2 * Copyright(c) 2015 - 2018 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
70 static uint sdma_descq_cnt
= SDMA_DESCQ_CNT
;
71 module_param(sdma_descq_cnt
, uint
, S_IRUGO
);
72 MODULE_PARM_DESC(sdma_descq_cnt
, "Number of SDMA descq entries");
74 static uint sdma_idle_cnt
= 250;
75 module_param(sdma_idle_cnt
, uint
, S_IRUGO
);
76 MODULE_PARM_DESC(sdma_idle_cnt
, "sdma interrupt idle delay (ns,default 250)");
79 module_param_named(num_sdma
, mod_num_sdma
, uint
, S_IRUGO
);
80 MODULE_PARM_DESC(num_sdma
, "Set max number SDMA engines to use");
82 static uint sdma_desct_intr
= SDMA_DESC_INTR
;
83 module_param_named(desct_intr
, sdma_desct_intr
, uint
, S_IRUGO
| S_IWUSR
);
84 MODULE_PARM_DESC(desct_intr
, "Number of SDMA descriptor before interrupt");
86 #define SDMA_WAIT_BATCH_SIZE 20
87 /* max wait time for a SDMA engine to indicate it has halted */
88 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
89 /* all SDMA engine errors that cause a halt */
91 #define SD(name) SEND_DMA_##name
92 #define ALL_SDMA_ENG_HALT_ERRS \
93 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
110 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
112 /* sdma_sendctrl operations */
113 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
114 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
115 #define SDMA_SENDCTRL_OP_HALT BIT(2)
116 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
118 /* handle long defines */
119 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
120 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
121 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
122 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
124 static const char * const sdma_state_names
[] = {
125 [sdma_state_s00_hw_down
] = "s00_HwDown",
126 [sdma_state_s10_hw_start_up_halt_wait
] = "s10_HwStartUpHaltWait",
127 [sdma_state_s15_hw_start_up_clean_wait
] = "s15_HwStartUpCleanWait",
128 [sdma_state_s20_idle
] = "s20_Idle",
129 [sdma_state_s30_sw_clean_up_wait
] = "s30_SwCleanUpWait",
130 [sdma_state_s40_hw_clean_up_wait
] = "s40_HwCleanUpWait",
131 [sdma_state_s50_hw_halt_wait
] = "s50_HwHaltWait",
132 [sdma_state_s60_idle_halt_wait
] = "s60_IdleHaltWait",
133 [sdma_state_s80_hw_freeze
] = "s80_HwFreeze",
134 [sdma_state_s82_freeze_sw_clean
] = "s82_FreezeSwClean",
135 [sdma_state_s99_running
] = "s99_Running",
138 #ifdef CONFIG_SDMA_VERBOSITY
139 static const char * const sdma_event_names
[] = {
140 [sdma_event_e00_go_hw_down
] = "e00_GoHwDown",
141 [sdma_event_e10_go_hw_start
] = "e10_GoHwStart",
142 [sdma_event_e15_hw_halt_done
] = "e15_HwHaltDone",
143 [sdma_event_e25_hw_clean_up_done
] = "e25_HwCleanUpDone",
144 [sdma_event_e30_go_running
] = "e30_GoRunning",
145 [sdma_event_e40_sw_cleaned
] = "e40_SwCleaned",
146 [sdma_event_e50_hw_cleaned
] = "e50_HwCleaned",
147 [sdma_event_e60_hw_halted
] = "e60_HwHalted",
148 [sdma_event_e70_go_idle
] = "e70_GoIdle",
149 [sdma_event_e80_hw_freeze
] = "e80_HwFreeze",
150 [sdma_event_e81_hw_frozen
] = "e81_HwFrozen",
151 [sdma_event_e82_hw_unfreeze
] = "e82_HwUnfreeze",
152 [sdma_event_e85_link_down
] = "e85_LinkDown",
153 [sdma_event_e90_sw_halted
] = "e90_SwHalted",
157 static const struct sdma_set_state_action sdma_action_table
[] = {
158 [sdma_state_s00_hw_down
] = {
159 .go_s99_running_tofalse
= 1,
165 [sdma_state_s10_hw_start_up_halt_wait
] = {
171 [sdma_state_s15_hw_start_up_clean_wait
] = {
177 [sdma_state_s20_idle
] = {
183 [sdma_state_s30_sw_clean_up_wait
] = {
189 [sdma_state_s40_hw_clean_up_wait
] = {
195 [sdma_state_s50_hw_halt_wait
] = {
201 [sdma_state_s60_idle_halt_wait
] = {
202 .go_s99_running_tofalse
= 1,
208 [sdma_state_s80_hw_freeze
] = {
214 [sdma_state_s82_freeze_sw_clean
] = {
220 [sdma_state_s99_running
] = {
225 .go_s99_running_totrue
= 1,
229 #define SDMA_TAIL_UPDATE_THRESH 0x1F
231 /* declare all statics here rather than keep sorting */
232 static void sdma_complete(struct kref
*);
233 static void sdma_finalput(struct sdma_state
*);
234 static void sdma_get(struct sdma_state
*);
235 static void sdma_hw_clean_up_task(unsigned long);
236 static void sdma_put(struct sdma_state
*);
237 static void sdma_set_state(struct sdma_engine
*, enum sdma_states
);
238 static void sdma_start_hw_clean_up(struct sdma_engine
*);
239 static void sdma_sw_clean_up_task(unsigned long);
240 static void sdma_sendctrl(struct sdma_engine
*, unsigned);
241 static void init_sdma_regs(struct sdma_engine
*, u32
, uint
);
242 static void sdma_process_event(
243 struct sdma_engine
*sde
,
244 enum sdma_events event
);
245 static void __sdma_process_event(
246 struct sdma_engine
*sde
,
247 enum sdma_events event
);
248 static void dump_sdma_state(struct sdma_engine
*sde
);
249 static void sdma_make_progress(struct sdma_engine
*sde
, u64 status
);
250 static void sdma_desc_avail(struct sdma_engine
*sde
, uint avail
);
251 static void sdma_flush_descq(struct sdma_engine
*sde
);
254 * sdma_state_name() - return state string from enum
257 static const char *sdma_state_name(enum sdma_states state
)
259 return sdma_state_names
[state
];
262 static void sdma_get(struct sdma_state
*ss
)
267 static void sdma_complete(struct kref
*kref
)
269 struct sdma_state
*ss
=
270 container_of(kref
, struct sdma_state
, kref
);
275 static void sdma_put(struct sdma_state
*ss
)
277 kref_put(&ss
->kref
, sdma_complete
);
280 static void sdma_finalput(struct sdma_state
*ss
)
283 wait_for_completion(&ss
->comp
);
286 static inline void write_sde_csr(
287 struct sdma_engine
*sde
,
291 write_kctxt_csr(sde
->dd
, sde
->this_idx
, offset0
, value
);
294 static inline u64
read_sde_csr(
295 struct sdma_engine
*sde
,
298 return read_kctxt_csr(sde
->dd
, sde
->this_idx
, offset0
);
302 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
303 * sdma engine 'sde' to drop to 0.
