2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
54 #include "core_priv.h"
55 #include <trace/events/rdma_core.h>
57 #include <trace/events/rdma_core.h>
59 static int ib_resolve_eth_dmac(struct ib_device
*device
,
60 struct rdma_ah_attr
*ah_attr
);
62 static const char * const ib_events
[] = {
63 [IB_EVENT_CQ_ERR
] = "CQ error",
64 [IB_EVENT_QP_FATAL
] = "QP fatal error",
65 [IB_EVENT_QP_REQ_ERR
] = "QP request error",
66 [IB_EVENT_QP_ACCESS_ERR
] = "QP access error",
67 [IB_EVENT_COMM_EST
] = "communication established",
68 [IB_EVENT_SQ_DRAINED
] = "send queue drained",
69 [IB_EVENT_PATH_MIG
] = "path migration successful",
70 [IB_EVENT_PATH_MIG_ERR
] = "path migration error",
71 [IB_EVENT_DEVICE_FATAL
] = "device fatal error",
72 [IB_EVENT_PORT_ACTIVE
] = "port active",
73 [IB_EVENT_PORT_ERR
] = "port error",
74 [IB_EVENT_LID_CHANGE
] = "LID change",
75 [IB_EVENT_PKEY_CHANGE
] = "P_key change",
76 [IB_EVENT_SM_CHANGE
] = "SM change",
77 [IB_EVENT_SRQ_ERR
] = "SRQ error",
78 [IB_EVENT_SRQ_LIMIT_REACHED
] = "SRQ limit reached",
79 [IB_EVENT_QP_LAST_WQE_REACHED
] = "last WQE reached",
80 [IB_EVENT_CLIENT_REREGISTER
] = "client reregister",
81 [IB_EVENT_GID_CHANGE
] = "GID changed",
84 const char *__attribute_const__
ib_event_msg(enum ib_event_type event
)
88 return (index
< ARRAY_SIZE(ib_events
) && ib_events
[index
]) ?
89 ib_events
[index
] : "unrecognized event";
91 EXPORT_SYMBOL(ib_event_msg
);
93 static const char * const wc_statuses
[] = {
94 [IB_WC_SUCCESS
] = "success",
95 [IB_WC_LOC_LEN_ERR
] = "local length error",
96 [IB_WC_LOC_QP_OP_ERR
] = "local QP operation error",
97 [IB_WC_LOC_EEC_OP_ERR
] = "local EE context operation error",
98 [IB_WC_LOC_PROT_ERR
] = "local protection error",
99 [IB_WC_WR_FLUSH_ERR
] = "WR flushed",
100 [IB_WC_MW_BIND_ERR
] = "memory management operation error",
101 [IB_WC_BAD_RESP_ERR
] = "bad response error",
102 [IB_WC_LOC_ACCESS_ERR
] = "local access error",
103 [IB_WC_REM_INV_REQ_ERR
] = "invalid request error",
104 [IB_WC_REM_ACCESS_ERR
] = "remote access error",
105 [IB_WC_REM_OP_ERR
] = "remote operation error",
106 [IB_WC_RETRY_EXC_ERR
] = "transport retry counter exceeded",
107 [IB_WC_RNR_RETRY_EXC_ERR
] = "RNR retry counter exceeded",
108 [IB_WC_LOC_RDD_VIOL_ERR
] = "local RDD violation error",
109 [IB_WC_REM_INV_RD_REQ_ERR
] = "remote invalid RD request",
110 [IB_WC_REM_ABORT_ERR
] = "operation aborted",
111 [IB_WC_INV_EECN_ERR
] = "invalid EE context number",
112 [IB_WC_INV_EEC_STATE_ERR
] = "invalid EE context state",
113 [IB_WC_FATAL_ERR
] = "fatal error",
114 [IB_WC_RESP_TIMEOUT_ERR
] = "response timeout error",
115 [IB_WC_GENERAL_ERR
] = "general error",
118 const char *__attribute_const__
ib_wc_status_msg(enum ib_wc_status status
)
120 size_t index
= status
;
122 return (index
< ARRAY_SIZE(wc_statuses
) && wc_statuses
[index
]) ?
123 wc_statuses
[index
] : "unrecognized status";
125 EXPORT_SYMBOL(ib_wc_status_msg
);
127 __attribute_const__
int ib_rate_to_mult(enum ib_rate rate
)
130 case IB_RATE_2_5_GBPS
: return 1;
131 case IB_RATE_5_GBPS
: return 2;
132 case IB_RATE_10_GBPS
: return 4;
133 case IB_RATE_20_GBPS
: return 8;
134 case IB_RATE_30_GBPS
: return 12;
135 case IB_RATE_40_GBPS
: return 16;
136 case IB_RATE_60_GBPS
: return 24;
137 case IB_RATE_80_GBPS
: return 32;
138 case IB_RATE_120_GBPS
: return 48;
139 case IB_RATE_14_GBPS
: return 6;
140 case IB_RATE_56_GBPS
: return 22;
141 case IB_RATE_112_GBPS
: return 45;
142 case IB_RATE_168_GBPS
: return 67;
143 case IB_RATE_25_GBPS
: return 10;
144 case IB_RATE_100_GBPS
: return 40;
145 case IB_RATE_200_GBPS
: return 80;
146 case IB_RATE_300_GBPS
: return 120;
147 case IB_RATE_28_GBPS
: return 11;
148 case IB_RATE_50_GBPS
: return 20;
149 case IB_RATE_400_GBPS
: return 160;
150 case IB_RATE_600_GBPS
: return 240;
154 EXPORT_SYMBOL(ib_rate_to_mult
);
156 __attribute_const__
enum ib_rate
mult_to_ib_rate(int mult
)
159 case 1: return IB_RATE_2_5_GBPS
;
160 case 2: return IB_RATE_5_GBPS
;
161 case 4: return IB_RATE_10_GBPS
;
162 case 8: return IB_RATE_20_GBPS
;
163 case 12: return IB_RATE_30_GBPS
;
164 case 16: return IB_RATE_40_GBPS
;
165 case 24: return IB_RATE_60_GBPS
;
166 case 32: return IB_RATE_80_GBPS
;
167 case 48: return IB_RATE_120_GBPS
;
168 case 6: return IB_RATE_14_GBPS
;
169 case 22: return IB_RATE_56_GBPS
;
170 case 45: return IB_RATE_112_GBPS
;
171 case 67: return IB_RATE_168_GBPS
;
172 case 10: return IB_RATE_25_GBPS
;
173 case 40: return IB_RATE_100_GBPS
;
174 case 80: return IB_RATE_200_GBPS
;
175 case 120: return IB_RATE_300_GBPS
;
176 case 11: return IB_RATE_28_GBPS
;
177 case 20: return IB_RATE_50_GBPS
;
178 case 160: return IB_RATE_400_GBPS
;
179 case 240: return IB_RATE_600_GBPS
;
180 default: return IB_RATE_PORT_CURRENT
;
183 EXPORT_SYMBOL(mult_to_ib_rate
);
185 __attribute_const__
int ib_rate_to_mbps(enum ib_rate rate
)
188 case IB_RATE_2_5_GBPS
: return 2500;
189 case IB_RATE_5_GBPS
: return 5000;
190 case IB_RATE_10_GBPS
: return 10000;
191 case IB_RATE_20_GBPS
: return 20000;
192 case IB_RATE_30_GBPS
: return 30000;
193 case IB_RATE_40_GBPS
: return 40000;
194 case IB_RATE_60_GBPS
: return 60000;
195 case IB_RATE_80_GBPS
: return 80000;
196 case IB_RATE_120_GBPS
: return 120000;
197 case IB_RATE_14_GBPS
: return 14062;
198 case IB_RATE_56_GBPS
: return 56250;
199 case IB_RATE_112_GBPS
: return 112500;
200 case IB_RATE_168_GBPS
: return 168750;
201 case IB_RATE_25_GBPS
: return 25781;
202 case IB_RATE_100_GBPS
: return 103125;
203 case IB_RATE_200_GBPS
: return 206250;
204 case IB_RATE_300_GBPS
: return 309375;
205 case IB_RATE_28_GBPS
: return 28125;
206 case IB_RATE_50_GBPS
: return 53125;
207 case IB_RATE_400_GBPS
: return 425000;
208 case IB_RATE_600_GBPS
: return 637500;
212 EXPORT_SYMBOL(ib_rate_to_mbps
);
214 __attribute_const__
enum rdma_transport_type
215 rdma_node_get_transport(unsigned int node_type
)
218 if (node_type
== RDMA_NODE_USNIC
)
219 return RDMA_TRANSPORT_USNIC
;
220 if (node_type
== RDMA_NODE_USNIC_UDP
)
221 return RDMA_TRANSPORT_USNIC_UDP
;
222 if (node_type
== RDMA_NODE_RNIC
)
223 return RDMA_TRANSPORT_IWARP
;
224 if (node_type
== RDMA_NODE_UNSPECIFIED
)
225 return RDMA_TRANSPORT_UNSPECIFIED
;
227 return RDMA_TRANSPORT_IB
;
229 EXPORT_SYMBOL(rdma_node_get_transport
);
231 enum rdma_link_layer
rdma_port_get_link_layer(struct ib_device
*device
, u8 port_num
)
233 enum rdma_transport_type lt
;
234 if (device
->ops
.get_link_layer
)
235 return device
->ops
.get_link_layer(device
, port_num
);
237 lt
= rdma_node_get_transport(device
->node_type
);
238 if (lt
== RDMA_TRANSPORT_IB
)
239 return IB_LINK_LAYER_INFINIBAND
;
241 return IB_LINK_LAYER_ETHERNET
;
243 EXPORT_SYMBOL(rdma_port_get_link_layer
);
245 /* Protection domains */
248 * ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
259 struct ib_pd
*__ib_alloc_pd(struct ib_device
*device
, unsigned int flags
,
263 int mr_access_flags
= 0;
266 pd
= rdma_zalloc_drv_obj(device
, ib_pd
);
268 return ERR_PTR(-ENOMEM
);
272 pd
->__internal_mr
= NULL
;
273 atomic_set(&pd
->usecnt
, 0);
276 pd
->res
.type
= RDMA_RESTRACK_PD
;
277 rdma_restrack_set_task(&pd
->res
, caller
);
279 ret
= device
->ops
.alloc_pd(pd
, NULL
);
284 rdma_restrack_kadd(&pd
->res
);
286 if (device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
)
287 pd
->local_dma_lkey
= device
->local_dma_lkey
;
289 mr_access_flags
|= IB_ACCESS_LOCAL_WRITE
;
291 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
) {
292 pr_warn("%s: enabling unsafe global rkey\n", caller
);
293 mr_access_flags
|= IB_ACCESS_REMOTE_READ
| IB_ACCESS_REMOTE_WRITE
;
296 if (mr_access_flags
) {
299 mr
= pd
->device
->ops
.get_dma_mr(pd
, mr_access_flags
);
305 mr
->device
= pd
->device
;
307 mr
->type
= IB_MR_TYPE_DMA
;
309 mr
->need_inval
= false;
311 pd
->__internal_mr
= mr
;
313 if (!(device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
))
314 pd
->local_dma_lkey
= pd
->__internal_mr
->lkey
;
316 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
)
317 pd
->unsafe_global_rkey
= pd
->__internal_mr
->rkey
;
322 EXPORT_SYMBOL(__ib_alloc_pd
);
325 * ib_dealloc_pd_user - Deallocates a protection domain.
326 * @pd: The protection domain to deallocate.
327 * @udata: Valid user data or NULL for kernel object
329 * It is an error to call this function while any resources in the pd still
330 * exist. The caller is responsible to synchronously destroy them and
331 * guarantee no new allocations will happen.
