2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
50 #include <rdma/ib_addr.h>
52 #include <libcxgb_cm.h>
56 static char *states
[] = {
73 module_param(nocong
, int, 0644);
74 MODULE_PARM_DESC(nocong
, "Turn of congestion control (default=0)");
76 static int enable_ecn
;
77 module_param(enable_ecn
, int, 0644);
78 MODULE_PARM_DESC(enable_ecn
, "Enable ECN (default=0/disabled)");
80 static int dack_mode
= 1;
81 module_param(dack_mode
, int, 0644);
82 MODULE_PARM_DESC(dack_mode
, "Delayed ack mode (default=1)");
84 uint c4iw_max_read_depth
= 32;
85 module_param(c4iw_max_read_depth
, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth
,
87 "Per-connection max ORD/IRD (default=32)");
89 static int enable_tcp_timestamps
;
90 module_param(enable_tcp_timestamps
, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps
, "Enable tcp timestamps (default=0)");
93 static int enable_tcp_sack
;
94 module_param(enable_tcp_sack
, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack
, "Enable tcp SACK (default=0)");
97 static int enable_tcp_window_scaling
= 1;
98 module_param(enable_tcp_window_scaling
, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling
,
100 "Enable tcp window scaling (default=1)");
102 static int peer2peer
= 1;
103 module_param(peer2peer
, int, 0644);
104 MODULE_PARM_DESC(peer2peer
, "Support peer2peer ULPs (default=1)");
106 static int p2p_type
= FW_RI_INIT_P2PTYPE_READ_REQ
;
107 module_param(p2p_type
, int, 0644);
108 MODULE_PARM_DESC(p2p_type
, "RDMAP opcode to use for the RTR message: "
109 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
111 static int ep_timeout_secs
= 60;
112 module_param(ep_timeout_secs
, int, 0644);
113 MODULE_PARM_DESC(ep_timeout_secs
, "CM Endpoint operation timeout "
114 "in seconds (default=60)");
116 static int mpa_rev
= 2;
117 module_param(mpa_rev
, int, 0644);
118 MODULE_PARM_DESC(mpa_rev
, "MPA Revision, 0 supports amso1100, "
119 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
120 " compliant (default=2)");
122 static int markers_enabled
;
123 module_param(markers_enabled
, int, 0644);
124 MODULE_PARM_DESC(markers_enabled
, "Enable MPA MARKERS (default(0)=disabled)");
126 static int crc_enabled
= 1;
127 module_param(crc_enabled
, int, 0644);
128 MODULE_PARM_DESC(crc_enabled
, "Enable MPA CRC (default(1)=enabled)");
130 static int rcv_win
= 256 * 1024;
131 module_param(rcv_win
, int, 0644);
132 MODULE_PARM_DESC(rcv_win
, "TCP receive window in bytes (default=256KB)");
134 static int snd_win
= 128 * 1024;
135 module_param(snd_win
, int, 0644);
136 MODULE_PARM_DESC(snd_win
, "TCP send window in bytes (default=128KB)");
138 static struct workqueue_struct
*workq
;
140 static struct sk_buff_head rxq
;
142 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
);
143 static void ep_timeout(struct timer_list
*t
);
144 static void connect_reply_upcall(struct c4iw_ep
*ep
, int status
);
145 static int sched(struct c4iw_dev
*dev
, struct sk_buff
*skb
);
147 static LIST_HEAD(timeout_list
);
148 static spinlock_t timeout_lock
;
150 static void deref_cm_id(struct c4iw_ep_common
*epc
)
152 epc
->cm_id
->rem_ref(epc
->cm_id
);
154 set_bit(CM_ID_DEREFED
, &epc
->history
);
157 static void ref_cm_id(struct c4iw_ep_common
*epc
)
159 set_bit(CM_ID_REFED
, &epc
->history
);
160 epc
->cm_id
->add_ref(epc
->cm_id
);
163 static void deref_qp(struct c4iw_ep
*ep
)
165 c4iw_qp_rem_ref(&ep
->com
.qp
->ibqp
);
166 clear_bit(QP_REFERENCED
, &ep
->com
.flags
);
167 set_bit(QP_DEREFED
, &ep
->com
.history
);
170 static void ref_qp(struct c4iw_ep
*ep
)
172 set_bit(QP_REFERENCED
, &ep
->com
.flags
);
173 set_bit(QP_REFED
, &ep
->com
.history
);
174 c4iw_qp_add_ref(&ep
->com
.qp
->ibqp
);
177 static void start_ep_timer(struct c4iw_ep
*ep
)
179 pr_debug("ep %p\n", ep
);
180 if (timer_pending(&ep
->timer
)) {
181 pr_err("%s timer already started! ep %p\n",
185 clear_bit(TIMEOUT
, &ep
->com
.flags
);
186 c4iw_get_ep(&ep
->com
);
187 ep
->timer
.expires
= jiffies
+ ep_timeout_secs
* HZ
;
188 add_timer(&ep
->timer
);
191 static int stop_ep_timer(struct c4iw_ep
*ep
)
193 pr_debug("ep %p stopping\n", ep
);
194 del_timer_sync(&ep
->timer
);
195 if (!test_and_set_bit(TIMEOUT
, &ep
->com
.flags
)) {
196 c4iw_put_ep(&ep
->com
);
202 static int c4iw_l2t_send(struct c4iw_rdev
*rdev
, struct sk_buff
*skb
,
203 struct l2t_entry
*l2e
)
207 if (c4iw_fatal_error(rdev
)) {
209 pr_err("%s - device in error state - dropping\n", __func__
);
212 error
= cxgb4_l2t_send(rdev
->lldi
.ports
[0], skb
, l2e
);
215 else if (error
== NET_XMIT_DROP
)
217 return error
< 0 ? error
: 0;
220 int c4iw_ofld_send(struct c4iw_rdev
*rdev
, struct sk_buff
*skb
)
224 if (c4iw_fatal_error(rdev
)) {
226 pr_err("%s - device in error state - dropping\n", __func__
);
229 error
= cxgb4_ofld_send(rdev
->lldi
.ports
[0], skb
);
232 return error
< 0 ? error
: 0;
235 static void release_tid(struct c4iw_rdev
*rdev
, u32 hwtid
, struct sk_buff
*skb
)
237 u32 len
= roundup(sizeof(struct cpl_tid_release
), 16);
239 skb
= get_skb(skb
, len
, GFP_KERNEL
);
243 cxgb_mk_tid_release(skb
, len
, hwtid
, 0);
244 c4iw_ofld_send(rdev
, skb
);
248 static void set_emss(struct c4iw_ep
*ep
, u16 opt
)
250 ep
->emss
= ep
->com
.dev
->rdev
.lldi
.mtus
[TCPOPT_MSS_G(opt
)] -
251 ((AF_INET
== ep
->com
.remote_addr
.ss_family
) ?
252 sizeof(struct iphdr
) : sizeof(struct ipv6hdr
)) -
253 sizeof(struct tcphdr
);
255 if (TCPOPT_TSTAMP_G(opt
))
256 ep
->emss
-= round_up(TCPOLEN_TIMESTAMP
, 4);
260 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
261 TCPOPT_MSS_G(opt
), ep
->mss
, ep
->emss
);
262 pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt
), ep
->mss
,
266 static enum c4iw_ep_state
state_read(struct c4iw_ep_common
*epc
)
268 enum c4iw_ep_state state
;
270 mutex_lock(&epc
->mutex
);
272 mutex_unlock(&epc
->mutex
);
276 static void __state_set(struct c4iw_ep_common
*epc
, enum c4iw_ep_state
new)
281 static void state_set(struct c4iw_ep_common
*epc
, enum c4iw_ep_state
new)
283 mutex_lock(&epc
->mutex
);
284 pr_debug("%s -> %s\n", states
[epc
->state
], states
[new]);
285 __state_set(epc
, new);
286 mutex_unlock(&epc
->mutex
);
290 static int alloc_ep_skb_list(struct sk_buff_head
*ep_skb_list
, int size
)
296 len
= roundup(sizeof(union cpl_wr_size
), 16);
297 for (i
= 0; i
< size
; i
++) {
298 skb
= alloc_skb(len
, GFP_KERNEL
);
301 skb_queue_tail(ep_skb_list
, skb
);
305 skb_queue_purge(ep_skb_list
);
309 static void *alloc_ep(int size
, gfp_t gfp
)
311 struct c4iw_ep_common
*epc
;
313 epc
= kzalloc(size
, gfp
);
315 epc
->wr_waitp
= c4iw_alloc_wr_wait(gfp
);
316 if (!epc
->wr_waitp
) {
321 kref_init(&epc
->kref
);
322 mutex_init(&epc
->mutex
);
323 c4iw_init_wr_wait(epc
->wr_waitp
);
325 pr_debug("alloc ep %p\n", epc
);
330 static void remove_ep_tid(struct c4iw_ep
*ep
)
334 xa_lock_irqsave(&ep
->com
.dev
->hwtids
, flags
);
335 __xa_erase(&ep
->com
.dev
->hwtids
, ep
->hwtid
);
336 if (xa_empty(&ep
->com
.dev
->hwtids
))
337 wake_up(&ep
->com
.dev
->wait
);
338 xa_unlock_irqrestore(&ep
->com
.dev
->hwtids
, flags
);
341 static int insert_ep_tid(struct c4iw_ep
*ep
)
346 xa_lock_irqsave(&ep
->com
.dev
->hwtids
, flags
);
347 err
= __xa_insert(&ep
->com
.dev
->hwtids
, ep
->hwtid
, ep
, GFP_KERNEL
);
348 xa_unlock_irqrestore(&ep
->com
.dev
->hwtids
, flags
);
354 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
356 static struct c4iw_ep
*get_ep_from_tid(struct c4iw_dev
*dev
, unsigned int tid
)
361 xa_lock_irqsave(&dev
->hwtids
, flags
);
362 ep
= xa_load(&dev
->hwtids
, tid
);
364 c4iw_get_ep(&ep
->com
);
365 xa_unlock_irqrestore(&dev
->hwtids
, flags
);
370 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
372 static struct c4iw_listen_ep
*get_ep_from_stid(struct c4iw_dev
*dev
,
375 struct c4iw_listen_ep
*ep
;
378 xa_lock_irqsave(&dev
->stids
, flags
);
379 ep
= xa_load(&dev
->stids
, stid
);
381 c4iw_get_ep(&ep
->com
);
382 xa_unlock_irqrestore(&dev
->stids
, flags
);
386 void _c4iw_free_ep(struct kref
*kref
)
390 ep
= container_of(kref
, struct c4iw_ep
, com
.kref
);
391 pr_debug("ep %p state %s\n", ep
, states
[ep
->com
.state
]);
392 if (test_bit(QP_REFERENCED
, &ep
->com
.flags
))
394 if (test_bit(RELEASE_RESOURCES
, &ep
->com
.flags
)) {
395 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
396 struct sockaddr_in6
*sin6
=
397 (struct sockaddr_in6
*)
401 ep
->com
.dev
->rdev
.lldi
.ports
[0],
402 (const u32
*)&sin6
->sin6_addr
.s6_addr
,
405 cxgb4_remove_tid(ep
->com
.dev
->rdev
.lldi
.tids
, 0, ep
->hwtid
,
406 ep
->com
.local_addr
.ss_family
);
407 dst_release(ep
->dst
);
408 cxgb4_l2t_release(ep
->l2t
);
409 kfree_skb(ep
->mpa_skb
);
411 if (!skb_queue_empty(&ep
->com
.ep_skb_list
))
412 skb_queue_purge(&ep
->com
.ep_skb_list
);
413 c4iw_put_wr_wait(ep
->com
.wr_waitp
);
417 static void release_ep_resources(struct c4iw_ep
*ep
)
419 set_bit(RELEASE_RESOURCES
, &ep
->com
.flags
);
422 * If we have a hwtid, then remove it from the idr table
423 * so lookups will no longer find this endpoint. Otherwise
424 * we have a race where one thread finds the ep ptr just
425 * before the other thread is freeing the ep memory.
429 c4iw_put_ep(&ep
->com
);
432 static int status2errno(int status
)
437 case CPL_ERR_CONN_RESET
:
439 case CPL_ERR_ARP_MISS
:
440 return -EHOSTUNREACH
;
441 case CPL_ERR_CONN_TIMEDOUT
:
443 case CPL_ERR_TCAM_FULL
:
445 case CPL_ERR_CONN_EXIST
:
453 * Try and reuse skbs already allocated...
455 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
)
457 if (skb
&& !skb_is_nonlinear(skb
) && !skb_cloned(skb
)) {
460 skb_reset_transport_header(skb
);
462 skb
= alloc_skb(len
, gfp
);
466 t4_set_arp_err_handler(skb
, NULL
, NULL
);
470 static struct net_device
*get_real_dev(struct net_device
*egress_dev
)
472 return rdma_vlan_dev_real_dev(egress_dev
) ? : egress_dev
;
475 static void arp_failure_discard(void *handle
, struct sk_buff
*skb
)
477 pr_err("ARP failure\n");
481 static void mpa_start_arp_failure(void *handle
, struct sk_buff
*skb
)
483 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
488 FAKE_CPL_PUT_EP_SAFE
= NUM_CPL_CMDS
+ 0,
489 FAKE_CPL_PASS_PUT_EP_SAFE
= NUM_CPL_CMDS
+ 1,
492 static int _put_ep_safe(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
496 ep
= *((struct c4iw_ep
**)(skb
->cb
+ 2 * sizeof(void *)));
497 release_ep_resources(ep
);
501 static int _put_pass_ep_safe(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
505 ep
= *((struct c4iw_ep
**)(skb
->cb
+ 2 * sizeof(void *)));
506 c4iw_put_ep(&ep
->parent_ep
->com
);
507 release_ep_resources(ep
);
512 * Fake up a special CPL opcode and call sched() so process_work() will call
513 * _put_ep_safe() in a safe context to free the ep resources. This is needed
514 * because ARP error handlers are called in an ATOMIC context, and
515 * _c4iw_free_ep() needs to block.
517 static void queue_arp_failure_cpl(struct c4iw_ep
*ep
, struct sk_buff
*skb
,
520 struct cpl_act_establish
*rpl
= cplhdr(skb
);
522 /* Set our special ARP_FAILURE opcode */
523 rpl
->ot
.opcode
= cpl
;
526 * Save ep in the skb->cb area, after where sched() will save the dev
529 *((struct c4iw_ep
**)(skb
->cb
+ 2 * sizeof(void *))) = ep
;
530 sched(ep
->com
.dev
, skb
);
533 /* Handle an ARP failure for an accept */
534 static void pass_accept_rpl_arp_failure(void *handle
, struct sk_buff
*skb
)
536 struct c4iw_ep
*ep
= handle
;
538 pr_err("ARP failure during accept - tid %u - dropping connection\n",
541 __state_set(&ep
->com
, DEAD
);
542 queue_arp_failure_cpl(ep
, skb
, FAKE_CPL_PASS_PUT_EP_SAFE
);
546 * Handle an ARP failure for an active open.
548 static void act_open_req_arp_failure(void *handle
, struct sk_buff
*skb
)
550 struct c4iw_ep
*ep
= handle
;
552 pr_err("ARP failure during connect\n");
553 connect_reply_upcall(ep
, -EHOSTUNREACH
);
554 __state_set(&ep
->com
, DEAD
);
555 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
556 struct sockaddr_in6
*sin6
=
557 (struct sockaddr_in6
*)&ep
->com
.local_addr
;
558 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
559 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
561 xa_erase_irq(&ep
->com
.dev
->atids
, ep
->atid
);
562 cxgb4_free_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->atid
);
563 queue_arp_failure_cpl(ep
, skb
, FAKE_CPL_PUT_EP_SAFE
);
567 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
570 static void abort_arp_failure(void *handle
, struct sk_buff
*skb
)
573 struct c4iw_ep
*ep
= handle
;
574 struct c4iw_rdev
*rdev
= &ep
->com
.dev
->rdev
;
575 struct cpl_abort_req
*req
= cplhdr(skb
);
577 pr_debug("rdev %p\n", rdev
);
578 req
->cmd
= CPL_ABORT_NO_RST
;
580 ret
= c4iw_ofld_send(rdev
, skb
);
582 __state_set(&ep
->com
, DEAD
);
583 queue_arp_failure_cpl(ep
, skb
, FAKE_CPL_PUT_EP_SAFE
);
588 static int send_flowc(struct c4iw_ep
*ep
)
590 struct fw_flowc_wr
*flowc
;
591 struct sk_buff
*skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
592 u16 vlan
= ep
->l2t
->vlan
;
594 int flowclen
, flowclen16
;
599 if (vlan
== CPL_L2T_VLAN_NONE
)
604 flowclen
= offsetof(struct fw_flowc_wr
, mnemval
[nparams
]);
605 flowclen16
= DIV_ROUND_UP(flowclen
, 16);
606 flowclen
= flowclen16
* 16;
608 flowc
= __skb_put(skb
, flowclen
);
609 memset(flowc
, 0, flowclen
);
611 flowc
->op_to_nparams
= cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR
) |
612 FW_FLOWC_WR_NPARAMS_V(nparams
));
613 flowc
->flowid_len16
= cpu_to_be32(FW_WR_LEN16_V(flowclen16
) |
614 FW_WR_FLOWID_V(ep
->hwtid
));
616 flowc
->mnemval
[0].mnemonic
= FW_FLOWC_MNEM_PFNVFN
;
617 flowc
->mnemval
[0].val
= cpu_to_be32(FW_PFVF_CMD_PFN_V
618 (ep
->com
.dev
->rdev
.lldi
.pf
));
619 flowc
->mnemval
[1].mnemonic
= FW_FLOWC_MNEM_CH
;
620 flowc
->mnemval
[1].val
= cpu_to_be32(ep
->tx_chan
);
621 flowc
->mnemval
[2].mnemonic
= FW_FLOWC_MNEM_PORT
;
622 flowc
->mnemval
[2].val
= cpu_to_be32(ep
->tx_chan
);
623 flowc
->mnemval
[3].mnemonic
= FW_FLOWC_MNEM_IQID
;
624 flowc
->mnemval
[3].val
= cpu_to_be32(ep
->rss_qid
);
625 flowc
->mnemval
[4].mnemonic
= FW_FLOWC_MNEM_SNDNXT
;
626 flowc
->mnemval
[4].val
= cpu_to_be32(ep
->snd_seq
);
627 flowc
->mnemval
[5].mnemonic
= FW_FLOWC_MNEM_RCVNXT
;
628 flowc
->mnemval
[5].val
= cpu_to_be32(ep
->rcv_seq
);
629 flowc
->mnemval
[6].mnemonic
= FW_FLOWC_MNEM_SNDBUF
;
630 flowc
->mnemval
[6].val
= cpu_to_be32(ep
->snd_win
);
631 flowc
->mnemval
[7].mnemonic
= FW_FLOWC_MNEM_MSS
;
632 flowc
->mnemval
[7].val
= cpu_to_be32(ep
->emss
);
633 flowc
->mnemval
[8].mnemonic
= FW_FLOWC_MNEM_RCV_SCALE
;
634 flowc
->mnemval
[8].val
= cpu_to_be32(ep
->snd_wscale
);
637 pri
= (vlan
& VLAN_PRIO_MASK
) >> VLAN_PRIO_SHIFT
;
638 flowc
->mnemval
[9].mnemonic
= FW_FLOWC_MNEM_SCHEDCLASS
;
639 flowc
->mnemval
[9].val
= cpu_to_be32(pri
);
642 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
643 return c4iw_ofld_send(&ep
->com
.dev
->rdev
, skb
);
646 static int send_halfclose(struct c4iw_ep
*ep
)
648 struct sk_buff
*skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
649 u32 wrlen
= roundup(sizeof(struct cpl_close_con_req
), 16);
651 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
655 cxgb_mk_close_con_req(skb
, wrlen
, ep
->hwtid
, ep
->txq_idx
,
656 NULL
, arp_failure_discard
);
658 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
661 static void read_tcb(struct c4iw_ep
*ep
)
664 struct cpl_get_tcb
*req
;
665 int wrlen
= roundup(sizeof(*req
), 16);
667 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
671 set_wr_txq(skb
, CPL_PRIORITY_CONTROL
, ep
->ctrlq_idx
);
672 req
= (struct cpl_get_tcb
*) skb_put(skb
, wrlen
);
673 memset(req
, 0, wrlen
);
674 INIT_TP_WR(req
, ep
->hwtid
);
675 OPCODE_TID(req
) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB
, ep
->hwtid
));
676 req
->reply_ctrl
= htons(REPLY_CHAN_V(0) | QUEUENO_V(ep
->rss_qid
));
679 * keep a ref on the ep so the tcb is not unlocked before this
680 * cpl completes. The ref is released in read_tcb_rpl().
