2 * Copyright(c) 2015 - 2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/firmware.h>
49 #include <linux/mutex.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/crc32.h>
58 * Make it easy to toggle firmware file name and if it gets loaded by
59 * editing the following. This may be something we do while in development
60 * but not necessarily something a user would ever need to use.
62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
68 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
69 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
70 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
72 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC
);
73 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME
);
74 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME
);
75 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME
);
77 static uint fw_8051_load
= 1;
78 static uint fw_fabric_serdes_load
= 1;
79 static uint fw_pcie_serdes_load
= 1;
80 static uint fw_sbus_load
= 1;
82 /* Firmware file names get set in hfi1_firmware_init() based on the above */
83 static char *fw_8051_name
;
84 static char *fw_fabric_serdes_name
;
85 static char *fw_sbus_name
;
86 static char *fw_pcie_serdes_name
;
88 #define SBUS_MAX_POLL_COUNT 100
89 #define SBUS_COUNTER(reg, name) \
90 (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
91 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
94 * Firmware security header.
102 u32 date
; /* BCD yyyymmdd */
103 u32 size
; /* in DWORDs */
104 u32 key_size
; /* in DWORDs */
105 u32 modulus_size
; /* in DWORDs */
106 u32 exponent_size
; /* in DWORDs */
110 /* expected field values */
111 #define CSS_MODULE_TYPE 0x00000006
112 #define CSS_HEADER_LEN 0x000000a1
113 #define CSS_HEADER_VERSION 0x00010000
114 #define CSS_MODULE_VENDOR 0x00008086
118 #define EXPONENT_SIZE 4
120 /* size of platform configuration partition */
121 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
123 /* size of file of plaform configuration encoded in format version 4 */
124 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
126 /* the file itself */
127 struct firmware_file
{
128 struct css_header css_header
;
129 u8 modulus
[KEY_SIZE
];
130 u8 exponent
[EXPONENT_SIZE
];
131 u8 signature
[KEY_SIZE
];
135 struct augmented_firmware_file
{
136 struct css_header css_header
;
137 u8 modulus
[KEY_SIZE
];
138 u8 exponent
[EXPONENT_SIZE
];
139 u8 signature
[KEY_SIZE
];
145 /* augmented file size difference */
146 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
147 sizeof(struct firmware_file))
149 struct firmware_details
{
150 /* Linux core piece */
151 const struct firmware
*fw
;
153 struct css_header
*css_header
;
154 u8
*firmware_ptr
; /* pointer to binary data */
155 u32 firmware_len
; /* length in bytes */
156 u8
*modulus
; /* pointer to the modulus */
157 u8
*exponent
; /* pointer to the exponent */
158 u8
*signature
; /* pointer to the signature */
159 u8
*r2
; /* pointer to r2 */
160 u8
*mu
; /* pointer to mu */
161 struct augmented_firmware_file dummy_header
;
165 * The mutex protects fw_state, fw_err, and all of the firmware_details
168 static DEFINE_MUTEX(fw_mutex
);
176 static enum fw_state fw_state
= FW_EMPTY
;
178 static struct firmware_details fw_8051
;
179 static struct firmware_details fw_fabric
;
180 static struct firmware_details fw_pcie
;
181 static struct firmware_details fw_sbus
;
183 /* flags for turn_off_spicos() */
184 #define SPICO_SBUS 0x1
185 #define SPICO_FABRIC 0x2
186 #define ENABLE_SPICO_SMASK 0x1
188 /* security block commands */
189 #define RSA_CMD_INIT 0x1
190 #define RSA_CMD_START 0x2
192 /* security block status */
193 #define RSA_STATUS_IDLE 0x0
194 #define RSA_STATUS_ACTIVE 0x1
195 #define RSA_STATUS_DONE 0x2
196 #define RSA_STATUS_FAILED 0x3
198 /* RSA engine timeout, in ms */
199 #define RSA_ENGINE_TIMEOUT 100 /* ms */
201 /* hardware mutex timeout, in ms */
202 #define HM_TIMEOUT 10 /* ms */
204 /* 8051 memory access timeout, in us */
205 #define DC8051_ACCESS_TIMEOUT 100 /* us */
207 /* the number of fabric SerDes on the SBus */
208 #define NUM_FABRIC_SERDES 4
210 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
211 #define SBUS_READ_COMPLETE 0x4
213 /* SBus fabric SerDes addresses, one set per HFI */
214 static const u8 fabric_serdes_addrs
[2][NUM_FABRIC_SERDES
] = {
215 { 0x01, 0x02, 0x03, 0x04 },
216 { 0x28, 0x29, 0x2a, 0x2b }
219 /* SBus PCIe SerDes addresses, one set per HFI */
220 static const u8 pcie_serdes_addrs
[2][NUM_PCIE_SERDES
] = {
221 { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
222 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
223 { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
224 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
227 /* SBus PCIe PCS addresses, one set per HFI */
228 const u8 pcie_pcs_addrs
[2][NUM_PCIE_SERDES
] = {
229 { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
230 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
231 { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
232 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
235 /* SBus fabric SerDes broadcast addresses, one per HFI */
236 static const u8 fabric_serdes_broadcast
[2] = { 0xe4, 0xe5 };
237 static const u8 all_fabric_serdes_broadcast
= 0xe1;
239 /* SBus PCIe SerDes broadcast addresses, one per HFI */
240 const u8 pcie_serdes_broadcast
[2] = { 0xe2, 0xe3 };
241 static const u8 all_pcie_serdes_broadcast
= 0xe0;
243 static const u32 platform_config_table_limits
[PLATFORM_CONFIG_TABLE_MAX
] = {
249 QSFP_ATTEN_TABLE_MAX
,
250 VARIABLE_SETTINGS_TABLE_MAX
254 static void dispose_one_firmware(struct firmware_details
*fdet
);
255 static int load_fabric_serdes_firmware(struct hfi1_devdata
*dd
,
256 struct firmware_details
*fdet
);
257 static void dump_fw_version(struct hfi1_devdata
*dd
);
260 * Read a single 64-bit value from 8051 data memory.
263 * o caller to have already set up data read, no auto increment
264 * o caller to turn off read enable when finished
266 * The address argument is a byte offset. Bits 0:2 in the address are
267 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
268 * the lower bits are zero.
270 * Return 0 on success, -ENXIO on a read error (timeout).
272 static int __read_8051_data(struct hfi1_devdata
*dd
, u32 addr
, u64
*result
)
277 /* step 1: set the address, clear enable */
278 reg
= (addr
& DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK
)
279 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT
;
280 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, reg
);
282 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
,
283 reg
| DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK
);
285 /* wait until ACCESS_COMPLETED is set */
287 while ((read_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_STATUS
)
288 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK
)
291 if (count
> DC8051_ACCESS_TIMEOUT
) {
292 dd_dev_err(dd
, "timeout reading 8051 data\n");
298 /* gather the data */
299 *result
= read_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_RD_DATA
);
305 * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks.
306 * Return 0 on success, -errno on error.
308 int read_8051_data(struct hfi1_devdata
*dd
, u32 addr
, u32 len
, u64
*result
)
314 spin_lock_irqsave(&dd
->dc8051_memlock
, flags
);
316 /* data read set-up, no auto-increment */
317 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_SETUP
, 0);
319 for (done
= 0; done
< len
; addr
+= 8, done
+= 8, result
++) {
320 ret
= __read_8051_data(dd
, addr
, result
);
325 /* turn off read enable */
326 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, 0);
328 spin_unlock_irqrestore(&dd
->dc8051_memlock
, flags
);
334 * Write data or code to the 8051 code or data RAM.
336 static int write_8051(struct hfi1_devdata
*dd
, int code
, u32 start
,
337 const u8
*data
, u32 len
)
343 /* check alignment */
344 aligned
= ((unsigned long)data
& 0x7) == 0;
347 reg
= (code
? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK
: 0ull)
348 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK
;
349 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_SETUP
, reg
);
351 reg
= ((start
& DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK
)
352 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT
)
353 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK
;
354 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, reg
);
357 for (offset
= 0; offset
< len
; offset
+= 8) {
358 int bytes
= len
- offset
;
362 memcpy(®
, &data
[offset
], bytes
);
363 } else if (aligned
) {
364 reg
= *(u64
*)&data
[offset
];
366 memcpy(®
, &data
[offset
], 8);
368 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_WR_DATA
, reg
);
370 /* wait until ACCESS_COMPLETED is set */
372 while ((read_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_STATUS
)
373 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK
)
376 if (count
> DC8051_ACCESS_TIMEOUT
) {
377 dd_dev_err(dd
, "timeout writing 8051 data\n");
384 /* turn off write access, auto increment (also sets to data access) */
385 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, 0);
386 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_SETUP
, 0);
391 /* return 0 if values match, non-zero and complain otherwise */
392 static int invalid_header(struct hfi1_devdata
*dd
, const char *what
,
393 u32 actual
, u32 expected
)
395 if (actual
== expected
)
399 "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
400 what
, expected
, actual
);
405 * Verify that the static fields in the CSS header match.
