treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / iio / health / afe4403.c
blobdc22dc363a996d91337c8f787b2f328d221a4ce9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters
5 * Copyright (C) 2015-2016 Texas Instruments Incorporated - http://www.ti.com/
6 * Andrew F. Davis <afd@ti.com>
7 */
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/regmap.h>
15 #include <linux/spi/spi.h>
16 #include <linux/sysfs.h>
17 #include <linux/regulator/consumer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/iio/trigger_consumer.h>
26 #include "afe440x.h"
28 #define AFE4403_DRIVER_NAME "afe4403"
30 /* AFE4403 Registers */
31 #define AFE4403_TIAGAIN 0x20
32 #define AFE4403_TIA_AMB_GAIN 0x21
34 enum afe4403_fields {
35 /* Gains */
36 F_RF_LED1, F_CF_LED1,
37 F_RF_LED, F_CF_LED,
39 /* LED Current */
40 F_ILED1, F_ILED2,
42 /* sentinel */
43 F_MAX_FIELDS
46 static const struct reg_field afe4403_reg_fields[] = {
47 /* Gains */
48 [F_RF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 0, 2),
49 [F_CF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 3, 7),
50 [F_RF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2),
51 [F_CF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7),
52 /* LED Current */
53 [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 7),
54 [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 8, 15),
57 /**
58 * struct afe4403_data - AFE4403 device instance data
59 * @dev: Device structure
60 * @spi: SPI device handle
61 * @regmap: Register map of the device
62 * @fields: Register fields of the device
63 * @regulator: Pointer to the regulator for the IC
64 * @trig: IIO trigger for this device
65 * @irq: ADC_RDY line interrupt number
67 struct afe4403_data {
68 struct device *dev;
69 struct spi_device *spi;
70 struct regmap *regmap;
71 struct regmap_field *fields[F_MAX_FIELDS];
72 struct regulator *regulator;
73 struct iio_trigger *trig;
74 int irq;
77 enum afe4403_chan_id {
78 LED2 = 1,
79 ALED2,
80 LED1,
81 ALED1,
82 LED2_ALED2,
83 LED1_ALED1,
86 static const unsigned int afe4403_channel_values[] = {
87 [LED2] = AFE440X_LED2VAL,
88 [ALED2] = AFE440X_ALED2VAL,
89 [LED1] = AFE440X_LED1VAL,
90 [ALED1] = AFE440X_ALED1VAL,
91 [LED2_ALED2] = AFE440X_LED2_ALED2VAL,
92 [LED1_ALED1] = AFE440X_LED1_ALED1VAL,
95 static const unsigned int afe4403_channel_leds[] = {
96 [LED2] = F_ILED2,
97 [LED1] = F_ILED1,
100 static const struct iio_chan_spec afe4403_channels[] = {
101 /* ADC values */
102 AFE440X_INTENSITY_CHAN(LED2, 0),
103 AFE440X_INTENSITY_CHAN(ALED2, 0),
104 AFE440X_INTENSITY_CHAN(LED1, 0),
105 AFE440X_INTENSITY_CHAN(ALED1, 0),
106 AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
107 AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
108 /* LED current */
109 AFE440X_CURRENT_CHAN(LED2),
110 AFE440X_CURRENT_CHAN(LED1),
113 static const struct afe440x_val_table afe4403_res_table[] = {
114 { 500000 }, { 250000 }, { 100000 }, { 50000 },
115 { 25000 }, { 10000 }, { 1000000 }, { 0 },
117 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table);
119 static const struct afe440x_val_table afe4403_cap_table[] = {
120 { 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 },
121 { 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 },
122 { 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 },
123 { 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 },
124 { 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 },
125 { 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 },
126 { 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 },
127 { 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 },
129 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table);
131 static ssize_t afe440x_show_register(struct device *dev,
132 struct device_attribute *attr,
133 char *buf)
135 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
136 struct afe4403_data *afe = iio_priv(indio_dev);
137 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
138 unsigned int reg_val;
139 int vals[2];
140 int ret;
142 ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
143 if (ret)
144 return ret;
146 if (reg_val >= afe440x_attr->table_size)
147 return -EINVAL;
149 vals[0] = afe440x_attr->val_table[reg_val].integer;