333 void ib_dealloc_pd_user(struct ib_pd
*pd
, struct ib_udata
*udata
)
337 if (pd
->__internal_mr
) {
338 ret
= pd
->device
->ops
.dereg_mr(pd
->__internal_mr
, NULL
);
340 pd
->__internal_mr
= NULL
;
343 /* uverbs manipulates usecnt with proper locking, while the kabi
344 requires the caller to guarantee we can't race here. */
345 WARN_ON(atomic_read(&pd
->usecnt
));
347 rdma_restrack_del(&pd
->res
);
348 pd
->device
->ops
.dealloc_pd(pd
, udata
);
351 EXPORT_SYMBOL(ib_dealloc_pd_user
);
353 /* Address handles */
356 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
357 * @dest: Pointer to destination ah_attr. Contents of the destination
358 * pointer is assumed to be invalid and attribute are overwritten.
359 * @src: Pointer to source ah_attr.
361 void rdma_copy_ah_attr(struct rdma_ah_attr
*dest
,
362 const struct rdma_ah_attr
*src
)
365 if (dest
->grh
.sgid_attr
)
366 rdma_hold_gid_attr(dest
->grh
.sgid_attr
);
368 EXPORT_SYMBOL(rdma_copy_ah_attr
);
371 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
372 * @old: Pointer to existing ah_attr which needs to be replaced.
373 * old is assumed to be valid or zero'd
374 * @new: Pointer to the new ah_attr.
376 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
377 * old the ah_attr is valid; after that it copies the new attribute and holds
378 * the reference to the replaced ah_attr.
380 void rdma_replace_ah_attr(struct rdma_ah_attr
*old
,
381 const struct rdma_ah_attr
*new)
383 rdma_destroy_ah_attr(old
);
385 if (old
->grh
.sgid_attr
)
386 rdma_hold_gid_attr(old
->grh
.sgid_attr
);
388 EXPORT_SYMBOL(rdma_replace_ah_attr
);
391 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
392 * @dest: Pointer to destination ah_attr to copy to.
393 * dest is assumed to be valid or zero'd
394 * @src: Pointer to the new ah_attr.
396 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
397 * if it is valid. This also transfers ownership of internal references from
398 * src to dest, making src invalid in the process. No new reference of the src
401 void rdma_move_ah_attr(struct rdma_ah_attr
*dest
, struct rdma_ah_attr
*src
)
403 rdma_destroy_ah_attr(dest
);
405 src
->grh
.sgid_attr
= NULL
;
407 EXPORT_SYMBOL(rdma_move_ah_attr
);
410 * Validate that the rdma_ah_attr is valid for the device before passing it
413 static int rdma_check_ah_attr(struct ib_device
*device
,
414 struct rdma_ah_attr
*ah_attr
)
416 if (!rdma_is_port_valid(device
, ah_attr
->port_num
))
419 if ((rdma_is_grh_required(device
, ah_attr
->port_num
) ||
420 ah_attr
->type
== RDMA_AH_ATTR_TYPE_ROCE
) &&
421 !(ah_attr
->ah_flags
& IB_AH_GRH
))
424 if (ah_attr
->grh
.sgid_attr
) {
426 * Make sure the passed sgid_attr is consistent with the
429 if (ah_attr
->grh
.sgid_attr
->index
!= ah_attr
->grh
.sgid_index
||
430 ah_attr
->grh
.sgid_attr
->port_num
!= ah_attr
->port_num
)
437 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
438 * On success the caller is responsible to call rdma_unfill_sgid_attr().
440 static int rdma_fill_sgid_attr(struct ib_device
*device
,
441 struct rdma_ah_attr
*ah_attr
,
442 const struct ib_gid_attr
**old_sgid_attr
)
444 const struct ib_gid_attr
*sgid_attr
;
445 struct ib_global_route
*grh
;
448 *old_sgid_attr
= ah_attr
->grh
.sgid_attr
;
450 ret
= rdma_check_ah_attr(device
, ah_attr
);
454 if (!(ah_attr
->ah_flags
& IB_AH_GRH
))
457 grh
= rdma_ah_retrieve_grh(ah_attr
);
462 rdma_get_gid_attr(device
, ah_attr
->port_num
, grh
->sgid_index
);
463 if (IS_ERR(sgid_attr
))
464 return PTR_ERR(sgid_attr
);
466 /* Move ownerhip of the kref into the ah_attr */
467 grh
->sgid_attr
= sgid_attr
;
471 static void rdma_unfill_sgid_attr(struct rdma_ah_attr
*ah_attr
,
472 const struct ib_gid_attr
*old_sgid_attr
)
475 * Fill didn't change anything, the caller retains ownership of
478 if (ah_attr
->grh
.sgid_attr
== old_sgid_attr
)
482 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
483 * doesn't see any change in the rdma_ah_attr. If we get here
484 * old_sgid_attr is NULL.
486 rdma_destroy_ah_attr(ah_attr
);
489 static const struct ib_gid_attr
*
490 rdma_update_sgid_attr(struct rdma_ah_attr
*ah_attr
,
491 const struct ib_gid_attr
*old_attr
)
494 rdma_put_gid_attr(old_attr
);
495 if (ah_attr
->ah_flags
& IB_AH_GRH
) {
496 rdma_hold_gid_attr(ah_attr
->grh
.sgid_attr
);
497 return ah_attr
->grh
.sgid_attr
;
502 static struct ib_ah
*_rdma_create_ah(struct ib_pd
*pd
,
503 struct rdma_ah_attr
*ah_attr
,
505 struct ib_udata
*udata
)
507 struct ib_device
*device
= pd
->device
;
511 might_sleep_if(flags
& RDMA_CREATE_AH_SLEEPABLE
);
513 if (!device
->ops
.create_ah
)
514 return ERR_PTR(-EOPNOTSUPP
);
516 ah
= rdma_zalloc_drv_obj_gfp(
518 (flags
& RDMA_CREATE_AH_SLEEPABLE
) ? GFP_KERNEL
: GFP_ATOMIC
);
520 return ERR_PTR(-ENOMEM
);
524 ah
->type
= ah_attr
->type
;
525 ah
->sgid_attr
= rdma_update_sgid_attr(ah_attr
, NULL
);
527 ret
= device
->ops
.create_ah(ah
, ah_attr
, flags
, udata
);
533 atomic_inc(&pd
->usecnt
);
538 * rdma_create_ah - Creates an address handle for the
539 * given address vector.
540 * @pd: The protection domain associated with the address handle.
541 * @ah_attr: The attributes of the address vector.
542 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
544 * It returns 0 on success and returns appropriate error code on error.
545 * The address handle is used to reference a local or global destination
546 * in all UD QP post sends.
548 struct ib_ah
*rdma_create_ah(struct ib_pd
*pd
, struct rdma_ah_attr
*ah_attr
,
551 const struct ib_gid_attr
*old_sgid_attr
;
555 ret
= rdma_fill_sgid_attr(pd
->device
, ah_attr
, &old_sgid_attr
);
559 ah
= _rdma_create_ah(pd
, ah_attr
, flags
, NULL
);
561 rdma_unfill_sgid_attr(ah_attr
, old_sgid_attr
);
564 EXPORT_SYMBOL(rdma_create_ah
);
567 * rdma_create_user_ah - Creates an address handle for the
568 * given address vector.
569 * It resolves destination mac address for ah attribute of RoCE type.
570 * @pd: The protection domain associated with the address handle.
571 * @ah_attr: The attributes of the address vector.
572 * @udata: pointer to user's input output buffer information need by
575 * It returns 0 on success and returns appropriate error code on error.
576 * The address handle is used to reference a local or global destination
577 * in all UD QP post sends.
579 struct ib_ah
*rdma_create_user_ah(struct ib_pd
*pd
,
580 struct rdma_ah_attr
*ah_attr
,
581 struct ib_udata
*udata
)
583 const struct ib_gid_attr
*old_sgid_attr
;
587 err
= rdma_fill_sgid_attr(pd
->device
, ah_attr
, &old_sgid_attr
);
591 if (ah_attr
->type
== RDMA_AH_ATTR_TYPE_ROCE
) {
592 err
= ib_resolve_eth_dmac(pd
->device
, ah_attr
);
599 ah
= _rdma_create_ah(pd
, ah_attr
, RDMA_CREATE_AH_SLEEPABLE
, udata
);
602 rdma_unfill_sgid_attr(ah_attr
, old_sgid_attr
);
605 EXPORT_SYMBOL(rdma_create_user_ah
);
607 int ib_get_rdma_header_version(const union rdma_network_hdr
*hdr
)
609 const struct iphdr
*ip4h
= (struct iphdr
*)&hdr
->roce4grh
;
610 struct iphdr ip4h_checked
;
611 const struct ipv6hdr
*ip6h
= (struct ipv6hdr
*)&hdr
->ibgrh
;
613 /* If it's IPv6, the version must be 6, otherwise, the first
614 * 20 bytes (before the IPv4 header) are garbled.
616 if (ip6h
->version
!= 6)
617 return (ip4h
->version
== 4) ? 4 : 0;
618 /* version may be 6 or 4 because the first 20 bytes could be garbled */
620 /* RoCE v2 requires no options, thus header length
627 * We can't write on scattered buffers so we need to copy to
630 memcpy(&ip4h_checked
, ip4h
, sizeof(ip4h_checked
));
631 ip4h_checked
.check
= 0;
632 ip4h_checked
.check
= ip_fast_csum((u8
*)&ip4h_checked
, 5);
633 /* if IPv4 header checksum is OK, believe it */
634 if (ip4h
->check
== ip4h_checked
.check
)
638 EXPORT_SYMBOL(ib_get_rdma_header_version
);
640 static enum rdma_network_type
ib_get_net_type_by_grh(struct ib_device
*device
,
642 const struct ib_grh
*grh
)
646 if (rdma_protocol_ib(device
, port_num
))
647 return RDMA_NETWORK_IB
;
649 grh_version
= ib_get_rdma_header_version((union rdma_network_hdr
*)grh
);
651 if (grh_version
== 4)
652 return RDMA_NETWORK_IPV4
;
654 if (grh
->next_hdr
== IPPROTO_UDP
)
655 return RDMA_NETWORK_IPV6
;
657 return RDMA_NETWORK_ROCE_V1
;
660 struct find_gid_index_context
{
662 enum ib_gid_type gid_type
;
665 static bool find_gid_index(const union ib_gid
*gid
,
666 const struct ib_gid_attr
*gid_attr
,
669 struct find_gid_index_context
*ctx
= context
;
670 u16 vlan_id
= 0xffff;
673 if (ctx
->gid_type
!= gid_attr
->gid_type
)
676 ret
= rdma_read_gid_l2_fields(gid_attr
, &vlan_id
, NULL
);
680 return ctx
->vlan_id
== vlan_id
;
683 static const struct ib_gid_attr
*
684 get_sgid_attr_from_eth(struct ib_device
*device
, u8 port_num
,
685 u16 vlan_id
, const union ib_gid
*sgid
,
686 enum ib_gid_type gid_type
)
688 struct find_gid_index_context context
= {.vlan_id
= vlan_id
,
689 .gid_type
= gid_type
};
691 return rdma_find_gid_by_filter(device
, sgid
, port_num
, find_gid_index
,
695 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr
*hdr
,
696 enum rdma_network_type net_type
,
697 union ib_gid
*sgid
, union ib_gid
*dgid
)
699 struct sockaddr_in src_in
;
700 struct sockaddr_in dst_in
;
701 __be32 src_saddr
, dst_saddr
;
706 if (net_type
== RDMA_NETWORK_IPV4
) {
707 memcpy(&src_in
.sin_addr
.s_addr
,
708 &hdr
->roce4grh
.saddr
, 4);
709 memcpy(&dst_in
.sin_addr
.s_addr
,
710 &hdr
->roce4grh
.daddr
, 4);
711 src_saddr
= src_in
.sin_addr
.s_addr
;
712 dst_saddr
= dst_in
.sin_addr
.s_addr
;
713 ipv6_addr_set_v4mapped(src_saddr
,
714 (struct in6_addr
*)sgid
);
715 ipv6_addr_set_v4mapped(dst_saddr
,
716 (struct in6_addr
*)dgid
);
718 } else if (net_type
== RDMA_NETWORK_IPV6
||
719 net_type
== RDMA_NETWORK_IB
) {
720 *dgid
= hdr
->ibgrh
.dgid
;
721 *sgid
= hdr
->ibgrh
.sgid
;
727 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr
);
729 /* Resolve destination mac address and hop limit for unicast destination
730 * GID entry, considering the source GID entry as well.