407 static int verify_css_header(struct hfi1_devdata
*dd
, struct css_header
*css
)
409 /* verify CSS header fields (most sizes are in DW, so add /4) */
410 if (invalid_header(dd
, "module_type", css
->module_type
,
412 invalid_header(dd
, "header_len", css
->header_len
,
413 (sizeof(struct firmware_file
) / 4)) ||
414 invalid_header(dd
, "header_version", css
->header_version
,
415 CSS_HEADER_VERSION
) ||
416 invalid_header(dd
, "module_vendor", css
->module_vendor
,
417 CSS_MODULE_VENDOR
) ||
418 invalid_header(dd
, "key_size", css
->key_size
, KEY_SIZE
/ 4) ||
419 invalid_header(dd
, "modulus_size", css
->modulus_size
,
421 invalid_header(dd
, "exponent_size", css
->exponent_size
,
422 EXPONENT_SIZE
/ 4)) {
429 * Make sure there are at least some bytes after the prefix.
431 static int payload_check(struct hfi1_devdata
*dd
, const char *name
,
432 long file_size
, long prefix_size
)
434 /* make sure we have some payload */
435 if (prefix_size
>= file_size
) {
437 "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
438 name
, file_size
, prefix_size
);
446 * Request the firmware from the system. Extract the pieces and fill in
447 * fdet. If successful, the caller will need to call dispose_one_firmware().
448 * Returns 0 on success, -ERRNO on error.
450 static int obtain_one_firmware(struct hfi1_devdata
*dd
, const char *name
,
451 struct firmware_details
*fdet
)
453 struct css_header
*css
;
456 memset(fdet
, 0, sizeof(*fdet
));
458 ret
= request_firmware(&fdet
->fw
, name
, &dd
->pcidev
->dev
);
460 dd_dev_warn(dd
, "cannot find firmware \"%s\", err %d\n",
465 /* verify the firmware */
466 if (fdet
->fw
->size
< sizeof(struct css_header
)) {
467 dd_dev_err(dd
, "firmware \"%s\" is too small\n", name
);
471 css
= (struct css_header
*)fdet
->fw
->data
;
473 hfi1_cdbg(FIRMWARE
, "Firmware %s details:", name
);
474 hfi1_cdbg(FIRMWARE
, "file size: 0x%lx bytes", fdet
->fw
->size
);
475 hfi1_cdbg(FIRMWARE
, "CSS structure:");
476 hfi1_cdbg(FIRMWARE
, " module_type 0x%x", css
->module_type
);
477 hfi1_cdbg(FIRMWARE
, " header_len 0x%03x (0x%03x bytes)",
478 css
->header_len
, 4 * css
->header_len
);
479 hfi1_cdbg(FIRMWARE
, " header_version 0x%x", css
->header_version
);
480 hfi1_cdbg(FIRMWARE
, " module_id 0x%x", css
->module_id
);
481 hfi1_cdbg(FIRMWARE
, " module_vendor 0x%x", css
->module_vendor
);
482 hfi1_cdbg(FIRMWARE
, " date 0x%x", css
->date
);
483 hfi1_cdbg(FIRMWARE
, " size 0x%03x (0x%03x bytes)",
484 css
->size
, 4 * css
->size
);
485 hfi1_cdbg(FIRMWARE
, " key_size 0x%03x (0x%03x bytes)",
486 css
->key_size
, 4 * css
->key_size
);
487 hfi1_cdbg(FIRMWARE
, " modulus_size 0x%03x (0x%03x bytes)",
488 css
->modulus_size
, 4 * css
->modulus_size
);
489 hfi1_cdbg(FIRMWARE
, " exponent_size 0x%03x (0x%03x bytes)",
490 css
->exponent_size
, 4 * css
->exponent_size
);
491 hfi1_cdbg(FIRMWARE
, "firmware size: 0x%lx bytes",
492 fdet
->fw
->size
- sizeof(struct firmware_file
));
495 * If the file does not have a valid CSS header, fail.
496 * Otherwise, check the CSS size field for an expected size.
497 * The augmented file has r2 and mu inserted after the header
498 * was generated, so there will be a known difference between
499 * the CSS header size and the actual file size. Use this
500 * difference to identify an augmented file.
502 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
504 ret
= verify_css_header(dd
, css
);
506 dd_dev_info(dd
, "Invalid CSS header for \"%s\"\n", name
);
507 } else if ((css
->size
* 4) == fdet
->fw
->size
) {
508 /* non-augmented firmware file */
509 struct firmware_file
*ff
= (struct firmware_file
*)
512 /* make sure there are bytes in the payload */
513 ret
= payload_check(dd
, name
, fdet
->fw
->size
,
514 sizeof(struct firmware_file
));
516 fdet
->css_header
= css
;
517 fdet
->modulus
= ff
->modulus
;
518 fdet
->exponent
= ff
->exponent
;
519 fdet
->signature
= ff
->signature
;
520 fdet
->r2
= fdet
->dummy_header
.r2
; /* use dummy space */
521 fdet
->mu
= fdet
->dummy_header
.mu
; /* use dummy space */
522 fdet
->firmware_ptr
= ff
->firmware
;
523 fdet
->firmware_len
= fdet
->fw
->size
-
524 sizeof(struct firmware_file
);
526 * Header does not include r2 and mu - generate here.
529 dd_dev_err(dd
, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
532 } else if ((css
->size
* 4) + AUGMENT_SIZE
== fdet
->fw
->size
) {
533 /* augmented firmware file */
534 struct augmented_firmware_file
*aff
=
535 (struct augmented_firmware_file
*)fdet
->fw
->data
;
537 /* make sure there are bytes in the payload */
538 ret
= payload_check(dd
, name
, fdet
->fw
->size
,
539 sizeof(struct augmented_firmware_file
));
541 fdet
->css_header
= css
;
542 fdet
->modulus
= aff
->modulus
;
543 fdet
->exponent
= aff
->exponent
;
544 fdet
->signature
= aff
->signature
;
547 fdet
->firmware_ptr
= aff
->firmware
;
548 fdet
->firmware_len
= fdet
->fw
->size
-
549 sizeof(struct augmented_firmware_file
);
552 /* css->size check failed */
554 "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
556 (fdet
->fw
->size
- AUGMENT_SIZE
) / 4,
563 /* if returning an error, clean up after ourselves */
565 dispose_one_firmware(fdet
);
569 static void dispose_one_firmware(struct firmware_details
*fdet
)
571 release_firmware(fdet
->fw
);
572 /* erase all previous information */
573 memset(fdet
, 0, sizeof(*fdet
));
577 * Obtain the 4 firmwares from the OS. All must be obtained at once or not
578 * at all. If called with the firmware state in FW_TRY, use alternate names.
579 * On exit, this routine will have set the firmware state to one of FW_TRY,
580 * FW_FINAL, or FW_ERR.
582 * Must be holding fw_mutex.
584 static void __obtain_firmware(struct hfi1_devdata
*dd
)
588 if (fw_state
== FW_FINAL
) /* nothing more to obtain */
590 if (fw_state
== FW_ERR
) /* already in error */
593 /* fw_state is FW_EMPTY or FW_TRY */
595 if (fw_state
== FW_TRY
) {
597 * We tried the original and it failed. Move to the
600 dd_dev_warn(dd
, "using alternate firmware names\n");
602 * Let others run. Some systems, when missing firmware, does
603 * something that holds for 30 seconds. If we do that twice
604 * in a row it triggers task blocked warning.
608 dispose_one_firmware(&fw_8051
);
609 if (fw_fabric_serdes_load
)
610 dispose_one_firmware(&fw_fabric
);
612 dispose_one_firmware(&fw_sbus
);
613 if (fw_pcie_serdes_load
)
614 dispose_one_firmware(&fw_pcie
);
615 fw_8051_name
= ALT_FW_8051_NAME_ASIC
;
616 fw_fabric_serdes_name
= ALT_FW_FABRIC_NAME
;
617 fw_sbus_name
= ALT_FW_SBUS_NAME
;
618 fw_pcie_serdes_name
= ALT_FW_PCIE_NAME
;
621 * Add a delay before obtaining and loading debug firmware.
622 * Authorization will fail if the delay between firmware
623 * authorization events is shorter than 50us. Add 100us to
624 * make a delay time safe.