150 vals[1] = afe440x_attr->val_table[reg_val].fract;
152 return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
155 static ssize_t afe440x_store_register(struct device *dev,
156 struct device_attribute *attr,
157 const char *buf, size_t count)
159 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
160 struct afe4403_data *afe = iio_priv(indio_dev);
161 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
162 int val, integer, fract, ret;
164 ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
165 if (ret)
166 return ret;
168 for (val = 0; val < afe440x_attr->table_size; val++)
169 if (afe440x_attr->val_table[val].integer == integer &&
170 afe440x_attr->val_table[val].fract == fract)
171 break;
172 if (val == afe440x_attr->table_size)
173 return -EINVAL;
175 ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
176 if (ret)
177 return ret;
179 return count;
182 static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table);
183 static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table);
185 static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table);
186 static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table);
188 static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table);
189 static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table);
191 static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table);
192 static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table);
194 static struct attribute *afe440x_attributes[] = {
195 &dev_attr_in_intensity_resistance_available.attr,
196 &dev_attr_in_intensity_capacitance_available.attr,
197 &afe440x_attr_in_intensity1_resistance.dev_attr.attr,
198 &afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
199 &afe440x_attr_in_intensity2_resistance.dev_attr.attr,
200 &afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
201 &afe440x_attr_in_intensity3_resistance.dev_attr.attr,
202 &afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
203 &afe440x_attr_in_intensity4_resistance.dev_attr.attr,
204 &afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
205 NULL
208 static const struct attribute_group afe440x_attribute_group = {
209 .attrs = afe440x_attributes
212 static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val)
214 u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
215 u8 rx[3];
216 int ret;
218 /* Enable reading from the device */
219 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
220 if (ret)
221 return ret;
223 ret = spi_write_then_read(afe->spi, &reg, 1, rx, 3);
224 if (ret)
225 return ret;
227 *val = (rx[0] << 16) |
228 (rx[1] << 8) |
229 (rx[2]);
231 /* Disable reading from the device */
232 tx[3] = AFE440X_CONTROL0_WRITE;
233 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
234 if (ret)
235 return ret;
237 return 0;
240 static int afe4403_read_raw(struct iio_dev *indio_dev,
241 struct iio_chan_spec const *chan,
242 int *val, int *val2, long mask)
244 struct afe4403_data *afe = iio_priv(indio_dev);
245 unsigned int reg = afe4403_channel_values[chan->address];
246 unsigned int field = afe4403_channel_leds[chan->address];
247 int ret;
249 switch (chan->type) {
250 case IIO_INTENSITY:
251 switch (mask) {
252 case IIO_CHAN_INFO_RAW:
253 ret = afe4403_read(afe, reg, val);
254 if (ret)
255 return ret;
256 return IIO_VAL_INT;
258 break;
259 case IIO_CURRENT:
260 switch (mask) {
261 case IIO_CHAN_INFO_RAW:
262 ret = regmap_field_read(afe->fields[field], val);
263 if (ret)
264 return ret;
265 return IIO_VAL_INT;
266 case IIO_CHAN_INFO_SCALE:
267 *val = 0;
268 *val2 = 800000;
269 return IIO_VAL_INT_PLUS_MICRO;
271 break;
272 default:
273 break;
276 return -EINVAL;
279 static int afe4403_write_raw(struct iio_dev *indio_dev,
280 struct iio_chan_spec const *chan,
281 int val, int val2, long mask)
283 struct afe4403_data *afe = iio_priv(indio_dev);
284 unsigned int field = afe4403_channel_leds[chan->address];
286 switch (chan->type) {
287 case IIO_CURRENT:
288 switch (mask) {
289 case IIO_CHAN_INFO_RAW:
290 return regmap_field_write(afe->fields[field], val);
292 break;
293 default:
294 break;
297 return -EINVAL;
300 static const struct iio_info afe4403_iio_info = {
301 .attrs = &afe440x_attribute_group,
302 .read_raw = afe4403_read_raw,
303 .write_raw = afe4403_write_raw,