731 * ah_attribute must have have valid port_num, sgid_index.
733 static int ib_resolve_unicast_gid_dmac(struct ib_device
*device
,
734 struct rdma_ah_attr
*ah_attr
)
736 struct ib_global_route
*grh
= rdma_ah_retrieve_grh(ah_attr
);
737 const struct ib_gid_attr
*sgid_attr
= grh
->sgid_attr
;
738 int hop_limit
= 0xff;
741 /* If destination is link local and source GID is RoCEv1,
742 * IP stack is not used.
744 if (rdma_link_local_addr((struct in6_addr
*)grh
->dgid
.raw
) &&
745 sgid_attr
->gid_type
== IB_GID_TYPE_ROCE
) {
746 rdma_get_ll_mac((struct in6_addr
*)grh
->dgid
.raw
,
751 ret
= rdma_addr_find_l2_eth_by_grh(&sgid_attr
->gid
, &grh
->dgid
,
753 sgid_attr
, &hop_limit
);
755 grh
->hop_limit
= hop_limit
;
760 * This function initializes address handle attributes from the incoming packet.
761 * Incoming packet has dgid of the receiver node on which this code is
762 * getting executed and, sgid contains the GID of the sender.
764 * When resolving mac address of destination, the arrived dgid is used
765 * as sgid and, sgid is used as dgid because sgid contains destinations
766 * GID whom to respond to.
768 * On success the caller is responsible to call rdma_destroy_ah_attr on the
771 int ib_init_ah_attr_from_wc(struct ib_device
*device
, u8 port_num
,
772 const struct ib_wc
*wc
, const struct ib_grh
*grh
,
773 struct rdma_ah_attr
*ah_attr
)
777 enum rdma_network_type net_type
= RDMA_NETWORK_IB
;
778 enum ib_gid_type gid_type
= IB_GID_TYPE_IB
;
779 const struct ib_gid_attr
*sgid_attr
;
786 memset(ah_attr
, 0, sizeof *ah_attr
);
787 ah_attr
->type
= rdma_ah_find_type(device
, port_num
);
788 if (rdma_cap_eth_ah(device
, port_num
)) {
789 if (wc
->wc_flags
& IB_WC_WITH_NETWORK_HDR_TYPE
)
790 net_type
= wc
->network_hdr_type
;
792 net_type
= ib_get_net_type_by_grh(device
, port_num
, grh
);
793 gid_type
= ib_network_to_gid_type(net_type
);
795 ret
= ib_get_gids_from_rdma_hdr((union rdma_network_hdr
*)grh
, net_type
,
800 rdma_ah_set_sl(ah_attr
, wc
->sl
);
801 rdma_ah_set_port_num(ah_attr
, port_num
);
803 if (rdma_protocol_roce(device
, port_num
)) {
804 u16 vlan_id
= wc
->wc_flags
& IB_WC_WITH_VLAN
?
805 wc
->vlan_id
: 0xffff;
807 if (!(wc
->wc_flags
& IB_WC_GRH
))
810 sgid_attr
= get_sgid_attr_from_eth(device
, port_num
,
813 if (IS_ERR(sgid_attr
))
814 return PTR_ERR(sgid_attr
);
816 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
817 rdma_move_grh_sgid_attr(ah_attr
,
819 flow_class
& 0xFFFFF,
821 (flow_class
>> 20) & 0xFF,
824 ret
= ib_resolve_unicast_gid_dmac(device
, ah_attr
);
826 rdma_destroy_ah_attr(ah_attr
);
830 rdma_ah_set_dlid(ah_attr
, wc
->slid
);
831 rdma_ah_set_path_bits(ah_attr
, wc
->dlid_path_bits
);
833 if ((wc
->wc_flags
& IB_WC_GRH
) == 0)
836 if (dgid
.global
.interface_id
!=
837 cpu_to_be64(IB_SA_WELL_KNOWN_GUID
)) {
838 sgid_attr
= rdma_find_gid_by_port(
839 device
, &dgid
, IB_GID_TYPE_IB
, port_num
, NULL
);
841 sgid_attr
= rdma_get_gid_attr(device
, port_num
, 0);
843 if (IS_ERR(sgid_attr
))
844 return PTR_ERR(sgid_attr
);
845 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
846 rdma_move_grh_sgid_attr(ah_attr
,
848 flow_class
& 0xFFFFF,
850 (flow_class
>> 20) & 0xFF,
856 EXPORT_SYMBOL(ib_init_ah_attr_from_wc
);
859 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
862 * @attr: Pointer to AH attribute structure
863 * @dgid: Destination GID
864 * @flow_label: Flow label
865 * @hop_limit: Hop limit
866 * @traffic_class: traffic class
867 * @sgid_attr: Pointer to SGID attribute
869 * This takes ownership of the sgid_attr reference. The caller must ensure
870 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
871 * calling this function.
873 void rdma_move_grh_sgid_attr(struct rdma_ah_attr
*attr
, union ib_gid
*dgid
,
874 u32 flow_label
, u8 hop_limit
, u8 traffic_class
,
875 const struct ib_gid_attr
*sgid_attr
)
877 rdma_ah_set_grh(attr
, dgid
, flow_label
, sgid_attr
->index
, hop_limit
,
879 attr
->grh
.sgid_attr
= sgid_attr
;
881 EXPORT_SYMBOL(rdma_move_grh_sgid_attr
);
884 * rdma_destroy_ah_attr - Release reference to SGID attribute of
886 * @ah_attr: Pointer to ah attribute
888 * Release reference to the SGID attribute of the ah attribute if it is
889 * non NULL. It is safe to call this multiple times, and safe to call it on
890 * a zero initialized ah_attr.
892 void rdma_destroy_ah_attr(struct rdma_ah_attr
*ah_attr
)
894 if (ah_attr
->grh
.sgid_attr
) {
895 rdma_put_gid_attr(ah_attr
->grh
.sgid_attr
);
896 ah_attr
->grh
.sgid_attr
= NULL
;
899 EXPORT_SYMBOL(rdma_destroy_ah_attr
);
901 struct ib_ah
*ib_create_ah_from_wc(struct ib_pd
*pd
, const struct ib_wc
*wc
,
902 const struct ib_grh
*grh
, u8 port_num
)
904 struct rdma_ah_attr ah_attr
;
908 ret
= ib_init_ah_attr_from_wc(pd
->device
, port_num
, wc
, grh
, &ah_attr
);
912 ah
= rdma_create_ah(pd
, &ah_attr
, RDMA_CREATE_AH_SLEEPABLE
);
914 rdma_destroy_ah_attr(&ah_attr
);
917 EXPORT_SYMBOL(ib_create_ah_from_wc
);
919 int rdma_modify_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
921 const struct ib_gid_attr
*old_sgid_attr
;
924 if (ah
->type
!= ah_attr
->type
)
927 ret
= rdma_fill_sgid_attr(ah
->device
, ah_attr
, &old_sgid_attr
);
931 ret
= ah
->device
->ops
.modify_ah
?
932 ah
->device
->ops
.modify_ah(ah
, ah_attr
) :
935 ah
->sgid_attr
= rdma_update_sgid_attr(ah_attr
, ah
->sgid_attr
);
936 rdma_unfill_sgid_attr(ah_attr
, old_sgid_attr
);
939 EXPORT_SYMBOL(rdma_modify_ah
);
941 int rdma_query_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
943 ah_attr
->grh
.sgid_attr
= NULL
;
945 return ah
->device
->ops
.query_ah
?
946 ah
->device
->ops
.query_ah(ah
, ah_attr
) :
949 EXPORT_SYMBOL(rdma_query_ah
);
951 int rdma_destroy_ah_user(struct ib_ah
*ah
, u32 flags
, struct ib_udata
*udata
)
953 const struct ib_gid_attr
*sgid_attr
= ah
->sgid_attr
;
956 might_sleep_if(flags
& RDMA_DESTROY_AH_SLEEPABLE
);
960 ah
->device
->ops
.destroy_ah(ah
, flags
);
961 atomic_dec(&pd
->usecnt
);
963 rdma_put_gid_attr(sgid_attr
);
968 EXPORT_SYMBOL(rdma_destroy_ah_user
);
970 /* Shared receive queues */
972 struct ib_srq
*ib_create_srq(struct ib_pd
*pd
,
973 struct ib_srq_init_attr
*srq_init_attr
)
978 if (!pd
->device
->ops
.create_srq
)
979 return ERR_PTR(-EOPNOTSUPP
);
981 srq
= rdma_zalloc_drv_obj(pd
->device
, ib_srq
);
983 return ERR_PTR(-ENOMEM
);
985 srq
->device
= pd
->device
;
987 srq
->event_handler
= srq_init_attr
->event_handler
;
988 srq
->srq_context
= srq_init_attr
->srq_context
;
989 srq
->srq_type
= srq_init_attr
->srq_type
;
991 if (ib_srq_has_cq(srq
->srq_type
)) {
992 srq
->ext
.cq
= srq_init_attr
->ext
.cq
;
993 atomic_inc(&srq
->ext
.cq
->usecnt
);
995 if (srq
->srq_type
== IB_SRQT_XRC
) {
996 srq
->ext
.xrc
.xrcd
= srq_init_attr
->ext
.xrc
.xrcd
;
997 atomic_inc(&srq
->ext
.xrc
.xrcd
->usecnt
);
999 atomic_inc(&pd
->usecnt
);
1001 ret
= pd
->device
->ops
.create_srq(srq
, srq_init_attr
, NULL
);
1003 atomic_dec(&srq
->pd
->usecnt
);
1004 if (srq
->srq_type
== IB_SRQT_XRC
)
1005 atomic_dec(&srq
->ext
.xrc
.xrcd
->usecnt
);
1006 if (ib_srq_has_cq(srq
->srq_type
))
1007 atomic_dec(&srq
->ext
.cq
->usecnt
);
1009 return ERR_PTR(ret
);
1014 EXPORT_SYMBOL(ib_create_srq
);
1016 int ib_modify_srq(struct ib_srq
*srq
,
1017 struct ib_srq_attr
*srq_attr
,
1018 enum ib_srq_attr_mask srq_attr_mask
)
1020 return srq
->device
->ops
.modify_srq
?
1021 srq
->device
->ops
.modify_srq(srq
, srq_attr
, srq_attr_mask
,
1022 NULL
) : -EOPNOTSUPP
;
1024 EXPORT_SYMBOL(ib_modify_srq
);
1026 int ib_query_srq(struct ib_srq
*srq
,
1027 struct ib_srq_attr
*srq_attr
)
1029 return srq
->device
->ops
.query_srq
?