305 static void sdma_wait_for_packet_egress(struct sdma_engine
*sde
,
308 u64 off
= 8 * sde
->this_idx
;
309 struct hfi1_devdata
*dd
= sde
->dd
;
316 reg
= read_csr(dd
, off
+ SEND_EGRESS_SEND_DMA_STATUS
);
318 reg
&= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
;
319 reg
>>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
;
322 /* counter is reest if accupancy count changes */
326 /* timed out - bounce the link */
327 dd_dev_err(dd
, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
328 __func__
, sde
->this_idx
, (u32
)reg
);
329 queue_work(dd
->pport
->link_wq
,
330 &dd
->pport
->link_bounce_work
);
338 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
339 * and pause for credit return.
341 void sdma_wait(struct hfi1_devdata
*dd
)
345 for (i
= 0; i
< dd
->num_sdma
; i
++) {
346 struct sdma_engine
*sde
= &dd
->per_sdma
[i
];
348 sdma_wait_for_packet_egress(sde
, 0);
352 static inline void sdma_set_desc_cnt(struct sdma_engine
*sde
, unsigned cnt
)
356 if (!(sde
->dd
->flags
& HFI1_HAS_SDMA_TIMEOUT
))
359 reg
&= SD(DESC_CNT_CNT_MASK
);
360 reg
<<= SD(DESC_CNT_CNT_SHIFT
);
361 write_sde_csr(sde
, SD(DESC_CNT
), reg
);
364 static inline void complete_tx(struct sdma_engine
*sde
,
365 struct sdma_txreq
*tx
,
368 /* protect against complete modifying */
369 struct iowait
*wait
= tx
->wait
;
370 callback_t complete
= tx
->complete
;
372 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
373 trace_hfi1_sdma_out_sn(sde
, tx
->sn
);
374 if (WARN_ON_ONCE(sde
->head_sn
!= tx
->sn
))
375 dd_dev_err(sde
->dd
, "expected %llu got %llu\n",
376 sde
->head_sn
, tx
->sn
);
379 __sdma_txclean(sde
->dd
, tx
);
381 (*complete
)(tx
, res
);
382 if (iowait_sdma_dec(wait
))
383 iowait_drain_wakeup(wait
);
387 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
389 * Depending on timing there can be txreqs in two places:
390 * - in the descq ring
391 * - in the flush list
393 * To avoid ordering issues the descq ring needs to be flushed
394 * first followed by the flush list.
396 * This routine is called from two places
397 * - From a work queue item
398 * - Directly from the state machine just before setting the
401 * Must be called with head_lock held
404 static void sdma_flush(struct sdma_engine
*sde
)
406 struct sdma_txreq
*txp
, *txp_next
;
407 LIST_HEAD(flushlist
);
411 /* flush from head to tail */
412 sdma_flush_descq(sde
);
413 spin_lock_irqsave(&sde
->flushlist_lock
, flags
);
414 /* copy flush list */
415 list_splice_init(&sde
->flushlist
, &flushlist
);
416 spin_unlock_irqrestore(&sde
->flushlist_lock
, flags
);
417 /* flush from flush list */
418 list_for_each_entry_safe(txp
, txp_next
, &flushlist
, list
)
419 complete_tx(sde
, txp
, SDMA_TXREQ_S_ABORTED
);
420 /* wakeup QPs orphaned on the dmawait list */
422 struct iowait
*w
, *nw
;
424 seq
= read_seqbegin(&sde
->waitlock
);
425 if (!list_empty(&sde
->dmawait
)) {
426 write_seqlock(&sde
->waitlock
);
427 list_for_each_entry_safe(w
, nw
, &sde
->dmawait
, list
) {
429 w
->wakeup(w
, SDMA_AVAIL_REASON
);
430 list_del_init(&w
->list
);
433 write_sequnlock(&sde
->waitlock
);
435 } while (read_seqretry(&sde
->waitlock
, seq
));
439 * Fields a work request for flushing the descq ring
442 * If the engine has been brought to running during
443 * the scheduling delay, the flush is ignored, assuming
444 * that the process of bringing the engine to running
445 * would have done this flush prior to going to running.
448 static void sdma_field_flush(struct work_struct
*work
)
451 struct sdma_engine
*sde
=
452 container_of(work
, struct sdma_engine
, flush_worker
);
454 write_seqlock_irqsave(&sde
->head_lock
, flags
);
455 if (!__sdma_running(sde
))
457 write_sequnlock_irqrestore(&sde
->head_lock
, flags
);
460 static void sdma_err_halt_wait(struct work_struct
*work
)
462 struct sdma_engine
*sde
= container_of(work
, struct sdma_engine
,
465 unsigned long timeout
;
467 timeout
= jiffies
+ msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT
);
469 statuscsr
= read_sde_csr(sde
, SD(STATUS
));
470 statuscsr
&= SD(STATUS_ENG_HALTED_SMASK
);
473 if (time_after(jiffies
, timeout
)) {
475 "SDMA engine %d - timeout waiting for engine to halt\n",
478 * Continue anyway. This could happen if there was
479 * an uncorrectable error in the wrong spot.
483 usleep_range(80, 120);
486 sdma_process_event(sde
, sdma_event_e15_hw_halt_done
);
489 static void sdma_err_progress_check_schedule(struct sdma_engine
*sde
)
491 if (!is_bx(sde
->dd
) && HFI1_CAP_IS_KSET(SDMA_AHG
)) {
493 struct hfi1_devdata
*dd
= sde
->dd
;
495 for (index
= 0; index
< dd
->num_sdma
; index
++) {
496 struct sdma_engine
*curr_sdma
= &dd
->per_sdma
[index
];
498 if (curr_sdma
!= sde
)
499 curr_sdma
->progress_check_head
=
500 curr_sdma
->descq_head
;
503 "SDMA engine %d - check scheduled\n",
505 mod_timer(&sde
->err_progress_check_timer
, jiffies
+ 10);
509 static void sdma_err_progress_check(struct timer_list
*t
)
512 struct sdma_engine
*sde
= from_timer(sde
, t
, err_progress_check_timer
);
514 dd_dev_err(sde
->dd
, "SDE progress check event\n");
515 for (index
= 0; index
< sde
->dd
->num_sdma
; index
++) {
516 struct sdma_engine
*curr_sde
= &sde
->dd
->per_sdma
[index
];
519 /* check progress on each engine except the current one */
523 * We must lock interrupts when acquiring sde->lock,
524 * to avoid a deadlock if interrupt triggers and spins on
525 * the same lock on same CPU
527 spin_lock_irqsave(&curr_sde
->tail_lock
, flags
);
528 write_seqlock(&curr_sde
->head_lock
);
530 /* skip non-running queues */
531 if (curr_sde
->state
.current_state
!= sdma_state_s99_running
) {
532 write_sequnlock(&curr_sde
->head_lock
);
533 spin_unlock_irqrestore(&curr_sde
->tail_lock
, flags
);
537 if ((curr_sde
->descq_head
!= curr_sde
->descq_tail
) &&
538 (curr_sde
->descq_head
==
539 curr_sde
->progress_check_head
))
540 __sdma_process_event(curr_sde
,
541 sdma_event_e90_sw_halted
);
542 write_sequnlock(&curr_sde
->head_lock
);
543 spin_unlock_irqrestore(&curr_sde
->tail_lock
, flags
);
545 schedule_work(&sde
->err_halt_worker
);
548 static void sdma_hw_clean_up_task(unsigned long opaque
)
550 struct sdma_engine
*sde
= (struct sdma_engine
*)opaque
;
554 #ifdef CONFIG_SDMA_VERBOSITY
555 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
556 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
,
559 statuscsr
= read_sde_csr(sde
, SD(STATUS
));
560 statuscsr
&= SD(STATUS_ENG_CLEANED_UP_SMASK
);
566 sdma_process_event(sde
, sdma_event_e25_hw_clean_up_done
);
569 static inline struct sdma_txreq
*get_txhead(struct sdma_engine
*sde
)
571 return sde
->tx_ring
[sde
->tx_head
& sde
->sdma_mask
];
575 * flush ring for recovery
577 static void sdma_flush_descq(struct sdma_engine
*sde
)
581 struct sdma_txreq
*txp
= get_txhead(sde
);
583 /* The reason for some of the complexity of this code is that
584 * not all descriptors have corresponding txps. So, we have to
585 * be able to skip over descs until we wander into the range of
586 * the next txp on the list.