682 c4iw_get_ep(&ep
->com
);
683 if (WARN_ON(c4iw_ofld_send(&ep
->com
.dev
->rdev
, skb
)))
684 c4iw_put_ep(&ep
->com
);
687 static int send_abort_req(struct c4iw_ep
*ep
)
689 u32 wrlen
= roundup(sizeof(struct cpl_abort_req
), 16);
690 struct sk_buff
*req_skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
692 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
693 if (WARN_ON(!req_skb
))
696 cxgb_mk_abort_req(req_skb
, wrlen
, ep
->hwtid
, ep
->txq_idx
,
697 ep
, abort_arp_failure
);
699 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, req_skb
, ep
->l2t
);
702 static int send_abort(struct c4iw_ep
*ep
)
704 if (!ep
->com
.qp
|| !ep
->com
.qp
->srq
) {
708 set_bit(ABORT_REQ_IN_PROGRESS
, &ep
->com
.flags
);
713 static int send_connect(struct c4iw_ep
*ep
)
715 struct cpl_act_open_req
*req
= NULL
;
716 struct cpl_t5_act_open_req
*t5req
= NULL
;
717 struct cpl_t6_act_open_req
*t6req
= NULL
;
718 struct cpl_act_open_req6
*req6
= NULL
;
719 struct cpl_t5_act_open_req6
*t5req6
= NULL
;
720 struct cpl_t6_act_open_req6
*t6req6
= NULL
;
724 unsigned int mtu_idx
;
726 int win
, sizev4
, sizev6
, wrlen
;
727 struct sockaddr_in
*la
= (struct sockaddr_in
*)
729 struct sockaddr_in
*ra
= (struct sockaddr_in
*)
730 &ep
->com
.remote_addr
;
731 struct sockaddr_in6
*la6
= (struct sockaddr_in6
*)
733 struct sockaddr_in6
*ra6
= (struct sockaddr_in6
*)
734 &ep
->com
.remote_addr
;
736 enum chip_type adapter_type
= ep
->com
.dev
->rdev
.lldi
.adapter_type
;
737 u32 isn
= (prandom_u32() & ~7UL) - 1;
738 struct net_device
*netdev
;
741 netdev
= ep
->com
.dev
->rdev
.lldi
.ports
[0];
743 switch (CHELSIO_CHIP_VERSION(adapter_type
)) {
745 sizev4
= sizeof(struct cpl_act_open_req
);
746 sizev6
= sizeof(struct cpl_act_open_req6
);
749 sizev4
= sizeof(struct cpl_t5_act_open_req
);
750 sizev6
= sizeof(struct cpl_t5_act_open_req6
);
753 sizev4
= sizeof(struct cpl_t6_act_open_req
);
754 sizev6
= sizeof(struct cpl_t6_act_open_req6
);
757 pr_err("T%d Chip is not supported\n",
758 CHELSIO_CHIP_VERSION(adapter_type
));
762 wrlen
= (ep
->com
.remote_addr
.ss_family
== AF_INET
) ?
763 roundup(sizev4
, 16) :
766 pr_debug("ep %p atid %u\n", ep
, ep
->atid
);
768 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
770 pr_err("%s - failed to alloc skb\n", __func__
);
773 set_wr_txq(skb
, CPL_PRIORITY_SETUP
, ep
->ctrlq_idx
);
775 cxgb_best_mtu(ep
->com
.dev
->rdev
.lldi
.mtus
, ep
->mtu
, &mtu_idx
,
776 enable_tcp_timestamps
,
777 (ep
->com
.remote_addr
.ss_family
== AF_INET
) ? 0 : 1);
778 wscale
= cxgb_compute_wscale(rcv_win
);
781 * Specify the largest window that will fit in opt0. The
782 * remainder will be specified in the rx_data_ack.
784 win
= ep
->rcv_win
>> 10;
785 if (win
> RCV_BUFSIZ_M
)
788 opt0
= (nocong
? NO_CONG_F
: 0) |
791 WND_SCALE_V(wscale
) |
793 L2T_IDX_V(ep
->l2t
->idx
) |
794 TX_CHAN_V(ep
->tx_chan
) |
795 SMAC_SEL_V(ep
->smac_idx
) |
796 DSCP_V(ep
->tos
>> 2) |
797 ULP_MODE_V(ULP_MODE_TCPDDP
) |
799 opt2
= RX_CHANNEL_V(0) |
800 CCTRL_ECN_V(enable_ecn
) |
801 RSS_QUEUE_VALID_F
| RSS_QUEUE_V(ep
->rss_qid
);
802 if (enable_tcp_timestamps
)
803 opt2
|= TSTAMPS_EN_F
;
806 if (wscale
&& enable_tcp_window_scaling
)
807 opt2
|= WND_SCALE_EN_F
;
808 if (CHELSIO_CHIP_VERSION(adapter_type
) > CHELSIO_T4
) {
812 opt2
|= T5_OPT_2_VALID_F
;
813 opt2
|= CONG_CNTRL_V(CONG_ALG_TAHOE
);
817 params
= cxgb4_select_ntuple(netdev
, ep
->l2t
);
819 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
)
820 cxgb4_clip_get(ep
->com
.dev
->rdev
.lldi
.ports
[0],
821 (const u32
*)&la6
->sin6_addr
.s6_addr
, 1);
823 t4_set_arp_err_handler(skb
, ep
, act_open_req_arp_failure
);
825 if (ep
->com
.remote_addr
.ss_family
== AF_INET
) {
826 switch (CHELSIO_CHIP_VERSION(adapter_type
)) {
828 req
= skb_put(skb
, wrlen
);
832 t5req
= skb_put(skb
, wrlen
);
833 INIT_TP_WR(t5req
, 0);
834 req
= (struct cpl_act_open_req
*)t5req
;
837 t6req
= skb_put(skb
, wrlen
);
838 INIT_TP_WR(t6req
, 0);
839 req
= (struct cpl_act_open_req
*)t6req
;
840 t5req
= (struct cpl_t5_act_open_req
*)t6req
;
843 pr_err("T%d Chip is not supported\n",
844 CHELSIO_CHIP_VERSION(adapter_type
));
849 OPCODE_TID(req
) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ
,
850 ((ep
->rss_qid
<<14) | ep
->atid
)));
851 req
->local_port
= la
->sin_port
;
852 req
->peer_port
= ra
->sin_port
;
853 req
->local_ip
= la
->sin_addr
.s_addr
;
854 req
->peer_ip
= ra
->sin_addr
.s_addr
;
855 req
->opt0
= cpu_to_be64(opt0
);
857 if (is_t4(ep
->com
.dev
->rdev
.lldi
.adapter_type
)) {
858 req
->params
= cpu_to_be32(params
);
859 req
->opt2
= cpu_to_be32(opt2
);
861 if (is_t5(ep
->com
.dev
->rdev
.lldi
.adapter_type
)) {
863 cpu_to_be64(FILTER_TUPLE_V(params
));
864 t5req
->rsvd
= cpu_to_be32(isn
);
865 pr_debug("snd_isn %u\n", t5req
->rsvd
);
866 t5req
->opt2
= cpu_to_be32(opt2
);
869 cpu_to_be64(FILTER_TUPLE_V(params
));
870 t6req
->rsvd
= cpu_to_be32(isn
);
871 pr_debug("snd_isn %u\n", t6req
->rsvd
);
872 t6req
->opt2
= cpu_to_be32(opt2
);
876 switch (CHELSIO_CHIP_VERSION(adapter_type
)) {
878 req6
= skb_put(skb
, wrlen
);
882 t5req6
= skb_put(skb
, wrlen
);
883 INIT_TP_WR(t5req6
, 0);
884 req6
= (struct cpl_act_open_req6
*)t5req6
;
887 t6req6
= skb_put(skb
, wrlen
);
888 INIT_TP_WR(t6req6
, 0);
889 req6
= (struct cpl_act_open_req6
*)t6req6
;
890 t5req6
= (struct cpl_t5_act_open_req6
*)t6req6
;
893 pr_err("T%d Chip is not supported\n",
894 CHELSIO_CHIP_VERSION(adapter_type
));
899 OPCODE_TID(req6
) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6
,
900 ((ep
->rss_qid
<<14)|ep
->atid
)));
901 req6
->local_port
= la6
->sin6_port
;
902 req6
->peer_port
= ra6
->sin6_port
;
903 req6
->local_ip_hi
= *((__be64
*)(la6
->sin6_addr
.s6_addr
));
904 req6
->local_ip_lo
= *((__be64
*)(la6
->sin6_addr
.s6_addr
+ 8));
905 req6
->peer_ip_hi
= *((__be64
*)(ra6
->sin6_addr
.s6_addr
));
906 req6
->peer_ip_lo
= *((__be64
*)(ra6
->sin6_addr
.s6_addr
+ 8));
907 req6
->opt0
= cpu_to_be64(opt0
);
909 if (is_t4(ep
->com
.dev
->rdev
.lldi
.adapter_type
)) {
910 req6
->params
= cpu_to_be32(cxgb4_select_ntuple(netdev
,
912 req6
->opt2
= cpu_to_be32(opt2
);
914 if (is_t5(ep
->com
.dev
->rdev
.lldi
.adapter_type
)) {
916 cpu_to_be64(FILTER_TUPLE_V(params
));
917 t5req6
->rsvd
= cpu_to_be32(isn
);
918 pr_debug("snd_isn %u\n", t5req6
->rsvd
);
919 t5req6
->opt2
= cpu_to_be32(opt2
);
922 cpu_to_be64(FILTER_TUPLE_V(params
));
923 t6req6
->rsvd
= cpu_to_be32(isn
);
924 pr_debug("snd_isn %u\n", t6req6
->rsvd
);
925 t6req6
->opt2
= cpu_to_be32(opt2
);
931 set_bit(ACT_OPEN_REQ
, &ep
->com
.history
);
932 ret
= c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
934 if (ret
&& ep
->com
.remote_addr
.ss_family
== AF_INET6
)
935 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
936 (const u32
*)&la6
->sin6_addr
.s6_addr
, 1);
940 static int send_mpa_req(struct c4iw_ep
*ep
, struct sk_buff
*skb
,
943 int mpalen
, wrlen
, ret
;
944 struct fw_ofld_tx_data_wr
*req
;
945 struct mpa_message
*mpa
;
946 struct mpa_v2_conn_params mpa_v2_params
;
948 pr_debug("ep %p tid %u pd_len %d\n",
949 ep
, ep
->hwtid
, ep
->plen
);
951 mpalen
= sizeof(*mpa
) + ep
->plen
;
952 if (mpa_rev_to_use
== 2)
953 mpalen
+= sizeof(struct mpa_v2_conn_params
);
954 wrlen
= roundup(mpalen
+ sizeof(*req
), 16);
955 skb
= get_skb(skb
, wrlen
, GFP_KERNEL
);
957 connect_reply_upcall(ep
, -ENOMEM
);
960 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
962 req
= skb_put_zero(skb
, wrlen
);
963 req
->op_to_immdlen
= cpu_to_be32(
964 FW_WR_OP_V(FW_OFLD_TX_DATA_WR
) |
966 FW_WR_IMMDLEN_V(mpalen
));
967 req
->flowid_len16
= cpu_to_be32(
968 FW_WR_FLOWID_V(ep
->hwtid
) |
969 FW_WR_LEN16_V(wrlen
>> 4));
970 req
->plen
= cpu_to_be32(mpalen
);
971 req
->tunnel_to_proxy
= cpu_to_be32(
972 FW_OFLD_TX_DATA_WR_FLUSH_F
|
973 FW_OFLD_TX_DATA_WR_SHOVE_F
);
975 mpa
= (struct mpa_message
*)(req
+ 1);
976 memcpy(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
));
980 mpa
->flags
|= MPA_CRC
;
981 if (markers_enabled
) {
982 mpa
->flags
|= MPA_MARKERS
;
983 ep
->mpa_attr
.recv_marker_enabled
= 1;
985 ep
->mpa_attr
.recv_marker_enabled
= 0;
987 if (mpa_rev_to_use
== 2)
988 mpa
->flags
|= MPA_ENHANCED_RDMA_CONN
;
990 mpa
->private_data_size
= htons(ep
->plen
);
991 mpa
->revision
= mpa_rev_to_use
;
992 if (mpa_rev_to_use
== 1) {
993 ep
->tried_with_mpa_v1
= 1;
994 ep
->retry_with_mpa_v1
= 0;
997 if (mpa_rev_to_use
== 2) {
998 mpa
->private_data_size
=
999 htons(ntohs(mpa
->private_data_size
) +
1000 sizeof(struct mpa_v2_conn_params
));
1001 pr_debug("initiator ird %u ord %u\n", ep
->ird
,
1003 mpa_v2_params
.ird
= htons((u16
)ep
->ird
);
1004 mpa_v2_params
.ord
= htons((u16
)ep
->ord
);
1007 mpa_v2_params
.ird
|= htons(MPA_V2_PEER2PEER_MODEL
);
1008 if (p2p_type
== FW_RI_INIT_P2PTYPE_RDMA_WRITE
)
1009 mpa_v2_params
.ord
|=
1010 htons(MPA_V2_RDMA_WRITE_RTR
);
1011 else if (p2p_type
== FW_RI_INIT_P2PTYPE_READ_REQ
)
1012 mpa_v2_params
.ord
|=
1013 htons(MPA_V2_RDMA_READ_RTR
);
1015 memcpy(mpa
->private_data
, &mpa_v2_params
,
1016 sizeof(struct mpa_v2_conn_params
));
1019 memcpy(mpa
->private_data
+
1020 sizeof(struct mpa_v2_conn_params
),
1021 ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
1024 memcpy(mpa
->private_data
,
1025 ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
1028 * Reference the mpa skb. This ensures the data area
1029 * will remain in memory until the hw acks the tx.
1030 * Function fw4_ack() will deref it.
1033 t4_set_arp_err_handler(skb
, NULL
, arp_failure_discard
);
1035 ret
= c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
1039 __state_set(&ep
->com
, MPA_REQ_SENT
);
1040 ep
->mpa_attr
.initiator
= 1;
1041 ep
->snd_seq
+= mpalen
;
1045 static int send_mpa_reject(struct c4iw_ep
*ep
, const void *pdata
, u8 plen
)
1048 struct fw_ofld_tx_data_wr
*req
;
1049 struct mpa_message
*mpa
;
1050 struct sk_buff
*skb
;
1051 struct mpa_v2_conn_params mpa_v2_params
;
1053 pr_debug("ep %p tid %u pd_len %d\n",
1054 ep
, ep
->hwtid
, ep
->plen
);
1056 mpalen
= sizeof(*mpa
) + plen
;
1057 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
)
1058 mpalen
+= sizeof(struct mpa_v2_conn_params
);
1059 wrlen
= roundup(mpalen
+ sizeof(*req
), 16);
1061 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
1063 pr_err("%s - cannot alloc skb!\n", __func__
);
1066 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
1068 req
= skb_put_zero(skb
, wrlen
);
1069 req
->op_to_immdlen
= cpu_to_be32(
1070 FW_WR_OP_V(FW_OFLD_TX_DATA_WR
) |
1072 FW_WR_IMMDLEN_V(mpalen
));
1073 req
->flowid_len16
= cpu_to_be32(
1074 FW_WR_FLOWID_V(ep
->hwtid
) |
1075 FW_WR_LEN16_V(wrlen
>> 4));
1076 req
->plen
= cpu_to_be32(mpalen
);
1077 req
->tunnel_to_proxy
= cpu_to_be32(
1078 FW_OFLD_TX_DATA_WR_FLUSH_F
|
1079 FW_OFLD_TX_DATA_WR_SHOVE_F
);
1081 mpa
= (struct mpa_message
*)(req
+ 1);
1082 memset(mpa
, 0, sizeof(*mpa
));
1083 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
1084 mpa
->flags
= MPA_REJECT
;
1085 mpa
->revision
= ep
->mpa_attr
.version
;
1086 mpa
->private_data_size
= htons(plen
);
1088 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
) {
1089 mpa
->flags
|= MPA_ENHANCED_RDMA_CONN
;
1090 mpa
->private_data_size
=
1091 htons(ntohs(mpa
->private_data_size
) +
1092 sizeof(struct mpa_v2_conn_params
));
1093 mpa_v2_params
.ird
= htons(((u16
)ep
->ird
) |
1094 (peer2peer
? MPA_V2_PEER2PEER_MODEL
:
1096 mpa_v2_params
.ord
= htons(((u16
)ep
->ord
) | (peer2peer
?
1098 FW_RI_INIT_P2PTYPE_RDMA_WRITE
?
1099 MPA_V2_RDMA_WRITE_RTR
: p2p_type
==
1100 FW_RI_INIT_P2PTYPE_READ_REQ
?
1101 MPA_V2_RDMA_READ_RTR
: 0) : 0));
1102 memcpy(mpa
->private_data
, &mpa_v2_params
,
1103 sizeof(struct mpa_v2_conn_params
));
1106 memcpy(mpa
->private_data
+
1107 sizeof(struct mpa_v2_conn_params
), pdata
, plen
);
1110 memcpy(mpa
->private_data
, pdata
, plen
);
1113 * Reference the mpa skb again. This ensures the data area
1114 * will remain in memory until the hw acks the tx.
1115 * Function fw4_ack() will deref it.