1030 srq
->device
->ops
.query_srq(srq
, srq_attr
) : -EOPNOTSUPP
;
1032 EXPORT_SYMBOL(ib_query_srq
);
1034 int ib_destroy_srq_user(struct ib_srq
*srq
, struct ib_udata
*udata
)
1036 if (atomic_read(&srq
->usecnt
))
1039 srq
->device
->ops
.destroy_srq(srq
, udata
);
1041 atomic_dec(&srq
->pd
->usecnt
);
1042 if (srq
->srq_type
== IB_SRQT_XRC
)
1043 atomic_dec(&srq
->ext
.xrc
.xrcd
->usecnt
);
1044 if (ib_srq_has_cq(srq
->srq_type
))
1045 atomic_dec(&srq
->ext
.cq
->usecnt
);
1050 EXPORT_SYMBOL(ib_destroy_srq_user
);
1054 static void __ib_shared_qp_event_handler(struct ib_event
*event
, void *context
)
1056 struct ib_qp
*qp
= context
;
1057 unsigned long flags
;
1059 spin_lock_irqsave(&qp
->device
->qp_open_list_lock
, flags
);
1060 list_for_each_entry(event
->element
.qp
, &qp
->open_list
, open_list
)
1061 if (event
->element
.qp
->event_handler
)
1062 event
->element
.qp
->event_handler(event
, event
->element
.qp
->qp_context
);
1063 spin_unlock_irqrestore(&qp
->device
->qp_open_list_lock
, flags
);
1066 static void __ib_insert_xrcd_qp(struct ib_xrcd
*xrcd
, struct ib_qp
*qp
)
1068 mutex_lock(&xrcd
->tgt_qp_mutex
);
1069 list_add(&qp
->xrcd_list
, &xrcd
->tgt_qp_list
);
1070 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1073 static struct ib_qp
*__ib_open_qp(struct ib_qp
*real_qp
,
1074 void (*event_handler
)(struct ib_event
*, void *),
1078 unsigned long flags
;
1081 qp
= kzalloc(sizeof *qp
, GFP_KERNEL
);
1083 return ERR_PTR(-ENOMEM
);
1085 qp
->real_qp
= real_qp
;
1086 err
= ib_open_shared_qp_security(qp
, real_qp
->device
);
1089 return ERR_PTR(err
);
1092 qp
->real_qp
= real_qp
;
1093 atomic_inc(&real_qp
->usecnt
);
1094 qp
->device
= real_qp
->device
;
1095 qp
->event_handler
= event_handler
;
1096 qp
->qp_context
= qp_context
;
1097 qp
->qp_num
= real_qp
->qp_num
;
1098 qp
->qp_type
= real_qp
->qp_type
;
1100 spin_lock_irqsave(&real_qp
->device
->qp_open_list_lock
, flags
);
1101 list_add(&qp
->open_list
, &real_qp
->open_list
);
1102 spin_unlock_irqrestore(&real_qp
->device
->qp_open_list_lock
, flags
);
1107 struct ib_qp
*ib_open_qp(struct ib_xrcd
*xrcd
,
1108 struct ib_qp_open_attr
*qp_open_attr
)
1110 struct ib_qp
*qp
, *real_qp
;
1112 if (qp_open_attr
->qp_type
!= IB_QPT_XRC_TGT
)
1113 return ERR_PTR(-EINVAL
);
1115 qp
= ERR_PTR(-EINVAL
);
1116 mutex_lock(&xrcd
->tgt_qp_mutex
);
1117 list_for_each_entry(real_qp
, &xrcd
->tgt_qp_list
, xrcd_list
) {
1118 if (real_qp
->qp_num
== qp_open_attr
->qp_num
) {
1119 qp
= __ib_open_qp(real_qp
, qp_open_attr
->event_handler
,
1120 qp_open_attr
->qp_context
);
1124 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1127 EXPORT_SYMBOL(ib_open_qp
);
1129 static struct ib_qp
*create_xrc_qp_user(struct ib_qp
*qp
,
1130 struct ib_qp_init_attr
*qp_init_attr
,
1131 struct ib_udata
*udata
)
1133 struct ib_qp
*real_qp
= qp
;
1135 qp
->event_handler
= __ib_shared_qp_event_handler
;
1136 qp
->qp_context
= qp
;
1138 qp
->send_cq
= qp
->recv_cq
= NULL
;
1140 qp
->xrcd
= qp_init_attr
->xrcd
;
1141 atomic_inc(&qp_init_attr
->xrcd
->usecnt
);
1142 INIT_LIST_HEAD(&qp
->open_list
);
1144 qp
= __ib_open_qp(real_qp
, qp_init_attr
->event_handler
,
1145 qp_init_attr
->qp_context
);
1149 __ib_insert_xrcd_qp(qp_init_attr
->xrcd
, real_qp
);
1153 struct ib_qp
*ib_create_qp_user(struct ib_pd
*pd
,
1154 struct ib_qp_init_attr
*qp_init_attr
,
1155 struct ib_udata
*udata
)
1157 struct ib_device
*device
= pd
? pd
->device
: qp_init_attr
->xrcd
->device
;
1161 if (qp_init_attr
->rwq_ind_tbl
&&
1162 (qp_init_attr
->recv_cq
||
1163 qp_init_attr
->srq
|| qp_init_attr
->cap
.max_recv_wr
||
1164 qp_init_attr
->cap
.max_recv_sge
))
1165 return ERR_PTR(-EINVAL
);
1167 if ((qp_init_attr
->create_flags
& IB_QP_CREATE_INTEGRITY_EN
) &&
1168 !(device
->attrs
.device_cap_flags
& IB_DEVICE_INTEGRITY_HANDOVER
))
1169 return ERR_PTR(-EINVAL
);
1172 * If the callers is using the RDMA API calculate the resources
1173 * needed for the RDMA READ/WRITE operations.
1175 * Note that these callers need to pass in a port number.
1177 if (qp_init_attr
->cap
.max_rdma_ctxs
)
1178 rdma_rw_init_qp(device
, qp_init_attr
);
1180 qp
= _ib_create_qp(device
, pd
, qp_init_attr
, NULL
, NULL
);
1184 ret
= ib_create_qp_security(qp
, device
);
1188 qp
->qp_type
= qp_init_attr
->qp_type
;
1189 qp
->rwq_ind_tbl
= qp_init_attr
->rwq_ind_tbl
;
1191 atomic_set(&qp
->usecnt
, 0);
1193 spin_lock_init(&qp
->mr_lock
);
1194 INIT_LIST_HEAD(&qp
->rdma_mrs
);
1195 INIT_LIST_HEAD(&qp
->sig_mrs
);
1198 if (qp_init_attr
->qp_type
== IB_QPT_XRC_TGT
) {
1199 struct ib_qp
*xrc_qp
=
1200 create_xrc_qp_user(qp
, qp_init_attr
, udata
);
1202 if (IS_ERR(xrc_qp
)) {
1203 ret
= PTR_ERR(xrc_qp
);
1209 qp
->event_handler
= qp_init_attr
->event_handler
;
1210 qp
->qp_context
= qp_init_attr
->qp_context
;
1211 if (qp_init_attr
->qp_type
== IB_QPT_XRC_INI
) {
1215 qp
->recv_cq
= qp_init_attr
->recv_cq
;
1216 if (qp_init_attr
->recv_cq
)
1217 atomic_inc(&qp_init_attr
->recv_cq
->usecnt
);
1218 qp
->srq
= qp_init_attr
->srq
;
1220 atomic_inc(&qp_init_attr
->srq
->usecnt
);
1223 qp
->send_cq
= qp_init_attr
->send_cq
;
1226 atomic_inc(&pd
->usecnt
);
1227 if (qp_init_attr
->send_cq
)
1228 atomic_inc(&qp_init_attr
->send_cq
->usecnt
);
1229 if (qp_init_attr
->rwq_ind_tbl
)
1230 atomic_inc(&qp
->rwq_ind_tbl
->usecnt
);
1232 if (qp_init_attr
->cap
.max_rdma_ctxs
) {
1233 ret
= rdma_rw_init_mrs(qp
, qp_init_attr
);
1239 * Note: all hw drivers guarantee that max_send_sge is lower than
1240 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1241 * max_send_sge <= max_sge_rd.
1243 qp
->max_write_sge
= qp_init_attr
->cap
.max_send_sge
;
1244 qp
->max_read_sge
= min_t(u32
, qp_init_attr
->cap
.max_send_sge
,
1245 device
->attrs
.max_sge_rd
);
1246 if (qp_init_attr
->create_flags
& IB_QP_CREATE_INTEGRITY_EN
)
1247 qp
->integrity_en
= true;
1253 return ERR_PTR(ret
);
1256 EXPORT_SYMBOL(ib_create_qp_user
);
1258 static const struct {
1260 enum ib_qp_attr_mask req_param
[IB_QPT_MAX
];
1261 enum ib_qp_attr_mask opt_param
[IB_QPT_MAX
];
1262 } qp_state_table
[IB_QPS_ERR
+ 1][IB_QPS_ERR
+ 1] = {
1264 [IB_QPS_RESET
] = { .valid
= 1 },
1268 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1271 [IB_QPT_RAW_PACKET
] = IB_QP_PORT
,
1272 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
1274 IB_QP_ACCESS_FLAGS
),
1275 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
1277 IB_QP_ACCESS_FLAGS
),
1278 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
1280 IB_QP_ACCESS_FLAGS
),
1281 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
1283 IB_QP_ACCESS_FLAGS
),
1284 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1286 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1292 [IB_QPS_RESET
] = { .valid
= 1 },
1293 [IB_QPS_ERR
] = { .valid
= 1 },
1297 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1300 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
1302 IB_QP_ACCESS_FLAGS
),
1303 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
1305 IB_QP_ACCESS_FLAGS
),
1306 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
1308 IB_QP_ACCESS_FLAGS
),
1309 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
1311 IB_QP_ACCESS_FLAGS
),
1312 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1314 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1321 [IB_QPT_UC
] = (IB_QP_AV
|
1325 [IB_QPT_RC
] = (IB_QP_AV
|
1329 IB_QP_MAX_DEST_RD_ATOMIC
|
1330 IB_QP_MIN_RNR_TIMER
),
1331 [IB_QPT_XRC_INI
] = (IB_QP_AV
|
1335 [IB_QPT_XRC_TGT
] = (IB_QP_AV
|
1339 IB_QP_MAX_DEST_RD_ATOMIC
|
1340 IB_QP_MIN_RNR_TIMER
),
1343 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1345 [IB_QPT_UC
] = (IB_QP_ALT_PATH
|
1346 IB_QP_ACCESS_FLAGS
|
1348 [IB_QPT_RC
] = (IB_QP_ALT_PATH
|
1349 IB_QP_ACCESS_FLAGS
|
1351 [IB_QPT_XRC_INI
] = (IB_QP_ALT_PATH
|
1352 IB_QP_ACCESS_FLAGS
|
1354 [IB_QPT_XRC_TGT
] = (IB_QP_ALT_PATH
|
1355 IB_QP_ACCESS_FLAGS
|
1357 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1359 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1365 [IB_QPS_RESET
] = { .valid
= 1 },
1366 [IB_QPS_ERR
] = { .valid
= 1 },
1370 [IB_QPT_UD
] = IB_QP_SQ_PSN
,
1371 [IB_QPT_UC
] = IB_QP_SQ_PSN
,
1372 [IB_QPT_RC
] = (IB_QP_TIMEOUT
|
1376 IB_QP_MAX_QP_RD_ATOMIC
),
1377 [IB_QPT_XRC_INI
] = (IB_QP_TIMEOUT
|
1381 IB_QP_MAX_QP_RD_ATOMIC
),
1382 [IB_QPT_XRC_TGT
] = (IB_QP_TIMEOUT
|
1384 [IB_QPT_SMI
] = IB_QP_SQ_PSN
,
1385 [IB_QPT_GSI
] = IB_QP_SQ_PSN
,
1388 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1390 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1392 IB_QP_ACCESS_FLAGS
|
1393 IB_QP_PATH_MIG_STATE
),
1394 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1396 IB_QP_ACCESS_FLAGS
|
1397 IB_QP_MIN_RNR_TIMER
|
1398 IB_QP_PATH_MIG_STATE
),
1399 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1401 IB_QP_ACCESS_FLAGS
|
1402 IB_QP_PATH_MIG_STATE
),
1403 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1405 IB_QP_ACCESS_FLAGS
|
1406 IB_QP_MIN_RNR_TIMER
|
1407 IB_QP_PATH_MIG_STATE
),
1408 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1410 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1412 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1417 [IB_QPS_RESET
] = { .valid
= 1 },
1418 [IB_QPS_ERR
] = { .valid
= 1 },
1422 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1424 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1425 IB_QP_ACCESS_FLAGS
|
1427 IB_QP_PATH_MIG_STATE
),
1428 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1429 IB_QP_ACCESS_FLAGS
|
1431 IB_QP_PATH_MIG_STATE
|
1432 IB_QP_MIN_RNR_TIMER
),
1433 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1434 IB_QP_ACCESS_FLAGS
|
1436 IB_QP_PATH_MIG_STATE
),