588 head
= sde
->descq_head
& sde
->sdma_mask
;
589 tail
= sde
->descq_tail
& sde
->sdma_mask
;
590 while (head
!= tail
) {
591 /* advance head, wrap if needed */
592 head
= ++sde
->descq_head
& sde
->sdma_mask
;
593 /* if now past this txp's descs, do the callback */
594 if (txp
&& txp
->next_descq_idx
== head
) {
595 /* remove from list */
596 sde
->tx_ring
[sde
->tx_head
++ & sde
->sdma_mask
] = NULL
;
597 complete_tx(sde
, txp
, SDMA_TXREQ_S_ABORTED
);
598 trace_hfi1_sdma_progress(sde
, head
, tail
, txp
);
599 txp
= get_txhead(sde
);
604 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
607 static void sdma_sw_clean_up_task(unsigned long opaque
)
609 struct sdma_engine
*sde
= (struct sdma_engine
*)opaque
;
612 spin_lock_irqsave(&sde
->tail_lock
, flags
);
613 write_seqlock(&sde
->head_lock
);
616 * At this point, the following should always be true:
617 * - We are halted, so no more descriptors are getting retired.
618 * - We are not running, so no one is submitting new work.
619 * - Only we can send the e40_sw_cleaned, so we can't start
620 * running again until we say so. So, the active list and
621 * descq are ours to play with.
625 * In the error clean up sequence, software clean must be called
626 * before the hardware clean so we can use the hardware head in
627 * the progress routine. A hardware clean or SPC unfreeze will
628 * reset the hardware head.
630 * Process all retired requests. The progress routine will use the
631 * latest physical hardware head - we are not running so speed does
634 sdma_make_progress(sde
, 0);
639 * Reset our notion of head and tail.
640 * Note that the HW registers have been reset via an earlier
645 sde
->desc_avail
= sdma_descq_freecnt(sde
);
648 __sdma_process_event(sde
, sdma_event_e40_sw_cleaned
);
650 write_sequnlock(&sde
->head_lock
);
651 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
654 static void sdma_sw_tear_down(struct sdma_engine
*sde
)
656 struct sdma_state
*ss
= &sde
->state
;
658 /* Releasing this reference means the state machine has stopped. */
661 /* stop waiting for all unfreeze events to complete */
662 atomic_set(&sde
->dd
->sdma_unfreeze_count
, -1);
663 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
666 static void sdma_start_hw_clean_up(struct sdma_engine
*sde
)
668 tasklet_hi_schedule(&sde
->sdma_hw_clean_up_task
);
671 static void sdma_set_state(struct sdma_engine
*sde
,
672 enum sdma_states next_state
)
674 struct sdma_state
*ss
= &sde
->state
;
675 const struct sdma_set_state_action
*action
= sdma_action_table
;
678 trace_hfi1_sdma_state(
680 sdma_state_names
[ss
->current_state
],
681 sdma_state_names
[next_state
]);
683 /* debugging bookkeeping */
684 ss
->previous_state
= ss
->current_state
;
685 ss
->previous_op
= ss
->current_op
;
686 ss
->current_state
= next_state
;
688 if (ss
->previous_state
!= sdma_state_s99_running
&&
689 next_state
== sdma_state_s99_running
)
692 if (action
[next_state
].op_enable
)
693 op
|= SDMA_SENDCTRL_OP_ENABLE
;
695 if (action
[next_state
].op_intenable
)
696 op
|= SDMA_SENDCTRL_OP_INTENABLE
;
698 if (action
[next_state
].op_halt
)
699 op
|= SDMA_SENDCTRL_OP_HALT
;
701 if (action
[next_state
].op_cleanup
)
702 op
|= SDMA_SENDCTRL_OP_CLEANUP
;
704 if (action
[next_state
].go_s99_running_tofalse
)
705 ss
->go_s99_running
= 0;
707 if (action
[next_state
].go_s99_running_totrue
)
708 ss
->go_s99_running
= 1;
711 sdma_sendctrl(sde
, ss
->current_op
);
715 * sdma_get_descq_cnt() - called when device probed
717 * Return a validated descq count.
719 * This is currently only used in the verbs initialization to build the tx
722 * This will probably be deleted in favor of a more scalable approach to
726 u16
sdma_get_descq_cnt(void)
728 u16 count
= sdma_descq_cnt
;
731 return SDMA_DESCQ_CNT
;
732 /* count must be a power of 2 greater than 64 and less than
733 * 32768. Otherwise return default.
735 if (!is_power_of_2(count
))
736 return SDMA_DESCQ_CNT
;
737 if (count
< 64 || count
> 32768)
738 return SDMA_DESCQ_CNT
;
743 * sdma_engine_get_vl() - return vl for a given sdma engine
746 * This function returns the vl mapped to a given engine, or an error if
747 * the mapping can't be found. The mapping fields are protected by RCU.
749 int sdma_engine_get_vl(struct sdma_engine
*sde
)
751 struct hfi1_devdata
*dd
= sde
->dd
;
752 struct sdma_vl_map
*m
;
755 if (sde
->this_idx
>= TXE_NUM_SDMA_ENGINES
)
759 m
= rcu_dereference(dd
->sdma_map
);
764 vl
= m
->engine_to_vl
[sde
->this_idx
];
771 * sdma_select_engine_vl() - select sdma engine
773 * @selector: a spreading factor
777 * This function returns an engine based on the selector and a vl. The
778 * mapping fields are protected by RCU.