1118 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
1119 t4_set_arp_err_handler(skb
, NULL
, mpa_start_arp_failure
);
1121 ep
->snd_seq
+= mpalen
;
1122 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
1125 static int send_mpa_reply(struct c4iw_ep
*ep
, const void *pdata
, u8 plen
)
1128 struct fw_ofld_tx_data_wr
*req
;
1129 struct mpa_message
*mpa
;
1130 struct sk_buff
*skb
;
1131 struct mpa_v2_conn_params mpa_v2_params
;
1133 pr_debug("ep %p tid %u pd_len %d\n",
1134 ep
, ep
->hwtid
, ep
->plen
);
1136 mpalen
= sizeof(*mpa
) + plen
;
1137 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
)
1138 mpalen
+= sizeof(struct mpa_v2_conn_params
);
1139 wrlen
= roundup(mpalen
+ sizeof(*req
), 16);
1141 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
1143 pr_err("%s - cannot alloc skb!\n", __func__
);
1146 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
1148 req
= skb_put_zero(skb
, wrlen
);
1149 req
->op_to_immdlen
= cpu_to_be32(
1150 FW_WR_OP_V(FW_OFLD_TX_DATA_WR
) |
1152 FW_WR_IMMDLEN_V(mpalen
));
1153 req
->flowid_len16
= cpu_to_be32(
1154 FW_WR_FLOWID_V(ep
->hwtid
) |
1155 FW_WR_LEN16_V(wrlen
>> 4));
1156 req
->plen
= cpu_to_be32(mpalen
);
1157 req
->tunnel_to_proxy
= cpu_to_be32(
1158 FW_OFLD_TX_DATA_WR_FLUSH_F
|
1159 FW_OFLD_TX_DATA_WR_SHOVE_F
);
1161 mpa
= (struct mpa_message
*)(req
+ 1);
1162 memset(mpa
, 0, sizeof(*mpa
));
1163 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
1165 if (ep
->mpa_attr
.crc_enabled
)
1166 mpa
->flags
|= MPA_CRC
;
1167 if (ep
->mpa_attr
.recv_marker_enabled
)
1168 mpa
->flags
|= MPA_MARKERS
;
1169 mpa
->revision
= ep
->mpa_attr
.version
;
1170 mpa
->private_data_size
= htons(plen
);
1172 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
) {
1173 mpa
->flags
|= MPA_ENHANCED_RDMA_CONN
;
1174 mpa
->private_data_size
=
1175 htons(ntohs(mpa
->private_data_size
) +
1176 sizeof(struct mpa_v2_conn_params
));
1177 mpa_v2_params
.ird
= htons((u16
)ep
->ird
);
1178 mpa_v2_params
.ord
= htons((u16
)ep
->ord
);
1179 if (peer2peer
&& (ep
->mpa_attr
.p2p_type
!=
1180 FW_RI_INIT_P2PTYPE_DISABLED
)) {
1181 mpa_v2_params
.ird
|= htons(MPA_V2_PEER2PEER_MODEL
);
1183 if (p2p_type
== FW_RI_INIT_P2PTYPE_RDMA_WRITE
)
1184 mpa_v2_params
.ord
|=
1185 htons(MPA_V2_RDMA_WRITE_RTR
);
1186 else if (p2p_type
== FW_RI_INIT_P2PTYPE_READ_REQ
)
1187 mpa_v2_params
.ord
|=
1188 htons(MPA_V2_RDMA_READ_RTR
);
1191 memcpy(mpa
->private_data
, &mpa_v2_params
,
1192 sizeof(struct mpa_v2_conn_params
));
1195 memcpy(mpa
->private_data
+
1196 sizeof(struct mpa_v2_conn_params
), pdata
, plen
);
1199 memcpy(mpa
->private_data
, pdata
, plen
);
1202 * Reference the mpa skb. This ensures the data area
1203 * will remain in memory until the hw acks the tx.
1204 * Function fw4_ack() will deref it.
1207 t4_set_arp_err_handler(skb
, NULL
, mpa_start_arp_failure
);
1209 __state_set(&ep
->com
, MPA_REP_SENT
);
1210 ep
->snd_seq
+= mpalen
;
1211 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
1214 static int act_establish(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
1217 struct cpl_act_establish
*req
= cplhdr(skb
);
1218 unsigned short tcp_opt
= ntohs(req
->tcp_opt
);
1219 unsigned int tid
= GET_TID(req
);
1220 unsigned int atid
= TID_TID_G(ntohl(req
->tos_atid
));
1221 struct tid_info
*t
= dev
->rdev
.lldi
.tids
;
1224 ep
= lookup_atid(t
, atid
);
1226 pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep
, tid
,
1227 be32_to_cpu(req
->snd_isn
), be32_to_cpu(req
->rcv_isn
));
1229 mutex_lock(&ep
->com
.mutex
);
1230 dst_confirm(ep
->dst
);
1232 /* setup the hwtid for this connection */
1234 cxgb4_insert_tid(t
, ep
, tid
, ep
->com
.local_addr
.ss_family
);
1237 ep
->snd_seq
= be32_to_cpu(req
->snd_isn
);
1238 ep
->rcv_seq
= be32_to_cpu(req
->rcv_isn
);
1239 ep
->snd_wscale
= TCPOPT_SND_WSCALE_G(tcp_opt
);
1241 set_emss(ep
, tcp_opt
);
1243 /* dealloc the atid */
1244 xa_erase_irq(&ep
->com
.dev
->atids
, atid
);
1245 cxgb4_free_atid(t
, atid
);
1246 set_bit(ACT_ESTAB
, &ep
->com
.history
);
1248 /* start MPA negotiation */
1249 ret
= send_flowc(ep
);
1252 if (ep
->retry_with_mpa_v1
)
1253 ret
= send_mpa_req(ep
, skb
, 1);
1255 ret
= send_mpa_req(ep
, skb
, mpa_rev
);
1258 mutex_unlock(&ep
->com
.mutex
);
1261 mutex_unlock(&ep
->com
.mutex
);
1262 connect_reply_upcall(ep
, -ENOMEM
);
1263 c4iw_ep_disconnect(ep
, 0, GFP_KERNEL
);
1267 static void close_complete_upcall(struct c4iw_ep
*ep
, int status
)
1269 struct iw_cm_event event
;
1271 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1272 memset(&event
, 0, sizeof(event
));
1273 event
.event
= IW_CM_EVENT_CLOSE
;
1274 event
.status
= status
;
1275 if (ep
->com
.cm_id
) {
1276 pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1277 ep
, ep
->com
.cm_id
, ep
->hwtid
);
1278 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1279 deref_cm_id(&ep
->com
);
1280 set_bit(CLOSE_UPCALL
, &ep
->com
.history
);
1284 static void peer_close_upcall(struct c4iw_ep
*ep
)
1286 struct iw_cm_event event
;
1288 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1289 memset(&event
, 0, sizeof(event
));
1290 event
.event
= IW_CM_EVENT_DISCONNECT
;
1291 if (ep
->com
.cm_id
) {
1292 pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1293 ep
, ep
->com
.cm_id
, ep
->hwtid
);
1294 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1295 set_bit(DISCONN_UPCALL
, &ep
->com
.history
);
1299 static void peer_abort_upcall(struct c4iw_ep
*ep
)
1301 struct iw_cm_event event
;
1303 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1304 memset(&event
, 0, sizeof(event
));
1305 event
.event
= IW_CM_EVENT_CLOSE
;
1306 event
.status
= -ECONNRESET
;
1307 if (ep
->com
.cm_id
) {
1308 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep
,
1309 ep
->com
.cm_id
, ep
->hwtid
);
1310 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1311 deref_cm_id(&ep
->com
);
1312 set_bit(ABORT_UPCALL
, &ep
->com
.history
);
1316 static void connect_reply_upcall(struct c4iw_ep
*ep
, int status
)
1318 struct iw_cm_event event
;
1320 pr_debug("ep %p tid %u status %d\n",
1321 ep
, ep
->hwtid
, status
);
1322 memset(&event
, 0, sizeof(event
));
1323 event
.event
= IW_CM_EVENT_CONNECT_REPLY
;
1324 event
.status
= status
;
1325 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
1326 sizeof(ep
->com
.local_addr
));
1327 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
1328 sizeof(ep
->com
.remote_addr
));
1330 if ((status
== 0) || (status
== -ECONNREFUSED
)) {
1331 if (!ep
->tried_with_mpa_v1
) {
1332 /* this means MPA_v2 is used */
1333 event
.ord
= ep
->ird
;
1334 event
.ird
= ep
->ord
;
1335 event
.private_data_len
= ep
->plen
-
1336 sizeof(struct mpa_v2_conn_params
);
1337 event
.private_data
= ep
->mpa_pkt
+
1338 sizeof(struct mpa_message
) +
1339 sizeof(struct mpa_v2_conn_params
);
1341 /* this means MPA_v1 is used */
1342 event
.ord
= cur_max_read_depth(ep
->com
.dev
);
1343 event
.ird
= cur_max_read_depth(ep
->com
.dev
);
1344 event
.private_data_len
= ep
->plen
;
1345 event
.private_data
= ep
->mpa_pkt
+
1346 sizeof(struct mpa_message
);
1350 pr_debug("ep %p tid %u status %d\n", ep
,
1352 set_bit(CONN_RPL_UPCALL
, &ep
->com
.history
);
1353 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1356 deref_cm_id(&ep
->com
);
1359 static int connect_request_upcall(struct c4iw_ep
*ep
)
1361 struct iw_cm_event event
;
1364 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1365 memset(&event
, 0, sizeof(event
));
1366 event
.event
= IW_CM_EVENT_CONNECT_REQUEST
;
1367 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
1368 sizeof(ep
->com
.local_addr
));
1369 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
1370 sizeof(ep
->com
.remote_addr
));
1371 event
.provider_data
= ep
;
1372 if (!ep
->tried_with_mpa_v1
) {
1373 /* this means MPA_v2 is used */
1374 event
.ord
= ep
->ord
;
1375 event
.ird
= ep
->ird
;
1376 event
.private_data_len
= ep
->plen
-
1377 sizeof(struct mpa_v2_conn_params
);
1378 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
) +
1379 sizeof(struct mpa_v2_conn_params
);
1381 /* this means MPA_v1 is used. Send max supported */
1382 event
.ord
= cur_max_read_depth(ep
->com
.dev
);
1383 event
.ird
= cur_max_read_depth(ep
->com
.dev
);
1384 event
.private_data_len
= ep
->plen
;
1385 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
1387 c4iw_get_ep(&ep
->com
);
1388 ret
= ep
->parent_ep
->com
.cm_id
->event_handler(ep
->parent_ep
->com
.cm_id
,
1391 c4iw_put_ep(&ep
->com
);
1392 set_bit(CONNREQ_UPCALL
, &ep
->com
.history
);
1393 c4iw_put_ep(&ep
->parent_ep
->com
);
1397 static void established_upcall(struct c4iw_ep
*ep
)
1399 struct iw_cm_event event
;
1401 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1402 memset(&event
, 0, sizeof(event
));
1403 event
.event
= IW_CM_EVENT_ESTABLISHED
;
1404 event
.ird
= ep
->ord
;
1405 event
.ord
= ep
->ird
;
1406 if (ep
->com
.cm_id
) {
1407 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1408 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1409 set_bit(ESTAB_UPCALL
, &ep
->com
.history
);
1413 static int update_rx_credits(struct c4iw_ep
*ep
, u32 credits
)
1415 struct sk_buff
*skb
;
1416 u32 wrlen
= roundup(sizeof(struct cpl_rx_data_ack
), 16);
1419 pr_debug("ep %p tid %u credits %u\n",
1420 ep
, ep
->hwtid
, credits
);
1421 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
1423 pr_err("update_rx_credits - cannot alloc skb!\n");
1428 * If we couldn't specify the entire rcv window at connection setup
1429 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1430 * then add the overage in to the credits returned.
1432 if (ep
->rcv_win
> RCV_BUFSIZ_M
* 1024)
1433 credits
+= ep
->rcv_win
- RCV_BUFSIZ_M
* 1024;
1435 credit_dack
= credits
| RX_FORCE_ACK_F
| RX_DACK_CHANGE_F
|
1436 RX_DACK_MODE_V(dack_mode
);
1438 cxgb_mk_rx_data_ack(skb
, wrlen
, ep
->hwtid
, ep
->ctrlq_idx
,
1441 c4iw_ofld_send(&ep
->com
.dev
->rdev
, skb
);
1445 #define RELAXED_IRD_NEGOTIATION 1
1448 * process_mpa_reply - process streaming mode MPA reply
1452 * 0 upon success indicating a connect request was delivered to the ULP
1453 * or the mpa request is incomplete but valid so far.
1455 * 1 if a failure requires the caller to close the connection.
1457 * 2 if a failure requires the caller to abort the connection.
1459 static int process_mpa_reply(struct c4iw_ep
*ep
, struct sk_buff
*skb
)
1461 struct mpa_message
*mpa
;
1462 struct mpa_v2_conn_params
*mpa_v2_params
;
1464 u16 resp_ird
, resp_ord
;
1465 u8 rtr_mismatch
= 0, insuff_ird
= 0;
1466 struct c4iw_qp_attributes attrs
;
1467 enum c4iw_qp_attr_mask mask
;
1471 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1474 * If we get more than the supported amount of private data
1475 * then we must fail this connection.
1477 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
1479 goto err_stop_timer
;
1483 * copy the new data into our accumulation buffer.
1485 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
1487 ep
->mpa_pkt_len
+= skb
->len
;
1490 * if we don't even have the mpa message, then bail.
1492 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
1494 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
1496 /* Validate MPA header. */
1497 if (mpa
->revision
> mpa_rev
) {
1498 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1499 __func__
, mpa_rev
, mpa
->revision
);
1501 goto err_stop_timer
;
1503 if (memcmp(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
))) {
1505 goto err_stop_timer
;
1508 plen
= ntohs(mpa
->private_data_size
);
1511 * Fail if there's too much private data.
1513 if (plen
> MPA_MAX_PRIVATE_DATA
) {
1515 goto err_stop_timer
;
1519 * If plen does not account for pkt size
1521 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
1523 goto err_stop_timer
;
1526 ep
->plen
= (u8
) plen
;
1529 * If we don't have all the pdata yet, then bail.
1530 * We'll continue process when more data arrives.
1532 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1535 if (mpa
->flags
& MPA_REJECT
) {
1536 err
= -ECONNREFUSED
;
1537 goto err_stop_timer
;
1541 * Stop mpa timer. If it expired, then
1542 * we ignore the MPA reply. process_timeout()
1543 * will abort the connection.
1545 if (stop_ep_timer(ep
))
1549 * If we get here we have accumulated the entire mpa
1550 * start reply message including private data. And
1551 * the MPA header is valid.
1553 __state_set(&ep
->com
, FPDU_MODE
);
1554 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1555 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1556 ep
->mpa_attr
.version
= mpa
->revision
;
1557 ep
->mpa_attr
.p2p_type
= FW_RI_INIT_P2PTYPE_DISABLED
;
1559 if (mpa
->revision
== 2) {
1560 ep
->mpa_attr
.enhanced_rdma_conn
=
1561 mpa
->flags
& MPA_ENHANCED_RDMA_CONN
? 1 : 0;
1562 if (ep
->mpa_attr
.enhanced_rdma_conn
) {
1563 mpa_v2_params
= (struct mpa_v2_conn_params
*)
1564 (ep
->mpa_pkt
+ sizeof(*mpa
));
1565 resp_ird
= ntohs(mpa_v2_params
->ird
) &
1566 MPA_V2_IRD_ORD_MASK
;
1567 resp_ord
= ntohs(mpa_v2_params
->ord
) &
1568 MPA_V2_IRD_ORD_MASK
;
1569 pr_debug("responder ird %u ord %u ep ird %u ord %u\n",
1570 resp_ird
, resp_ord
, ep
->ird
, ep
->ord
);
1573 * This is a double-check. Ideally, below checks are
1574 * not required since ird/ord stuff has been taken
1575 * care of in c4iw_accept_cr
1577 if (ep
->ird
< resp_ord
) {
1578 if (RELAXED_IRD_NEGOTIATION
&& resp_ord
<=
1579 ep
->com
.dev
->rdev
.lldi
.max_ordird_qp
)
1583 } else if (ep
->ird
> resp_ord
) {
1586 if (ep
->ord
> resp_ird
) {
1587 if (RELAXED_IRD_NEGOTIATION
)
1598 if (ntohs(mpa_v2_params
->ird
) &
1599 MPA_V2_PEER2PEER_MODEL
) {
1600 if (ntohs(mpa_v2_params
->ord
) &
1601 MPA_V2_RDMA_WRITE_RTR
)
1602 ep
->mpa_attr
.p2p_type
=
1603 FW_RI_INIT_P2PTYPE_RDMA_WRITE
;
1604 else if (ntohs(mpa_v2_params
->ord
) &
1605 MPA_V2_RDMA_READ_RTR
)
1606 ep
->mpa_attr
.p2p_type
=
1607 FW_RI_INIT_P2PTYPE_READ_REQ
;
1610 } else if (mpa
->revision
== 1)
1612 ep
->mpa_attr
.p2p_type
= p2p_type
;
1614 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1615 ep
->mpa_attr
.crc_enabled
,
1616 ep
->mpa_attr
.recv_marker_enabled
,
1617 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
,
1618 ep
->mpa_attr
.p2p_type
, p2p_type
);
1621 * If responder's RTR does not match with that of initiator, assign
1622 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1623 * generated when moving QP to RTS state.
1624 * A TERM message will be sent after QP has moved to RTS state
1626 if ((ep
->mpa_attr
.version
== 2) && peer2peer
&&
1627 (ep
->mpa_attr
.p2p_type
!= p2p_type
)) {
1628 ep
->mpa_attr
.p2p_type
= FW_RI_INIT_P2PTYPE_DISABLED
;
1632 attrs
.mpa_attr
= ep
->mpa_attr
;
1633 attrs
.max_ird
= ep
->ird
;
1634 attrs
.max_ord
= ep
->ord
;
1635 attrs
.llp_stream_handle
= ep
;
1636 attrs
.next_state
= C4IW_QP_STATE_RTS
;
1638 mask
= C4IW_QP_ATTR_NEXT_STATE
|
1639 C4IW_QP_ATTR_LLP_STREAM_HANDLE
| C4IW_QP_ATTR_MPA_ATTR
|
1640 C4IW_QP_ATTR_MAX_IRD
| C4IW_QP_ATTR_MAX_ORD
;
1642 /* bind QP and TID with INIT_WR */
1643 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
1644 ep
->com
.qp
, mask
, &attrs
, 1);
1649 * If responder's RTR requirement did not match with what initiator
1650 * supports, generate TERM message
1653 pr_err("%s: RTR mismatch, sending TERM\n", __func__
);
1654 attrs
.layer_etype
= LAYER_MPA
| DDP_LLP
;
1655 attrs
.ecode
= MPA_NOMATCH_RTR
;
1656 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
1657 attrs
.send_term
= 1;
1658 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1659 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1666 * Generate TERM if initiator IRD is not sufficient for responder
1667 * provided ORD. Currently, we do the same behaviour even when
1668 * responder provided IRD is also not sufficient as regards to
1672 pr_err("%s: Insufficient IRD, sending TERM\n", __func__
);
1673 attrs
.layer_etype
= LAYER_MPA
| DDP_LLP
;
1674 attrs
.ecode
= MPA_INSUFF_IRD
;
1675 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
1676 attrs
.send_term
= 1;
1677 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1678 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1689 connect_reply_upcall(ep
, err
);
1694 * process_mpa_request - process streaming mode MPA request
1698 * 0 upon success indicating a connect request was delivered to the ULP
1699 * or the mpa request is incomplete but valid so far.