626 usleep_range(100, 120);
630 err
= obtain_one_firmware(dd
, fw_sbus_name
, &fw_sbus
);
635 if (fw_pcie_serdes_load
) {
636 err
= obtain_one_firmware(dd
, fw_pcie_serdes_name
, &fw_pcie
);
641 if (fw_fabric_serdes_load
) {
642 err
= obtain_one_firmware(dd
, fw_fabric_serdes_name
,
649 err
= obtain_one_firmware(dd
, fw_8051_name
, &fw_8051
);
656 /* oops, had problems obtaining a firmware */
657 if (fw_state
== FW_EMPTY
&& dd
->icode
== ICODE_RTL_SILICON
) {
658 /* retry with alternate (RTL only) */
662 dd_dev_err(dd
, "unable to obtain working firmware\n");
667 if (fw_state
== FW_EMPTY
&&
668 dd
->icode
!= ICODE_FUNCTIONAL_SIMULATOR
)
669 fw_state
= FW_TRY
; /* may retry later */
671 fw_state
= FW_FINAL
; /* cannot try again */
676 * Called by all HFIs when loading their firmware - i.e. device probe time.
677 * The first one will do the actual firmware load. Use a mutex to resolve
678 * any possible race condition.
680 * The call to this routine cannot be moved to driver load because the kernel
681 * call request_firmware() requires a device which is only available after
682 * the first device probe.
684 static int obtain_firmware(struct hfi1_devdata
*dd
)
686 unsigned long timeout
;
688 mutex_lock(&fw_mutex
);
690 /* 40s delay due to long delay on missing firmware on some systems */
691 timeout
= jiffies
+ msecs_to_jiffies(40000);
692 while (fw_state
== FW_TRY
) {
694 * Another device is trying the firmware. Wait until it
695 * decides what works (or not).
697 if (time_after(jiffies
, timeout
)) {
698 /* waited too long */
699 dd_dev_err(dd
, "Timeout waiting for firmware try");
704 mutex_unlock(&fw_mutex
);
705 msleep(20); /* arbitrary delay */
706 mutex_lock(&fw_mutex
);
708 /* not in FW_TRY state */
710 /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
711 if (fw_state
== FW_EMPTY
)
712 __obtain_firmware(dd
);
714 mutex_unlock(&fw_mutex
);
719 * Called when the driver unloads. The timing is asymmetric with its
720 * counterpart, obtain_firmware(). If called at device remove time,
721 * then it is conceivable that another device could probe while the
722 * firmware is being disposed. The mutexes can be moved to do that
723 * safely, but then the firmware would be requested from the OS multiple
726 * No mutex is needed as the driver is unloading and there cannot be any
729 void dispose_firmware(void)
731 dispose_one_firmware(&fw_8051
);
732 dispose_one_firmware(&fw_fabric
);
733 dispose_one_firmware(&fw_pcie
);
734 dispose_one_firmware(&fw_sbus
);
736 /* retain the error state, otherwise revert to empty */
737 if (fw_state
!= FW_ERR
)
742 * Called with the result of a firmware download.
744 * Return 1 to retry loading the firmware, 0 to stop.
746 static int retry_firmware(struct hfi1_devdata
*dd
, int load_result
)
750 mutex_lock(&fw_mutex
);
752 if (load_result
== 0) {
754 * The load succeeded, so expect all others to do the same.
755 * Do not retry again.
757 if (fw_state
== FW_TRY
)
759 retry
= 0; /* do NOT retry */
760 } else if (fw_state
== FW_TRY
) {
761 /* load failed, obtain alternate firmware */
762 __obtain_firmware(dd
);
763 retry
= (fw_state
== FW_FINAL
);
765 /* else in FW_FINAL or FW_ERR, no retry in either case */
769 mutex_unlock(&fw_mutex
);
774 * Write a block of data to a given array CSR. All calls will be in
775 * multiples of 8 bytes.
777 static void write_rsa_data(struct hfi1_devdata
*dd
, int what
,
778 const u8
*data
, int nbytes
)
780 int qw_size
= nbytes
/ 8;
783 if (((unsigned long)data
& 0x7) == 0) {
785 u64
*ptr
= (u64
*)data
;
787 for (i
= 0; i
< qw_size
; i
++, ptr
++)
788 write_csr(dd
, what
+ (8 * i
), *ptr
);
791 for (i
= 0; i
< qw_size
; i
++, data
+= 8) {
794 memcpy(&value
, data
, 8);
795 write_csr(dd
, what
+ (8 * i
), value
);
801 * Write a block of data to a given CSR as a stream of writes. All calls will
802 * be in multiples of 8 bytes.
804 static void write_streamed_rsa_data(struct hfi1_devdata
*dd
, int what
,
805 const u8
*data
, int nbytes
)
807 u64
*ptr
= (u64
*)data
;
808 int qw_size
= nbytes
/ 8;
810 for (; qw_size
> 0; qw_size
--, ptr
++)
811 write_csr(dd
, what
, *ptr
);
815 * Download the signature and start the RSA mechanism. Wait for
816 * RSA_ENGINE_TIMEOUT before giving up.
818 static int run_rsa(struct hfi1_devdata
*dd
, const char *who
,
821 unsigned long timeout
;
826 /* write the signature */
827 write_rsa_data(dd
, MISC_CFG_RSA_SIGNATURE
, signature
, KEY_SIZE
);
830 write_csr(dd
, MISC_CFG_RSA_CMD
, RSA_CMD_INIT
);
833 * Make sure the engine is idle and insert a delay between the two
834 * writes to MISC_CFG_RSA_CMD.
836 status
= (read_csr(dd
, MISC_CFG_FW_CTRL
)
837 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK
)
838 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT
;
839 if (status
!= RSA_STATUS_IDLE
) {
840 dd_dev_err(dd
, "%s security engine not idle - giving up\n",
846 write_csr(dd
, MISC_CFG_RSA_CMD
, RSA_CMD_START
);
849 * Look for the result.
851 * The RSA engine is hooked up to two MISC errors. The driver
852 * masks these errors as they do not respond to the standard
853 * error "clear down" mechanism. Look for these errors here and
854 * clear them when possible. This routine will exit with the
855 * errors of the current run still set.
857 * MISC_FW_AUTH_FAILED_ERR
858 * Firmware authorization failed. This can be cleared by
859 * re-initializing the RSA engine, then clearing the status bit.
860 * Do not re-init the RSA angine immediately after a successful
861 * run - this will reset the current authorization.
863 * MISC_KEY_MISMATCH_ERR
864 * Key does not match. The only way to clear this is to load
865 * a matching key then clear the status bit. If this error
866 * is raised, it will persist outside of this routine until a
867 * matching key is loaded.
869 timeout
= msecs_to_jiffies(RSA_ENGINE_TIMEOUT
) + jiffies
;
871 status
= (read_csr(dd
, MISC_CFG_FW_CTRL
)
872 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK
)
873 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT
;
875 if (status
== RSA_STATUS_IDLE
) {
876 /* should not happen */
877 dd_dev_err(dd
, "%s firmware security bad idle state\n",
881 } else if (status
== RSA_STATUS_DONE
) {
882 /* finished successfully */
884 } else if (status
== RSA_STATUS_FAILED
) {
885 /* finished unsuccessfully */
889 /* else still active */
891 if (time_after(jiffies
, timeout
)) {
893 * Timed out while active. We can't reset the engine
894 * if it is stuck active, but run through the
895 * error code to see what error bits are set.
897 dd_dev_err(dd
, "%s firmware security time out\n", who
);
906 * Arrive here on success or failure. Clear all RSA engine
907 * errors. All current errors will stick - the RSA logic is keeping
908 * error high. All previous errors will clear - the RSA logic
909 * is not keeping the error high.
911 write_csr(dd
, MISC_ERR_CLEAR
,
912 MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK
|
913 MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK
);
915 * All that is left are the current errors. Print warnings on
916 * authorization failure details, if any. Firmware authorization
917 * can be retried, so these are only warnings.
919 reg
= read_csr(dd
, MISC_ERR_STATUS
);
921 if (reg
& MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK
)
922 dd_dev_warn(dd
, "%s firmware authorization failed\n",
924 if (reg
& MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK
)
925 dd_dev_warn(dd
, "%s firmware key mismatch\n", who
);
931 static void load_security_variables(struct hfi1_devdata
*dd
,
932 struct firmware_details
*fdet
)
934 /* Security variables a. Write the modulus */
935 write_rsa_data(dd
, MISC_CFG_RSA_MODULUS
, fdet
->modulus
, KEY_SIZE
);
936 /* Security variables b. Write the r2 */
937 write_rsa_data(dd
, MISC_CFG_RSA_R2
, fdet
->r2
, KEY_SIZE
);
938 /* Security variables c. Write the mu */
939 write_rsa_data(dd
, MISC_CFG_RSA_MU
, fdet
->mu
, MU_SIZE
);
940 /* Security variables d. Write the header */
941 write_streamed_rsa_data(dd
, MISC_CFG_SHA_PRELOAD
,
942 (u8
*)fdet
->css_header
,
943 sizeof(struct css_header
));
946 /* return the 8051 firmware state */
947 static inline u32
get_firmware_state(struct hfi1_devdata
*dd
)
949 u64 reg
= read_csr(dd
, DC_DC8051_STS_CUR_STATE
);
951 return (reg
>> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT
)
952 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK
;
956 * Wait until the firmware is up and ready to take host requests.