780 struct sdma_engine
*sdma_select_engine_vl(
781 struct hfi1_devdata
*dd
,
785 struct sdma_vl_map
*m
;
786 struct sdma_map_elem
*e
;
787 struct sdma_engine
*rval
;
789 /* NOTE This should only happen if SC->VL changed after the initial
790 * checks on the QP/AH
791 * Default will return engine 0 below
799 m
= rcu_dereference(dd
->sdma_map
);
802 return &dd
->per_sdma
[0];
804 e
= m
->map
[vl
& m
->mask
];
805 rval
= e
->sde
[selector
& e
->mask
];
809 rval
= !rval
? &dd
->per_sdma
[0] : rval
;
810 trace_hfi1_sdma_engine_select(dd
, selector
, vl
, rval
->this_idx
);
815 * sdma_select_engine_sc() - select sdma engine
817 * @selector: a spreading factor
821 * This function returns an engine based on the selector and an sc.
823 struct sdma_engine
*sdma_select_engine_sc(
824 struct hfi1_devdata
*dd
,
828 u8 vl
= sc_to_vlt(dd
, sc5
);
830 return sdma_select_engine_vl(dd
, selector
, vl
);
833 struct sdma_rht_map_elem
{
836 struct sdma_engine
*sde
[0];
839 struct sdma_rht_node
{
840 unsigned long cpu_id
;
841 struct sdma_rht_map_elem
*map
[HFI1_MAX_VLS_SUPPORTED
];
842 struct rhash_head node
;
845 #define NR_CPUS_HINT 192
847 static const struct rhashtable_params sdma_rht_params
= {
848 .nelem_hint
= NR_CPUS_HINT
,
849 .head_offset
= offsetof(struct sdma_rht_node
, node
),
850 .key_offset
= offsetof(struct sdma_rht_node
, cpu_id
),
851 .key_len
= sizeof_field(struct sdma_rht_node
, cpu_id
),
854 .automatic_shrinking
= true,
858 * sdma_select_user_engine() - select sdma engine based on user setup
860 * @selector: a spreading factor
863 * This function returns an sdma engine for a user sdma request.
864 * User defined sdma engine affinity setting is honored when applicable,
865 * otherwise system default sdma engine mapping is used. To ensure correct
866 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
868 struct sdma_engine
*sdma_select_user_engine(struct hfi1_devdata
*dd
,
871 struct sdma_rht_node
*rht_node
;
872 struct sdma_engine
*sde
= NULL
;
873 unsigned long cpu_id
;
876 * To ensure that always the same sdma engine(s) will be
877 * selected make sure the process is pinned to this CPU only.
879 if (current
->nr_cpus_allowed
!= 1)
882 cpu_id
= smp_processor_id();
884 rht_node
= rhashtable_lookup(dd
->sdma_rht
, &cpu_id
,
887 if (rht_node
&& rht_node
->map
[vl
]) {
888 struct sdma_rht_map_elem
*map
= rht_node
->map
[vl
];
890 sde
= map
->sde
[selector
& map
->mask
];
898 return sdma_select_engine_vl(dd
, selector
, vl
);
901 static void sdma_populate_sde_map(struct sdma_rht_map_elem
*map
)
905 for (i
= 0; i
< roundup_pow_of_two(map
->ctr
? : 1) - map
->ctr
; i
++)
906 map
->sde
[map
->ctr
+ i
] = map
->sde
[i
];
909 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem
*map
,
910 struct sdma_engine
*sde
)
914 /* only need to check the first ctr entries for a match */
915 for (i
= 0; i
< map
->ctr
; i
++) {
916 if (map
->sde
[i
] == sde
) {
917 memmove(&map
->sde
[i
], &map
->sde
[i
+ 1],
918 (map
->ctr
- i
- 1) * sizeof(map
->sde
[0]));
920 pow
= roundup_pow_of_two(map
->ctr
? : 1);
922 sdma_populate_sde_map(map
);
929 * Prevents concurrent reads and writes of the sdma engine cpu_mask
931 static DEFINE_MUTEX(process_to_sde_mutex
);
933 ssize_t
sdma_set_cpu_to_sde_map(struct sdma_engine
*sde
, const char *buf
,
936 struct hfi1_devdata
*dd
= sde
->dd
;
937 cpumask_var_t mask
, new_mask
;
940 struct sdma_rht_node
*rht_node
;
942 vl
= sdma_engine_get_vl(sde
);
943 if (unlikely(vl
< 0 || vl
>= ARRAY_SIZE(rht_node
->map
)))
946 ret
= zalloc_cpumask_var(&mask
, GFP_KERNEL
);
950 ret
= zalloc_cpumask_var(&new_mask
, GFP_KERNEL
);
952 free_cpumask_var(mask
);
955 ret
= cpulist_parse(buf
, mask
);
959 if (!cpumask_subset(mask
, cpu_online_mask
)) {
960 dd_dev_warn(sde
->dd
, "Invalid CPU mask\n");
965 sz
= sizeof(struct sdma_rht_map_elem
) +
966 (TXE_NUM_SDMA_ENGINES
* sizeof(struct sdma_engine
*));
968 mutex_lock(&process_to_sde_mutex
);
970 for_each_cpu(cpu
, mask
) {
971 /* Check if we have this already mapped */
972 if (cpumask_test_cpu(cpu
, &sde
->cpu_mask
)) {
973 cpumask_set_cpu(cpu
, new_mask
);
977 rht_node
= rhashtable_lookup_fast(dd
->sdma_rht
, &cpu
,
980 rht_node
= kzalloc(sizeof(*rht_node
), GFP_KERNEL
);
986 rht_node
->map
[vl
] = kzalloc(sz
, GFP_KERNEL
);
987 if (!rht_node
->map
[vl
]) {
992 rht_node
->cpu_id
= cpu
;
993 rht_node
->map
[vl
]->mask
= 0;
994 rht_node
->map
[vl
]->ctr
= 1;
995 rht_node
->map
[vl
]->sde
[0] = sde
;
997 ret
= rhashtable_insert_fast(dd
->sdma_rht
,
1001 kfree(rht_node
->map
[vl
]);
1003 dd_dev_err(sde
->dd
, "Failed to set process to sde affinity for cpu %lu\n",
1011 /* Add new user mappings */
1012 if (!rht_node
->map
[vl
])
1013 rht_node
->map
[vl
] = kzalloc(sz
, GFP_KERNEL
);
1015 if (!rht_node
->map
[vl
]) {
1020 rht_node
->map
[vl
]->ctr
++;
1021 ctr
= rht_node
->map
[vl
]->ctr
;
1022 rht_node
->map
[vl
]->sde
[ctr
- 1] = sde
;
1023 pow
= roundup_pow_of_two(ctr
);
1024 rht_node
->map
[vl
]->mask
= pow
- 1;
1026 /* Populate the sde map table */
1027 sdma_populate_sde_map(rht_node
->map
[vl
]);
1029 cpumask_set_cpu(cpu