1437 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1438 IB_QP_ACCESS_FLAGS
|
1440 IB_QP_PATH_MIG_STATE
|
1441 IB_QP_MIN_RNR_TIMER
),
1442 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1444 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1446 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1452 [IB_QPT_UD
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1453 [IB_QPT_UC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1454 [IB_QPT_RC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1455 [IB_QPT_XRC_INI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1456 [IB_QPT_XRC_TGT
] = IB_QP_EN_SQD_ASYNC_NOTIFY
, /* ??? */
1457 [IB_QPT_SMI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1458 [IB_QPT_GSI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
1463 [IB_QPS_RESET
] = { .valid
= 1 },
1464 [IB_QPS_ERR
] = { .valid
= 1 },
1468 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1470 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1472 IB_QP_ACCESS_FLAGS
|
1473 IB_QP_PATH_MIG_STATE
),
1474 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1476 IB_QP_ACCESS_FLAGS
|
1477 IB_QP_MIN_RNR_TIMER
|
1478 IB_QP_PATH_MIG_STATE
),
1479 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1481 IB_QP_ACCESS_FLAGS
|
1482 IB_QP_PATH_MIG_STATE
),
1483 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1485 IB_QP_ACCESS_FLAGS
|
1486 IB_QP_MIN_RNR_TIMER
|
1487 IB_QP_PATH_MIG_STATE
),
1488 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1490 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1497 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1499 [IB_QPT_UC
] = (IB_QP_AV
|
1501 IB_QP_ACCESS_FLAGS
|
1503 IB_QP_PATH_MIG_STATE
),
1504 [IB_QPT_RC
] = (IB_QP_PORT
|
1509 IB_QP_MAX_QP_RD_ATOMIC
|
1510 IB_QP_MAX_DEST_RD_ATOMIC
|
1512 IB_QP_ACCESS_FLAGS
|
1514 IB_QP_MIN_RNR_TIMER
|
1515 IB_QP_PATH_MIG_STATE
),
1516 [IB_QPT_XRC_INI
] = (IB_QP_PORT
|
1521 IB_QP_MAX_QP_RD_ATOMIC
|
1523 IB_QP_ACCESS_FLAGS
|
1525 IB_QP_PATH_MIG_STATE
),
1526 [IB_QPT_XRC_TGT
] = (IB_QP_PORT
|
1529 IB_QP_MAX_DEST_RD_ATOMIC
|
1531 IB_QP_ACCESS_FLAGS
|
1533 IB_QP_MIN_RNR_TIMER
|
1534 IB_QP_PATH_MIG_STATE
),
1535 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1537 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1543 [IB_QPS_RESET
] = { .valid
= 1 },
1544 [IB_QPS_ERR
] = { .valid
= 1 },
1548 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1550 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1551 IB_QP_ACCESS_FLAGS
),
1552 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1554 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1560 [IB_QPS_RESET
] = { .valid
= 1 },
1561 [IB_QPS_ERR
] = { .valid
= 1 }
1565 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state
, enum ib_qp_state next_state
,
1566 enum ib_qp_type type
, enum ib_qp_attr_mask mask
)
1568 enum ib_qp_attr_mask req_param
, opt_param
;
1570 if (mask
& IB_QP_CUR_STATE
&&
1571 cur_state
!= IB_QPS_RTR
&& cur_state
!= IB_QPS_RTS
&&
1572 cur_state
!= IB_QPS_SQD
&& cur_state
!= IB_QPS_SQE
)
1575 if (!qp_state_table
[cur_state
][next_state
].valid
)
1578 req_param
= qp_state_table
[cur_state
][next_state
].req_param
[type
];
1579 opt_param
= qp_state_table
[cur_state
][next_state
].opt_param
[type
];
1581 if ((mask
& req_param
) != req_param
)
1584 if (mask
& ~(req_param
| opt_param
| IB_QP_STATE
))
1589 EXPORT_SYMBOL(ib_modify_qp_is_ok
);
1592 * ib_resolve_eth_dmac - Resolve destination mac address
1593 * @device: Device to consider
1594 * @ah_attr: address handle attribute which describes the
1595 * source and destination parameters
1596 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1597 * returns 0 on success or appropriate error code. It initializes the
1598 * necessary ah_attr fields when call is successful.
1600 static int ib_resolve_eth_dmac(struct ib_device
*device
,
1601 struct rdma_ah_attr
*ah_attr
)
1605 if (rdma_is_multicast_addr((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
)) {
1606 if (ipv6_addr_v4mapped((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
)) {
1609 memcpy(&addr
, ah_attr
->grh
.dgid
.raw
+ 12, 4);
1610 ip_eth_mc_map(addr
, (char *)ah_attr
->roce
.dmac
);
1612 ipv6_eth_mc_map((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
,
1613 (char *)ah_attr
->roce
.dmac
);
1616 ret
= ib_resolve_unicast_gid_dmac(device
, ah_attr
);
1621 static bool is_qp_type_connected(const struct ib_qp
*qp
)
1623 return (qp
->qp_type
== IB_QPT_UC
||
1624 qp
->qp_type
== IB_QPT_RC
||
1625 qp
->qp_type
== IB_QPT_XRC_INI
||
1626 qp
->qp_type
== IB_QPT_XRC_TGT
);
1630 * IB core internal function to perform QP attributes modification.
1632 static int _ib_modify_qp(struct ib_qp
*qp
, struct ib_qp_attr
*attr
,
1633 int attr_mask
, struct ib_udata
*udata
)
1635 u8 port
= attr_mask
& IB_QP_PORT
? attr
->port_num
: qp
->port
;
1636 const struct ib_gid_attr
*old_sgid_attr_av
;
1637 const struct ib_gid_attr
*old_sgid_attr_alt_av
;
1640 if (attr_mask
& IB_QP_AV
) {
1641 ret
= rdma_fill_sgid_attr(qp
->device
, &attr
->ah_attr
,
1646 if (attr_mask
& IB_QP_ALT_PATH
) {
1648 * FIXME: This does not track the migration state, so if the
1649 * user loads a new alternate path after the HW has migrated
1650 * from primary->alternate we will keep the wrong
1651 * references. This is OK for IB because the reference
1652 * counting does not serve any functional purpose.
1654 ret
= rdma_fill_sgid_attr(qp
->device
, &attr
->alt_ah_attr
,
1655 &old_sgid_attr_alt_av
);
1660 * Today the core code can only handle alternate paths and APM
1661 * for IB. Ban them in roce mode.
1663 if (!(rdma_protocol_ib(qp
->device
,
1664 attr
->alt_ah_attr
.port_num
) &&
1665 rdma_protocol_ib(qp
->device
, port
))) {
1672 * If the user provided the qp_attr then we have to resolve it. Kernel
1673 * users have to provide already resolved rdma_ah_attr's
1675 if (udata
&& (attr_mask
& IB_QP_AV
) &&
1676 attr
->ah_attr
.type
== RDMA_AH_ATTR_TYPE_ROCE
&&
1677 is_qp_type_connected(qp
)) {
1678 ret
= ib_resolve_eth_dmac(qp
->device
, &attr
->ah_attr
);
1683 if (rdma_ib_or_roce(qp
->device
, port
)) {
1684 if (attr_mask
& IB_QP_RQ_PSN
&& attr
->rq_psn
& ~0xffffff) {
1685 dev_warn(&qp
->device
->dev
,
1686 "%s rq_psn overflow, masking to 24 bits\n",
1688 attr
->rq_psn
&= 0xffffff;
1691 if (attr_mask
& IB_QP_SQ_PSN
&& attr
->sq_psn
& ~0xffffff) {
1692 dev_warn(&qp
->device
->dev
,
1693 " %s sq_psn overflow, masking to 24 bits\n",
1695 attr
->sq_psn
&= 0xffffff;
1700 * Bind this qp to a counter automatically based on the rdma counter
1701 * rules. This only set in RST2INIT with port specified
1703 if (!qp
->counter
&& (attr_mask
& IB_QP_PORT
) &&
1704 ((attr_mask
& IB_QP_STATE
) && attr
->qp_state
== IB_QPS_INIT
))
1705 rdma_counter_bind_qp_auto(qp
, attr
->port_num
);
1707 ret
= ib_security_modify_qp(qp
, attr
, attr_mask
, udata
);
1711 if (attr_mask
& IB_QP_PORT
)
1712 qp
->port
= attr
->port_num
;
1713 if (attr_mask
& IB_QP_AV
)
1715 rdma_update_sgid_attr(&attr
->ah_attr
, qp
->av_sgid_attr
);
1716 if (attr_mask
& IB_QP_ALT_PATH
)
1717 qp
->alt_path_sgid_attr
= rdma_update_sgid_attr(
1718 &attr
->alt_ah_attr
, qp
->alt_path_sgid_attr
);
1721 if (attr_mask
& IB_QP_ALT_PATH
)
1722 rdma_unfill_sgid_attr(&attr
->alt_ah_attr
, old_sgid_attr_alt_av
);
1724 if (attr_mask
& IB_QP_AV
)
1725 rdma_unfill_sgid_attr(&attr
->ah_attr
, old_sgid_attr_av
);
1730 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1731 * @ib_qp: The QP to modify.
1732 * @attr: On input, specifies the QP attributes to modify. On output,
1733 * the current values of selected QP attributes are returned.
1734 * @attr_mask: A bit-mask used to specify which attributes of the QP
1735 * are being modified.
1736 * @udata: pointer to user's input output buffer information
1737 * are being modified.
1738 * It returns 0 on success and returns appropriate error code on error.
1740 int ib_modify_qp_with_udata(struct ib_qp
*ib_qp
, struct ib_qp_attr
*attr
,
1741 int attr_mask
, struct ib_udata
*udata
)
1743 return _ib_modify_qp(ib_qp
->real_qp
, attr
, attr_mask
, udata
);
1745 EXPORT_SYMBOL(ib_modify_qp_with_udata
);
1747 int ib_get_eth_speed(struct ib_device
*dev
, u8 port_num
, u8
*speed
, u8
*width
)
1751 struct net_device
*netdev
;
1752 struct ethtool_link_ksettings lksettings
;
1754 if (rdma_port_get_link_layer(dev
, port_num
) != IB_LINK_LAYER_ETHERNET
)
1757 netdev
= ib_device_get_netdev(dev
, port_num
);
1762 rc
= __ethtool_get_link_ksettings(netdev
, &lksettings
);
1768 netdev_speed
= lksettings
.base
.speed
;
1770 netdev_speed
= SPEED_1000
;
1771 pr_warn("%s speed is unknown, defaulting to %d\n", netdev
->name
,
1775 if (netdev_speed
<= SPEED_1000
) {
1776 *width
= IB_WIDTH_1X
;
1777 *speed
= IB_SPEED_SDR
;
1778 } else if (netdev_speed
<= SPEED_10000
) {
1779 *width
= IB_WIDTH_1X
;
1780 *speed
= IB_SPEED_FDR10
;
1781 } else if (netdev_speed
<= SPEED_20000
) {
1782 *width
= IB_WIDTH_4X
;
1783 *speed
= IB_SPEED_DDR
;
1784 } else if (netdev_speed
<= SPEED_25000
) {
1785 *width
= IB_WIDTH_1X
;
1786 *speed
= IB_SPEED_EDR
;
1787 } else if (netdev_speed
<= SPEED_40000
) {
1788 *width
= IB_WIDTH_4X
;
1789 *speed
= IB_SPEED_FDR10
;
1791 *width
= IB_WIDTH_4X
;
1792 *speed
= IB_SPEED_EDR
;
1797 EXPORT_SYMBOL(ib_get_eth_speed
);
1799 int ib_modify_qp(struct ib_qp
*qp
,
1800 struct ib_qp_attr
*qp_attr
,
1803 return _ib_modify_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, NULL
);
1805 EXPORT_SYMBOL(ib_modify_qp
);
1807 int ib_query_qp(struct ib_qp
*qp
,
1808 struct ib_qp_attr
*qp_attr
,
1810 struct ib_qp_init_attr
*qp_init_attr
)
1812 qp_attr
->ah_attr
.grh
.sgid_attr
= NULL
;
1813 qp_attr
->alt_ah_attr
.grh
.sgid_attr
= NULL
;
1815 return qp
->device
->ops
.query_qp
?