1701 * 1 if a failure requires the caller to close the connection.
1703 * 2 if a failure requires the caller to abort the connection.
1705 static int process_mpa_request(struct c4iw_ep
*ep
, struct sk_buff
*skb
)
1707 struct mpa_message
*mpa
;
1708 struct mpa_v2_conn_params
*mpa_v2_params
;
1711 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1714 * If we get more than the supported amount of private data
1715 * then we must fail this connection.
1717 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
))
1718 goto err_stop_timer
;
1720 pr_debug("enter (%s line %u)\n", __FILE__
, __LINE__
);
1723 * Copy the new data into our accumulation buffer.
1725 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
1727 ep
->mpa_pkt_len
+= skb
->len
;
1730 * If we don't even have the mpa message, then bail.
1731 * We'll continue process when more data arrives.
1733 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
1736 pr_debug("enter (%s line %u)\n", __FILE__
, __LINE__
);
1737 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
1740 * Validate MPA Header.
1742 if (mpa
->revision
> mpa_rev
) {
1743 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1744 __func__
, mpa_rev
, mpa
->revision
);
1745 goto err_stop_timer
;
1748 if (memcmp(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
)))
1749 goto err_stop_timer
;
1751 plen
= ntohs(mpa
->private_data_size
);
1754 * Fail if there's too much private data.
1756 if (plen
> MPA_MAX_PRIVATE_DATA
)
1757 goto err_stop_timer
;
1760 * If plen does not account for pkt size
1762 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
))
1763 goto err_stop_timer
;
1764 ep
->plen
= (u8
) plen
;
1767 * If we don't have all the pdata yet, then bail.
1769 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1773 * If we get here we have accumulated the entire mpa
1774 * start reply message including private data.
1776 ep
->mpa_attr
.initiator
= 0;
1777 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1778 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
1779 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1780 ep
->mpa_attr
.version
= mpa
->revision
;
1781 if (mpa
->revision
== 1)
1782 ep
->tried_with_mpa_v1
= 1;
1783 ep
->mpa_attr
.p2p_type
= FW_RI_INIT_P2PTYPE_DISABLED
;
1785 if (mpa
->revision
== 2) {
1786 ep
->mpa_attr
.enhanced_rdma_conn
=
1787 mpa
->flags
& MPA_ENHANCED_RDMA_CONN
? 1 : 0;
1788 if (ep
->mpa_attr
.enhanced_rdma_conn
) {
1789 mpa_v2_params
= (struct mpa_v2_conn_params
*)
1790 (ep
->mpa_pkt
+ sizeof(*mpa
));
1791 ep
->ird
= ntohs(mpa_v2_params
->ird
) &
1792 MPA_V2_IRD_ORD_MASK
;
1793 ep
->ird
= min_t(u32
, ep
->ird
,
1794 cur_max_read_depth(ep
->com
.dev
));
1795 ep
->ord
= ntohs(mpa_v2_params
->ord
) &
1796 MPA_V2_IRD_ORD_MASK
;
1797 ep
->ord
= min_t(u32
, ep
->ord
,
1798 cur_max_read_depth(ep
->com
.dev
));
1799 pr_debug("initiator ird %u ord %u\n",
1801 if (ntohs(mpa_v2_params
->ird
) & MPA_V2_PEER2PEER_MODEL
)
1803 if (ntohs(mpa_v2_params
->ord
) &
1804 MPA_V2_RDMA_WRITE_RTR
)
1805 ep
->mpa_attr
.p2p_type
=
1806 FW_RI_INIT_P2PTYPE_RDMA_WRITE
;
1807 else if (ntohs(mpa_v2_params
->ord
) &
1808 MPA_V2_RDMA_READ_RTR
)
1809 ep
->mpa_attr
.p2p_type
=
1810 FW_RI_INIT_P2PTYPE_READ_REQ
;
1813 } else if (mpa
->revision
== 1)
1815 ep
->mpa_attr
.p2p_type
= p2p_type
;
1817 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1818 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
1819 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
,
1820 ep
->mpa_attr
.p2p_type
);
1822 __state_set(&ep
->com
, MPA_REQ_RCVD
);
1825 mutex_lock_nested(&ep
->parent_ep
->com
.mutex
, SINGLE_DEPTH_NESTING
);
1826 if (ep
->parent_ep
->com
.state
!= DEAD
) {
1827 if (connect_request_upcall(ep
))
1828 goto err_unlock_parent
;
1830 goto err_unlock_parent
;
1832 mutex_unlock(&ep
->parent_ep
->com
.mutex
);
1836 mutex_unlock(&ep
->parent_ep
->com
.mutex
);
1839 (void)stop_ep_timer(ep
);
1844 static int rx_data(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
1847 struct cpl_rx_data
*hdr
= cplhdr(skb
);
1848 unsigned int dlen
= ntohs(hdr
->len
);
1849 unsigned int tid
= GET_TID(hdr
);
1850 __u8 status
= hdr
->status
;
1853 ep
= get_ep_from_tid(dev
, tid
);
1856 pr_debug("ep %p tid %u dlen %u\n", ep
, ep
->hwtid
, dlen
);
1857 skb_pull(skb
, sizeof(*hdr
));
1858 skb_trim(skb
, dlen
);
1859 mutex_lock(&ep
->com
.mutex
);
1861 switch (ep
->com
.state
) {
1863 update_rx_credits(ep
, dlen
);
1864 ep
->rcv_seq
+= dlen
;
1865 disconnect
= process_mpa_reply(ep
, skb
);
1868 update_rx_credits(ep
, dlen
);
1869 ep
->rcv_seq
+= dlen
;
1870 disconnect
= process_mpa_request(ep
, skb
);
1873 struct c4iw_qp_attributes attrs
;
1875 update_rx_credits(ep
, dlen
);
1877 pr_err("%s Unexpected streaming data." \
1878 " qpid %u ep %p state %d tid %u status %d\n",
1879 __func__
, ep
->com
.qp
->wq
.sq
.qid
, ep
,
1880 ep
->com
.state
, ep
->hwtid
, status
);
1881 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
1882 c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1883 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1890 mutex_unlock(&ep
->com
.mutex
);
1892 c4iw_ep_disconnect(ep
, disconnect
== 2, GFP_KERNEL
);
1893 c4iw_put_ep(&ep
->com
);
1897 static void complete_cached_srq_buffers(struct c4iw_ep
*ep
, u32 srqidx
)
1899 enum chip_type adapter_type
;
1901 adapter_type
= ep
->com
.dev
->rdev
.lldi
.adapter_type
;
1904 * If this TCB had a srq buffer cached, then we must complete
1905 * it. For user mode, that means saving the srqidx in the
1906 * user/kernel status page for this qp. For kernel mode, just
1907 * synthesize the CQE now.
1909 if (CHELSIO_CHIP_VERSION(adapter_type
) > CHELSIO_T5
&& srqidx
) {
1910 if (ep
->com
.qp
->ibqp
.uobject
)
1911 t4_set_wq_in_error(&ep
->com
.qp
->wq
, srqidx
);
1913 c4iw_flush_srqidx(ep
->com
.qp
, srqidx
);
1917 static int abort_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
1921 struct cpl_abort_rpl_rss6
*rpl
= cplhdr(skb
);
1923 unsigned int tid
= GET_TID(rpl
);
1925 ep
= get_ep_from_tid(dev
, tid
);
1927 pr_warn("Abort rpl to freed endpoint\n");
1931 if (ep
->com
.qp
&& ep
->com
.qp
->srq
) {
1932 srqidx
= ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl
->srqidx_status
));
1933 complete_cached_srq_buffers(ep
, srqidx
? srqidx
: ep
->srqe_idx
);
1936 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
1937 mutex_lock(&ep
->com
.mutex
);
1938 switch (ep
->com
.state
) {
1940 c4iw_wake_up_noref(ep
->com
.wr_waitp
, -ECONNRESET
);
1941 __state_set(&ep
->com
, DEAD
);
1945 pr_err("%s ep %p state %d\n", __func__
, ep
, ep
->com
.state
);
1948 mutex_unlock(&ep
->com
.mutex
);
1951 close_complete_upcall(ep
, -ECONNRESET
);
1952 release_ep_resources(ep
);
1954 c4iw_put_ep(&ep
->com
);
1958 static int send_fw_act_open_req(struct c4iw_ep
*ep
, unsigned int atid
)
1960 struct sk_buff
*skb
;
1961 struct fw_ofld_connection_wr
*req
;
1962 unsigned int mtu_idx
;
1964 struct sockaddr_in
*sin
;
1967 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1968 req
= __skb_put_zero(skb
, sizeof(*req
));
1969 req
->op_compl
= htonl(WR_OP_V(FW_OFLD_CONNECTION_WR
));
1970 req
->len16_pkd
= htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req
), 16)));
1971 req
->le
.filter
= cpu_to_be32(cxgb4_select_ntuple(
1972 ep
->com
.dev
->rdev
.lldi
.ports
[0],
1974 sin
= (struct sockaddr_in
*)&ep
->com
.local_addr
;
1975 req
->le
.lport
= sin
->sin_port
;
1976 req
->le
.u
.ipv4
.lip
= sin
->sin_addr
.s_addr
;
1977 sin
= (struct sockaddr_in
*)&ep
->com
.remote_addr
;
1978 req
->le
.pport
= sin
->sin_port
;
1979 req
->le
.u
.ipv4
.pip
= sin
->sin_addr
.s_addr
;
1980 req
->tcb
.t_state_to_astid
=
1981 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT
) |
1982 FW_OFLD_CONNECTION_WR_ASTID_V(atid
));
1983 req
->tcb
.cplrxdataack_cplpassacceptrpl
=
1984 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F
);
1985 req
->tcb
.tx_max
= (__force __be32
) jiffies
;
1986 req
->tcb
.rcv_adv
= htons(1);
1987 cxgb_best_mtu(ep
->com
.dev
->rdev
.lldi
.mtus
, ep
->mtu
, &mtu_idx
,
1988 enable_tcp_timestamps
,
1989 (ep
->com
.remote_addr
.ss_family
== AF_INET
) ? 0 : 1);
1990 wscale
= cxgb_compute_wscale(rcv_win
);
1993 * Specify the largest window that will fit in opt0. The
1994 * remainder will be specified in the rx_data_ack.
1996 win
= ep
->rcv_win
>> 10;
1997 if (win
> RCV_BUFSIZ_M
)
2000 req
->tcb
.opt0
= (__force __be64
) (TCAM_BYPASS_F
|
2001 (nocong
? NO_CONG_F
: 0) |
2004 WND_SCALE_V(wscale
) |
2005 MSS_IDX_V(mtu_idx
) |
2006 L2T_IDX_V(ep
->l2t
->idx
) |
2007 TX_CHAN_V(ep
->tx_chan
) |
2008 SMAC_SEL_V(ep
->smac_idx
) |
2009 DSCP_V(ep
->tos
>> 2) |
2010 ULP_MODE_V(ULP_MODE_TCPDDP
) |
2012 req
->tcb
.opt2
= (__force __be32
) (PACE_V(1) |
2013 TX_QUEUE_V(ep
->com
.dev
->rdev
.lldi
.tx_modq
[ep
->tx_chan
]) |
2015 CCTRL_ECN_V(enable_ecn
) |
2016 RSS_QUEUE_VALID_F
| RSS_QUEUE_V(ep
->rss_qid
));
2017 if (enable_tcp_timestamps
)
2018 req
->tcb
.opt2
|= (__force __be32
)TSTAMPS_EN_F
;
2019 if (enable_tcp_sack
)
2020 req
->tcb
.opt2
|= (__force __be32
)SACK_EN_F
;
2021 if (wscale
&& enable_tcp_window_scaling
)
2022 req
->tcb
.opt2
|= (__force __be32
)WND_SCALE_EN_F
;
2023 req
->tcb
.opt0
= cpu_to_be64((__force u64
)req
->tcb
.opt0
);
2024 req
->tcb
.opt2
= cpu_to_be32((__force u32
)req
->tcb
.opt2
);
2025 set_wr_txq(skb
, CPL_PRIORITY_CONTROL
, ep
->ctrlq_idx
);
2026 set_bit(ACT_OFLD_CONN
, &ep
->com
.history
);
2027 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
2031 * Some of the error codes above implicitly indicate that there is no TID
2032 * allocated with the result of an ACT_OPEN. We use this predicate to make
2035 static inline int act_open_has_tid(int status
)
2037 return (status
!= CPL_ERR_TCAM_PARITY
&&
2038 status
!= CPL_ERR_TCAM_MISS
&&
2039 status
!= CPL_ERR_TCAM_FULL
&&
2040 status
!= CPL_ERR_CONN_EXIST_SYNRECV
&&
2041 status
!= CPL_ERR_CONN_EXIST
);
2044 static char *neg_adv_str(unsigned int status
)
2047 case CPL_ERR_RTX_NEG_ADVICE
:
2048 return "Retransmit timeout";
2049 case CPL_ERR_PERSIST_NEG_ADVICE
:
2050 return "Persist timeout";
2051 case CPL_ERR_KEEPALV_NEG_ADVICE
:
2052 return "Keepalive timeout";
2058 static void set_tcp_window(struct c4iw_ep
*ep
, struct port_info
*pi
)
2060 ep
->snd_win
= snd_win
;
2061 ep
->rcv_win
= rcv_win
;
2062 pr_debug("snd_win %d rcv_win %d\n",
2063 ep
->snd_win
, ep
->rcv_win
);
2066 #define ACT_OPEN_RETRY_COUNT 2
2068 static int import_ep(struct c4iw_ep
*ep
, int iptype
, __u8
*peer_ip
,
2069 struct dst_entry
*dst
, struct c4iw_dev
*cdev
,
2070 bool clear_mpa_v1
, enum chip_type adapter_type
, u8 tos
)
2072 struct neighbour
*n
;
2074 struct net_device
*pdev
;
2076 n
= dst_neigh_lookup(dst
, peer_ip
);
2082 if (n
->dev
->flags
& IFF_LOOPBACK
) {
2084 pdev
= ip_dev_find(&init_net
, *(__be32
*)peer_ip
);
2085 else if (IS_ENABLED(CONFIG_IPV6
))
2086 for_each_netdev(&init_net
, pdev
) {
2087 if (ipv6_chk_addr(&init_net
,
2088 (struct in6_addr
*)peer_ip
,
2099 ep
->l2t
= cxgb4_l2t_get(cdev
->rdev
.lldi
.l2t
,
2100 n
, pdev
, rt_tos2priority(tos
));
2105 ep
->mtu
= pdev
->mtu
;
2106 ep
->tx_chan
= cxgb4_port_chan(pdev
);
2107 ep
->smac_idx
= ((struct port_info
*)netdev_priv(pdev
))->smt_idx
;
2108 step
= cdev
->rdev
.lldi
.ntxq
/
2109 cdev
->rdev
.lldi
.nchan
;
2110 ep
->txq_idx
= cxgb4_port_idx(pdev
) * step
;
2111 step
= cdev
->rdev
.lldi
.nrxq
/
2112 cdev
->rdev
.lldi
.nchan
;
2113 ep
->ctrlq_idx
= cxgb4_port_idx(pdev
);
2114 ep
->rss_qid
= cdev
->rdev
.lldi
.rxq_ids
[
2115 cxgb4_port_idx(pdev
) * step
];
2116 set_tcp_window(ep
, (struct port_info
*)netdev_priv(pdev
));
2119 pdev
= get_real_dev(n
->dev
);
2120 ep
->l2t
= cxgb4_l2t_get(cdev
->rdev
.lldi
.l2t
,
2121 n
, pdev
, rt_tos2priority(tos
));
2124 ep
->mtu
= dst_mtu(dst
);
2125 ep
->tx_chan
= cxgb4_port_chan(pdev
);
2126 ep
->smac_idx
= ((struct port_info
*)netdev_priv(pdev
))->smt_idx
;
2127 step
= cdev
->rdev
.lldi
.ntxq
/
2128 cdev
->rdev
.lldi
.nchan
;
2129 ep
->txq_idx
= cxgb4_port_idx(pdev
) * step
;
2130 ep
->ctrlq_idx
= cxgb4_port_idx(pdev
);
2131 step
= cdev
->rdev
.lldi
.nrxq
/
2132 cdev
->rdev
.lldi
.nchan
;
2133 ep
->rss_qid
= cdev
->rdev
.lldi
.rxq_ids
[
2134 cxgb4_port_idx(pdev
) * step
];
2135 set_tcp_window(ep
, (struct port_info
*)netdev_priv(pdev
));
2138 ep
->retry_with_mpa_v1
= 0;
2139 ep
->tried_with_mpa_v1
= 0;
2151 static int c4iw_reconnect(struct c4iw_ep
*ep
)
2155 struct sockaddr_in
*laddr
= (struct sockaddr_in
*)
2156 &ep
->com
.cm_id
->m_local_addr
;
2157 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)
2158 &ep
->com
.cm_id
->m_remote_addr
;
2159 struct sockaddr_in6
*laddr6
= (struct sockaddr_in6
*)
2160 &ep
->com
.cm_id
->m_local_addr
;
2161 struct sockaddr_in6
*raddr6
= (struct sockaddr_in6
*)
2162 &ep
->com
.cm_id
->m_remote_addr
;
2166 pr_debug("qp %p cm_id %p\n", ep
->com
.qp
, ep
->com
.cm_id
);
2167 c4iw_init_wr_wait(ep
->com
.wr_waitp
);
2169 /* When MPA revision is different on nodes, the node with MPA_rev=2
2170 * tries to reconnect with MPA_rev 1 for the same EP through
2171 * c4iw_reconnect(), where the same EP is assigned with new tid for
2172 * further connection establishment. As we are using the same EP pointer
2173 * for reconnect, few skbs are used during the previous c4iw_connect(),
2174 * which leaves the EP with inadequate skbs for further
2175 * c4iw_reconnect(), Further causing a crash due to an empty
2176 * skb_list() during peer_abort(). Allocate skbs which is already used.
2178 size
= (CN_MAX_CON_BUF
- skb_queue_len(&ep
->com
.ep_skb_list
));
2179 if (alloc_ep_skb_list(&ep
->com
.ep_skb_list
, size
)) {
2185 * Allocate an active TID to initiate a TCP connection.