, new_mask
);
1032 /* Clean up old mappings */
1033 for_each_cpu(cpu
, cpu_online_mask
) {
1034 struct sdma_rht_node
*rht_node
;
1036 /* Don't cleanup sdes that are set in the new mask */
1037 if (cpumask_test_cpu(cpu
, mask
))
1040 rht_node
= rhashtable_lookup_fast(dd
->sdma_rht
, &cpu
,
1046 /* Remove mappings for old sde */
1047 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1048 if (rht_node
->map
[i
])
1049 sdma_cleanup_sde_map(rht_node
->map
[i
],
1052 /* Free empty hash table entries */
1053 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++) {
1054 if (!rht_node
->map
[i
])
1057 if (rht_node
->map
[i
]->ctr
) {
1064 ret
= rhashtable_remove_fast(dd
->sdma_rht
,
1069 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1070 kfree(rht_node
->map
[i
]);
1077 cpumask_copy(&sde
->cpu_mask
, new_mask
);
1079 mutex_unlock(&process_to_sde_mutex
);
1081 free_cpumask_var(mask
);
1082 free_cpumask_var(new_mask
);
1083 return ret
? : strnlen(buf
, PAGE_SIZE
);
1086 ssize_t
sdma_get_cpu_to_sde_map(struct sdma_engine
*sde
, char *buf
)
1088 mutex_lock(&process_to_sde_mutex
);
1089 if (cpumask_empty(&sde
->cpu_mask
))
1090 snprintf(buf
, PAGE_SIZE
, "%s\n", "empty");
1092 cpumap_print_to_pagebuf(true, buf
, &sde
->cpu_mask
);
1093 mutex_unlock(&process_to_sde_mutex
);
1094 return strnlen(buf
, PAGE_SIZE
);
1097 static void sdma_rht_free(void *ptr
, void *arg
)
1099 struct sdma_rht_node
*rht_node
= ptr
;
1102 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++)
1103 kfree(rht_node
->map
[i
]);
1109 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1114 * This routine dumps the process to sde mappings per cpu
1116 void sdma_seqfile_dump_cpu_list(struct seq_file
*s
,
1117 struct hfi1_devdata
*dd
,
1118 unsigned long cpuid
)
1120 struct sdma_rht_node
*rht_node
;
1123 rht_node
= rhashtable_lookup_fast(dd
->sdma_rht
, &cpuid
,
1128 seq_printf(s
, "cpu%3lu: ", cpuid
);
1129 for (i
= 0; i
< HFI1_MAX_VLS_SUPPORTED
; i
++) {
1130 if (!rht_node
->map
[i
] || !rht_node
->map
[i
]->ctr
)
1133 seq_printf(s
, " vl%d: [", i
);
1135 for (j
= 0; j
< rht_node
->map
[i
]->ctr
; j
++) {
1136 if (!rht_node
->map
[i
]->sde
[j
])
1142 seq_printf(s
, " sdma%2d",
1143 rht_node
->map
[i
]->sde
[j
]->this_idx
);
1152 * Free the indicated map struct
1154 static void sdma_map_free(struct sdma_vl_map
*m
)
1158 for (i
= 0; m
&& i
< m
->actual_vls
; i
++)
1164 * Handle RCU callback
1166 static void sdma_map_rcu_callback(struct rcu_head
*list
)
1168 struct sdma_vl_map
*m
= container_of(list
, struct sdma_vl_map
, list
);
1174 * sdma_map_init - called when # vls change
1176 * @port: port number
1177 * @num_vls: number of vls
1178 * @vl_engines: per vl engine mapping (optional)
1180 * This routine changes the mapping based on the number of vls.
1182 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1183 * implies auto computing the loading and giving each VLs a uniform
1184 * distribution of engines per VL.
1186 * The auto algorithm computes the sde_per_vl and the number of extra
1187 * engines. Any extra engines are added from the last VL on down.
1189 * rcu locking is used here to control access to the mapping fields.
1191 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1192 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1193 * up to the next highest power of 2 and the first entry is reused
1194 * in a round robin fashion.
1196 * If an error occurs the map change is not done and the mapping is
1200 int sdma_map_init(struct hfi1_devdata
*dd
, u8 port
, u8 num_vls
, u8
*vl_engines
)
1203 int extra
, sde_per_vl
;
1205 u8 lvl_engines
[OPA_MAX_VLS
];
1206 struct sdma_vl_map
*oldmap
, *newmap
;
1208 if (!(dd
->flags
& HFI1_HAS_SEND_DMA
))
1212 /* truncate divide */
1213 sde_per_vl
= dd
->num_sdma
/ num_vls
;
1215 extra
= dd
->num_sdma
% num_vls
;
1216 vl_engines
= lvl_engines
;
1217 /* add extras from last vl down */
1218 for (i
= num_vls
- 1; i
>= 0; i
--, extra
--)
1219 vl_engines
[i
] = sde_per_vl
+ (extra
> 0 ? 1 : 0);
1223 sizeof(struct sdma_vl_map
) +
1224 roundup_pow_of_two(num_vls
) *
1225 sizeof(struct sdma_map_elem
*),
1229 newmap
->actual_vls
= num_vls
;
1230 newmap
->vls
= roundup_pow_of_two(num_vls
);
1231 newmap
->mask
= (1 << ilog2(newmap
->vls
)) - 1;
1232 /* initialize back-map */
1233 for (i
= 0; i
< TXE_NUM_SDMA_ENGINES
; i
++)
1234 newmap
->engine_to_vl
[i
] = -1;
1235 for (i
= 0; i
< newmap
->vls
; i
++) {
1236 /* save for wrap around */
1237 int first_engine
= engine
;
1239 if (i
< newmap
->actual_vls
) {
1240 int sz
= roundup_pow_of_two(vl_engines
[i
]);
1242 /* only allocate once */
1243 newmap
->map
[i
] = kzalloc(
1244 sizeof(struct sdma_map_elem
) +
1245 sz
* sizeof(struct sdma_engine
*),
1247 if (!newmap
->map
[i
])
1249 newmap
->map
[i
]->mask
= (1 << ilog2(sz
)) - 1;
1250 /* assign engines */
1251 for (j
= 0; j
< sz
; j
++) {
1252 newmap
->map
[i
]->sde
[j
] =
1253 &dd
->per_sdma
[engine
];
1254 if (++engine
>= first_engine
+ vl_engines
[i
])
1255 /* wrap back to first engine */
1256 engine
= first_engine
;
1258 /* assign back-map */