957 * Return 0 on success, -ETIMEDOUT on timeout.
959 int wait_fm_ready(struct hfi1_devdata
*dd
, u32 mstimeout
)
961 unsigned long timeout
;
963 /* in the simulator, the fake 8051 is always ready */
964 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
)
967 timeout
= msecs_to_jiffies(mstimeout
) + jiffies
;
969 if (get_firmware_state(dd
) == 0xa0) /* ready */
971 if (time_after(jiffies
, timeout
)) /* timed out */
973 usleep_range(1950, 2050); /* sleep 2ms-ish */
978 * Load the 8051 firmware.
980 static int load_8051_firmware(struct hfi1_devdata
*dd
,
981 struct firmware_details
*fdet
)
991 * Load DC 8051 firmware
994 * DC reset step 1: Reset DC8051
996 reg
= DC_DC8051_CFG_RST_M8051W_SMASK
997 | DC_DC8051_CFG_RST_CRAM_SMASK
998 | DC_DC8051_CFG_RST_DRAM_SMASK
999 | DC_DC8051_CFG_RST_IRAM_SMASK
1000 | DC_DC8051_CFG_RST_SFR_SMASK
;
1001 write_csr(dd
, DC_DC8051_CFG_RST
, reg
);
1004 * DC reset step 2 (optional): Load 8051 data memory with link
1009 * DC reset step 3: Load DC8051 firmware
1011 /* release all but the core reset */
1012 reg
= DC_DC8051_CFG_RST_M8051W_SMASK
;
1013 write_csr(dd
, DC_DC8051_CFG_RST
, reg
);
1015 /* Firmware load step 1 */
1016 load_security_variables(dd
, fdet
);
1019 * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1021 write_csr(dd
, MISC_CFG_FW_CTRL
, 0);
1023 /* Firmware load steps 3-5 */
1024 ret
= write_8051(dd
, 1/*code*/, 0, fdet
->firmware_ptr
,
1025 fdet
->firmware_len
);
1030 * DC reset step 4. Host starts the DC8051 firmware
1033 * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1035 write_csr(dd
, MISC_CFG_FW_CTRL
, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK
);
1037 /* Firmware load steps 7-10 */
1038 ret
= run_rsa(dd
, "8051", fdet
->signature
);
1042 /* clear all reset bits, releasing the 8051 */
1043 write_csr(dd
, DC_DC8051_CFG_RST
, 0ull);
1046 * DC reset step 5. Wait for firmware to be ready to accept host
1049 ret
= wait_fm_ready(dd
, TIMEOUT_8051_START
);
1050 if (ret
) { /* timed out */
1051 dd_dev_err(dd
, "8051 start timeout, current state 0x%x\n",
1052 get_firmware_state(dd
));
1056 read_misc_status(dd
, &ver_major
, &ver_minor
, &ver_patch
);
1057 dd_dev_info(dd
, "8051 firmware version %d.%d.%d\n",
1058 (int)ver_major
, (int)ver_minor
, (int)ver_patch
);
1059 dd
->dc8051_ver
= dc8051_ver(ver_major
, ver_minor
, ver_patch
);
1060 ret
= write_host_interface_version(dd
, HOST_INTERFACE_VERSION
);
1061 if (ret
!= HCMD_SUCCESS
) {
1063 "Failed to set host interface version, return 0x%x\n",
1072 * Write the SBus request register
1074 * No need for masking - the arguments are sized exactly.
1076 void sbus_request(struct hfi1_devdata
*dd
,
1077 u8 receiver_addr
, u8 data_addr
, u8 command
, u32 data_in
)
1079 write_csr(dd
, ASIC_CFG_SBUS_REQUEST
,
1080 ((u64
)data_in
<< ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT
) |
1081 ((u64
)command
<< ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT
) |
1082 ((u64
)data_addr
<< ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT
) |
1083 ((u64
)receiver_addr
<<
1084 ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT
));
1088 * Read a value from the SBus.
1090 * Requires the caller to be in fast mode
1092 static u32
sbus_read(struct hfi1_devdata
*dd
, u8 receiver_addr
, u8 data_addr
,
1099 u32 result_code
= 0;
1101 sbus_request(dd
, receiver_addr
, data_addr
, READ_SBUS_RECEIVER
, data_in
);
1103 for (retries
= 0; retries
< 100; retries
++) {
1104 usleep_range(1000, 1200); /* arbitrary */
1105 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1106 result_code
= (reg
>> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT
)
1107 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK
;
1108 if (result_code
!= SBUS_READ_COMPLETE
)
1112 result
= (reg
>> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT
)
1113 & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK
;
1118 dd_dev_err(dd
, "%s: read failed, result code 0x%x\n", __func__
,
1126 * Turn off the SBus and fabric serdes spicos.
1128 * + Must be called with Sbus fast mode turned on.
1129 * + Must be called after fabric serdes broadcast is set up.
1130 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1131 * when using MISC_CFG_FW_CTRL.
1133 static void turn_off_spicos(struct hfi1_devdata
*dd
, int flags
)
1135 /* only needed on A0 */
1139 dd_dev_info(dd
, "Turning off spicos:%s%s\n",
1140 flags
& SPICO_SBUS
? " SBus" : "",
1141 flags
& SPICO_FABRIC
? " fabric" : "");
1143 write_csr(dd
, MISC_CFG_FW_CTRL
, ENABLE_SPICO_SMASK
);
1144 /* disable SBus spico */
1145 if (flags
& SPICO_SBUS
)
1146 sbus_request(dd
, SBUS_MASTER_BROADCAST
, 0x01,
1147 WRITE_SBUS_RECEIVER
, 0x00000040);
1149 /* disable the fabric serdes spicos */
1150 if (flags
& SPICO_FABRIC
)
1151 sbus_request(dd
, fabric_serdes_broadcast
[dd
->hfi1_id
],
1152 0x07, WRITE_SBUS_RECEIVER
, 0x00000000);
1153 write_csr(dd
, MISC_CFG_FW_CTRL
, 0);
1157 * Reset all of the fabric serdes for this HFI in preparation to take the
1160 * To do a reset, we need to write to to the serdes registers. Unfortunately,
1161 * the fabric serdes download to the other HFI on the ASIC will have turned
1162 * off the firmware validation on this HFI. This means we can't write to the
1163 * registers to reset the serdes. Work around this by performing a complete
1164 * re-download and validation of the fabric serdes firmware. This, as a
1165 * by-product, will reset the serdes. NOTE: the re-download requires that
1166 * the 8051 be in the Offline state. I.e. not actively trying to use the
1167 * serdes. This routine is called at the point where the link is Offline and
1168 * is getting ready to go to Polling.
1170 void fabric_serdes_reset(struct hfi1_devdata
*dd
)
1174 if (!fw_fabric_serdes_load
)
1177 ret
= acquire_chip_resource(dd
, CR_SBUS
, SBUS_TIMEOUT
);
1180 "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1183 set_sbus_fast_mode(dd
);
1186 /* A0 serdes do not work with a re-download */
1187 u8 ra
= fabric_serdes_broadcast
[dd
->hfi1_id
];
1189 /* place SerDes in reset and disable SPICO */
1190 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000011);
1191 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1193 /* remove SerDes reset */
1194 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000010);
1195 /* turn SPICO enable on */
1196 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000002);
1198 turn_off_spicos(dd
, SPICO_FABRIC
);
1200 * No need for firmware retry - what to download has already
1202 * No need to pay attention to the load return - the only
1203 * failure is a validation failure, which has already been
1204 * checked by the initial download.