306 static irqreturn_t afe4403_trigger_handler(int irq, void *private)
308 struct iio_poll_func *pf = private;
309 struct iio_dev *indio_dev = pf->indio_dev;
310 struct afe4403_data *afe = iio_priv(indio_dev);
311 int ret, bit, i = 0;
312 s32 buffer[8];
313 u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
314 u8 rx[3];
316 /* Enable reading from the device */
317 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
318 if (ret)
319 goto err;
321 for_each_set_bit(bit, indio_dev->active_scan_mask,
322 indio_dev->masklength) {
323 ret = spi_write_then_read(afe->spi,
324 &afe4403_channel_values[bit], 1,
325 rx, 3);
326 if (ret)
327 goto err;
329 buffer[i++] = (rx[0] << 16) |
330 (rx[1] << 8) |
331 (rx[2]);
334 /* Disable reading from the device */
335 tx[3] = AFE440X_CONTROL0_WRITE;
336 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
337 if (ret)
338 goto err;
340 iio_push_to_buffers_with_timestamp(indio_dev, buffer, pf->timestamp);
341 err:
342 iio_trigger_notify_done(indio_dev->trig);
344 return IRQ_HANDLED;
347 static const struct iio_trigger_ops afe4403_trigger_ops = {
350 #define AFE4403_TIMING_PAIRS \
351 { AFE440X_LED2STC, 0x000050 }, \
352 { AFE440X_LED2ENDC, 0x0003e7 }, \
353 { AFE440X_LED1LEDSTC, 0x0007d0 }, \
354 { AFE440X_LED1LEDENDC, 0x000bb7 }, \
355 { AFE440X_ALED2STC, 0x000438 }, \
356 { AFE440X_ALED2ENDC, 0x0007cf }, \
357 { AFE440X_LED1STC, 0x000820 }, \
358 { AFE440X_LED1ENDC, 0x000bb7 }, \
359 { AFE440X_LED2LEDSTC, 0x000000 }, \
360 { AFE440X_LED2LEDENDC, 0x0003e7 }, \
361 { AFE440X_ALED1STC, 0x000c08 }, \
362 { AFE440X_ALED1ENDC, 0x000f9f }, \
363 { AFE440X_LED2CONVST, 0x0003ef }, \
364 { AFE440X_LED2CONVEND, 0x0007cf }, \
365 { AFE440X_ALED2CONVST, 0x0007d7 }, \
366 { AFE440X_ALED2CONVEND, 0x000bb7 }, \
367 { AFE440X_LED1CONVST, 0x000bbf }, \
368 { AFE440X_LED1CONVEND, 0x009c3f }, \
369 { AFE440X_ALED1CONVST, 0x000fa7 }, \
370 { AFE440X_ALED1CONVEND, 0x001387 }, \
371 { AFE440X_ADCRSTSTCT0, 0x0003e8 }, \
372 { AFE440X_ADCRSTENDCT0, 0x0003eb }, \
373 { AFE440X_ADCRSTSTCT1, 0x0007d0 }, \
374 { AFE440X_ADCRSTENDCT1, 0x0007d3 }, \
375 { AFE440X_ADCRSTSTCT2, 0x000bb8 }, \
376 { AFE440X_ADCRSTENDCT2, 0x000bbb }, \
377 { AFE440X_ADCRSTSTCT3, 0x000fa0 }, \
378 { AFE440X_ADCRSTENDCT3, 0x000fa3 }, \
379 { AFE440X_PRPCOUNT, 0x009c3f }, \
380 { AFE440X_PDNCYCLESTC, 0x001518 }, \
381 { AFE440X_PDNCYCLEENDC, 0x00991f }
383 static const struct reg_sequence afe4403_reg_sequences[] = {
384 AFE4403_TIMING_PAIRS,
385 { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
386 { AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN },
389 static const struct regmap_range afe4403_yes_ranges[] = {
390 regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
393 static const struct regmap_access_table afe4403_volatile_table = {
394 .yes_ranges = afe4403_yes_ranges,
395 .n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges),
398 static const struct regmap_config afe4403_regmap_config = {
399 .reg_bits = 8,
400 .val_bits = 24,
402 .max_register = AFE440X_PDNCYCLEENDC,
403 .cache_type = REGCACHE_RBTREE,
404 .volatile_table = &afe4403_volatile_table,
407 static const struct of_device_id afe4403_of_match[] = {
408 { .compatible = "ti,afe4403", },
409 { /* sentinel */ }
411 MODULE_DEVICE_TABLE(of, afe4403_of_match);
413 static int __maybe_unused afe4403_suspend(struct device *dev)
415 struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
416 struct afe4403_data *afe = iio_priv(indio_dev);
417 int ret;
419 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
420 AFE440X_CONTROL2_PDN_AFE,
421 AFE440X_CONTROL2_PDN_AFE);
422 if (ret)
423 return ret;
425 ret = regulator_disable(afe->regulator);
426 if (ret) {
427 dev_err(dev, "Unable to disable regulator\n");
428 return ret;
431 return 0;
434 static int __maybe_unused afe4403_resume(struct device *dev)
436 struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
437 struct afe4403_data *afe = iio_priv(indio_dev);
438 int ret;
440 ret = regulator_enable(afe->regulator);
441 if (ret) {
442 dev_err(dev, "Unable to enable regulator\n");
443 return ret;
446 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
447 AFE440X_CONTROL2_PDN_AFE, 0);
448 if (ret)
449 return ret;
451 return 0;