1816 qp
->device
->ops
.query_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
,
1817 qp_init_attr
) : -EOPNOTSUPP
;
1819 EXPORT_SYMBOL(ib_query_qp
);
1821 int ib_close_qp(struct ib_qp
*qp
)
1823 struct ib_qp
*real_qp
;
1824 unsigned long flags
;
1826 real_qp
= qp
->real_qp
;
1830 spin_lock_irqsave(&real_qp
->device
->qp_open_list_lock
, flags
);
1831 list_del(&qp
->open_list
);
1832 spin_unlock_irqrestore(&real_qp
->device
->qp_open_list_lock
, flags
);
1834 atomic_dec(&real_qp
->usecnt
);
1836 ib_close_shared_qp_security(qp
->qp_sec
);
1841 EXPORT_SYMBOL(ib_close_qp
);
1843 static int __ib_destroy_shared_qp(struct ib_qp
*qp
)
1845 struct ib_xrcd
*xrcd
;
1846 struct ib_qp
*real_qp
;
1849 real_qp
= qp
->real_qp
;
1850 xrcd
= real_qp
->xrcd
;
1852 mutex_lock(&xrcd
->tgt_qp_mutex
);
1854 if (atomic_read(&real_qp
->usecnt
) == 0)
1855 list_del(&real_qp
->xrcd_list
);
1858 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1861 ret
= ib_destroy_qp(real_qp
);
1863 atomic_dec(&xrcd
->usecnt
);
1865 __ib_insert_xrcd_qp(xrcd
, real_qp
);
1871 int ib_destroy_qp_user(struct ib_qp
*qp
, struct ib_udata
*udata
)
1873 const struct ib_gid_attr
*alt_path_sgid_attr
= qp
->alt_path_sgid_attr
;
1874 const struct ib_gid_attr
*av_sgid_attr
= qp
->av_sgid_attr
;
1876 struct ib_cq
*scq
, *rcq
;
1878 struct ib_rwq_ind_table
*ind_tbl
;
1879 struct ib_qp_security
*sec
;
1882 WARN_ON_ONCE(qp
->mrs_used
> 0);
1884 if (atomic_read(&qp
->usecnt
))
1887 if (qp
->real_qp
!= qp
)
1888 return __ib_destroy_shared_qp(qp
);
1894 ind_tbl
= qp
->rwq_ind_tbl
;
1897 ib_destroy_qp_security_begin(sec
);
1900 rdma_rw_cleanup_mrs(qp
);
1902 rdma_counter_unbind_qp(qp
, true);
1903 rdma_restrack_del(&qp
->res
);
1904 ret
= qp
->device
->ops
.destroy_qp(qp
, udata
);
1906 if (alt_path_sgid_attr
)
1907 rdma_put_gid_attr(alt_path_sgid_attr
);
1909 rdma_put_gid_attr(av_sgid_attr
);
1911 atomic_dec(&pd
->usecnt
);
1913 atomic_dec(&scq
->usecnt
);
1915 atomic_dec(&rcq
->usecnt
);
1917 atomic_dec(&srq
->usecnt
);
1919 atomic_dec(&ind_tbl
->usecnt
);
1921 ib_destroy_qp_security_end(sec
);
1924 ib_destroy_qp_security_abort(sec
);
1929 EXPORT_SYMBOL(ib_destroy_qp_user
);
1931 /* Completion queues */
1933 struct ib_cq
*__ib_create_cq(struct ib_device
*device
,
1934 ib_comp_handler comp_handler
,
1935 void (*event_handler
)(struct ib_event
*, void *),
1937 const struct ib_cq_init_attr
*cq_attr
,
1943 cq
= rdma_zalloc_drv_obj(device
, ib_cq
);
1945 return ERR_PTR(-ENOMEM
);
1947 cq
->device
= device
;
1949 cq
->comp_handler
= comp_handler
;
1950 cq
->event_handler
= event_handler
;
1951 cq
->cq_context
= cq_context
;
1952 atomic_set(&cq
->usecnt
, 0);
1953 cq
->res
.type
= RDMA_RESTRACK_CQ
;
1954 rdma_restrack_set_task(&cq
->res
, caller
);
1956 ret
= device
->ops
.create_cq(cq
, cq_attr
, NULL
);
1959 return ERR_PTR(ret
);
1962 rdma_restrack_kadd(&cq
->res
);
1965 EXPORT_SYMBOL(__ib_create_cq
);
1967 int rdma_set_cq_moderation(struct ib_cq
*cq
, u16 cq_count
, u16 cq_period
)
1969 return cq
->device
->ops
.modify_cq
?
1970 cq
->device
->ops
.modify_cq(cq
, cq_count
,
1971 cq_period
) : -EOPNOTSUPP
;
1973 EXPORT_SYMBOL(rdma_set_cq_moderation
);
1975 int ib_destroy_cq_user(struct ib_cq
*cq
, struct ib_udata
*udata
)
1977 if (atomic_read(&cq
->usecnt
))
1980 rdma_restrack_del(&cq
->res
);
1981 cq
->device
->ops
.destroy_cq(cq
, udata
);
1985 EXPORT_SYMBOL(ib_destroy_cq_user
);
1987 int ib_resize_cq(struct ib_cq
*cq
, int cqe
)
1989 return cq
->device
->ops
.resize_cq
?
1990 cq
->device
->ops
.resize_cq(cq
, cqe
, NULL
) : -EOPNOTSUPP
;
1992 EXPORT_SYMBOL(ib_resize_cq
);
1994 /* Memory regions */
1996 struct ib_mr
*ib_reg_user_mr(struct ib_pd
*pd
, u64 start
, u64 length
,
1997 u64 virt_addr
, int access_flags
)
2001 if (access_flags
& IB_ACCESS_ON_DEMAND
) {
2002 if (!(pd
->device
->attrs
.device_cap_flags
&
2003 IB_DEVICE_ON_DEMAND_PAGING
)) {
2004 pr_debug("ODP support not available\n");
2005 return ERR_PTR(-EINVAL
);
2009 mr
= pd
->device
->ops
.reg_user_mr(pd
, start
, length
, virt_addr
,
2010 access_flags
, NULL
);
2015 mr
->device
= pd
->device
;
2018 atomic_inc(&pd
->usecnt
);
2019 mr
->res
.type
= RDMA_RESTRACK_MR
;
2020 rdma_restrack_kadd(&mr
->res
);
2024 EXPORT_SYMBOL(ib_reg_user_mr
);
2026 int ib_advise_mr(struct ib_pd
*pd
, enum ib_uverbs_advise_mr_advice advice
,
2027 u32 flags
, struct ib_sge
*sg_list
, u32 num_sge
)
2029 if (!pd
->device
->ops
.advise_mr
)
2032 return pd
->device
->ops
.advise_mr(pd
, advice
, flags
, sg_list
, num_sge
,
2035 EXPORT_SYMBOL(ib_advise_mr
);
2037 int ib_dereg_mr_user(struct ib_mr
*mr
, struct ib_udata
*udata
)
2039 struct ib_pd
*pd
= mr
->pd
;
2040 struct ib_dm
*dm
= mr
->dm
;
2041 struct ib_sig_attrs
*sig_attrs
= mr
->sig_attrs
;
2045 rdma_restrack_del(&mr
->res
);
2046 ret
= mr
->device
->ops
.dereg_mr(mr
, udata
);
2048 atomic_dec(&pd
->usecnt
);
2050 atomic_dec(&dm
->usecnt
);
2056 EXPORT_SYMBOL(ib_dereg_mr_user
);
2059 * ib_alloc_mr_user() - Allocates a memory region
2060 * @pd: protection domain associated with the region
2061 * @mr_type: memory region type
2062 * @max_num_sg: maximum sg entries available for registration.
2063 * @udata: user data or null for kernel objects
2066 * Memory registeration page/sg lists must not exceed max_num_sg.
2067 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2068 * max_num_sg * used_page_size.
2071 struct ib_mr
*ib_alloc_mr_user(struct ib_pd
*pd
, enum ib_mr_type mr_type
,
2072 u32 max_num_sg
, struct ib_udata
*udata
)
2076 if (!pd
->device
->ops
.alloc_mr
) {
2077 mr
= ERR_PTR(-EOPNOTSUPP
);
2081 if (mr_type
== IB_MR_TYPE_INTEGRITY
) {
2083 mr
= ERR_PTR(-EINVAL
);
2087 mr
= pd
->device
->ops
.alloc_mr(pd
, mr_type
, max_num_sg
, udata
);
2089 mr
->device
= pd
->device
;
2093 atomic_inc(&pd
->usecnt
);
2094 mr
->need_inval
= false;
2095 mr
->res
.type
= RDMA_RESTRACK_MR
;
2096 rdma_restrack_kadd(&mr
->res
);
2098 mr
->sig_attrs
= NULL
;
2102 trace_mr_alloc(pd
, mr_type
, max_num_sg
, mr
);
2105 EXPORT_SYMBOL(ib_alloc_mr_user
);
2108 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2109 * @pd: protection domain associated with the region
2110 * @max_num_data_sg: maximum data sg entries available for registration
2111 * @max_num_meta_sg: maximum metadata sg entries available for
2115 * Memory registration page/sg lists must not exceed max_num_sg,
2116 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2119 struct ib_mr
*ib_alloc_mr_integrity(struct ib_pd
*pd
,
2120 u32 max_num_data_sg
,
2121 u32 max_num_meta_sg
)
2124 struct ib_sig_attrs
*sig_attrs
;
2126 if (!pd
->device
->ops
.alloc_mr_integrity
||
2127 !pd
->device
->ops
.map_mr_sg_pi
) {
2128 mr
= ERR_PTR(-EOPNOTSUPP
);
2132 if (!max_num_meta_sg
) {
2133 mr
= ERR_PTR(-EINVAL
);
2137 sig_attrs
= kzalloc(sizeof(struct ib_sig_attrs
), GFP_KERNEL
);
2139 mr
= ERR_PTR(-ENOMEM
);
2143 mr
= pd
->device
->ops
.alloc_mr_integrity(pd
, max_num_data_sg
,
2150 mr
->device
= pd
->device
;
2154 atomic_inc(&pd
->usecnt
);
2155 mr
->need_inval
= false;
2156 mr
->res
.type
= RDMA_RESTRACK_MR
;
2157 rdma_restrack_kadd(&mr
->res
);
2158 mr
->type
= IB_MR_TYPE_INTEGRITY
;
2159 mr
->sig_attrs
= sig_attrs
;
2162 trace_mr_integ_alloc(pd
, max_num_data_sg
, max_num_meta_sg
, mr
);
2165 EXPORT_SYMBOL(ib_alloc_mr_integrity
);
2167 /* "Fast" memory regions */
2169 struct ib_fmr
*ib_alloc_fmr(struct ib_pd
*pd
,
2170 int mr_access_flags
,
2171 struct ib_fmr_attr
*fmr_attr
)
2175 if (!pd
->device
->ops
.alloc_fmr
)
2176 return ERR_PTR(-EOPNOTSUPP
);
2178 fmr
= pd
->device
->ops
.alloc_fmr(pd
, mr_access_flags
, fmr_attr
);
2180 fmr
->device
= pd
->device
;
2182 atomic_inc(&pd
->usecnt
);
2187 EXPORT_SYMBOL(ib_alloc_fmr
);
2189 int ib_unmap_fmr(struct list_head
*fmr_list
)
2193 if (list_empty(fmr_list
))
2196 fmr
= list_entry(fmr_list
->next
, struct ib_fmr
, list
);
2197 return fmr
->device
->ops
.unmap_fmr(fmr_list
);
2199 EXPORT_SYMBOL(ib_unmap_fmr
);
2201 int ib_dealloc_fmr(struct ib_fmr
*fmr
)
2207 ret
= fmr
->device
->ops
.dealloc_fmr(fmr
);
2209 atomic_dec(&pd
->usecnt
);
2213 EXPORT_SYMBOL(ib_dealloc_fmr
);
2215 /* Multicast groups */
2217 static bool is_valid_mcast_lid(struct ib_qp
*qp
, u16 lid
)
2219 struct ib_qp_init_attr init_attr
= {};
2220 struct ib_qp_attr attr
= {};
2221 int num_eth_ports
= 0;
2224 /* If QP state >= init, it is assigned to a port and we can check this
2227 if (!ib_query_qp(qp
, &attr
, IB_QP_STATE
| IB_QP_PORT
, &init_attr
)) {
2228 if (attr
.qp_state
>= IB_QPS_INIT
) {
2229 if (rdma_port_get_link_layer(qp
->device
, attr
.port_num
) !=
2230 IB_LINK_LAYER_INFINIBAND
)
2236 /* Can't get a quick answer, iterate over all ports */
2237 for (port
= 0; port
< qp
->device
->phys_port_cnt
; port
++)
2238 if (rdma_port_get_link_layer(qp
->device
, port
) !=
2239 IB_LINK_LAYER_INFINIBAND
)
2242 /* If we have at lease one Ethernet port, RoCE annex declares that
2243 * multicast LID should be ignored. We can't tell at this step if the
2244 * QP belongs to an IB or Ethernet port.