2187 ep
->atid
= cxgb4_alloc_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
);
2188 if (ep
->atid
== -1) {
2189 pr_err("%s - cannot alloc atid\n", __func__
);
2193 err
= xa_insert_irq(&ep
->com
.dev
->atids
, ep
->atid
, ep
, GFP_KERNEL
);
2198 if (ep
->com
.cm_id
->m_local_addr
.ss_family
== AF_INET
) {
2199 ep
->dst
= cxgb_find_route(&ep
->com
.dev
->rdev
.lldi
, get_real_dev
,
2200 laddr
->sin_addr
.s_addr
,
2201 raddr
->sin_addr
.s_addr
,
2203 raddr
->sin_port
, ep
->com
.cm_id
->tos
);
2205 ra
= (__u8
*)&raddr
->sin_addr
;
2207 ep
->dst
= cxgb_find_route6(&ep
->com
.dev
->rdev
.lldi
,
2209 laddr6
->sin6_addr
.s6_addr
,
2210 raddr6
->sin6_addr
.s6_addr
,
2214 raddr6
->sin6_scope_id
);
2216 ra
= (__u8
*)&raddr6
->sin6_addr
;
2219 pr_err("%s - cannot find route\n", __func__
);
2220 err
= -EHOSTUNREACH
;
2223 err
= import_ep(ep
, iptype
, ra
, ep
->dst
, ep
->com
.dev
, false,
2224 ep
->com
.dev
->rdev
.lldi
.adapter_type
,
2225 ep
->com
.cm_id
->tos
);
2227 pr_err("%s - cannot alloc l2e\n", __func__
);
2231 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2232 ep
->txq_idx
, ep
->tx_chan
, ep
->smac_idx
, ep
->rss_qid
,
2235 state_set(&ep
->com
, CONNECTING
);
2236 ep
->tos
= ep
->com
.cm_id
->tos
;
2238 /* send connect request to rnic */
2239 err
= send_connect(ep
);
2243 cxgb4_l2t_release(ep
->l2t
);
2245 dst_release(ep
->dst
);
2247 xa_erase_irq(&ep
->com
.dev
->atids
, ep
->atid
);
2249 cxgb4_free_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->atid
);
2252 * remember to send notification to upper layer.
2253 * We are in here so the upper layer is not aware that this is
2254 * re-connect attempt and so, upper layer is still waiting for
2255 * response of 1st connect request.
2257 connect_reply_upcall(ep
, -ECONNRESET
);
2259 c4iw_put_ep(&ep
->com
);
2264 static int act_open_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2267 struct cpl_act_open_rpl
*rpl
= cplhdr(skb
);
2268 unsigned int atid
= TID_TID_G(AOPEN_ATID_G(
2269 ntohl(rpl
->atid_status
)));
2270 struct tid_info
*t
= dev
->rdev
.lldi
.tids
;
2271 int status
= AOPEN_STATUS_G(ntohl(rpl
->atid_status
));
2272 struct sockaddr_in
*la
;
2273 struct sockaddr_in
*ra
;
2274 struct sockaddr_in6
*la6
;
2275 struct sockaddr_in6
*ra6
;
2278 ep
= lookup_atid(t
, atid
);
2279 la
= (struct sockaddr_in
*)&ep
->com
.local_addr
;
2280 ra
= (struct sockaddr_in
*)&ep
->com
.remote_addr
;
2281 la6
= (struct sockaddr_in6
*)&ep
->com
.local_addr
;
2282 ra6
= (struct sockaddr_in6
*)&ep
->com
.remote_addr
;
2284 pr_debug("ep %p atid %u status %u errno %d\n", ep
, atid
,
2285 status
, status2errno(status
));
2287 if (cxgb_is_neg_adv(status
)) {
2288 pr_debug("Connection problems for atid %u status %u (%s)\n",
2289 atid
, status
, neg_adv_str(status
));
2290 ep
->stats
.connect_neg_adv
++;
2291 mutex_lock(&dev
->rdev
.stats
.lock
);
2292 dev
->rdev
.stats
.neg_adv
++;
2293 mutex_unlock(&dev
->rdev
.stats
.lock
);
2297 set_bit(ACT_OPEN_RPL
, &ep
->com
.history
);
2300 * Log interesting failures.
2303 case CPL_ERR_CONN_RESET
:
2304 case CPL_ERR_CONN_TIMEDOUT
:
2306 case CPL_ERR_TCAM_FULL
:
2307 mutex_lock(&dev
->rdev
.stats
.lock
);
2308 dev
->rdev
.stats
.tcam_full
++;
2309 mutex_unlock(&dev
->rdev
.stats
.lock
);
2310 if (ep
->com
.local_addr
.ss_family
== AF_INET
&&
2311 dev
->rdev
.lldi
.enable_fw_ofld_conn
) {
2312 ret
= send_fw_act_open_req(ep
, TID_TID_G(AOPEN_ATID_G(
2313 ntohl(rpl
->atid_status
))));
2319 case CPL_ERR_CONN_EXIST
:
2320 if (ep
->retry_count
++ < ACT_OPEN_RETRY_COUNT
) {
2321 set_bit(ACT_RETRY_INUSE
, &ep
->com
.history
);
2322 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
2323 struct sockaddr_in6
*sin6
=
2324 (struct sockaddr_in6
*)
2325 &ep
->com
.local_addr
;
2327 ep
->com
.dev
->rdev
.lldi
.ports
[0],
2329 &sin6
->sin6_addr
.s6_addr
, 1);
2331 xa_erase_irq(&ep
->com
.dev
->atids
, atid
);
2332 cxgb4_free_atid(t
, atid
);
2333 dst_release(ep
->dst
);
2334 cxgb4_l2t_release(ep
->l2t
);
2340 if (ep
->com
.local_addr
.ss_family
== AF_INET
) {
2341 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2342 atid
, status
, status2errno(status
),
2343 &la
->sin_addr
.s_addr
, ntohs(la
->sin_port
),
2344 &ra
->sin_addr
.s_addr
, ntohs(ra
->sin_port
));
2346 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2347 atid
, status
, status2errno(status
),
2348 la6
->sin6_addr
.s6_addr
, ntohs(la6
->sin6_port
),
2349 ra6
->sin6_addr
.s6_addr
, ntohs(ra6
->sin6_port
));
2355 connect_reply_upcall(ep
, status2errno(status
));
2356 state_set(&ep
->com
, DEAD
);
2358 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
2359 struct sockaddr_in6
*sin6
=
2360 (struct sockaddr_in6
*)&ep
->com
.local_addr
;
2361 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
2362 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
2364 if (status
&& act_open_has_tid(status
))
2365 cxgb4_remove_tid(ep
->com
.dev
->rdev
.lldi
.tids
, 0, GET_TID(rpl
),
2366 ep
->com
.local_addr
.ss_family
);
2368 xa_erase_irq(&ep
->com
.dev
->atids
, atid
);
2369 cxgb4_free_atid(t
, atid
);
2370 dst_release(ep
->dst
);
2371 cxgb4_l2t_release(ep
->l2t
);
2372 c4iw_put_ep(&ep
->com
);
2377 static int pass_open_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2379 struct cpl_pass_open_rpl
*rpl
= cplhdr(skb
);
2380 unsigned int stid
= GET_TID(rpl
);
2381 struct c4iw_listen_ep
*ep
= get_ep_from_stid(dev
, stid
);
2384 pr_warn("%s stid %d lookup failure!\n", __func__
, stid
);
2387 pr_debug("ep %p status %d error %d\n", ep
,
2388 rpl
->status
, status2errno(rpl
->status
));
2389 c4iw_wake_up_noref(ep
->com
.wr_waitp
, status2errno(rpl
->status
));
2390 c4iw_put_ep(&ep
->com
);
2395 static int close_listsrv_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2397 struct cpl_close_listsvr_rpl
*rpl
= cplhdr(skb
);
2398 unsigned int stid
= GET_TID(rpl
);
2399 struct c4iw_listen_ep
*ep
= get_ep_from_stid(dev
, stid
);
2402 pr_warn("%s stid %d lookup failure!\n", __func__
, stid
);
2405 pr_debug("ep %p\n", ep
);
2406 c4iw_wake_up_noref(ep
->com
.wr_waitp
, status2errno(rpl
->status
));
2407 c4iw_put_ep(&ep
->com
);
2412 static int accept_cr(struct c4iw_ep
*ep
, struct sk_buff
*skb
,
2413 struct cpl_pass_accept_req
*req
)
2415 struct cpl_pass_accept_rpl
*rpl
;
2416 unsigned int mtu_idx
;
2420 struct cpl_t5_pass_accept_rpl
*rpl5
= NULL
;
2422 enum chip_type adapter_type
= ep
->com
.dev
->rdev
.lldi
.adapter_type
;
2424 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
2425 cxgb_best_mtu(ep
->com
.dev
->rdev
.lldi
.mtus
, ep
->mtu
, &mtu_idx
,
2426 enable_tcp_timestamps
&& req
->tcpopt
.tstamp
,
2427 (ep
->com
.remote_addr
.ss_family
== AF_INET
) ? 0 : 1);
2428 wscale
= cxgb_compute_wscale(rcv_win
);
2431 * Specify the largest window that will fit in opt0. The
2432 * remainder will be specified in the rx_data_ack.
2434 win
= ep
->rcv_win
>> 10;
2435 if (win
> RCV_BUFSIZ_M
)
2437 opt0
= (nocong
? NO_CONG_F
: 0) |
2440 WND_SCALE_V(wscale
) |
2441 MSS_IDX_V(mtu_idx
) |
2442 L2T_IDX_V(ep
->l2t
->idx
) |
2443 TX_CHAN_V(ep
->tx_chan
) |
2444 SMAC_SEL_V(ep
->smac_idx
) |
2445 DSCP_V(ep
->tos
>> 2) |
2446 ULP_MODE_V(ULP_MODE_TCPDDP
) |
2448 opt2
= RX_CHANNEL_V(0) |
2449 RSS_QUEUE_VALID_F
| RSS_QUEUE_V(ep
->rss_qid
);
2451 if (enable_tcp_timestamps
&& req
->tcpopt
.tstamp
)
2452 opt2
|= TSTAMPS_EN_F
;
2453 if (enable_tcp_sack
&& req
->tcpopt
.sack
)
2455 if (wscale
&& enable_tcp_window_scaling
)
2456 opt2
|= WND_SCALE_EN_F
;
2458 const struct tcphdr
*tcph
;
2459 u32 hlen
= ntohl(req
->hdr_len
);
2461 if (CHELSIO_CHIP_VERSION(adapter_type
) <= CHELSIO_T5
)
2462 tcph
= (const void *)(req
+ 1) + ETH_HDR_LEN_G(hlen
) +
2465 tcph
= (const void *)(req
+ 1) +
2466 T6_ETH_HDR_LEN_G(hlen
) + T6_IP_HDR_LEN_G(hlen
);
2467 if (tcph
->ece
&& tcph
->cwr
)
2468 opt2
|= CCTRL_ECN_V(1);
2473 if (!is_t4(adapter_type
)) {
2474 skb_trim(skb
, roundup(sizeof(*rpl5
), 16));
2476 INIT_TP_WR(rpl5
, ep
->hwtid
);
2478 skb_trim(skb
, sizeof(*rpl
));
2479 INIT_TP_WR(rpl
, ep
->hwtid
);
2481 OPCODE_TID(rpl
) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
,
2484 if (CHELSIO_CHIP_VERSION(adapter_type
) > CHELSIO_T4
) {
2485 u32 isn
= (prandom_u32() & ~7UL) - 1;
2486 opt2
|= T5_OPT_2_VALID_F
;
2487 opt2
|= CONG_CNTRL_V(CONG_ALG_TAHOE
);
2490 memset(&rpl5
->iss
, 0, roundup(sizeof(*rpl5
)-sizeof(*rpl
), 16));
2493 rpl5
->iss
= cpu_to_be32(isn
);
2494 pr_debug("iss %u\n", be32_to_cpu(rpl5
->iss
));
2497 rpl
->opt0
= cpu_to_be64(opt0
);
2498 rpl
->opt2
= cpu_to_be32(opt2
);
2499 set_wr_txq(skb
, CPL_PRIORITY_SETUP
, ep
->ctrlq_idx
);
2500 t4_set_arp_err_handler(skb
, ep
, pass_accept_rpl_arp_failure
);
2502 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
2505 static void reject_cr(struct c4iw_dev
*dev
, u32 hwtid
, struct sk_buff
*skb
)
2507 pr_debug("c4iw_dev %p tid %u\n", dev
, hwtid
);
2508 skb_trim(skb
, sizeof(struct cpl_tid_release
));
2509 release_tid(&dev
->rdev
, hwtid
, skb
);
2513 static int pass_accept_req(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2515 struct c4iw_ep
*child_ep
= NULL
, *parent_ep
;
2516 struct cpl_pass_accept_req
*req
= cplhdr(skb
);
2517 unsigned int stid
= PASS_OPEN_TID_G(ntohl(req
->tos_stid
));
2518 struct tid_info
*t
= dev
->rdev
.lldi
.tids
;
2519 unsigned int hwtid
= GET_TID(req
);
2520 struct dst_entry
*dst
;
2521 __u8 local_ip
[16], peer_ip
[16];
2522 __be16 local_port
, peer_port
;
2523 struct sockaddr_in6
*sin6
;
2525 u16 peer_mss
= ntohs(req
->tcpopt
.mss
);
2527 unsigned short hdrs
;
2530 parent_ep
= (struct c4iw_ep
*)get_ep_from_stid(dev
, stid
);
2532 pr_err("%s connect request on invalid stid %d\n",
2537 if (state_read(&parent_ep
->com
) != LISTEN
) {
2538 pr_err("%s - listening ep not in LISTEN\n", __func__
);
2542 if (parent_ep
->com
.cm_id
->tos_set
)
2543 tos
= parent_ep
->com
.cm_id
->tos
;
2545 tos
= PASS_OPEN_TOS_G(ntohl(req
->tos_stid
));
2547 cxgb_get_4tuple(req
, parent_ep
->com
.dev
->rdev
.lldi
.adapter_type
,
2548 &iptype
, local_ip
, peer_ip
, &local_port
, &peer_port
);
2550 /* Find output route */
2552 pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2554 local_ip
, peer_ip
, ntohs(local_port
),
2555 ntohs(peer_port
), peer_mss
);
2556 dst
= cxgb_find_route(&dev
->rdev
.lldi
, get_real_dev
,
2557 *(__be32
*)local_ip
, *(__be32
*)peer_ip
,
2558 local_port
, peer_port
, tos
);
2560 pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2562 local_ip
, peer_ip
, ntohs(local_port
),
2563 ntohs(peer_port
), peer_mss
);
2564 dst
= cxgb_find_route6(&dev
->rdev
.lldi
, get_real_dev
,
2565 local_ip
, peer_ip
, local_port
, peer_port
,
2567 ((struct sockaddr_in6
*)
2568 &parent_ep
->com
.local_addr
)->sin6_scope_id
);
2571 pr_err("%s - failed to find dst entry!\n", __func__
);
2575 child_ep
= alloc_ep(sizeof(*child_ep
), GFP_KERNEL
);
2577 pr_err("%s - failed to allocate ep entry!\n", __func__
);
2582 err
= import_ep(child_ep
, iptype
, peer_ip
, dst
, dev
, false,
2583 parent_ep
->com
.dev
->rdev
.lldi
.adapter_type
, tos
);
2585 pr_err("%s - failed to allocate l2t entry!\n", __func__
);
2591 hdrs
= ((iptype
== 4) ? sizeof(struct iphdr
) : sizeof(struct ipv6hdr
)) +
2592 sizeof(struct tcphdr
) +
2593 ((enable_tcp_timestamps
&& req
->tcpopt
.tstamp
) ? 12 : 0);
2594 if (peer_mss
&& child_ep
->mtu
> (peer_mss
+ hdrs
))
2595 child_ep
->mtu
= peer_mss
+ hdrs
;
2597 skb_queue_head_init(&child_ep
->com
.ep_skb_list
);
2598 if (alloc_ep_skb_list(&child_ep
->com
.ep_skb_list
, CN_MAX_CON_BUF
))
2601 state_set(&child_ep
->com
, CONNECTING
);
2602 child_ep
->com
.dev
= dev
;
2603 child_ep
->com
.cm_id
= NULL
;
2606 struct sockaddr_in
*sin
= (struct sockaddr_in
*)
2607 &child_ep
->com
.local_addr
;
2609 sin
->sin_family
= AF_INET
;
2610 sin
->sin_port
= local_port
;
2611 sin
->sin_addr
.s_addr
= *(__be32
*)local_ip
;
2613 sin
= (struct sockaddr_in
*)&child_ep
->com
.local_addr
;
2614 sin
->sin_family
= AF_INET
;
2615 sin
->sin_port
= ((struct sockaddr_in
*)
2616 &parent_ep
->com
.local_addr
)->sin_port
;
2617 sin
->sin_addr
.s_addr
= *(__be32
*)local_ip
;
2619 sin
= (struct sockaddr_in
*)&child_ep
->com
.remote_addr
;
2620 sin
->sin_family
= AF_INET
;
2621 sin
->sin_port
= peer_port
;
2622 sin
->sin_addr
.s_addr
= *(__be32
*)peer_ip
;
2624 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.local_addr
;
2625 sin6
->sin6_family
= PF_INET6
;
2626 sin6
->sin6_port
= local_port
;
2627 memcpy(sin6
->sin6_addr
.s6_addr
, local_ip
, 16);
2629 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.local_addr
;
2630 sin6
->sin6_family
= PF_INET6
;
2631 sin6
->sin6_port
= ((struct sockaddr_in6
*)
2632 &parent_ep
->com
.local_addr
)->sin6_port
;
2633 memcpy(sin6
->sin6_addr
.s6_addr
, local_ip
, 16);
2635 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.remote_addr
;
2636 sin6
->sin6_family
= PF_INET6
;
2637 sin6
->sin6_port
= peer_port
;
2638 memcpy(sin6
->sin6_addr
.s6_addr
, peer_ip
, 16);
2641 c4iw_get_ep(&parent_ep
->com
);
2642 child_ep
->parent_ep
= parent_ep
;
2643 child_ep
->tos
= tos
;
2644 child_ep
->dst
= dst
;
2645 child_ep
->hwtid
= hwtid
;
2647 pr_debug("tx_chan %u smac_idx %u rss_qid %u\n",
2648 child_ep
->tx_chan
, child_ep
->smac_idx
, child_ep
->rss_qid
);
2650 timer_setup(&child_ep
->timer
, ep_timeout
, 0);
2651 cxgb4_insert_tid(t
, child_ep
, hwtid
,
2652 child_ep
->com
.local_addr
.ss_family
);
2653 insert_ep_tid(child_ep
);
2654 if (accept_cr(child_ep
, skb
, req
)) {
2655 c4iw_put_ep(&parent_ep
->com
);
2656 release_ep_resources(child_ep
);
2658 set_bit(PASS_ACCEPT_REQ
, &child_ep
->com
.history
);
2661 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.local_addr
;
2662 cxgb4_clip_get(child_ep
->com
.dev
->rdev
.lldi
.ports
[0],
2663 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
2667 c4iw_put_ep(&child_ep
->com
);
2669 reject_cr(dev
, hwtid
, skb
);
2672 c4iw_put_ep(&parent_ep
->com
);
2676 static int pass_establish(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2679 struct cpl_pass_establish
*req
= cplhdr(skb
);
2680 unsigned int tid
= GET_TID(req
);
2682 u16 tcp_opt
= ntohs(req
->tcp_opt
);
2684 ep
= get_ep_from_tid(dev
, tid
);
2685 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
2686 ep
->snd_seq
= be32_to_cpu(req
->snd_isn
);
2687 ep
->rcv_seq
= be32_to_cpu(req
->rcv_isn
);
2688 ep
->snd_wscale
= TCPOPT_SND_WSCALE_G(tcp_opt
);
2690 pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep
, tid
, tcp_opt
);
2692 set_emss(ep
, tcp_opt
);
2694 dst_confirm(ep
->dst
);
2695 mutex_lock(&ep
->com
.mutex
);
2696 ep
->com
.state
= MPA_REQ_WAIT
;
2698 set_bit(PASS_ESTAB
, &ep
->com
.history
);
2699 ret
= send_flowc(ep
);
2700 mutex_unlock(&ep
->com
.mutex
);
2702 c4iw_ep_disconnect(ep
, 1, GFP_KERNEL
);
2703 c4iw_put_ep(&ep
->com
);
2708 static int peer_close(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2710 struct cpl_peer_close
*hdr
= cplhdr(skb
);
2712 struct c4iw_qp_attributes attrs
;
2715 unsigned int tid
= GET_TID(hdr
);
2718 ep
= get_ep_from_tid(dev
, tid
);
2722 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
2723 dst_confirm(ep
->dst
);
2725 set_bit(PEER_CLOSE
, &ep
->com
.history
);
2726 mutex_lock(&ep
->com
.mutex
);
2727 switch (ep
->com
.state
) {
2729 __state_set(&ep
->com
, CLOSING
);
2732 __state_set(&ep
->com
, CLOSING
);
2733 connect_reply_upcall(ep
, -ECONNRESET
);
2738 * We're gonna mark this puppy DEAD, but keep
2739 * the reference on it until the ULP accepts or
2740 * rejects the CR. Also wake up anyone waiting
2741 * in rdma connection migration (see c4iw_accept_cr()).