1259 for (j
= 0; j
< vl_engines
[i
]; j
++)
1260 newmap
->engine_to_vl
[first_engine
+ j
] = i
;
1262 /* just re-use entry without allocating */
1263 newmap
->map
[i
] = newmap
->map
[i
% num_vls
];
1265 engine
= first_engine
+ vl_engines
[i
];
1267 /* newmap in hand, save old map */
1268 spin_lock_irq(&dd
->sde_map_lock
);
1269 oldmap
= rcu_dereference_protected(dd
->sdma_map
,
1270 lockdep_is_held(&dd
->sde_map_lock
));
1272 /* publish newmap */
1273 rcu_assign_pointer(dd
->sdma_map
, newmap
);
1275 spin_unlock_irq(&dd
->sde_map_lock
);
1276 /* success, free any old map after grace period */
1278 call_rcu(&oldmap
->list
, sdma_map_rcu_callback
);
1281 /* free any partial allocation */
1282 sdma_map_free(newmap
);
1287 * sdma_clean() Clean up allocated memory
1288 * @dd: struct hfi1_devdata
1289 * @num_engines: num sdma engines
1291 * This routine can be called regardless of the success of
1294 void sdma_clean(struct hfi1_devdata
*dd
, size_t num_engines
)
1297 struct sdma_engine
*sde
;
1299 if (dd
->sdma_pad_dma
) {
1300 dma_free_coherent(&dd
->pcidev
->dev
, SDMA_PAD
,
1301 (void *)dd
->sdma_pad_dma
,
1303 dd
->sdma_pad_dma
= NULL
;
1304 dd
->sdma_pad_phys
= 0;
1306 if (dd
->sdma_heads_dma
) {
1307 dma_free_coherent(&dd
->pcidev
->dev
, dd
->sdma_heads_size
,
1308 (void *)dd
->sdma_heads_dma
,
1309 dd
->sdma_heads_phys
);
1310 dd
->sdma_heads_dma
= NULL
;
1311 dd
->sdma_heads_phys
= 0;
1313 for (i
= 0; dd
->per_sdma
&& i
< num_engines
; ++i
) {
1314 sde
= &dd
->per_sdma
[i
];
1316 sde
->head_dma
= NULL
;
1322 sde
->descq_cnt
* sizeof(u64
[2]),
1327 sde
->descq_phys
= 0;
1329 kvfree(sde
->tx_ring
);
1330 sde
->tx_ring
= NULL
;
1332 spin_lock_irq(&dd
->sde_map_lock
);
1333 sdma_map_free(rcu_access_pointer(dd
->sdma_map
));
1334 RCU_INIT_POINTER(dd
->sdma_map
, NULL
);
1335 spin_unlock_irq(&dd
->sde_map_lock
);
1337 kfree(dd
->per_sdma
);
1338 dd
->per_sdma
= NULL
;
1341 rhashtable_free_and_destroy(dd
->sdma_rht
, sdma_rht_free
, NULL
);
1342 kfree(dd
->sdma_rht
);
1343 dd
->sdma_rht
= NULL
;
1348 * sdma_init() - called when device probed
1350 * @port: port number (currently only zero)
1352 * Initializes each sde and its csrs.
1353 * Interrupts are not required to be enabled.
1356 * 0 - success, -errno on failure
1358 int sdma_init(struct hfi1_devdata
*dd
, u8 port
)
1361 struct sdma_engine
*sde
;
1362 struct rhashtable
*tmp_sdma_rht
;
1365 struct hfi1_pportdata
*ppd
= dd
->pport
+ port
;
1366 u32 per_sdma_credits
;
1367 uint idle_cnt
= sdma_idle_cnt
;
1368 size_t num_engines
= chip_sdma_engines(dd
);
1371 if (!HFI1_CAP_IS_KSET(SDMA
)) {
1372 HFI1_CAP_CLEAR(SDMA_AHG
);
1376 /* can't exceed chip support */
1377 mod_num_sdma
<= chip_sdma_engines(dd
) &&
1378 /* count must be >= vls */
1379 mod_num_sdma
>= num_vls
)
1380 num_engines
= mod_num_sdma
;
1382 dd_dev_info(dd
, "SDMA mod_num_sdma: %u\n", mod_num_sdma
);
1383 dd_dev_info(dd
, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd
));
1384 dd_dev_info(dd
, "SDMA chip_sdma_mem_size: %u\n",
1385 chip_sdma_mem_size(dd
));
1388 chip_sdma_mem_size(dd
) / (num_engines
* SDMA_BLOCK_SIZE
);
1390 /* set up freeze waitqueue */
1391 init_waitqueue_head(&dd
->sdma_unfreeze_wq
);
1392 atomic_set(&dd
->sdma_unfreeze_count
, 0);
1394 descq_cnt
= sdma_get_descq_cnt();
1395 dd_dev_info(dd
, "SDMA engines %zu descq_cnt %u\n",
1396 num_engines
, descq_cnt
);
1398 /* alloc memory for array of send engines */
1399 dd
->per_sdma
= kcalloc_node(num_engines
, sizeof(*dd
->per_sdma
),
1400 GFP_KERNEL
, dd
->node
);
1404 idle_cnt
= ns_to_cclock(dd
, idle_cnt
);
1407 SDMA_DESC1_HEAD_TO_HOST_FLAG
;
1410 SDMA_DESC1_INT_REQ_FLAG
;
1412 if (!sdma_desct_intr
)
1413 sdma_desct_intr
= SDMA_DESC_INTR
;
1415 /* Allocate memory for SendDMA descriptor FIFOs */
1416 for (this_idx
= 0; this_idx
< num_engines
; ++this_idx
) {
1417 sde
= &dd
->per_sdma
[this_idx
];
1420 sde
->this_idx
= this_idx
;
1421 sde
->descq_cnt
= descq_cnt
;
1422 sde
->desc_avail
= sdma_descq_freecnt(sde
);
1423 sde
->sdma_shift
= ilog2(descq_cnt
);
1424 sde
->sdma_mask
= (1 << sde
->sdma_shift
) - 1;
1426 /* Create a mask specifically for each interrupt source */
1427 sde
->int_mask
= (u64
)1 << (0 * TXE_NUM_SDMA_ENGINES
+
1429 sde
->progress_mask
= (u64
)1 << (1 * TXE_NUM_SDMA_ENGINES
+
1431 sde
->idle_mask
= (u64
)1 << (2 * TXE_NUM_SDMA_ENGINES
+
1433 /* Create a combined mask to cover all 3 interrupt sources */
1434 sde
->imask
= sde
->int_mask
| sde
->progress_mask
|
1437 spin_lock_init(&sde
->tail_lock
);
1438 seqlock_init(&sde
->head_lock
);
1439 spin_lock_init(&sde
->senddmactrl_lock
);
1440 spin_lock_init(&sde
->flushlist_lock
);
1441 seqlock_init(&sde
->waitlock
);
1442 /* insure there is always a zero bit */
1443 sde
->ahg_bits
= 0xfffffffe00000000ULL
;
1445 sdma_set_state(sde
, sdma_state_s00_hw_down
);
1447 /* set up reference counting */
1448 kref_init(&sde
->state
.kref
);
1449 init_completion(&sde
->state
.comp
);
1451 INIT_LIST_HEAD(&sde
->flushlist
);
1452 INIT_LIST_HEAD(&sde
->dmawait
);
1455 get_kctxt_csr_addr(dd
, this_idx
, SD(TAIL
));
1457 tasklet_init(&sde