1206 (void)load_fabric_serdes_firmware(dd
, &fw_fabric
);
1209 clear_sbus_fast_mode(dd
);
1210 release_chip_resource(dd
, CR_SBUS
);
1213 /* Access to the SBus in this routine should probably be serialized */
1214 int sbus_request_slow(struct hfi1_devdata
*dd
,
1215 u8 receiver_addr
, u8 data_addr
, u8 command
, u32 data_in
)
1219 /* make sure fast mode is clear */
1220 clear_sbus_fast_mode(dd
);
1222 sbus_request(dd
, receiver_addr
, data_addr
, command
, data_in
);
1223 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
,
1224 ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK
);
1225 /* Wait for both DONE and RCV_DATA_VALID to go high */
1226 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1227 while (!((reg
& ASIC_STS_SBUS_RESULT_DONE_SMASK
) &&
1228 (reg
& ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK
))) {
1229 if (count
++ >= SBUS_MAX_POLL_COUNT
) {
1230 u64 counts
= read_csr(dd
, ASIC_STS_SBUS_COUNTERS
);
1232 * If the loop has timed out, we are OK if DONE bit
1233 * is set and RCV_DATA_VALID and EXECUTE counters
1234 * are the same. If not, we cannot proceed.
1236 if ((reg
& ASIC_STS_SBUS_RESULT_DONE_SMASK
) &&
1237 (SBUS_COUNTER(counts
, RCV_DATA_VALID
) ==
1238 SBUS_COUNTER(counts
, EXECUTE
)))
1243 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1246 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
, 0);
1247 /* Wait for DONE to clear after EXECUTE is cleared */
1248 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1249 while (reg
& ASIC_STS_SBUS_RESULT_DONE_SMASK
) {
1250 if (count
++ >= SBUS_MAX_POLL_COUNT
)
1253 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1258 static int load_fabric_serdes_firmware(struct hfi1_devdata
*dd
,
1259 struct firmware_details
*fdet
)
1262 const u8 ra
= fabric_serdes_broadcast
[dd
->hfi1_id
]; /* receiver addr */
1264 dd_dev_info(dd
, "Downloading fabric firmware\n");
1266 /* step 1: load security variables */
1267 load_security_variables(dd
, fdet
);
1268 /* step 2: place SerDes in reset and disable SPICO */
1269 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000011);
1270 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1272 /* step 3: remove SerDes reset */
1273 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000010);
1274 /* step 4: assert IMEM override */
1275 sbus_request(dd
, ra
, 0x00, WRITE_SBUS_RECEIVER
, 0x40000000);
1276 /* step 5: download SerDes machine code */
1277 for (i
= 0; i
< fdet
->firmware_len
; i
+= 4) {
1278 sbus_request(dd
, ra
, 0x0a, WRITE_SBUS_RECEIVER
,
1279 *(u32
*)&fdet
->firmware_ptr
[i
]);
1281 /* step 6: IMEM override off */
1282 sbus_request(dd
, ra
, 0x00, WRITE_SBUS_RECEIVER
, 0x00000000);
1283 /* step 7: turn ECC on */
1284 sbus_request(dd
, ra
, 0x0b, WRITE_SBUS_RECEIVER
, 0x000c0000);
1286 /* steps 8-11: run the RSA engine */
1287 err
= run_rsa(dd
, "fabric serdes", fdet
->signature
);
1291 /* step 12: turn SPICO enable on */
1292 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000002);
1293 /* step 13: enable core hardware interrupts */
1294 sbus_request(dd
, ra
, 0x08, WRITE_SBUS_RECEIVER
, 0x00000000);
1299 static int load_sbus_firmware(struct hfi1_devdata
*dd
,
1300 struct firmware_details
*fdet
)
1303 const u8 ra
= SBUS_MASTER_BROADCAST
; /* receiver address */
1305 dd_dev_info(dd
, "Downloading SBus firmware\n");
1307 /* step 1: load security variables */
1308 load_security_variables(dd
, fdet
);
1309 /* step 2: place SPICO into reset and enable off */
1310 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x000000c0);
1311 /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1312 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000240);
1313 /* step 4: set starting IMEM address for burst download */
1314 sbus_request(dd
, ra
, 0x03, WRITE_SBUS_RECEIVER
, 0x80000000);
1315 /* step 5: download the SBus Master machine code */
1316 for (i
= 0; i
< fdet
->firmware_len
; i
+= 4) {
1317 sbus_request(dd
, ra
, 0x14, WRITE_SBUS_RECEIVER
,
1318 *(u32
*)&fdet
->firmware_ptr
[i
]);
1320 /* step 6: set IMEM_CNTL_EN off */
1321 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000040);
1322 /* step 7: turn ECC on */
1323 sbus_request(dd
, ra
, 0x16, WRITE_SBUS_RECEIVER
, 0x000c0000);
1325 /* steps 8-11: run the RSA engine */
1326 err
= run_rsa(dd
, "SBus", fdet
->signature
);
1330 /* step 12: set SPICO_ENABLE on */
1331 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000140);
1336 static int load_pcie_serdes_firmware(struct hfi1_devdata
*dd
,
1337 struct firmware_details
*fdet
)
1340 const u8 ra
= SBUS_MASTER_BROADCAST
; /* receiver address */
1342 dd_dev_info(dd
, "Downloading PCIe firmware\n");
1344 /* step 1: load security variables */
1345 load_security_variables(dd
, fdet
);
1346 /* step 2: assert single step (halts the SBus Master spico) */
1347 sbus_request(dd
, ra
, 0x05, WRITE_SBUS_RECEIVER
, 0x00000001);
1348 /* step 3: enable XDMEM access */
1349 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000d40);
1350 /* step 4: load firmware into SBus Master XDMEM */
1352 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1353 * we only need to pick up the bytes and write them
1355 for (i
= 0; i
< fdet
->firmware_len
; i
+= 4) {
1356 sbus_request(dd
, ra
, 0x04, WRITE_SBUS_RECEIVER
,
1357 *(u32
*)&fdet
->firmware_ptr
[i
]);
1359 /* step 5: disable XDMEM access */
1360 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000140);
1361 /* step 6: allow SBus Spico to run */
1362 sbus_request(dd
, ra
, 0x05, WRITE_SBUS_RECEIVER
, 0x00000000);
1365 * steps 7-11: run RSA, if it succeeds, firmware is available to
1368 return run_rsa(dd
, "PCIe serdes", fdet
->signature
);
1372 * Set the given broadcast values on the given list of devices.
1374 static void set_serdes_broadcast(struct hfi1_devdata
*dd
, u8 bg1
, u8 bg2
,
1375 const u8
*addrs
, int count
)
1377 while (--count
>= 0) {
1379 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1380 * defaults for everything else. Do not read-modify-write,
1381 * per instruction from the manufacturer.
1385 * ----- ---------------------------------
1386 * 0 IGNORE_BROADCAST (default 0)
1387 * 11:4 BROADCAST_GROUP_1 (default 0xff)
1388 * 23:16 BROADCAST_GROUP_2 (default 0xff)
1390 sbus_request(dd
, addrs
[count
], 0xfd, WRITE_SBUS_RECEIVER
,
1391 (u32
)bg1
<< 4 | (u32
)bg2
<< 16);
1395 int acquire_hw_mutex(struct hfi1_devdata
*dd
)
1397 unsigned long timeout
;
1399 u8 mask
= 1 << dd
->hfi1_id
;
1400 u8 user
= (u8
)read_csr(dd
, ASIC_CFG_MUTEX
);
1404 "Hardware mutex already acquired, mutex mask %u\n",
1410 timeout
= msecs_to_jiffies(HM_TIMEOUT
) + jiffies
;
1412 write_csr(dd
, ASIC_CFG_MUTEX
, mask
);
1413 user
= (u8
)read_csr(dd
, ASIC_CFG_MUTEX
);
1415 return 0; /* success */
1416 if (time_after(jiffies
, timeout
))
1417 break; /* timed out */
1423 "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1424 (u32
)user
, (u32
)mask
, (try == 0) ? "retrying" : "giving up");
1427 /* break mutex and retry */
1428 write_csr(dd
, ASIC_CFG_MUTEX
, 0);
1436 void release_hw_mutex(struct hfi1_devdata
*dd
)
1438 u8 mask
= 1 << dd
->hfi1_id
;
1439 u8 user
= (u8
)read_csr(dd
, ASIC_CFG_MUTEX
);
1443 "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1444 (u32
)user
, (u32
)mask
);
1446 write_csr(dd
, ASIC_CFG_MUTEX
, 0);
1449 /* return the given resource bit(s) as a mask for the given HFI */
1450 static inline u64
resource_mask(u32 hfi1_id
, u32 resource
)
1452 return ((u64
)resource
) << (hfi1_id
? CR_DYN_SHIFT
: 0);
1455 static void fail_mutex_acquire_message(struct hfi1_devdata
*dd
,
1459 "%s: hardware mutex stuck - suggest rebooting the machine\n",
1464 * Acquire access to a chip resource.