2249 /* If all the ports are IB, we can check according to IB spec. */
2251 return !(lid
< be16_to_cpu(IB_MULTICAST_LID_BASE
) ||
2252 lid
== be16_to_cpu(IB_LID_PERMISSIVE
));
2255 int ib_attach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
2259 if (!qp
->device
->ops
.attach_mcast
)
2262 if (!rdma_is_multicast_addr((struct in6_addr
*)gid
->raw
) ||
2263 qp
->qp_type
!= IB_QPT_UD
|| !is_valid_mcast_lid(qp
, lid
))
2266 ret
= qp
->device
->ops
.attach_mcast(qp
, gid
, lid
);
2268 atomic_inc(&qp
->usecnt
);
2271 EXPORT_SYMBOL(ib_attach_mcast
);
2273 int ib_detach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
2277 if (!qp
->device
->ops
.detach_mcast
)
2280 if (!rdma_is_multicast_addr((struct in6_addr
*)gid
->raw
) ||
2281 qp
->qp_type
!= IB_QPT_UD
|| !is_valid_mcast_lid(qp
, lid
))
2284 ret
= qp
->device
->ops
.detach_mcast(qp
, gid
, lid
);
2286 atomic_dec(&qp
->usecnt
);
2289 EXPORT_SYMBOL(ib_detach_mcast
);
2291 struct ib_xrcd
*__ib_alloc_xrcd(struct ib_device
*device
, const char *caller
)
2293 struct ib_xrcd
*xrcd
;
2295 if (!device
->ops
.alloc_xrcd
)
2296 return ERR_PTR(-EOPNOTSUPP
);
2298 xrcd
= device
->ops
.alloc_xrcd(device
, NULL
);
2299 if (!IS_ERR(xrcd
)) {
2300 xrcd
->device
= device
;
2302 atomic_set(&xrcd
->usecnt
, 0);
2303 mutex_init(&xrcd
->tgt_qp_mutex
);
2304 INIT_LIST_HEAD(&xrcd
->tgt_qp_list
);
2309 EXPORT_SYMBOL(__ib_alloc_xrcd
);
2311 int ib_dealloc_xrcd(struct ib_xrcd
*xrcd
, struct ib_udata
*udata
)
2316 if (atomic_read(&xrcd
->usecnt
))
2319 while (!list_empty(&xrcd
->tgt_qp_list
)) {
2320 qp
= list_entry(xrcd
->tgt_qp_list
.next
, struct ib_qp
, xrcd_list
);
2321 ret
= ib_destroy_qp(qp
);
2325 mutex_destroy(&xrcd
->tgt_qp_mutex
);
2327 return xrcd
->device
->ops
.dealloc_xrcd(xrcd
, udata
);
2329 EXPORT_SYMBOL(ib_dealloc_xrcd
);
2332 * ib_create_wq - Creates a WQ associated with the specified protection
2334 * @pd: The protection domain associated with the WQ.
2335 * @wq_attr: A list of initial attributes required to create the
2336 * WQ. If WQ creation succeeds, then the attributes are updated to
2337 * the actual capabilities of the created WQ.
2339 * wq_attr->max_wr and wq_attr->max_sge determine
2340 * the requested size of the WQ, and set to the actual values allocated
2342 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2343 * at least as large as the requested values.
2345 struct ib_wq
*ib_create_wq(struct ib_pd
*pd
,
2346 struct ib_wq_init_attr
*wq_attr
)
2350 if (!pd
->device
->ops
.create_wq
)
2351 return ERR_PTR(-EOPNOTSUPP
);
2353 wq
= pd
->device
->ops
.create_wq(pd
, wq_attr
, NULL
);
2355 wq
->event_handler
= wq_attr
->event_handler
;
2356 wq
->wq_context
= wq_attr
->wq_context
;
2357 wq
->wq_type
= wq_attr
->wq_type
;
2358 wq
->cq
= wq_attr
->cq
;
2359 wq
->device
= pd
->device
;
2362 atomic_inc(&pd
->usecnt
);
2363 atomic_inc(&wq_attr
->cq
->usecnt
);
2364 atomic_set(&wq
->usecnt
, 0);
2368 EXPORT_SYMBOL(ib_create_wq
);
2371 * ib_destroy_wq - Destroys the specified user WQ.
2372 * @wq: The WQ to destroy.
2373 * @udata: Valid user data
2375 int ib_destroy_wq(struct ib_wq
*wq
, struct ib_udata
*udata
)
2377 struct ib_cq
*cq
= wq
->cq
;
2378 struct ib_pd
*pd
= wq
->pd
;
2380 if (atomic_read(&wq
->usecnt
))
2383 wq
->device
->ops
.destroy_wq(wq
, udata
);
2384 atomic_dec(&pd
->usecnt
);
2385 atomic_dec(&cq
->usecnt
);
2389 EXPORT_SYMBOL(ib_destroy_wq
);
2392 * ib_modify_wq - Modifies the specified WQ.
2393 * @wq: The WQ to modify.
2394 * @wq_attr: On input, specifies the WQ attributes to modify.
2395 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2396 * are being modified.
2397 * On output, the current values of selected WQ attributes are returned.
2399 int ib_modify_wq(struct ib_wq
*wq
, struct ib_wq_attr
*wq_attr
,
2404 if (!wq
->device
->ops
.modify_wq
)
2407 err
= wq
->device
->ops
.modify_wq(wq
, wq_attr
, wq_attr_mask
, NULL
);
2410 EXPORT_SYMBOL(ib_modify_wq
);
2413 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2414 * @device: The device on which to create the rwq indirection table.
2415 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2416 * create the Indirection Table.
2418 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2419 * than the created ib_rwq_ind_table object and the caller is responsible
2420 * for its memory allocation/free.
2422 struct ib_rwq_ind_table
*ib_create_rwq_ind_table(struct ib_device
*device
,
2423 struct ib_rwq_ind_table_init_attr
*init_attr
)
2425 struct ib_rwq_ind_table
*rwq_ind_table
;
2429 if (!device
->ops
.create_rwq_ind_table
)
2430 return ERR_PTR(-EOPNOTSUPP
);
2432 table_size
= (1 << init_attr
->log_ind_tbl_size
);
2433 rwq_ind_table
= device
->ops
.create_rwq_ind_table(device
,
2435 if (IS_ERR(rwq_ind_table
))
2436 return rwq_ind_table
;
2438 rwq_ind_table
->ind_tbl
= init_attr
->ind_tbl
;
2439 rwq_ind_table
->log_ind_tbl_size
= init_attr
->log_ind_tbl_size
;
2440 rwq_ind_table
->device
= device
;
2441 rwq_ind_table
->uobject
= NULL
;
2442 atomic_set(&rwq_ind_table
->usecnt
, 0);
2444 for (i
= 0; i
< table_size
; i
++)
2445 atomic_inc(&rwq_ind_table
->ind_tbl
[i
]->usecnt
);
2447 return rwq_ind_table
;
2449 EXPORT_SYMBOL(ib_create_rwq_ind_table
);
2452 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2453 * @wq_ind_table: The Indirection Table to destroy.
2455 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table
*rwq_ind_table
)
2458 u32 table_size
= (1 << rwq_ind_table
->log_ind_tbl_size
);
2459 struct ib_wq
**ind_tbl
= rwq_ind_table
->ind_tbl
;
2461 if (atomic_read(&rwq_ind_table
->usecnt
))
2464 err
= rwq_ind_table
->device
->ops
.destroy_rwq_ind_table(rwq_ind_table
);
2466 for (i
= 0; i
< table_size
; i
++)
2467 atomic_dec(&ind_tbl
[i
]->usecnt
);
2472 EXPORT_SYMBOL(ib_destroy_rwq_ind_table
);
2474 int ib_check_mr_status(struct ib_mr
*mr
, u32 check_mask
,
2475 struct ib_mr_status
*mr_status
)
2477 if (!mr
->device
->ops
.check_mr_status
)
2480 return mr
->device
->ops
.check_mr_status(mr
, check_mask
, mr_status
);
2482 EXPORT_SYMBOL(ib_check_mr_status
);
2484 int ib_set_vf_link_state(struct ib_device
*device
, int vf
, u8 port
,
2487 if (!device
->ops
.set_vf_link_state
)
2490 return device
->ops
.set_vf_link_state(device
, vf
, port
, state
);
2492 EXPORT_SYMBOL(ib_set_vf_link_state
);
2494 int ib_get_vf_config(struct ib_device
*device
, int vf
, u8 port
,
2495 struct ifla_vf_info
*info
)
2497 if (!device
->ops
.get_vf_config
)
2500 return device
->ops
.get_vf_config(device
, vf
, port
, info
);
2502 EXPORT_SYMBOL(ib_get_vf_config
);
2504 int ib_get_vf_stats(struct ib_device
*device
, int vf
, u8 port
,
2505 struct ifla_vf_stats
*stats
)
2507 if (!device
->ops
.get_vf_stats
)
2510 return device
->ops
.get_vf_stats(device
, vf
, port
, stats
);
2512 EXPORT_SYMBOL(ib_get_vf_stats
);
2514 int ib_set_vf_guid(struct ib_device
*device
, int vf
, u8 port
, u64 guid
,
2517 if (!device
->ops
.set_vf_guid
)
2520 return device
->ops
.set_vf_guid(device
, vf
, port
, guid
, type
);
2522 EXPORT_SYMBOL(ib_set_vf_guid
);
2524 int ib_get_vf_guid(struct ib_device
*device
, int vf
, u8 port
,
2525 struct ifla_vf_guid
*node_guid
,
2526 struct ifla_vf_guid
*port_guid
)
2528 if (!device
->ops
.get_vf_guid
)
2531 return device
->ops
.get_vf_guid(device
, vf
, port
, node_guid
, port_guid
);
2533 EXPORT_SYMBOL(ib_get_vf_guid
);
2535 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2536 * information) and set an appropriate memory region for registration.
2537 * @mr: memory region
2538 * @data_sg: dma mapped scatterlist for data
2539 * @data_sg_nents: number of entries in data_sg
2540 * @data_sg_offset: offset in bytes into data_sg
2541 * @meta_sg: dma mapped scatterlist for metadata
2542 * @meta_sg_nents: number of entries in meta_sg
2543 * @meta_sg_offset: offset in bytes into meta_sg
2544 * @page_size: page vector desired page size
2547 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2549 * Return: 0 on success.
2551 * After this completes successfully, the memory region
2552 * is ready for registration.