2743 __state_set(&ep
->com
, CLOSING
);
2744 pr_debug("waking up ep %p tid %u\n", ep
, ep
->hwtid
);
2745 c4iw_wake_up_noref(ep
->com
.wr_waitp
, -ECONNRESET
);
2748 __state_set(&ep
->com
, CLOSING
);
2749 pr_debug("waking up ep %p tid %u\n", ep
, ep
->hwtid
);
2750 c4iw_wake_up_noref(ep
->com
.wr_waitp
, -ECONNRESET
);
2754 __state_set(&ep
->com
, CLOSING
);
2755 attrs
.next_state
= C4IW_QP_STATE_CLOSING
;
2756 ret
= c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
2757 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
2758 if (ret
!= -ECONNRESET
) {
2759 peer_close_upcall(ep
);
2767 __state_set(&ep
->com
, MORIBUND
);
2771 (void)stop_ep_timer(ep
);
2772 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
2773 attrs
.next_state
= C4IW_QP_STATE_IDLE
;
2774 c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
2775 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
2777 close_complete_upcall(ep
, 0);
2778 __state_set(&ep
->com
, DEAD
);
2786 WARN_ONCE(1, "Bad endpoint state %u\n", ep
->com
.state
);
2788 mutex_unlock(&ep
->com
.mutex
);
2790 c4iw_ep_disconnect(ep
, 0, GFP_KERNEL
);
2792 release_ep_resources(ep
);
2793 c4iw_put_ep(&ep
->com
);
2797 static void finish_peer_abort(struct c4iw_dev
*dev
, struct c4iw_ep
*ep
)
2799 complete_cached_srq_buffers(ep
, ep
->srqe_idx
);
2800 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
2801 struct c4iw_qp_attributes attrs
;
2803 attrs
.next_state
= C4IW_QP_STATE_ERROR
;
2804 c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
2805 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
2807 peer_abort_upcall(ep
);
2808 release_ep_resources(ep
);
2809 c4iw_put_ep(&ep
->com
);
2812 static int peer_abort(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2814 struct cpl_abort_req_rss6
*req
= cplhdr(skb
);
2816 struct sk_buff
*rpl_skb
;
2817 struct c4iw_qp_attributes attrs
;
2820 unsigned int tid
= GET_TID(req
);
2824 u32 len
= roundup(sizeof(struct cpl_abort_rpl
), 16);
2826 ep
= get_ep_from_tid(dev
, tid
);
2830 status
= ABORT_RSS_STATUS_G(be32_to_cpu(req
->srqidx_status
));
2832 if (cxgb_is_neg_adv(status
)) {
2833 pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
2834 ep
->hwtid
, status
, neg_adv_str(status
));
2835 ep
->stats
.abort_neg_adv
++;
2836 mutex_lock(&dev
->rdev
.stats
.lock
);
2837 dev
->rdev
.stats
.neg_adv
++;
2838 mutex_unlock(&dev
->rdev
.stats
.lock
);
2842 pr_debug("ep %p tid %u state %u\n", ep
, ep
->hwtid
,
2844 set_bit(PEER_ABORT
, &ep
->com
.history
);
2847 * Wake up any threads in rdma_init() or rdma_fini().
2848 * However, this is not needed if com state is just
2851 if (ep
->com
.state
!= MPA_REQ_SENT
)
2852 c4iw_wake_up_noref(ep
->com
.wr_waitp
, -ECONNRESET
);
2854 mutex_lock(&ep
->com
.mutex
);
2855 switch (ep
->com
.state
) {
2857 c4iw_put_ep(&ep
->parent_ep
->com
);
2860 (void)stop_ep_timer(ep
);
2863 (void)stop_ep_timer(ep
);
2864 if (status
!= CPL_ERR_CONN_RESET
|| mpa_rev
== 1 ||
2865 (mpa_rev
== 2 && ep
->tried_with_mpa_v1
))
2866 connect_reply_upcall(ep
, -ECONNRESET
);
2869 * we just don't send notification upwards because we
2870 * want to retry with mpa_v1 without upper layers even
2873 * do some housekeeping so as to re-initiate the
2876 pr_info("%s: mpa_rev=%d. Retrying with mpav1\n",
2878 ep
->retry_with_mpa_v1
= 1;
2890 if (ep
->com
.qp
&& ep
->com
.qp
->srq
) {
2891 srqidx
= ABORT_RSS_SRQIDX_G(
2892 be32_to_cpu(req
->srqidx_status
));
2894 complete_cached_srq_buffers(ep
,
2895 req
->srqidx_status
);
2897 /* Hold ep ref until finish_peer_abort() */
2898 c4iw_get_ep(&ep
->com
);
2899 __state_set(&ep
->com
, ABORTING
);
2900 set_bit(PEER_ABORT_IN_PROGRESS
, &ep
->com
.flags
);
2907 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
2908 attrs
.next_state
= C4IW_QP_STATE_ERROR
;
2909 ret
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
2910 ep
->com
.qp
, C4IW_QP_ATTR_NEXT_STATE
,
2913 pr_err("%s - qp <- error failed!\n", __func__
);
2915 peer_abort_upcall(ep
);
2920 pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__
);
2921 mutex_unlock(&ep
->com
.mutex
);
2924 WARN_ONCE(1, "Bad endpoint state %u\n", ep
->com
.state
);
2927 dst_confirm(ep
->dst
);
2928 if (ep
->com
.state
!= ABORTING
) {
2929 __state_set(&ep
->com
, DEAD
);
2930 /* we don't release if we want to retry with mpa_v1 */
2931 if (!ep
->retry_with_mpa_v1
)
2934 mutex_unlock(&ep
->com
.mutex
);
2936 rpl_skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
2937 if (WARN_ON(!rpl_skb
)) {
2942 cxgb_mk_abort_rpl(rpl_skb
, len
, ep
->hwtid
, ep
->txq_idx
);
2944 c4iw_ofld_send(&ep
->com
.dev
->rdev
, rpl_skb
);
2947 release_ep_resources(ep
);
2948 else if (ep
->retry_with_mpa_v1
) {
2949 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
2950 struct sockaddr_in6
*sin6
=
2951 (struct sockaddr_in6
*)
2952 &ep
->com
.local_addr
;
2954 ep
->com
.dev
->rdev
.lldi
.ports
[0],
2955 (const u32
*)&sin6
->sin6_addr
.s6_addr
,
2958 xa_erase_irq(&ep
->com
.dev
->hwtids
, ep
->hwtid
);
2959 cxgb4_remove_tid(ep
->com
.dev
->rdev
.lldi
.tids
, 0, ep
->hwtid
,
2960 ep
->com
.local_addr
.ss_family
);
2961 dst_release(ep
->dst
);
2962 cxgb4_l2t_release(ep
->l2t
);
2967 c4iw_put_ep(&ep
->com
);
2968 /* Dereferencing ep, referenced in peer_abort_intr() */
2969 c4iw_put_ep(&ep
->com
);
2973 static int close_con_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2976 struct c4iw_qp_attributes attrs
;
2977 struct cpl_close_con_rpl
*rpl
= cplhdr(skb
);
2979 unsigned int tid
= GET_TID(rpl
);
2981 ep
= get_ep_from_tid(dev
, tid
);
2985 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
2987 /* The cm_id may be null if we failed to connect */
2988 mutex_lock(&ep
->com
.mutex
);
2989 set_bit(CLOSE_CON_RPL
, &ep
->com
.history
);
2990 switch (ep
->com
.state
) {
2992 __state_set(&ep
->com
, MORIBUND
);
2995 (void)stop_ep_timer(ep
);
2996 if ((ep
->com
.cm_id
) && (ep
->com
.qp
)) {
2997 attrs
.next_state
= C4IW_QP_STATE_IDLE
;
2998 c4iw_modify_qp(ep
->com
.qp
->rhp
,
3000 C4IW_QP_ATTR_NEXT_STATE
,
3003 close_complete_upcall(ep
, 0);
3004 __state_set(&ep
->com
, DEAD
);
3011 WARN_ONCE(1, "Bad endpoint state %u\n", ep
->com
.state
);
3014 mutex_unlock(&ep
->com
.mutex
);
3016 release_ep_resources(ep
);
3017 c4iw_put_ep(&ep
->com
);
3021 static int terminate(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3023 struct cpl_rdma_terminate
*rpl
= cplhdr(skb
);
3024 unsigned int tid
= GET_TID(rpl
);
3026 struct c4iw_qp_attributes attrs
;
3028 ep
= get_ep_from_tid(dev
, tid
);
3032 pr_warn("TERM received tid %u qpid %u\n", tid
,
3033 ep
->com
.qp
->wq
.sq
.qid
);
3034 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
3035 c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
3036 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
3039 c4iw_put_ep(&ep
->com
);
3041 pr_warn("TERM received tid %u no ep/qp\n", tid
);
3047 * Upcall from the adapter indicating data has been transmitted.
3048 * For us its just the single MPA request or reply. We can now free
3049 * the skb holding the mpa message.
3051 static int fw4_ack(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3054 struct cpl_fw4_ack
*hdr
= cplhdr(skb
);
3055 u8 credits
= hdr
->credits
;
3056 unsigned int tid
= GET_TID(hdr
);
3059 ep
= get_ep_from_tid(dev
, tid
);
3062 pr_debug("ep %p tid %u credits %u\n",
3063 ep
, ep
->hwtid
, credits
);
3065 pr_debug("0 credit ack ep %p tid %u state %u\n",
3066 ep
, ep
->hwtid
, state_read(&ep
->com
));
3070 dst_confirm(ep
->dst
);
3072 pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
3073 ep
, ep
->hwtid
, state_read(&ep
->com
),
3074 ep
->mpa_attr
.initiator
? 1 : 0);
3075 mutex_lock(&ep
->com
.mutex
);
3076 kfree_skb(ep
->mpa_skb
);
3078 if (test_bit(STOP_MPA_TIMER
, &ep
->com
.flags
))
3080 mutex_unlock(&ep
->com
.mutex
);
3083 c4iw_put_ep(&ep
->com
);
3087 int c4iw_reject_cr(struct iw_cm_id
*cm_id
, const void *pdata
, u8 pdata_len
)
3090 struct c4iw_ep
*ep
= to_ep(cm_id
);
3092 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
3094 mutex_lock(&ep
->com
.mutex
);
3095 if (ep
->com
.state
!= MPA_REQ_RCVD
) {
3096 mutex_unlock(&ep
->com
.mutex
);
3097 c4iw_put_ep(&ep
->com
);
3100 set_bit(ULP_REJECT
, &ep
->com
.history
);
3104 abort
= send_mpa_reject(ep
, pdata
, pdata_len
);
3105 mutex_unlock(&ep
->com
.mutex
);
3108 c4iw_ep_disconnect(ep
, abort
!= 0, GFP_KERNEL
);
3109 c4iw_put_ep(&ep
->com
);
3113 int c4iw_accept_cr(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
3116 struct c4iw_qp_attributes attrs
;
3117 enum c4iw_qp_attr_mask mask
;
3118 struct c4iw_ep
*ep
= to_ep(cm_id
);
3119 struct c4iw_dev
*h
= to_c4iw_dev(cm_id
->device
);
3120 struct c4iw_qp
*qp
= get_qhp(h
, conn_param
->qpn
);
3123 pr_debug("ep %p tid %u\n", ep
, ep
->hwtid
);
3125 mutex_lock(&ep
->com
.mutex
);
3126 if (ep
->com
.state
!= MPA_REQ_RCVD
) {
3136 set_bit(ULP_ACCEPT
, &ep
->com
.history
);
3137 if ((conn_param
->ord
> cur_max_read_depth(ep
->com
.dev
)) ||
3138 (conn_param
->ird
> cur_max_read_depth(ep
->com
.dev
))) {
3143 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
) {
3144 if (conn_param
->ord
> ep
->ird
) {
3145 if (RELAXED_IRD_NEGOTIATION
) {
3146 conn_param
->ord
= ep
->ird
;
3148 ep
->ird
= conn_param
->ird
;
3149 ep
->ord
= conn_param
->ord
;
3150 send_mpa_reject(ep
, conn_param
->private_data
,
3151 conn_param
->private_data_len
);
3156 if (conn_param
->ird
< ep
->ord
) {
3157 if (RELAXED_IRD_NEGOTIATION
&&
3158 ep
->ord
<= h
->rdev
.lldi
.max_ordird_qp
) {
3159 conn_param
->ird
= ep
->ord
;
3166 ep
->ird
= conn_param
->ird
;
3167 ep
->ord
= conn_param
->ord
;
3169 if (ep
->mpa_attr
.version
== 1) {
3170 if (peer2peer
&& ep
->ird
== 0)
3174 (ep
->mpa_attr
.p2p_type
!= FW_RI_INIT_P2PTYPE_DISABLED
) &&
3175 (p2p_type
== FW_RI_INIT_P2PTYPE_READ_REQ
) && ep
->ird
== 0)
3179 pr_debug("ird %d ord %d\n", ep
->ird
, ep
->ord
);
3181 ep
->com
.cm_id
= cm_id
;
3182 ref_cm_id(&ep
->com
);
3186 /* bind QP to EP and move to RTS */
3187 attrs
.mpa_attr
= ep
->mpa_attr
;
3188 attrs
.max_ird
= ep
->ird
;
3189 attrs
.max_ord
= ep
->ord
;
3190 attrs
.llp_stream_handle
= ep
;
3191 attrs
.next_state
= C4IW_QP_STATE_RTS
;
3193 /* bind QP and TID with INIT_WR */
3194 mask
= C4IW_QP_ATTR_NEXT_STATE
|
3195 C4IW_QP_ATTR_LLP_STREAM_HANDLE
|
3196 C4IW_QP_ATTR_MPA_ATTR
|
3197 C4IW_QP_ATTR_MAX_IRD
|
3198 C4IW_QP_ATTR_MAX_ORD
;
3200 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
3201 ep
->com
.qp
, mask
, &attrs
, 1);
3203 goto err_deref_cm_id
;
3205 set_bit(STOP_MPA_TIMER
, &ep
->com
.flags
);
3206 err
= send_mpa_reply(ep
, conn_param
->private_data
,
3207 conn_param
->private_data_len
);
3209 goto err_deref_cm_id
;
3211 __state_set(&ep
->com
, FPDU_MODE
);
3212 established_upcall(ep
);
3213 mutex_unlock(&ep
->com
.mutex
);
3214 c4iw_put_ep(&ep
->com
);
3217 deref_cm_id(&ep
->com
);
3221 mutex_unlock(&ep
->com
.mutex
);
3223 c4iw_ep_disconnect(ep
, 1, GFP_KERNEL
);
3224 c4iw_put_ep(&ep
->com
);
3228 static int pick_local_ipaddrs(struct c4iw_dev
*dev
, struct iw_cm_id
*cm_id
)
3230 struct in_device
*ind
;
3232 struct sockaddr_in
*laddr
= (struct sockaddr_in
*)&cm_id
->m_local_addr
;
3233 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)&cm_id
->m_remote_addr
;
3234 const struct in_ifaddr
*ifa
;
3236 ind
= in_dev_get(dev
->rdev
.lldi
.ports
[0]);
3238 return -EADDRNOTAVAIL
;
3240 in_dev_for_each_ifa_rcu(ifa
, ind
) {
3241 if (ifa
->ifa_flags
& IFA_F_SECONDARY
)
3243 laddr
->sin_addr
.s_addr
= ifa
->ifa_address
;
3244 raddr
->sin_addr
.s_addr
= ifa
->ifa_address
;
3251 return found
? 0 : -EADDRNOTAVAIL
;
3254 static int get_lladdr(struct net_device
*dev
, struct in6_addr
*addr
,
3255 unsigned char banned_flags
)
3257 struct inet6_dev
*idev
;
3258 int err
= -EADDRNOTAVAIL
;
3261 idev
= __in6_dev_get(dev
);
3263 struct inet6_ifaddr
*ifp
;
3265 read_lock_bh(&idev
->lock
);
3266 list_for_each_entry(ifp
, &idev
->addr_list
, if_list
) {
3267 if (ifp
->scope
== IFA_LINK
&&
3268 !(ifp
->flags
& banned_flags
)) {
3269 memcpy(addr
, &ifp
->addr
, 16);
3274 read_unlock_bh(&idev
->lock
);
3280 static int pick_local_ip6addrs(struct c4iw_dev
*dev
, struct iw_cm_id
*cm_id
)
3282 struct in6_addr
uninitialized_var(addr
);
3283 struct sockaddr_in6
*la6
= (struct sockaddr_in6
*)&cm_id
->m_local_addr
;
3284 struct sockaddr_in6
*ra6
= (struct sockaddr_in6
*)&cm_id
->m_remote_addr
;
3286 if (!get_lladdr(dev
->rdev
.lldi
.ports
[0], &addr
, IFA_F_TENTATIVE
)) {
3287 memcpy(la6
->sin6_addr
.s6_addr
, &addr
, 16);
3288 memcpy(ra6
->sin6_addr
.s6_addr
, &addr
, 16);
3291 return -EADDRNOTAVAIL
;
3294 int c4iw_connect(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
3296 struct c4iw_dev
*dev
= to_c4iw_dev(cm_id
->device
);
3299 struct sockaddr_in
*laddr
;
3300 struct sockaddr_in
*raddr
;
3301 struct sockaddr_in6
*laddr6
;
3302 struct sockaddr_in6
*raddr6
;
3306 if ((conn_param
->ord
> cur_max_read_depth(dev
)) ||
3307 (conn_param
->ird
> cur_max_read_depth(dev
))) {
3311 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
3313 pr_err("%s - cannot alloc ep\n", __func__
);
3318 skb_queue_head_init(&ep
->com
.ep_skb_list
);
3319 if (alloc_ep_skb_list(&ep
->com
.ep_skb_list
, CN_MAX_CON_BUF
)) {
3324 timer_setup(&ep
->timer
, ep_timeout
, 0);
3325 ep
->plen
= conn_param
->private_data_len
;
3327 memcpy(ep
->mpa_pkt
+ sizeof(struct mpa_message
),
3328 conn_param
->private_data
, ep
->plen
);
3329 ep
->ird
= conn_param
->ird
;
3330 ep
->ord
= conn_param
->ord
;
3332 if (peer2peer
&& ep
->ord
== 0)
3335 ep
->com
.cm_id
= cm_id
;
3336 ref_cm_id(&ep
->com
);
3337 cm_id
->provider_data
= ep
;
3339 ep
->com
.qp
= get_qhp(dev
, conn_param
->qpn
);
3341 pr_warn("%s qpn 0x%x not found!\n", __func__
, conn_param
->qpn
);
3346 pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param
->qpn
,
3350 * Allocate an active TID to initiate a TCP connection.