->sdma_hw_clean_up_task
, sdma_hw_clean_up_task
,
1458 (unsigned long)sde
);
1460 tasklet_init(&sde
->sdma_sw_clean_up_task
, sdma_sw_clean_up_task
,
1461 (unsigned long)sde
);
1462 INIT_WORK(&sde
->err_halt_worker
, sdma_err_halt_wait
);
1463 INIT_WORK(&sde
->flush_worker
, sdma_field_flush
);
1465 sde
->progress_check_head
= 0;
1467 timer_setup(&sde
->err_progress_check_timer
,
1468 sdma_err_progress_check
, 0);
1470 sde
->descq
= dma_alloc_coherent(&dd
->pcidev
->dev
,
1471 descq_cnt
* sizeof(u64
[2]),
1472 &sde
->descq_phys
, GFP_KERNEL
);
1476 kvzalloc_node(array_size(descq_cnt
,
1477 sizeof(struct sdma_txreq
*)),
1478 GFP_KERNEL
, dd
->node
);
1483 dd
->sdma_heads_size
= L1_CACHE_BYTES
* num_engines
;
1484 /* Allocate memory for DMA of head registers to memory */
1485 dd
->sdma_heads_dma
= dma_alloc_coherent(&dd
->pcidev
->dev
,
1486 dd
->sdma_heads_size
,
1487 &dd
->sdma_heads_phys
,
1489 if (!dd
->sdma_heads_dma
) {
1490 dd_dev_err(dd
, "failed to allocate SendDMA head memory\n");
1494 /* Allocate memory for pad */
1495 dd
->sdma_pad_dma
= dma_alloc_coherent(&dd
->pcidev
->dev
, SDMA_PAD
,
1496 &dd
->sdma_pad_phys
, GFP_KERNEL
);
1497 if (!dd
->sdma_pad_dma
) {
1498 dd_dev_err(dd
, "failed to allocate SendDMA pad memory\n");
1502 /* assign each engine to different cacheline and init registers */
1503 curr_head
= (void *)dd
->sdma_heads_dma
;
1504 for (this_idx
= 0; this_idx
< num_engines
; ++this_idx
) {
1505 unsigned long phys_offset
;
1507 sde
= &dd
->per_sdma
[this_idx
];
1509 sde
->head_dma
= curr_head
;
1510 curr_head
+= L1_CACHE_BYTES
;
1511 phys_offset
= (unsigned long)sde
->head_dma
-
1512 (unsigned long)dd
->sdma_heads_dma
;
1513 sde
->head_phys
= dd
->sdma_heads_phys
+ phys_offset
;
1514 init_sdma_regs(sde
, per_sdma_credits
, idle_cnt
);
1516 dd
->flags
|= HFI1_HAS_SEND_DMA
;
1517 dd
->flags
|= idle_cnt
? HFI1_HAS_SDMA_TIMEOUT
: 0;
1518 dd
->num_sdma
= num_engines
;
1519 ret
= sdma_map_init(dd
, port
, ppd
->vls_operational
, NULL
);
1523 tmp_sdma_rht
= kzalloc(sizeof(*tmp_sdma_rht
), GFP_KERNEL
);
1524 if (!tmp_sdma_rht
) {
1529 ret
= rhashtable_init(tmp_sdma_rht
, &sdma_rht_params
);
1531 kfree(tmp_sdma_rht
);
1535 dd
->sdma_rht
= tmp_sdma_rht
;
1537 dd_dev_info(dd
, "SDMA num_sdma: %u\n", dd
->num_sdma
);
1541 sdma_clean(dd
, num_engines
);
1546 * sdma_all_running() - called when the link goes up
1549 * This routine moves all engines to the running state.
1551 void sdma_all_running(struct hfi1_devdata
*dd
)
1553 struct sdma_engine
*sde
;
1556 /* move all engines to running */
1557 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1558 sde
= &dd
->per_sdma
[i
];
1559 sdma_process_event(sde
, sdma_event_e30_go_running
);
1564 * sdma_all_idle() - called when the link goes down
1567 * This routine moves all engines to the idle state.
1569 void sdma_all_idle(struct hfi1_devdata
*dd
)
1571 struct sdma_engine
*sde
;
1574 /* idle all engines */
1575 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1576 sde
= &dd
->per_sdma
[i
];
1577 sdma_process_event(sde
, sdma_event_e70_go_idle
);
1582 * sdma_start() - called to kick off state processing for all engines
1585 * This routine is for kicking off the state processing for all required
1586 * sdma engines. Interrupts need to be working at this point.
1589 void sdma_start(struct hfi1_devdata
*dd
)
1592 struct sdma_engine
*sde
;
1594 /* kick off the engines state processing */
1595 for (i
= 0; i
< dd
->num_sdma
; ++i
) {
1596 sde
= &dd
->per_sdma
[i
];
1597 sdma_process_event(sde
, sdma_event_e10_go_hw_start
);
1602 * sdma_exit() - used when module is removed
1605 void sdma_exit(struct hfi1_devdata
*dd
)
1608 struct sdma_engine
*sde
;
1610 for (this_idx
= 0; dd
->per_sdma
&& this_idx
< dd
->num_sdma
;
1612 sde
= &dd
->per_sdma
[this_idx
];
1613 if (!list_empty(&sde
->dmawait
))
1614 dd_dev_err(dd
, "sde %u: dmawait list not empty!\n",
1616 sdma_process_event(sde
, sdma_event_e00_go_hw_down
);
1618 del_timer_sync(&sde
->err_progress_check_timer
);
1621 * This waits for the state machine to exit so it is not
1622 * necessary to kill the sdma_sw_clean_up_task to make sure
1623 * it is not running.
1625 sdma_finalput(&sde
->state
);
1630 * unmap the indicated descriptor
1632 static inline void sdma_unmap_desc(
1633 struct hfi1_devdata
*dd
,
1634 struct sdma_desc
*descp
)
1636 switch (sdma_mapping_type(descp
)) {
1637 case SDMA_MAP_SINGLE
:
1640 sdma_mapping_addr(descp
),
1641 sdma_mapping_len(descp
),
1647 sdma_mapping_addr(descp
),
1648 sdma_mapping_len(descp
),
1655 * return the mode as indicated by the first
1656 * descriptor in the tx.
1658 static inline u8
ahg_mode(struct sdma_txreq
*tx
)
1660 return (tx
->descp
[0].qw
[1] & SDMA_DESC1_HEADER_MODE_SMASK
)
1661 >> SDMA_DESC1_HEADER_MODE_SHIFT
;
1665 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1666 * @dd: hfi1_devdata for unmapping
1667 * @tx: tx request to clean
1669 * This is used in the progress routine to clean the tx or
1670 * by the ULP to toss an in-process tx build.
1672 * The code can be called multiple times without issue.