1466 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1468 static int __acquire_chip_resource(struct hfi1_devdata
*dd
, u32 resource
)
1470 u64 scratch0
, all_bits
, my_bit
;
1473 if (resource
& CR_DYN_MASK
) {
1474 /* a dynamic resource is in use if either HFI has set the bit */
1475 if (dd
->pcidev
->device
== PCI_DEVICE_ID_INTEL0
&&
1476 (resource
& (CR_I2C1
| CR_I2C2
))) {
1477 /* discrete devices must serialize across both chains */
1478 all_bits
= resource_mask(0, CR_I2C1
| CR_I2C2
) |
1479 resource_mask(1, CR_I2C1
| CR_I2C2
);
1481 all_bits
= resource_mask(0, resource
) |
1482 resource_mask(1, resource
);
1484 my_bit
= resource_mask(dd
->hfi1_id
, resource
);
1486 /* non-dynamic resources are not split between HFIs */
1487 all_bits
= resource
;
1491 /* lock against other callers within the driver wanting a resource */
1492 mutex_lock(&dd
->asic_data
->asic_resource_mutex
);
1494 ret
= acquire_hw_mutex(dd
);
1496 fail_mutex_acquire_message(dd
, __func__
);
1501 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1502 if (scratch0
& all_bits
) {
1505 write_csr(dd
, ASIC_CFG_SCRATCH
, scratch0
| my_bit
);
1506 /* force write to be visible to other HFI on another OS */
1507 (void)read_csr(dd
, ASIC_CFG_SCRATCH
);
1510 release_hw_mutex(dd
);
1513 mutex_unlock(&dd
->asic_data
->asic_resource_mutex
);
1518 * Acquire access to a chip resource, wait up to mswait milliseconds for
1519 * the resource to become available.
1521 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1524 int acquire_chip_resource(struct hfi1_devdata
*dd
, u32 resource
, u32 mswait
)
1526 unsigned long timeout
;
1529 timeout
= jiffies
+ msecs_to_jiffies(mswait
);
1531 ret
= __acquire_chip_resource(dd
, resource
);
1534 /* resource is busy, check our timeout */
1535 if (time_after_eq(jiffies
, timeout
))
1537 usleep_range(80, 120); /* arbitrary delay */
1542 * Release access to a chip resource
1544 void release_chip_resource(struct hfi1_devdata
*dd
, u32 resource
)
1548 /* only dynamic resources should ever be cleared */
1549 if (!(resource
& CR_DYN_MASK
)) {
1550 dd_dev_err(dd
, "%s: invalid resource 0x%x\n", __func__
,
1554 bit
= resource_mask(dd
->hfi1_id
, resource
);
1556 /* lock against other callers within the driver wanting a resource */
1557 mutex_lock(&dd
->asic_data
->asic_resource_mutex
);
1559 if (acquire_hw_mutex(dd
)) {
1560 fail_mutex_acquire_message(dd
, __func__
);
1564 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1565 if ((scratch0
& bit
) != 0) {
1567 write_csr(dd
, ASIC_CFG_SCRATCH
, scratch0
);
1568 /* force write to be visible to other HFI on another OS */
1569 (void)read_csr(dd
, ASIC_CFG_SCRATCH
);
1571 dd_dev_warn(dd
, "%s: id %d, resource 0x%x: bit not set\n",
1572 __func__
, dd
->hfi1_id
, resource
);
1575 release_hw_mutex(dd
);
1578 mutex_unlock(&dd
->asic_data
->asic_resource_mutex
);
1582 * Return true if resource is set, false otherwise. Print a warning
1583 * if not set and a function is supplied.
1585 bool check_chip_resource(struct hfi1_devdata
*dd
, u32 resource
,
1590 if (resource
& CR_DYN_MASK
)
1591 bit
= resource_mask(dd
->hfi1_id
, resource
);
1595 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1596 if ((scratch0
& bit
) == 0) {
1599 "%s: id %d, resource 0x%x, not acquired!\n",
1600 func
, dd
->hfi1_id
, resource
);
1606 static void clear_chip_resources(struct hfi1_devdata
*dd
, const char *func
)
1610 /* lock against other callers within the driver wanting a resource */
1611 mutex_lock(&dd
->asic_data
->asic_resource_mutex
);
1613 if (acquire_hw_mutex(dd
)) {
1614 fail_mutex_acquire_message(dd
, func
);
1618 /* clear all dynamic access bits for this HFI */
1619 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1620 scratch0
&= ~resource_mask(dd
->hfi1_id
, CR_DYN_MASK
);
1621 write_csr(dd
, ASIC_CFG_SCRATCH
, scratch0
);
1622 /* force write to be visible to other HFI on another OS */
1623 (void)read_csr(dd
, ASIC_CFG_SCRATCH
);
1625 release_hw_mutex(dd
);
1628 mutex_unlock(&dd
->asic_data
->asic_resource_mutex
);
1631 void init_chip_resources(struct hfi1_devdata
*dd
)
1633 /* clear any holds left by us */
1634 clear_chip_resources(dd
, __func__
);
1637 void finish_chip_resources(struct hfi1_devdata
*dd
)
1639 /* clear any holds left by us */
1640 clear_chip_resources(dd
, __func__
);
1643 void set_sbus_fast_mode(struct hfi1_devdata
*dd
)
1645 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
,
1646 ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK
);
1649 void clear_sbus_fast_mode(struct hfi1_devdata
*dd
)
1653 reg
= read_csr(dd
, ASIC_STS_SBUS_COUNTERS
);
1654 while (SBUS_COUNTER(reg
, EXECUTE
) !=
1655 SBUS_COUNTER(reg
, RCV_DATA_VALID
)) {
1656 if (count
++ >= SBUS_MAX_POLL_COUNT
)
1659 reg
= read_csr(dd
, ASIC_STS_SBUS_COUNTERS
);
1661 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
, 0);
1664 int load_firmware(struct hfi1_devdata
*dd
)
1668 if (fw_fabric_serdes_load
) {
1669 ret
= acquire_chip_resource(dd
, CR_SBUS
, SBUS_TIMEOUT
);
1673 set_sbus_fast_mode(dd
);
1675 set_serdes_broadcast(dd
, all_fabric_serdes_broadcast
,
1676 fabric_serdes_broadcast
[dd
->hfi1_id
],
1677 fabric_serdes_addrs
[dd
->hfi1_id
],
1679 turn_off_spicos(dd
, SPICO_FABRIC
);
1681 ret
= load_fabric_serdes_firmware(dd
, &fw_fabric
);
1682 } while (retry_firmware(dd
, ret
));
1684 clear_sbus_fast_mode(dd
);
1685 release_chip_resource(dd
, CR_SBUS
);
1692 ret
= load_8051_firmware(dd
, &fw_8051
);
1693 } while (retry_firmware(dd
, ret
));
1698 dump_fw_version(dd
);
1702 int hfi1_firmware_init(struct hfi1_devdata
*dd
)
1704 /* only RTL can use these */
1705 if (dd
->icode
!= ICODE_RTL_SILICON
) {
1706 fw_fabric_serdes_load
= 0;
1707 fw_pcie_serdes_load
= 0;
1711 /* no 8051 or QSFP on simulator */
1712 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
)
1715 if (!fw_8051_name
) {
1716 if (dd
->icode
== ICODE_RTL_SILICON
)
1717 fw_8051_name
= DEFAULT_FW_8051_NAME_ASIC
;
1719 fw_8051_name
= DEFAULT_FW_8051_NAME_FPGA
;
1721 if (!fw_fabric_serdes_name
)
1722 fw_fabric_serdes_name
= DEFAULT_FW_FABRIC_NAME
;
1724 fw_sbus_name
= DEFAULT_FW_SBUS_NAME
;
1725 if (!fw_pcie_serdes_name
)
1726 fw_pcie_serdes_name
= DEFAULT_FW_PCIE_NAME
;
1728 return obtain_firmware(dd
);
1732 * This function is a helper function for parse_platform_config(...) and
1733 * does not check for validity of the platform configuration cache
1734 * (because we know it is invalid as we are building up the cache).
1735 * As such, this should not be called from anywhere other than
1736 * parse_platform_config
1738 static int check_meta_version(struct hfi1_devdata
*dd
, u32
*system_table
)
1740 u32 meta_ver
, meta_ver_meta
, ver_start
, ver_len
, mask
;
1741 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
1747 *(pcfgcache
->config_tables
[PLATFORM_CONFIG_SYSTEM_TABLE
].table_metadata
1748 + SYSTEM_TABLE_META_VERSION
);
1750 mask
= ((1 << METADATA_TABLE_FIELD_START_LEN_BITS
) - 1);
1751 ver_start
= meta_ver_meta
& mask
;
1753 meta_ver_meta
>>= METADATA_TABLE_FIELD_LEN_SHIFT
;
1755 mask
= ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS
) - 1);
1756 ver_len
= meta_ver_meta
& mask
;
1759 meta_ver
= *((u8
*)system_table
+ ver_start
) & ((1 << ver_len
) - 1);
1763 dd
, "%s:Please update platform config\n", __func__
);
1769 int parse_platform_config(struct hfi1_devdata
*dd
)
1771 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
1772 struct hfi1_pportdata
*ppd
= dd
->pport
;
1774 u32 header1
= 0, header2
= 0, magic_num
= 0, crc
= 0, file_length
= 0;
1775 u32 record_idx
= 0, table_type
= 0, table_length_dwords
= 0;
1776 int ret
= -EINVAL
; /* assume failure */
1779 * For integrated devices that did not fall back to the default file,
1780 * the SI tuning information for active channels is acquired from the
1781 * scratch register bitmap, thus there is no platform config to parse.