3352 ep
->atid
= cxgb4_alloc_atid(dev
->rdev
.lldi
.tids
, ep
);
3353 if (ep
->atid
== -1) {
3354 pr_err("%s - cannot alloc atid\n", __func__
);
3358 err
= xa_insert_irq(&dev
->atids
, ep
->atid
, ep
, GFP_KERNEL
);
3362 memcpy(&ep
->com
.local_addr
, &cm_id
->m_local_addr
,
3363 sizeof(ep
->com
.local_addr
));
3364 memcpy(&ep
->com
.remote_addr
, &cm_id
->m_remote_addr
,
3365 sizeof(ep
->com
.remote_addr
));
3367 laddr
= (struct sockaddr_in
*)&ep
->com
.local_addr
;
3368 raddr
= (struct sockaddr_in
*)&ep
->com
.remote_addr
;
3369 laddr6
= (struct sockaddr_in6
*)&ep
->com
.local_addr
;
3370 raddr6
= (struct sockaddr_in6
*) &ep
->com
.remote_addr
;
3372 if (cm_id
->m_remote_addr
.ss_family
== AF_INET
) {
3374 ra
= (__u8
*)&raddr
->sin_addr
;
3377 * Handle loopback requests to INADDR_ANY.
3379 if (raddr
->sin_addr
.s_addr
== htonl(INADDR_ANY
)) {
3380 err
= pick_local_ipaddrs(dev
, cm_id
);
3386 pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3387 &laddr
->sin_addr
, ntohs(laddr
->sin_port
),
3388 ra
, ntohs(raddr
->sin_port
));
3389 ep
->dst
= cxgb_find_route(&dev
->rdev
.lldi
, get_real_dev
,
3390 laddr
->sin_addr
.s_addr
,
3391 raddr
->sin_addr
.s_addr
,
3393 raddr
->sin_port
, cm_id
->tos
);
3396 ra
= (__u8
*)&raddr6
->sin6_addr
;
3399 * Handle loopback requests to INADDR_ANY.
3401 if (ipv6_addr_type(&raddr6
->sin6_addr
) == IPV6_ADDR_ANY
) {
3402 err
= pick_local_ip6addrs(dev
, cm_id
);
3408 pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3409 laddr6
->sin6_addr
.s6_addr
,
3410 ntohs(laddr6
->sin6_port
),
3411 raddr6
->sin6_addr
.s6_addr
, ntohs(raddr6
->sin6_port
));
3412 ep
->dst
= cxgb_find_route6(&dev
->rdev
.lldi
, get_real_dev
,
3413 laddr6
->sin6_addr
.s6_addr
,
3414 raddr6
->sin6_addr
.s6_addr
,
3416 raddr6
->sin6_port
, cm_id
->tos
,
3417 raddr6
->sin6_scope_id
);
3420 pr_err("%s - cannot find route\n", __func__
);
3421 err
= -EHOSTUNREACH
;
3425 err
= import_ep(ep
, iptype
, ra
, ep
->dst
, ep
->com
.dev
, true,
3426 ep
->com
.dev
->rdev
.lldi
.adapter_type
, cm_id
->tos
);
3428 pr_err("%s - cannot alloc l2e\n", __func__
);
3432 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3433 ep
->txq_idx
, ep
->tx_chan
, ep
->smac_idx
, ep
->rss_qid
,
3436 state_set(&ep
->com
, CONNECTING
);
3437 ep
->tos
= cm_id
->tos
;
3439 /* send connect request to rnic */
3440 err
= send_connect(ep
);
3444 cxgb4_l2t_release(ep
->l2t
);
3446 dst_release(ep
->dst
);
3448 xa_erase_irq(&ep
->com
.dev
->atids
, ep
->atid
);
3450 cxgb4_free_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->atid
);
3452 skb_queue_purge(&ep
->com
.ep_skb_list
);
3453 deref_cm_id(&ep
->com
);
3455 c4iw_put_ep(&ep
->com
);
3460 static int create_server6(struct c4iw_dev
*dev
, struct c4iw_listen_ep
*ep
)
3463 struct sockaddr_in6
*sin6
= (struct sockaddr_in6
*)
3464 &ep
->com
.local_addr
;
3466 if (ipv6_addr_type(&sin6
->sin6_addr
) != IPV6_ADDR_ANY
) {
3467 err
= cxgb4_clip_get(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3468 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3472 c4iw_init_wr_wait(ep
->com
.wr_waitp
);
3473 err
= cxgb4_create_server6(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3474 ep
->stid
, &sin6
->sin6_addr
,
3476 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0]);
3478 err
= c4iw_wait_for_reply(&ep
->com
.dev
->rdev
,
3482 err
= net_xmit_errno(err
);
3484 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3485 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3486 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3488 sin6
->sin6_addr
.s6_addr
, ntohs(sin6
->sin6_port
));
3493 static int create_server4(struct c4iw_dev
*dev
, struct c4iw_listen_ep
*ep
)
3496 struct sockaddr_in
*sin
= (struct sockaddr_in
*)
3497 &ep
->com
.local_addr
;
3499 if (dev
->rdev
.lldi
.enable_fw_ofld_conn
) {
3501 err
= cxgb4_create_server_filter(
3502 ep
->com
.dev
->rdev
.lldi
.ports
[0], ep
->stid
,
3503 sin
->sin_addr
.s_addr
, sin
->sin_port
, 0,
3504 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0], 0, 0);
3505 if (err
== -EBUSY
) {
3506 if (c4iw_fatal_error(&ep
->com
.dev
->rdev
)) {
3510 set_current_state(TASK_UNINTERRUPTIBLE
);
3511 schedule_timeout(usecs_to_jiffies(100));
3513 } while (err
== -EBUSY
);
3515 c4iw_init_wr_wait(ep
->com
.wr_waitp
);
3516 err
= cxgb4_create_server(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3517 ep
->stid
, sin
->sin_addr
.s_addr
, sin
->sin_port
,
3518 0, ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0]);
3520 err
= c4iw_wait_for_reply(&ep
->com
.dev
->rdev
,
3524 err
= net_xmit_errno(err
);
3527 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3529 &sin
->sin_addr
, ntohs(sin
->sin_port
));
3533 int c4iw_create_listen(struct iw_cm_id
*cm_id
, int backlog
)
3536 struct c4iw_dev
*dev
= to_c4iw_dev(cm_id
->device
);
3537 struct c4iw_listen_ep
*ep
;
3541 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
3543 pr_err("%s - cannot alloc ep\n", __func__
);
3547 skb_queue_head_init(&ep
->com
.ep_skb_list
);
3548 pr_debug("ep %p\n", ep
);
3549 ep
->com
.cm_id
= cm_id
;
3550 ref_cm_id(&ep
->com
);
3552 ep
->backlog
= backlog
;
3553 memcpy(&ep
->com
.local_addr
, &cm_id
->m_local_addr
,
3554 sizeof(ep
->com
.local_addr
));
3557 * Allocate a server TID.
3559 if (dev
->rdev
.lldi
.enable_fw_ofld_conn
&&
3560 ep
->com
.local_addr
.ss_family
== AF_INET
)
3561 ep
->stid
= cxgb4_alloc_sftid(dev
->rdev
.lldi
.tids
,
3562 cm_id
->m_local_addr
.ss_family
, ep
);
3564 ep
->stid
= cxgb4_alloc_stid(dev
->rdev
.lldi
.tids
,
3565 cm_id
->m_local_addr
.ss_family
, ep
);
3567 if (ep
->stid
== -1) {
3568 pr_err("%s - cannot alloc stid\n", __func__
);
3572 err
= xa_insert_irq(&dev
->stids
, ep
->stid
, ep
, GFP_KERNEL
);
3576 state_set(&ep
->com
, LISTEN
);
3577 if (ep
->com
.local_addr
.ss_family
== AF_INET
)
3578 err
= create_server4(dev
, ep
);
3580 err
= create_server6(dev
, ep
);
3582 cm_id
->provider_data
= ep
;
3585 xa_erase_irq(&ep
->com
.dev
->stids
, ep
->stid
);
3587 cxgb4_free_stid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->stid
,
3588 ep
->com
.local_addr
.ss_family
);
3590 deref_cm_id(&ep
->com
);
3591 c4iw_put_ep(&ep
->com
);
3597 int c4iw_destroy_listen(struct iw_cm_id
*cm_id
)
3600 struct c4iw_listen_ep
*ep
= to_listen_ep(cm_id
);
3602 pr_debug("ep %p\n", ep
);
3605 state_set(&ep
->com
, DEAD
);
3606 if (ep
->com
.dev
->rdev
.lldi
.enable_fw_ofld_conn
&&
3607 ep
->com
.local_addr
.ss_family
== AF_INET
) {
3608 err
= cxgb4_remove_server_filter(
3609 ep
->com
.dev
->rdev
.lldi
.ports
[0], ep
->stid
,
3610 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0], 0);
3612 struct sockaddr_in6
*sin6
;
3613 c4iw_init_wr_wait(ep
->com
.wr_waitp
);
3614 err
= cxgb4_remove_server(
3615 ep
->com
.dev
->rdev
.lldi
.ports
[0], ep
->stid
,
3616 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0], 0);
3619 err
= c4iw_wait_for_reply(&ep
->com
.dev
->rdev
, ep
->com
.wr_waitp
,
3621 sin6
= (struct sockaddr_in6
*)&ep
->com
.local_addr
;
3622 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3623 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3625 xa_erase_irq(&ep
->com
.dev
->stids
, ep
->stid
);
3626 cxgb4_free_stid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->stid
,
3627 ep
->com
.local_addr
.ss_family
);
3629 deref_cm_id(&ep
->com
);
3630 c4iw_put_ep(&ep
->com
);
3634 int c4iw_ep_disconnect(struct c4iw_ep
*ep
, int abrupt
, gfp_t gfp
)
3639 struct c4iw_rdev
*rdev
;
3641 mutex_lock(&ep
->com
.mutex
);
3643 pr_debug("ep %p state %s, abrupt %d\n", ep
,
3644 states
[ep
->com
.state
], abrupt
);
3647 * Ref the ep here in case we have fatal errors causing the
3648 * ep to be released and freed.
3650 c4iw_get_ep(&ep
->com
);
3652 rdev
= &ep
->com
.dev
->rdev
;
3653 if (c4iw_fatal_error(rdev
)) {
3655 close_complete_upcall(ep
, -EIO
);
3656 ep
->com
.state
= DEAD
;
3658 switch (ep
->com
.state
) {
3667 ep
->com
.state
= ABORTING
;
3669 ep
->com
.state
= CLOSING
;
3672 * if we close before we see the fw4_ack() then we fix
3673 * up the timer state since we're reusing it.
3676 test_bit(STOP_MPA_TIMER
, &ep
->com
.flags
)) {
3677 clear_bit(STOP_MPA_TIMER
, &ep
->com
.flags
);
3682 set_bit(CLOSE_SENT
, &ep
->com
.flags
);
3685 if (!test_and_set_bit(CLOSE_SENT
, &ep
->com
.flags
)) {
3688 (void)stop_ep_timer(ep
);
3689 ep
->com
.state
= ABORTING
;
3691 ep
->com
.state
= MORIBUND
;
3697 pr_debug("ignoring disconnect ep %p state %u\n",
3701 WARN_ONCE(1, "Bad endpoint state %u\n", ep
->com
.state
);
3707 set_bit(EP_DISC_ABORT
, &ep
->com
.history
);
3708 ret
= send_abort(ep
);
3710 set_bit(EP_DISC_CLOSE
, &ep
->com
.history
);
3711 ret
= send_halfclose(ep
);
3714 set_bit(EP_DISC_FAIL
, &ep
->com
.history
);
3717 close_complete_upcall(ep
, -EIO
);
3720 struct c4iw_qp_attributes attrs
;
3722 attrs
.next_state
= C4IW_QP_STATE_ERROR
;
3723 ret
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
3725 C4IW_QP_ATTR_NEXT_STATE
,
3728 pr_err("%s - qp <- error failed!\n",
3734 mutex_unlock(&ep
->com
.mutex
);
3735 c4iw_put_ep(&ep
->com
);
3737 release_ep_resources(ep
);
3741 static void active_ofld_conn_reply(struct c4iw_dev
*dev
, struct sk_buff
*skb
,
3742 struct cpl_fw6_msg_ofld_connection_wr_rpl
*req
)
3745 int atid
= be32_to_cpu(req
->tid
);
3747 ep
= (struct c4iw_ep
*)lookup_atid(dev
->rdev
.lldi
.tids
,
3748 (__force u32
) req
->tid
);
3752 switch (req
->retval
) {
3754 set_bit(ACT_RETRY_NOMEM
, &ep
->com
.history
);
3755 if (ep
->retry_count
++ < ACT_OPEN_RETRY_COUNT
) {
3756 send_fw_act_open_req(ep
, atid
);
3761 set_bit(ACT_RETRY_INUSE
, &ep
->com
.history
);
3762 if (ep
->retry_count
++ < ACT_OPEN_RETRY_COUNT
) {
3763 send_fw_act_open_req(ep
, atid
);
3768 pr_info("%s unexpected ofld conn wr retval %d\n",
3769 __func__
, req
->retval
);
3772 pr_err("active ofld_connect_wr failure %d atid %d\n",
3774 mutex_lock(&dev
->rdev
.stats
.lock
);
3775 dev
->rdev
.stats
.act_ofld_conn_fails
++;
3776 mutex_unlock(&dev
->rdev
.stats
.lock
);
3777 connect_reply_upcall(ep
, status2errno(req
->retval
));
3778 state_set(&ep
->com
, DEAD
);
3779 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
3780 struct sockaddr_in6
*sin6
=
3781 (struct sockaddr_in6
*)&ep
->com
.local_addr
;
3782 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3783 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3785 xa_erase_irq(&dev
->atids
, atid
);
3786 cxgb4_free_atid(dev
->rdev
.lldi
.tids
, atid
);
3787 dst_release(ep
->dst
);
3788 cxgb4_l2t_release(ep
->l2t
);
3789 c4iw_put_ep(&ep
->com
);
3792 static void passive_ofld_conn_reply(struct c4iw_dev
*dev
, struct sk_buff
*skb
,
3793 struct cpl_fw6_msg_ofld_connection_wr_rpl
*req
)
3795 struct sk_buff
*rpl_skb
;
3796 struct cpl_pass_accept_req
*cpl
;
3799 rpl_skb
= (struct sk_buff
*)(unsigned long)req
->cookie
;
3801 pr_err("%s passive open failure %d\n", __func__
, req
->retval
);
3802 mutex_lock(&dev
->rdev
.stats
.lock
);
3803 dev
->rdev
.stats
.pas_ofld_conn_fails
++;
3804 mutex_unlock(&dev
->rdev
.stats
.lock
);
3807 cpl
= (struct cpl_pass_accept_req
*)cplhdr(rpl_skb
);
3808 OPCODE_TID(cpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ
,
3809 (__force u32
) htonl(
3810 (__force u32
) req
->tid
)));
3811 ret
= pass_accept_req(dev
, rpl_skb
);
3818 static inline u64
t4_tcb_get_field64(__be64
*tcb
, u16 word
)
3820 u64 tlo
= be64_to_cpu(tcb
[((31 - word
) / 2)]);
3821 u64 thi
= be64_to_cpu(tcb
[((31 - word
) / 2) - 1]);
3825 t
= (thi
<< shift
) | (tlo
>> shift
);
3830 static inline u32
t4_tcb_get_field32(__be64
*tcb
, u16 word
, u32 mask
, u32 shift
)
3833 u64 t
= be64_to_cpu(tcb
[(31 - word
) / 2]);
3837 v
= (t
>> shift
) & mask
;
3841 static int read_tcb_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3843 struct cpl_get_tcb_rpl
*rpl
= cplhdr(skb
);
3844 __be64
*tcb
= (__be64
*)(rpl
+ 1);
3845 unsigned int tid
= GET_TID(rpl
);
3850 ep
= get_ep_from_tid(dev
, tid
);
3853 /* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to
3854 * determine if there's a rx PDU feedback event pending.
3856 * If that bit is set, it means we'll need to re-read the TCB's
3857 * rq_start value. The final value is the one present in a TCB
3858 * with the TF_RX_PDU_OUT bit cleared.
3861 t_flags_64
= t4_tcb_get_field64(tcb
, TCB_T_FLAGS_W
);
3862 rx_pdu_out
= (t_flags_64
& TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S
;
3864 c4iw_put_ep(&ep
->com
); /* from get_ep_from_tid() */
3865 c4iw_put_ep(&ep
->com
); /* from read_tcb() */
3867 /* If TF_RX_PDU_OUT bit is set, re-read the TCB */
3869 if (++ep
->rx_pdu_out_cnt
>= 2) {
3870 WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n");
3877 ep
->srqe_idx
= t4_tcb_get_field32(tcb
, TCB_RQ_START_W
, TCB_RQ_START_W
,
3880 pr_debug("ep %p tid %u %016x\n", ep
, ep
->hwtid
, ep
->srqe_idx
);
3882 if (test_bit(PEER_ABORT_IN_PROGRESS
, &ep
->com
.flags
))
3883 finish_peer_abort(dev
, ep
);
3884 else if (test_bit(ABORT_REQ_IN_PROGRESS
, &ep
->com
.flags
))
3887 WARN_ONCE(1, "unexpected state!");
3892 static int deferred_fw6_msg(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3894 struct cpl_fw6_msg
*rpl
= cplhdr(skb
);
3895 struct cpl_fw6_msg_ofld_connection_wr_rpl
*req
;
3897 switch (rpl
->type
) {
3899 c4iw_ev_dispatch(dev
, (struct t4_cqe
*)&rpl
->data
[0]);
3901 case FW6_TYPE_OFLD_CONNECTION_WR_RPL
:
3902 req
= (struct cpl_fw6_msg_ofld_connection_wr_rpl
*)rpl
->data
;
3903 switch (req
->t_state
) {
3905 active_ofld_conn_reply(dev
, skb
, req
);
3908 passive_ofld_conn_reply(dev
, skb
, req
);
3911 pr_err("%s unexpected ofld conn wr state %d\n",
3912 __func__
, req
->t_state
);
3920 static void build_cpl_pass_accept_req(struct sk_buff
*skb
, int stid
, u8 tos
)
3923 __be16 hdr_len
, vlantag
, len
;
3925 int tcp_hdr_len
, ip_hdr_len
;
3927 struct cpl_rx_pkt
*cpl
= cplhdr(skb
);
3928 struct cpl_pass_accept_req
*req
;
3929 struct tcp_options_received tmp_opt
;
3930 struct c4iw_dev
*dev
;
3931 enum chip_type type
;
3933 dev
= *((struct c4iw_dev
**) (skb
->cb
+ sizeof(void *)));
3934 /* Store values from cpl_rx_pkt in temporary location. */
3935 vlantag
= cpl
->vlan
;
3937 l2info
= cpl
->l2info
;
3938 hdr_len
= cpl
->hdr_len
;
3941 __skb_pull(skb
, sizeof(*req
) + sizeof(struct rss_header
));
3944 * We need to parse the TCP options from SYN packet.