454 static SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend, afe4403_resume);
456 static int afe4403_probe(struct spi_device *spi)
458 struct iio_dev *indio_dev;
459 struct afe4403_data *afe;
460 int i, ret;
462 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe));
463 if (!indio_dev)
464 return -ENOMEM;
466 afe = iio_priv(indio_dev);
467 spi_set_drvdata(spi, indio_dev);
469 afe->dev = &spi->dev;
470 afe->spi = spi;
471 afe->irq = spi->irq;
473 afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config);
474 if (IS_ERR(afe->regmap)) {
475 dev_err(afe->dev, "Unable to allocate register map\n");
476 return PTR_ERR(afe->regmap);
479 for (i = 0; i < F_MAX_FIELDS; i++) {
480 afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
481 afe4403_reg_fields[i]);
482 if (IS_ERR(afe->fields[i])) {
483 dev_err(afe->dev, "Unable to allocate regmap fields\n");
484 return PTR_ERR(afe->fields[i]);
488 afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
489 if (IS_ERR(afe->regulator)) {
490 dev_err(afe->dev, "Unable to get regulator\n");
491 return PTR_ERR(afe->regulator);
493 ret = regulator_enable(afe->regulator);
494 if (ret) {
495 dev_err(afe->dev, "Unable to enable regulator\n");
496 return ret;
499 ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
500 AFE440X_CONTROL0_SW_RESET);
501 if (ret) {
502 dev_err(afe->dev, "Unable to reset device\n");
503 goto err_disable_reg;
506 ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences,
507 ARRAY_SIZE(afe4403_reg_sequences));
508 if (ret) {
509 dev_err(afe->dev, "Unable to set register defaults\n");
510 goto err_disable_reg;
513 indio_dev->modes = INDIO_DIRECT_MODE;
514 indio_dev->dev.parent = afe->dev;
515 indio_dev->channels = afe4403_channels;
516 indio_dev->num_channels = ARRAY_SIZE(afe4403_channels);
517 indio_dev->name = AFE4403_DRIVER_NAME;
518 indio_dev->info = &afe4403_iio_info;
520 if (afe->irq > 0) {
521 afe->trig = devm_iio_trigger_alloc(afe->dev,
522 "%s-dev%d",
523 indio_dev->name,
524 indio_dev->id);
525 if (!afe->trig) {
526 dev_err(afe->dev, "Unable to allocate IIO trigger\n");
527 ret = -ENOMEM;
528 goto err_disable_reg;
531 iio_trigger_set_drvdata(afe->trig, indio_dev);
533 afe->trig->ops = &afe4403_trigger_ops;
534 afe->trig->dev.parent = afe->dev;
536 ret = iio_trigger_register(afe->trig);
537 if (ret) {
538 dev_err(afe->dev, "Unable to register IIO trigger\n");
539 goto err_disable_reg;
542 ret = devm_request_threaded_irq(afe->dev, afe->irq,
543 iio_trigger_generic_data_rdy_poll,
544 NULL, IRQF_ONESHOT,
545 AFE4403_DRIVER_NAME,
546 afe->trig);
547 if (ret) {
548 dev_err(afe->dev, "Unable to request IRQ\n");
549 goto err_trig;
553 ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
554 afe4403_trigger_handler, NULL);
555 if (ret) {
556 dev_err(afe->dev, "Unable to setup buffer\n");
557 goto err_trig;
560 ret = iio_device_register(indio_dev);
561 if (ret) {
562 dev_err(afe->dev, "Unable to register IIO device\n");
563 goto err_buff;
566 return 0;
568 err_buff:
569 iio_triggered_buffer_cleanup(indio_dev);
570 err_trig:
571 if (afe->irq > 0)
572 iio_trigger_unregister(afe->trig);
573 err_disable_reg:
574 regulator_disable(afe->regulator);
576 return ret;
579 static int afe4403_remove(struct spi_device *spi)
581 struct iio_dev *indio_dev = spi_get_drvdata(spi);
582 struct afe4403_data *afe = iio_priv(indio_dev);
583 int ret;
585 iio_device_unregister(indio_dev);
587 iio_triggered_buffer_cleanup(indio_dev);
589 if (afe->irq > 0)
590 iio_trigger_unregister(afe->trig);
592 ret = regulator_disable(afe->regulator);
593 if (ret) {
594 dev_err(afe->dev, "Unable to disable regulator\n");
595 return ret;
598 return 0;
601 static const struct spi_device_id afe4403_ids[] = {
602 { "afe4403", 0 },
603 { /* sentinel */ }
605 MODULE_DEVICE_TABLE(spi, afe4403_ids);
607 static struct spi_driver afe4403_spi_driver = {
608 .driver = {
609 .name = AFE4403_DRIVER_NAME,
610 .of_match_table = afe4403_of_match,
611 .pm = &afe4403_pm_ops,
613 .probe = afe4403_probe,
614 .remove = afe4403_remove,
615 .id_table = afe4403_ids,
617 module_spi_driver(afe4403_spi_driver);
619 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
620 MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE");
621 MODULE_LICENSE("GPL v2");