =
707 AD5755_SLEW_STEP_SIZE_1;
709 devnr++;
712 return pdata;
714 error_out:
715 devm_kfree(dev, pdata);
716 return NULL;
718 #else
719 static
720 struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
722 return NULL;
724 #endif
726 static int ad5755_probe(struct spi_device *spi)
728 enum ad5755_type type = spi_get_device_id(spi)->driver_data;
729 const struct ad5755_platform_data *pdata = dev_get_platdata(&spi->dev);
730 struct iio_dev *indio_dev;
731 struct ad5755_state *st;
732 int ret;
734 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
735 if (indio_dev == NULL) {
736 dev_err(&spi->dev, "Failed to allocate iio device\n");
737 return -ENOMEM;
740 st = iio_priv(indio_dev);
741 spi_set_drvdata(spi, indio_dev);
743 st->chip_info = &ad5755_chip_info_tbl[type];
744 st->spi = spi;
745 st->pwr_down = 0xf;
747 indio_dev->dev.parent = &spi->dev;
748 indio_dev->name = spi_get_device_id(spi)->name;
749 indio_dev->info = &ad5755_info;
750 indio_dev->modes = INDIO_DIRECT_MODE;
751 indio_dev->num_channels = AD5755_NUM_CHANNELS;
753 if (spi->dev.of_node)
754 pdata = ad5755_parse_dt(&spi->dev);
755 else
756 pdata = spi->dev.platform_data;
758 if (!pdata) {
759 dev_warn(&spi->dev, "no platform data? using default\n");
760 pdata = &ad5755_default_pdata;
763 ret = ad5755_init_channels(indio_dev, pdata);
764 if (ret)
765 return ret;
767 ret = ad5755_setup_pdata(indio_dev, pdata);
768 if (ret)
769 return ret;
771 return devm_iio_device_register(&spi->dev, indio_dev);
774 static const struct spi_device_id ad5755_id[] = {
775 { "ad5755", ID_AD5755 },
776 { "ad5755-1", ID_AD5755 },
777 { "ad5757", ID_AD5757 },
778 { "ad5735", ID_AD5735 },
779 { "ad5737", ID_AD5737 },
782 MODULE_DEVICE_TABLE(spi, ad5755_id);
784 static const struct of_device_id ad5755_of_match[] = {
785 { .compatible = "adi,ad5755" },
786 { .compatible = "adi,ad5755-1" },
787 { .compatible = "adi,ad5757" },
788 { .compatible = "adi,ad5735" },
789 { .compatible = "adi,ad5737" },
792 MODULE_DEVICE_TABLE(of, ad5755_of_match);
794 static struct spi_driver ad5755_driver = {
795 .driver = {
796 .name = "ad5755",
798 .probe = ad5755_probe,
799 .id_table = ad5755_id,
801 module_spi_driver(ad5755_driver);
803 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
804 MODULE_DESCRIPTION("Analog Devices AD5755/55-1/57/35/37 DAC");
805 MODULE_LICENSE("GPL v2");