3945 * to generate cpl_pass_accept_req.
3947 memset(&tmp_opt
, 0, sizeof(tmp_opt
));
3948 tcp_clear_options(&tmp_opt
);
3949 tcp_parse_options(&init_net
, skb
, &tmp_opt
, 0, NULL
);
3951 req
= __skb_push(skb
, sizeof(*req
));
3952 memset(req
, 0, sizeof(*req
));
3953 req
->l2info
= cpu_to_be16(SYN_INTF_V(intf
) |
3954 SYN_MAC_IDX_V(RX_MACIDX_G(
3955 be32_to_cpu(l2info
))) |
3957 type
= dev
->rdev
.lldi
.adapter_type
;
3958 tcp_hdr_len
= RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len
));
3959 ip_hdr_len
= RX_IPHDR_LEN_G(be16_to_cpu(hdr_len
));
3961 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info
))));
3962 if (CHELSIO_CHIP_VERSION(type
) <= CHELSIO_T5
) {
3963 eth_hdr_len
= is_t4(type
) ?
3964 RX_ETHHDR_LEN_G(be32_to_cpu(l2info
)) :
3965 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info
));
3966 req
->hdr_len
|= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len
) |
3967 IP_HDR_LEN_V(ip_hdr_len
) |
3968 ETH_HDR_LEN_V(eth_hdr_len
));
3969 } else { /* T6 and later */
3970 eth_hdr_len
= RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info
));
3971 req
->hdr_len
|= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len
) |
3972 T6_IP_HDR_LEN_V(ip_hdr_len
) |
3973 T6_ETH_HDR_LEN_V(eth_hdr_len
));
3975 req
->vlan
= vlantag
;
3977 req
->tos_stid
= cpu_to_be32(PASS_OPEN_TID_V(stid
) |
3978 PASS_OPEN_TOS_V(tos
));
3979 req
->tcpopt
.mss
= htons(tmp_opt
.mss_clamp
);
3980 if (tmp_opt
.wscale_ok
)
3981 req
->tcpopt
.wsf
= tmp_opt
.snd_wscale
;
3982 req
->tcpopt
.tstamp
= tmp_opt
.saw_tstamp
;
3983 if (tmp_opt
.sack_ok
)
3984 req
->tcpopt
.sack
= 1;
3985 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ
, 0));
3989 static void send_fw_pass_open_req(struct c4iw_dev
*dev
, struct sk_buff
*skb
,
3990 __be32 laddr
, __be16 lport
,
3991 __be32 raddr
, __be16 rport
,
3992 u32 rcv_isn
, u32 filter
, u16 window
,
3993 u32 rss_qid
, u8 port_id
)
3995 struct sk_buff
*req_skb
;
3996 struct fw_ofld_connection_wr
*req
;
3997 struct cpl_pass_accept_req
*cpl
= cplhdr(skb
);
4000 req_skb
= alloc_skb(sizeof(struct fw_ofld_connection_wr
), GFP_KERNEL
);
4003 req
= __skb_put_zero(req_skb
, sizeof(*req
));
4004 req
->op_compl
= htonl(WR_OP_V(FW_OFLD_CONNECTION_WR
) | FW_WR_COMPL_F
);
4005 req
->len16_pkd
= htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req
), 16)));
4006 req
->le
.version_cpl
= htonl(FW_OFLD_CONNECTION_WR_CPL_F
);
4007 req
->le
.filter
= (__force __be32
) filter
;
4008 req
->le
.lport
= lport
;
4009 req
->le
.pport
= rport
;
4010 req
->le
.u
.ipv4
.lip
= laddr
;
4011 req
->le
.u
.ipv4
.pip
= raddr
;
4012 req
->tcb
.rcv_nxt
= htonl(rcv_isn
+ 1);
4013 req
->tcb
.rcv_adv
= htons(window
);
4014 req
->tcb
.t_state_to_astid
=
4015 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV
) |
4016 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl
->tcpopt
.wsf
) |
4017 FW_OFLD_CONNECTION_WR_ASTID_V(
4018 PASS_OPEN_TID_G(ntohl(cpl
->tos_stid
))));
4021 * We store the qid in opt2 which will be used by the firmware
4022 * to send us the wr response.
4024 req
->tcb
.opt2
= htonl(RSS_QUEUE_V(rss_qid
));
4027 * We initialize the MSS index in TCB to 0xF.
4028 * So that when driver sends cpl_pass_accept_rpl
4029 * TCB picks up the correct value. If this was 0
4030 * TP will ignore any value > 0 for MSS index.
4032 req
->tcb
.opt0
= cpu_to_be64(MSS_IDX_V(0xF));
4033 req
->cookie
= (uintptr_t)skb
;
4035 set_wr_txq(req_skb
, CPL_PRIORITY_CONTROL
, port_id
);
4036 ret
= cxgb4_ofld_send(dev
->rdev
.lldi
.ports
[0], req_skb
);
4038 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__
,
4046 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
4047 * messages when a filter is being used instead of server to
4048 * redirect a syn packet. When packets hit filter they are redirected
4049 * to the offload queue and driver tries to establish the connection
4050 * using firmware work request.
4052 static int rx_pkt(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4055 unsigned int filter
;
4056 struct ethhdr
*eh
= NULL
;
4057 struct vlan_ethhdr
*vlan_eh
= NULL
;
4059 struct tcphdr
*tcph
;
4060 struct rss_header
*rss
= (void *)skb
->data
;
4061 struct cpl_rx_pkt
*cpl
= (void *)skb
->data
;
4062 struct cpl_pass_accept_req
*req
= (void *)(rss
+ 1);
4063 struct l2t_entry
*e
;
4064 struct dst_entry
*dst
;
4065 struct c4iw_ep
*lep
= NULL
;
4067 struct port_info
*pi
;
4068 struct net_device
*pdev
;
4069 u16 rss_qid
, eth_hdr_len
;
4071 struct neighbour
*neigh
;
4073 /* Drop all non-SYN packets */
4074 if (!(cpl
->l2info
& cpu_to_be32(RXF_SYN_F
)))
4078 * Drop all packets which did not hit the filter.
4079 * Unlikely to happen.
4081 if (!(rss
->filter_hit
&& rss
->filter_tid
))
4085 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4087 stid
= (__force
int) cpu_to_be32((__force u32
) rss
->hash_val
);
4089 lep
= (struct c4iw_ep
*)get_ep_from_stid(dev
, stid
);
4091 pr_warn("%s connect request on invalid stid %d\n",
4096 switch (CHELSIO_CHIP_VERSION(dev
->rdev
.lldi
.adapter_type
)) {
4098 eth_hdr_len
= RX_ETHHDR_LEN_G(be32_to_cpu(cpl
->l2info
));
4101 eth_hdr_len
= RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl
->l2info
));
4104 eth_hdr_len
= RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl
->l2info
));
4107 pr_err("T%d Chip is not supported\n",
4108 CHELSIO_CHIP_VERSION(dev
->rdev
.lldi
.adapter_type
));
4112 if (eth_hdr_len
== ETH_HLEN
) {
4113 eh
= (struct ethhdr
*)(req
+ 1);
4114 iph
= (struct iphdr
*)(eh
+ 1);
4116 vlan_eh
= (struct vlan_ethhdr
*)(req
+ 1);
4117 iph
= (struct iphdr
*)(vlan_eh
+ 1);
4118 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(cpl
->vlan
));
4121 if (iph
->version
!= 0x4)
4124 tcph
= (struct tcphdr
*)(iph
+ 1);
4125 skb_set_network_header(skb
, (void *)iph
- (void *)rss
);
4126 skb_set_transport_header(skb
, (void *)tcph
- (void *)rss
);
4129 pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n",
4130 ntohl(iph
->daddr
), ntohs(tcph
->dest
), ntohl(iph
->saddr
),
4131 ntohs(tcph
->source
), iph
->tos
);
4133 dst
= cxgb_find_route(&dev
->rdev
.lldi
, get_real_dev
,
4134 iph
->daddr
, iph
->saddr
, tcph
->dest
,
4135 tcph
->source
, iph
->tos
);
4137 pr_err("%s - failed to find dst entry!\n", __func__
);
4140 neigh
= dst_neigh_lookup_skb(dst
, skb
);
4143 pr_err("%s - failed to allocate neigh!\n", __func__
);
4147 if (neigh
->dev
->flags
& IFF_LOOPBACK
) {
4148 pdev
= ip_dev_find(&init_net
, iph
->daddr
);
4149 e
= cxgb4_l2t_get(dev
->rdev
.lldi
.l2t
, neigh
,
4151 pi
= (struct port_info
*)netdev_priv(pdev
);
4154 pdev
= get_real_dev(neigh
->dev
);
4155 e
= cxgb4_l2t_get(dev
->rdev
.lldi
.l2t
, neigh
,
4157 pi
= (struct port_info
*)netdev_priv(pdev
);
4159 neigh_release(neigh
);
4161 pr_err("%s - failed to allocate l2t entry!\n",
4166 step
= dev
->rdev
.lldi
.nrxq
/ dev
->rdev
.lldi
.nchan
;
4167 rss_qid
= dev
->rdev
.lldi
.rxq_ids
[pi
->port_id
* step
];
4168 window
= (__force u16
) htons((__force u16
)tcph
->window
);
4170 /* Calcuate filter portion for LE region. */
4171 filter
= (__force
unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4172 dev
->rdev
.lldi
.ports
[0],
4176 * Synthesize the cpl_pass_accept_req. We have everything except the
4177 * TID. Once firmware sends a reply with TID we update the TID field
4178 * in cpl and pass it through the regular cpl_pass_accept_req path.
4180 build_cpl_pass_accept_req(skb
, stid
, iph
->tos
);
4181 send_fw_pass_open_req(dev
, skb
, iph
->daddr
, tcph
->dest
, iph
->saddr
,
4182 tcph
->source
, ntohl(tcph
->seq
), filter
, window
,
4183 rss_qid
, pi
->port_id
);
4184 cxgb4_l2t_release(e
);
4189 c4iw_put_ep(&lep
->com
);
4194 * These are the real handlers that are called from a
4197 static c4iw_handler_func work_handlers
[NUM_CPL_CMDS
+ NUM_FAKE_CPLS
] = {
4198 [CPL_ACT_ESTABLISH
] = act_establish
,
4199 [CPL_ACT_OPEN_RPL
] = act_open_rpl
,
4200 [CPL_RX_DATA
] = rx_data
,
4201 [CPL_ABORT_RPL_RSS
] = abort_rpl
,
4202 [CPL_ABORT_RPL
] = abort_rpl
,
4203 [CPL_PASS_OPEN_RPL
] = pass_open_rpl
,
4204 [CPL_CLOSE_LISTSRV_RPL
] = close_listsrv_rpl
,
4205 [CPL_PASS_ACCEPT_REQ
] = pass_accept_req
,
4206 [CPL_PASS_ESTABLISH
] = pass_establish
,
4207 [CPL_PEER_CLOSE
] = peer_close
,
4208 [CPL_ABORT_REQ_RSS
] = peer_abort
,
4209 [CPL_CLOSE_CON_RPL
] = close_con_rpl
,
4210 [CPL_RDMA_TERMINATE
] = terminate
,
4211 [CPL_FW4_ACK
] = fw4_ack
,
4212 [CPL_GET_TCB_RPL
] = read_tcb_rpl
,
4213 [CPL_FW6_MSG
] = deferred_fw6_msg
,
4214 [CPL_RX_PKT
] = rx_pkt
,
4215 [FAKE_CPL_PUT_EP_SAFE
] = _put_ep_safe
,
4216 [FAKE_CPL_PASS_PUT_EP_SAFE
] = _put_pass_ep_safe
4219 static void process_timeout(struct c4iw_ep
*ep
)
4221 struct c4iw_qp_attributes attrs
;
4224 mutex_lock(&ep
->com
.mutex
);
4225 pr_debug("ep %p tid %u state %d\n", ep
, ep
->hwtid
, ep
->com
.state
);
4226 set_bit(TIMEDOUT
, &ep
->com
.history
);
4227 switch (ep
->com
.state
) {
4229 connect_reply_upcall(ep
, -ETIMEDOUT
);
4238 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
4239 attrs
.next_state
= C4IW_QP_STATE_ERROR
;
4240 c4iw_modify_qp(ep
->com
.qp
->rhp
,
4241 ep
->com
.qp
, C4IW_QP_ATTR_NEXT_STATE
,
4244 close_complete_upcall(ep
, -ETIMEDOUT
);
4250 * These states are expected if the ep timed out at the same
4251 * time as another thread was calling stop_ep_timer().
4252 * So we silently do nothing for these states.
4257 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4258 __func__
, ep
, ep
->hwtid
, ep
->com
.state
);
4261 mutex_unlock(&ep
->com
.mutex
);
4263 c4iw_ep_disconnect(ep
, 1, GFP_KERNEL
);
4264 c4iw_put_ep(&ep
->com
);
4267 static void process_timedout_eps(void)
4271 spin_lock_irq(&timeout_lock
);
4272 while (!list_empty(&timeout_list
)) {
4273 struct list_head
*tmp
;
4275 tmp
= timeout_list
.next
;
4279 spin_unlock_irq(&timeout_lock
);
4280 ep
= list_entry(tmp
, struct c4iw_ep
, entry
);
4281 process_timeout(ep
);
4282 spin_lock_irq(&timeout_lock
);
4284 spin_unlock_irq(&timeout_lock
);
4287 static void process_work(struct work_struct
*work
)
4289 struct sk_buff
*skb
= NULL
;
4290 struct c4iw_dev
*dev
;
4291 struct cpl_act_establish
*rpl
;
4292 unsigned int opcode
;
4295 process_timedout_eps();
4296 while ((skb
= skb_dequeue(&rxq
))) {
4298 dev
= *((struct c4iw_dev
**) (skb
->cb
+ sizeof(void *)));
4299 opcode
= rpl
->ot
.opcode
;
4301 if (opcode
>= ARRAY_SIZE(work_handlers
) ||
4302 !work_handlers
[opcode
]) {
4303 pr_err("No handler for opcode 0x%x.\n", opcode
);
4306 ret
= work_handlers
[opcode
](dev
, skb
);
4310 process_timedout_eps();
4314 static DECLARE_WORK(skb_work
, process_work
);
4316 static void ep_timeout(struct timer_list
*t
)
4318 struct c4iw_ep
*ep
= from_timer(ep
, t
, timer
);
4321 spin_lock(&timeout_lock
);
4322 if (!test_and_set_bit(TIMEOUT
, &ep
->com
.flags
)) {
4324 * Only insert if it is not already on the list.
4326 if (!ep
->entry
.next
) {
4327 list_add_tail(&ep
->entry
, &timeout_list
);
4331 spin_unlock(&timeout_lock
);
4333 queue_work(workq
, &skb_work
);
4337 * All the CM events are handled on a work queue to have a safe context.
4339 static int sched(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4343 * Save dev in the skb->cb area.
4345 *((struct c4iw_dev
**) (skb
->cb
+ sizeof(void *))) = dev
;
4348 * Queue the skb and schedule the worker thread.
4350 skb_queue_tail(&rxq
, skb
);
4351 queue_work(workq
, &skb_work
);
4355 static int set_tcb_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4357 struct cpl_set_tcb_rpl
*rpl
= cplhdr(skb
);
4359 if (rpl
->status
!= CPL_ERR_NONE
) {
4360 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4361 rpl
->status
, GET_TID(rpl
));
4367 static int fw6_msg(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4369 struct cpl_fw6_msg
*rpl
= cplhdr(skb
);
4370 struct c4iw_wr_wait
*wr_waitp
;
4373 pr_debug("type %u\n", rpl
->type
);
4375 switch (rpl
->type
) {
4376 case FW6_TYPE_WR_RPL
:
4377 ret
= (int)((be64_to_cpu(rpl
->data
[0]) >> 8) & 0xff);
4378 wr_waitp
= (struct c4iw_wr_wait
*)(__force
unsigned long) rpl
->data
[1];
4379 pr_debug("wr_waitp %p ret %u\n", wr_waitp
, ret
);
4381 c4iw_wake_up_deref(wr_waitp
, ret
? -ret
: 0);
4385 case FW6_TYPE_OFLD_CONNECTION_WR_RPL
:
4389 pr_err("%s unexpected fw6 msg type %u\n",
4390 __func__
, rpl
->type
);
4397 static int peer_abort_intr(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4399 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
4401 unsigned int tid
= GET_TID(req
);
4403 ep
= get_ep_from_tid(dev
, tid
);
4404 /* This EP will be dereferenced in peer_abort() */
4406 pr_warn("Abort on non-existent endpoint, tid %d\n", tid
);
4410 if (cxgb_is_neg_adv(req
->status
)) {
4411 pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
4412 ep
->hwtid
, req
->status
,
4413 neg_adv_str(req
->status
));
4416 pr_debug("ep %p tid %u state %u\n", ep
, ep
->hwtid
, ep
->com
.state
);
4418 c4iw_wake_up_noref(ep
->com
.wr_waitp
, -ECONNRESET
);
4425 * Most upcalls from the T4 Core go to sched() to
4426 * schedule the processing on a work queue.
4428 c4iw_handler_func c4iw_handlers
[NUM_CPL_CMDS
] = {
4429 [CPL_ACT_ESTABLISH
] = sched
,
4430 [CPL_ACT_OPEN_RPL
] = sched
,
4431 [CPL_RX_DATA
] = sched
,
4432 [CPL_ABORT_RPL_RSS
] = sched
,
4433 [CPL_ABORT_RPL
] = sched
,
4434 [CPL_PASS_OPEN_RPL
] = sched
,
4435 [CPL_CLOSE_LISTSRV_RPL
] = sched
,
4436 [CPL_PASS_ACCEPT_REQ
] = sched
,
4437 [CPL_PASS_ESTABLISH
] = sched
,
4438 [CPL_PEER_CLOSE
] = sched
,
4439 [CPL_CLOSE_CON_RPL
] = sched
,
4440 [CPL_ABORT_REQ_RSS
] = peer_abort_intr
,
4441 [CPL_RDMA_TERMINATE
] = sched
,
4442 [CPL_FW4_ACK
] = sched
,
4443 [CPL_SET_TCB_RPL
] = set_tcb_rpl
,
4444 [CPL_GET_TCB_RPL
] = sched
,
4445 [CPL_FW6_MSG
] = fw6_msg
,
4446 [CPL_RX_PKT
] = sched
4449 int __init
c4iw_cm_init(void)
4451 spin_lock_init(&timeout_lock
);
4452 skb_queue_head_init(&rxq
);
4454 workq
= alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM
);
4461 void c4iw_cm_term(void)
4463 WARN_ON(!list_empty(&timeout_list
));
4464 flush_workqueue(workq
);
4465 destroy_workqueue(workq
);