2554 int ib_map_mr_sg_pi(struct ib_mr
*mr
, struct scatterlist
*data_sg
,
2555 int data_sg_nents
, unsigned int *data_sg_offset
,
2556 struct scatterlist
*meta_sg
, int meta_sg_nents
,
2557 unsigned int *meta_sg_offset
, unsigned int page_size
)
2559 if (unlikely(!mr
->device
->ops
.map_mr_sg_pi
||
2560 WARN_ON_ONCE(mr
->type
!= IB_MR_TYPE_INTEGRITY
)))
2563 mr
->page_size
= page_size
;
2565 return mr
->device
->ops
.map_mr_sg_pi(mr
, data_sg
, data_sg_nents
,
2566 data_sg_offset
, meta_sg
,
2567 meta_sg_nents
, meta_sg_offset
);
2569 EXPORT_SYMBOL(ib_map_mr_sg_pi
);
2572 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2573 * and set it the memory region.
2574 * @mr: memory region
2575 * @sg: dma mapped scatterlist
2576 * @sg_nents: number of entries in sg
2577 * @sg_offset: offset in bytes into sg
2578 * @page_size: page vector desired page size
2581 * - The first sg element is allowed to have an offset.
2582 * - Each sg element must either be aligned to page_size or virtually
2583 * contiguous to the previous element. In case an sg element has a
2584 * non-contiguous offset, the mapping prefix will not include it.
2585 * - The last sg element is allowed to have length less than page_size.
2586 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2587 * then only max_num_sg entries will be mapped.
2588 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2589 * constraints holds and the page_size argument is ignored.
2591 * Returns the number of sg elements that were mapped to the memory region.
2593 * After this completes successfully, the memory region
2594 * is ready for registration.
2596 int ib_map_mr_sg(struct ib_mr
*mr
, struct scatterlist
*sg
, int sg_nents
,
2597 unsigned int *sg_offset
, unsigned int page_size
)
2599 if (unlikely(!mr
->device
->ops
.map_mr_sg
))
2602 mr
->page_size
= page_size
;
2604 return mr
->device
->ops
.map_mr_sg(mr
, sg
, sg_nents
, sg_offset
);
2606 EXPORT_SYMBOL(ib_map_mr_sg
);
2609 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2611 * @mr: memory region
2612 * @sgl: dma mapped scatterlist
2613 * @sg_nents: number of entries in sg
2614 * @sg_offset_p: IN: start offset in bytes into sg
2615 * OUT: offset in bytes for element n of the sg of the first
2616 * byte that has not been processed where n is the return
2617 * value of this function.
2618 * @set_page: driver page assignment function pointer
2620 * Core service helper for drivers to convert the largest
2621 * prefix of given sg list to a page vector. The sg list
2622 * prefix converted is the prefix that meet the requirements
2625 * Returns the number of sg elements that were assigned to
2628 int ib_sg_to_pages(struct ib_mr
*mr
, struct scatterlist
*sgl
, int sg_nents
,
2629 unsigned int *sg_offset_p
, int (*set_page
)(struct ib_mr
*, u64
))
2631 struct scatterlist
*sg
;
2632 u64 last_end_dma_addr
= 0;
2633 unsigned int sg_offset
= sg_offset_p
? *sg_offset_p
: 0;
2634 unsigned int last_page_off
= 0;
2635 u64 page_mask
= ~((u64
)mr
->page_size
- 1);
2638 if (unlikely(sg_nents
<= 0 || sg_offset
> sg_dma_len(&sgl
[0])))
2641 mr
->iova
= sg_dma_address(&sgl
[0]) + sg_offset
;
2644 for_each_sg(sgl
, sg
, sg_nents
, i
) {
2645 u64 dma_addr
= sg_dma_address(sg
) + sg_offset
;
2646 u64 prev_addr
= dma_addr
;
2647 unsigned int dma_len
= sg_dma_len(sg
) - sg_offset
;
2648 u64 end_dma_addr
= dma_addr
+ dma_len
;
2649 u64 page_addr
= dma_addr
& page_mask
;
2652 * For the second and later elements, check whether either the
2653 * end of element i-1 or the start of element i is not aligned
2654 * on a page boundary.
2656 if (i
&& (last_page_off
!= 0 || page_addr
!= dma_addr
)) {
2657 /* Stop mapping if there is a gap. */
2658 if (last_end_dma_addr
!= dma_addr
)
2662 * Coalesce this element with the last. If it is small
2663 * enough just update mr->length. Otherwise start
2664 * mapping from the next page.
2670 ret
= set_page(mr
, page_addr
);
2671 if (unlikely(ret
< 0)) {
2672 sg_offset
= prev_addr
- sg_dma_address(sg
);
2673 mr
->length
+= prev_addr
- dma_addr
;
2675 *sg_offset_p
= sg_offset
;
2676 return i
|| sg_offset
? i
: ret
;
2678 prev_addr
= page_addr
;
2680 page_addr
+= mr
->page_size
;
2681 } while (page_addr
< end_dma_addr
);
2683 mr
->length
+= dma_len
;
2684 last_end_dma_addr
= end_dma_addr
;
2685 last_page_off
= end_dma_addr
& ~page_mask
;
2694 EXPORT_SYMBOL(ib_sg_to_pages
);
2696 struct ib_drain_cqe
{
2698 struct completion done
;
2701 static void ib_drain_qp_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
2703 struct ib_drain_cqe
*cqe
= container_of(wc
->wr_cqe
, struct ib_drain_cqe
,
2706 complete(&cqe
->done
);
2710 * Post a WR and block until its completion is reaped for the SQ.
2712 static void __ib_drain_sq(struct ib_qp
*qp
)
2714 struct ib_cq
*cq
= qp
->send_cq
;
2715 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
2716 struct ib_drain_cqe sdrain
;
2717 struct ib_rdma_wr swr
= {
2720 { .wr_cqe
= &sdrain
.cqe
, },
2721 .opcode
= IB_WR_RDMA_WRITE
,
2726 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
2728 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2732 sdrain
.cqe
.done
= ib_drain_qp_done
;
2733 init_completion(&sdrain
.done
);
2735 ret
= ib_post_send(qp
, &swr
.wr
, NULL
);
2737 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2741 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2742 while (wait_for_completion_timeout(&sdrain
.done
, HZ
/ 10) <= 0)
2743 ib_process_cq_direct(cq
, -1);
2745 wait_for_completion(&sdrain
.done
);
2749 * Post a WR and block until its completion is reaped for the RQ.
2751 static void __ib_drain_rq(struct ib_qp
*qp
)
2753 struct ib_cq
*cq
= qp
->recv_cq
;
2754 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
2755 struct ib_drain_cqe rdrain
;
2756 struct ib_recv_wr rwr
= {};
2759 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
2761 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2765 rwr
.wr_cqe
= &rdrain
.cqe
;
2766 rdrain
.cqe
.done
= ib_drain_qp_done
;
2767 init_completion(&rdrain
.done
);
2769 ret
= ib_post_recv(qp
, &rwr
, NULL
);
2771 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2775 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2776 while (wait_for_completion_timeout(&rdrain
.done
, HZ
/ 10) <= 0)
2777 ib_process_cq_direct(cq
, -1);
2779 wait_for_completion(&rdrain
.done
);
2783 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2785 * @qp: queue pair to drain
2787 * If the device has a provider-specific drain function, then
2788 * call that. Otherwise call the generic drain function
2793 * ensure there is room in the CQ and SQ for the drain work request and
2796 * allocate the CQ using ib_alloc_cq().
2798 * ensure that there are no other contexts that are posting WRs concurrently.
2799 * Otherwise the drain is not guaranteed.
2801 void ib_drain_sq(struct ib_qp
*qp
)
2803 if (qp
->device
->ops
.drain_sq
)
2804 qp
->device
->ops
.drain_sq(qp
);
2807 trace_cq_drain_complete(qp
->send_cq
);
2809 EXPORT_SYMBOL(ib_drain_sq
);
2812 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2814 * @qp: queue pair to drain
2816 * If the device has a provider-specific drain function, then
2817 * call that. Otherwise call the generic drain function
2822 * ensure there is room in the CQ and RQ for the drain work request and
2825 * allocate the CQ using ib_alloc_cq().
2827 * ensure that there are no other contexts that are posting WRs concurrently.
2828 * Otherwise the drain is not guaranteed.
2830 void ib_drain_rq(struct ib_qp
*qp
)
2832 if (qp
->device
->ops
.drain_rq
)
2833 qp
->device
->ops
.drain_rq(qp
);
2836 trace_cq_drain_complete(qp
->recv_cq
);
2838 EXPORT_SYMBOL(ib_drain_rq
);
2841 * ib_drain_qp() - Block until all CQEs have been consumed by the
2842 * application on both the RQ and SQ.
2843 * @qp: queue pair to drain
2847 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2850 * allocate the CQs using ib_alloc_cq().
2852 * ensure that there are no other contexts that are posting WRs concurrently.
2853 * Otherwise the drain is not guaranteed.
2855 void ib_drain_qp(struct ib_qp
*qp
)
2861 EXPORT_SYMBOL(ib_drain_qp
);
2863 struct net_device
*rdma_alloc_netdev(struct ib_device
*device
, u8 port_num
,
2864 enum rdma_netdev_t type
, const char *name
,
2865 unsigned char name_assign_type
,
2866 void (*setup
)(struct net_device
*))
2868 struct rdma_netdev_alloc_params params
;
2869 struct net_device
*netdev
;
2872 if (!device
->ops
.rdma_netdev_get_params
)
2873 return ERR_PTR(-EOPNOTSUPP
);
2875 rc
= device
->ops
.rdma_netdev_get_params(device
, port_num
, type
,
2880 netdev
= alloc_netdev_mqs(params
.sizeof_priv
, name
, name_assign_type
,
2881 setup
, params
.txqs
, params
.rxqs
);
2883 return ERR_PTR(-ENOMEM
);
2887 EXPORT_SYMBOL(rdma_alloc_netdev
);
2889 int rdma_init_netdev(struct ib_device
*device
, u8 port_num
,
2890 enum rdma_netdev_t type
, const char *name
,
2891 unsigned char name_assign_type
,
2892 void (*setup
)(struct net_device
*),
2893 struct net_device
*netdev
)
2895 struct rdma_netdev_alloc_params params
;
2898 if (!device
->ops
.rdma_netdev_get_params
)
2901 rc
= device
->ops
.rdma_netdev_get_params(device
, port_num
, type
,
2906 return params
.initialize_rdma_netdev(device
, port_num
,
2907 netdev
, params
.param
);
2909 EXPORT_SYMBOL(rdma_init_netdev
);
2911 void __rdma_block_iter_start(struct ib_block_iter
*biter
,
2912 struct scatterlist
*sglist
, unsigned int nents
,
2915 memset(biter
, 0, sizeof(struct ib_block_iter
));
2916 biter
->__sg
= sglist
;
2917 biter
->__sg_nents
= nents
;
2919 /* Driver provides best block size to use */
2920 biter
->__pg_bit
= __fls(pgsz
);
2922 EXPORT_SYMBOL(__rdma_block_iter_start
);
2924 bool __rdma_block_iter_next(struct ib_block_iter
*biter
)
2926 unsigned int block_offset
;
2928 if (!biter
->__sg_nents
|| !biter
->__sg
)
2931 biter
->__dma_addr
= sg_dma_address(biter
->__sg
) + biter
->__sg_advance
;
2932 block_offset
= biter
->__dma_addr
& (BIT_ULL(biter
->__pg_bit
) - 1);
2933 biter
->__sg_advance
+= BIT_ULL(biter
->__pg_bit
) - block_offset
;
2935 if (biter
->__sg_advance
>= sg_dma_len(biter
->__sg
)) {
2936 biter
->__sg_advance
= 0;
2937 biter
->__sg
= sg_next(biter
->__sg
);
2938 biter
->__sg_nents
--;
2943 EXPORT_SYMBOL(__rdma_block_iter_next
);