1782 * Skip parsing in these situations.
1784 if (ppd
->config_from_scratch
)
1787 if (!dd
->platform_config
.data
) {
1788 dd_dev_err(dd
, "%s: Missing config file\n", __func__
);
1791 ptr
= (u32
*)dd
->platform_config
.data
;
1795 if (magic_num
!= PLATFORM_CONFIG_MAGIC_NUM
) {
1796 dd_dev_err(dd
, "%s: Bad config file\n", __func__
);
1800 /* Field is file size in DWORDs */
1801 file_length
= (*ptr
) * 4;
1804 * Length can't be larger than partition size. Assume platform
1805 * config format version 4 is being used. Interpret the file size
1806 * field as header instead by not moving the pointer.
1808 if (file_length
> MAX_PLATFORM_CONFIG_FILE_SIZE
) {
1810 "%s:File length out of bounds, using alternative format\n",
1812 file_length
= PLATFORM_CONFIG_FORMAT_4_FILE_SIZE
;
1817 if (file_length
> dd
->platform_config
.size
) {
1818 dd_dev_info(dd
, "%s:File claims to be larger than read size\n",
1821 } else if (file_length
< dd
->platform_config
.size
) {
1823 "%s:File claims to be smaller than read size, continuing\n",
1826 /* exactly equal, perfection */
1829 * In both cases where we proceed, using the self-reported file length
1830 * is the safer option. In case of old format a predefined value is
1833 while (ptr
< (u32
*)(dd
->platform_config
.data
+ file_length
)) {
1835 header2
= *(ptr
+ 1);
1836 if (header1
!= ~header2
) {
1837 dd_dev_err(dd
, "%s: Failed validation at offset %ld\n",
1838 __func__
, (ptr
- (u32
*)
1839 dd
->platform_config
.data
));
1844 ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS
) - 1);
1846 table_length_dwords
= (*ptr
>>
1847 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT
) &
1848 ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS
) - 1);
1850 table_type
= (*ptr
>> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT
) &
1851 ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS
) - 1);
1853 /* Done with this set of headers */
1858 switch (table_type
) {
1859 case PLATFORM_CONFIG_SYSTEM_TABLE
:
1860 pcfgcache
->config_tables
[table_type
].num_table
=
1862 ret
= check_meta_version(dd
, ptr
);
1866 case PLATFORM_CONFIG_PORT_TABLE
:
1867 pcfgcache
->config_tables
[table_type
].num_table
=
1870 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
1872 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
1874 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
1876 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
1877 pcfgcache
->config_tables
[table_type
].num_table
=
1878 table_length_dwords
;
1882 "%s: Unknown data table %d, offset %ld\n",
1883 __func__
, table_type
,
1885 dd
->platform_config
.data
));
1886 goto bail
; /* We don't trust this file now */
1888 pcfgcache
->config_tables
[table_type
].table
= ptr
;
1890 /* metadata table */
1891 switch (table_type
) {
1892 case PLATFORM_CONFIG_SYSTEM_TABLE
:
1894 case PLATFORM_CONFIG_PORT_TABLE
:
1896 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
1898 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
1900 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
1902 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
1906 "%s: Unknown meta table %d, offset %ld\n",
1907 __func__
, table_type
,
1909 (u32
*)dd
->platform_config
.data
));
1910 goto bail
; /* We don't trust this file now */
1912 pcfgcache
->config_tables
[table_type
].table_metadata
=
1916 /* Calculate and check table crc */
1917 crc
= crc32_le(~(u32
)0, (unsigned char const *)ptr
,
1918 (table_length_dwords
* 4));
1921 /* Jump the table */
1922 ptr
+= table_length_dwords
;
1924 dd_dev_err(dd
, "%s: Failed CRC check at offset %ld\n",
1926 (u32
*)dd
->platform_config
.data
));
1929 /* Jump the CRC DWORD */
1933 pcfgcache
->cache_valid
= 1;
1936 memset(pcfgcache
, 0, sizeof(struct platform_config_cache
));
1940 static void get_integrated_platform_config_field(
1941 struct hfi1_devdata
*dd
,
1942 enum platform_config_table_type_encoding table_type
,
1943 int field_index
, u32
*data
)
1945 struct hfi1_pportdata
*ppd
= dd
->pport
;
1946 u8
*cache
= ppd
->qsfp_info
.cache
;
1949 switch (table_type
) {
1950 case PLATFORM_CONFIG_SYSTEM_TABLE
:
1951 if (field_index
== SYSTEM_TABLE_QSFP_POWER_CLASS_MAX
)
1952 *data
= ppd
->max_power_class
;
1953 else if (field_index
== SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G
)
1954 *data
= ppd
->default_atten
;
1956 case PLATFORM_CONFIG_PORT_TABLE
:
1957 if (field_index
== PORT_TABLE_PORT_TYPE
)
1958 *data
= ppd
->port_type
;
1959 else if (field_index
== PORT_TABLE_LOCAL_ATTEN_25G
)
1960 *data
= ppd
->local_atten
;
1961 else if (field_index
== PORT_TABLE_REMOTE_ATTEN_25G
)
1962 *data
= ppd
->remote_atten
;
1964 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
1965 if (field_index
== RX_PRESET_TABLE_QSFP_RX_CDR_APPLY
)
1966 *data
= (ppd
->rx_preset
& QSFP_RX_CDR_APPLY_SMASK
) >>
1967 QSFP_RX_CDR_APPLY_SHIFT
;
1968 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_EMP_APPLY
)
1969 *data
= (ppd
->rx_preset
& QSFP_RX_EMP_APPLY_SMASK
) >>
1970 QSFP_RX_EMP_APPLY_SHIFT
;
1971 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_AMP_APPLY
)
1972 *data
= (ppd
->rx_preset
& QSFP_RX_AMP_APPLY_SMASK
) >>
1973 QSFP_RX_AMP_APPLY_SHIFT
;
1974 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_CDR
)
1975 *data
= (ppd
->rx_preset
& QSFP_RX_CDR_SMASK
) >>
1977 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_EMP
)
1978 *data
= (ppd
->rx_preset
& QSFP_RX_EMP_SMASK
) >>
1980 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_AMP
)
1981 *data
= (ppd
->rx_preset
& QSFP_RX_AMP_SMASK
) >>
1984 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
1985 if (cache
[QSFP_EQ_INFO_OFFS
] & 0x4)
1986 tx_preset
= ppd
->tx_preset_eq
;
1988 tx_preset
= ppd
->tx_preset_noeq
;
1989 if (field_index
== TX_PRESET_TABLE_PRECUR
)
1990 *data
= (tx_preset
& TX_PRECUR_SMASK
) >>
1992 else if (field_index
== TX_PRESET_TABLE_ATTN
)
1993 *data
= (tx_preset
& TX_ATTN_SMASK
) >>
1995 else if (field_index
== TX_PRESET_TABLE_POSTCUR
)
1996 *data
= (tx_preset
& TX_POSTCUR_SMASK
) >>
1998 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_CDR_APPLY
)
1999 *data
= (tx_preset
& QSFP_TX_CDR_APPLY_SMASK
) >>
2000 QSFP_TX_CDR_APPLY_SHIFT
;
2001 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_EQ_APPLY
)
2002 *data
= (tx_preset
& QSFP_TX_EQ_APPLY_SMASK
) >>
2003 QSFP_TX_EQ_APPLY_SHIFT
;
2004 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_CDR
)
2005 *data
= (tx_preset
& QSFP_TX_CDR_SMASK
) >>
2007 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_EQ
)
2008 *data
= (tx_preset
& QSFP_TX_EQ_SMASK
) >>
2011 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
2012 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
2018 static int get_platform_fw_field_metadata(struct hfi1_devdata
*dd
, int table
,
2019 int field
, u32
*field_len_bits
,
2020 u32
*field_start_bits
)
2022 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
2023 u32
*src_ptr
= NULL
;
2025 if (!pcfgcache
->cache_valid
)
2029 case PLATFORM_CONFIG_SYSTEM_TABLE
:
2031 case PLATFORM_CONFIG_PORT_TABLE
:
2033 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
2035 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
2037 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
2039 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
2040 if (field
&& field
< platform_config_table_limits
[table
])
2042 pcfgcache
->config_tables
[table
].table_metadata
+ field
;
2045 dd_dev_info(dd
, "%s: Unknown table\n", __func__
);
2052 if (field_start_bits
)
2053 *field_start_bits
= *src_ptr
&
2054 ((1 << METADATA_TABLE_FIELD_START_LEN_BITS
) - 1);
2057 *field_len_bits
= (*src_ptr
>> METADATA_TABLE_FIELD_LEN_SHIFT
)
2058 & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS
) - 1);
2063 /* This is the central interface to getting data out of the platform config
2064 * file. It depends on parse_platform_config() having populated the
2065 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2066 * validate the sanity of the cache.
2068 * The non-obvious parameters:
2069 * @table_index: Acts as a look up key into which instance of the tables the
2070 * relevant field is fetched from.
2072 * This applies to the data tables that have multiple instances. The port table
2073 * is an exception to this rule as each HFI only has one port and thus the
2074 * relevant table can be distinguished by hfi_id.
2076 * @data: pointer to memory that will be populated with the field requested.
2077 * @len: length of memory pointed by @data in bytes.
2079 int get_platform_config_field(struct hfi1_devdata
*dd
,
2080 enum platform_config_table_type_encoding
2081 table_type
, int table_index
, int field_index
,
2084 int ret
= 0, wlen
= 0, seek
= 0;
2085 u32 field_len_bits
= 0, field_start_bits
= 0, *src_ptr
= NULL
;
2086 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
2087 struct hfi1_pportdata
*ppd
= dd
->pport
;
2090 memset(data
, 0, len
);
2094 if (ppd
->config_from_scratch
) {
2096 * Use saved configuration from ppd for integrated platforms
2098 get_integrated_platform_config_field(dd
, table_type
,
2103 ret
= get_platform_fw_field_metadata(dd
, table_type
, field_index
,
2109 /* Convert length to bits */
2112 /* Our metadata function checked cache_valid and field_index for us */
2113 switch (table_type
) {
2114 case PLATFORM_CONFIG_SYSTEM_TABLE
:
2115 src_ptr
= pcfgcache
->config_tables
[table_type
].table
;
2117 if (field_index
!= SYSTEM_TABLE_QSFP_POWER_CLASS_MAX
) {
2118 if (len
< field_len_bits
)
2121 seek
= field_start_bits
/ 8;
2122 wlen
= field_len_bits
/ 8;
2124 src_ptr
= (u32
*)((u8
*)src_ptr
+ seek
);
2127 * We expect the field to be byte aligned and whole byte
2128 * lengths if we are here
2130 memcpy(data
, src_ptr
, wlen
);
2134 case PLATFORM_CONFIG_PORT_TABLE
:
2135 /* Port table is 4 DWORDS */
2136 src_ptr
= dd
->hfi1_id
?
2137 pcfgcache
->config_tables
[table_type
].table
+ 4 :
2138 pcfgcache
->config_tables
[table_type
].table
;
2140 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
2142 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
2144 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
2146 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
2147 src_ptr
= pcfgcache
->config_tables
[table_type
].table
;
2150 pcfgcache
->config_tables
[table_type
].num_table
)
2151 src_ptr
+= table_index
;
2156 dd_dev_info(dd
, "%s: Unknown table\n", __func__
);
2160 if (!src_ptr
|| len
< field_len_bits
)
2163 src_ptr
+= (field_start_bits
/ 32);
2164 *data
= (*src_ptr
>> (field_start_bits
% 32)) &
2165 ((1 << field_len_bits
) - 1);
2171 * Download the firmware needed for the Gen3 PCIe SerDes. An update
2172 * to the SBus firmware is needed before updating the PCIe firmware.
2174 * Note: caller must be holding the SBus resource.
2176 int load_pcie_firmware(struct hfi1_devdata
*dd
)
2180 /* both firmware loads below use the SBus */
2181 set_sbus_fast_mode(dd
);
2184 turn_off_spicos(dd
, SPICO_SBUS
);
2186 ret
= load_sbus_firmware(dd
, &fw_sbus
);
2187 } while (retry_firmware(dd
, ret
));
2192 if (fw_pcie_serdes_load
) {
2193 dd_dev_info(dd
, "Setting PCIe SerDes broadcast\n");
2194 set_serdes_broadcast(dd
, all_pcie_serdes_broadcast
,
2195 pcie_serdes_broadcast
[dd
->hfi1_id
],
2196 pcie_serdes_addrs
[dd
->hfi1_id
],
2199 ret
= load_pcie_serdes_firmware(dd
, &fw_pcie
);
2200 } while (retry_firmware(dd
, ret
));
2206 clear_sbus_fast_mode(dd
);
2212 * Read the GUID from the hardware, store it in dd.
2214 void read_guid(struct hfi1_devdata
*dd
)
2216 /* Take the DC out of reset to get a valid GUID value */
2217 write_csr(dd
, CCE_DC_CTRL
, 0);
2218 (void)read_csr(dd
, CCE_DC_CTRL
);
2220 dd
->base_guid
= read_csr(dd
, DC_DC8051_CFG_LOCAL_GUID
);
2221 dd_dev_info(dd
, "GUID %llx",
2222 (unsigned long long)dd
->base_guid
);
2225 /* read and display firmware version info */
2226 static void dump_fw_version(struct hfi1_devdata
*dd
)
2228 u32 pcie_vers
[NUM_PCIE_SERDES
];
2229 u32 fabric_vers
[NUM_FABRIC_SERDES
];
2236 ret
= acquire_chip_resource(dd
, CR_SBUS
, SBUS_TIMEOUT
);
2238 dd_dev_err(dd
, "Unable to acquire SBus to read firmware versions\n");
2243 set_sbus_fast_mode(dd
);
2245 /* read version for SBus Master */
2246 sbus_request(dd
, SBUS_MASTER_BROADCAST
, 0x02, WRITE_SBUS_RECEIVER
, 0);
2247 sbus_request(dd
, SBUS_MASTER_BROADCAST
, 0x07, WRITE_SBUS_RECEIVER
, 0x1);
2248 /* wait for interrupt to be processed */
2249 usleep_range(10000, 11000);
2250 sbus_vers
= sbus_read(dd
, SBUS_MASTER_BROADCAST
, 0x08, 0x1);
2251 dd_dev_info(dd
, "SBus Master firmware version 0x%08x\n", sbus_vers
);
2253 /* read version for PCIe SerDes */
2256 for (i
= 0; i
< NUM_PCIE_SERDES
; i
++) {
2257 rcv_addr
= pcie_serdes_addrs
[dd
->hfi1_id
][i
];
2258 sbus_request(dd
, rcv_addr
, 0x03, WRITE_SBUS_RECEIVER
, 0);
2259 /* wait for interrupt to be processed */
2260 usleep_range(10000, 11000);
2261 pcie_vers
[i
] = sbus_read(dd
, rcv_addr
, 0x04, 0x0);
2262 if (i
> 0 && pcie_vers
[0] != pcie_vers
[i
])
2267 dd_dev_info(dd
, "PCIe SerDes firmware version 0x%x\n",
2270 dd_dev_warn(dd
, "PCIe SerDes do not have the same firmware version\n");
2271 for (i
= 0; i
< NUM_PCIE_SERDES
; i
++) {
2273 "PCIe SerDes lane %d firmware version 0x%x\n",
2278 /* read version for fabric SerDes */
2281 for (i
= 0; i
< NUM_FABRIC_SERDES
; i
++) {
2282 rcv_addr
= fabric_serdes_addrs
[dd
->hfi1_id
][i
];
2283 sbus_request(dd
, rcv_addr
, 0x03, WRITE_SBUS_RECEIVER
, 0);
2284 /* wait for interrupt to be processed */
2285 usleep_range(10000, 11000);
2286 fabric_vers
[i
] = sbus_read(dd
, rcv_addr
, 0x04, 0x0);
2287 if (i
> 0 && fabric_vers
[0] != fabric_vers
[i
])
2292 dd_dev_info(dd
, "Fabric SerDes firmware version 0x%x\n",
2295 dd_dev_warn(dd
, "Fabric SerDes do not have the same firmware version\n");
2296 for (i
= 0; i
< NUM_FABRIC_SERDES
; i
++) {
2298 "Fabric SerDes lane %d firmware version 0x%x\n",
2303 clear_sbus_fast_mode(dd
);
2304 release_chip_resource(dd
, CR_SBUS
);