1675 void __sdma_txclean(
1676 struct hfi1_devdata
*dd
,
1677 struct sdma_txreq
*tx
)
1682 u8 skip
= 0, mode
= ahg_mode(tx
);
1685 sdma_unmap_desc(dd
, &tx
->descp
[0]);
1686 /* determine number of AHG descriptors to skip */
1687 if (mode
> SDMA_AHG_APPLY_UPDATE1
)
1689 for (i
= 1 + skip
; i
< tx
->num_desc
; i
++)
1690 sdma_unmap_desc(dd
, &tx
->descp
[i
]);
1693 kfree(tx
->coalesce_buf
);
1694 tx
->coalesce_buf
= NULL
;
1695 /* kmalloc'ed descp */
1696 if (unlikely(tx
->desc_limit
> ARRAY_SIZE(tx
->descs
))) {
1697 tx
->desc_limit
= ARRAY_SIZE(tx
->descs
);
1702 static inline u16
sdma_gethead(struct sdma_engine
*sde
)
1704 struct hfi1_devdata
*dd
= sde
->dd
;
1708 #ifdef CONFIG_SDMA_VERBOSITY
1709 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
1710 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
1714 use_dmahead
= HFI1_CAP_IS_KSET(USE_SDMA_HEAD
) && __sdma_running(sde
) &&
1715 (dd
->flags
& HFI1_HAS_SDMA_TIMEOUT
);
1716 hwhead
= use_dmahead
?
1717 (u16
)le64_to_cpu(*sde
->head_dma
) :
1718 (u16
)read_sde_csr(sde
, SD(HEAD
));
1720 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK
))) {
1726 swhead
= sde
->descq_head
& sde
->sdma_mask
;
1727 /* this code is really bad for cache line trading */
1728 swtail
= READ_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
1729 cnt
= sde
->descq_cnt
;
1731 if (swhead
< swtail
)
1733 sane
= (hwhead
>= swhead
) & (hwhead
<= swtail
);
1734 else if (swhead
> swtail
)
1735 /* wrapped around */
1736 sane
= ((hwhead
>= swhead
) && (hwhead
< cnt
)) ||
1740 sane
= (hwhead
== swhead
);
1742 if (unlikely(!sane
)) {
1743 dd_dev_err(dd
, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1745 use_dmahead
? "dma" : "kreg",
1746 hwhead
, swhead
, swtail
, cnt
);
1748 /* try one more time, using csr */
1752 /* proceed as if no progress */
1760 * This is called when there are send DMA descriptors that might be
1763 * This is called with head_lock held.
1765 static void sdma_desc_avail(struct sdma_engine
*sde
, uint avail
)
1767 struct iowait
*wait
, *nw
, *twait
;
1768 struct iowait
*waits
[SDMA_WAIT_BATCH_SIZE
];
1769 uint i
, n
= 0, seq
, tidx
= 0;
1771 #ifdef CONFIG_SDMA_VERBOSITY
1772 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n", sde
->this_idx
,
1773 slashstrip(__FILE__
), __LINE__
, __func__
);
1774 dd_dev_err(sde
->dd
, "avail: %u\n", avail
);
1778 seq
= read_seqbegin(&sde
->waitlock
);
1779 if (!list_empty(&sde
->dmawait
)) {
1780 /* at least one item */
1781 write_seqlock(&sde
->waitlock
);
1782 /* Harvest waiters wanting DMA descriptors */
1783 list_for_each_entry_safe(
1792 if (n
== ARRAY_SIZE(waits
))
1794 iowait_init_priority(wait
);
1795 num_desc
= iowait_get_all_desc(wait
);
1796 if (num_desc
> avail
)
1799 /* Find the top-priority wait memeber */
1801 twait
= waits
[tidx
];
1803 iowait_priority_update_top(wait
,
1808 list_del_init(&wait
->list
);
1811 write_sequnlock(&sde
->waitlock
);
1814 } while (read_seqretry(&sde
->waitlock
, seq
));
1816 /* Schedule the top-priority entry first */
1818 waits
[tidx
]->wakeup(waits
[tidx
], SDMA_AVAIL_REASON
);
1820 for (i
= 0; i
< n
; i
++)
1822 waits
[i
]->wakeup(waits
[i
], SDMA_AVAIL_REASON
);
1825 /* head_lock must be held */
1826 static void sdma_make_progress(struct sdma_engine
*sde
, u64 status
)
1828 struct sdma_txreq
*txp
= NULL
;
1831 int idle_check_done
= 0;
1833 hwhead
= sdma_gethead(sde
);
1835 /* The reason for some of the complexity of this code is that
1836 * not all descriptors have corresponding txps. So, we have to
1837 * be able to skip over descs until we wander into the range of
1838 * the next txp on the list.
1842 txp
= get_txhead(sde
);
1843 swhead
= sde
->descq_head
& sde
->sdma_mask
;
1844 trace_hfi1_sdma_progress(sde
, hwhead
, swhead
, txp
);
1845 while (swhead
!= hwhead
) {
1846 /* advance head, wrap if needed */
1847 swhead
= ++sde
->descq_head
& sde
->sdma_mask
;
1849 /* if now past this txp's descs, do the callback */
1850 if (txp
&& txp
->next_descq_idx
== swhead
) {
1851 /* remove from list */
1852 sde
->tx_ring
[sde
->tx_head
++ & sde
->sdma_mask
] = NULL
;
1853 complete_tx(sde
, txp
, SDMA_TXREQ_S_OK
);
1854 /* see if there is another txp */
1855 txp
= get_txhead(sde
);
1857 trace_hfi1_sdma_progress(sde
, hwhead
, swhead
, txp
);
1862 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1863 * to updates to the the dma_head location in host memory. The head
1864 * value read might not be fully up to date. If there are pending
1865 * descriptors and the SDMA idle interrupt fired then read from the
1866 * CSR SDMA head instead to get the latest value from the hardware.
1867 * The hardware SDMA head should be read at most once in this invocation
1868 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1870 if ((status
& sde
->idle_mask
) && !idle_check_done
) {
1873 swtail
= READ_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
1874 if (swtail
!= hwhead
) {
1875 hwhead
= (u16
)read_sde_csr(sde
, SD(HEAD
));
1876 idle_check_done
= 1;
1881 sde
->last_status
= status
;
1883 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
1887 * sdma_engine_interrupt() - interrupt handler for engine
1889 * @status: sdma interrupt reason
1891 * Status is a mask of the 3 possible interrupts for this engine. It will
1892 * contain bits _only_ for this SDMA engine. It will contain at least one
1893 * bit, it may contain more.
1895 void sdma_engine_interrupt(struct sdma_engine
*sde
, u64 status
)
1897 trace_hfi1_sdma_engine_interrupt(sde
, status
);
1898 write_seqlock(&sde
->head_lock
);
1899 sdma_set_desc_cnt(sde
, sdma_desct_intr
);
1900 if (status
& sde
->idle_mask
)
1901 sde
->idle_int_cnt
++;
1902 else if (status
& sde
->progress_mask
)
1903 sde
->progress_int_cnt
++;
1904 else if (status
& sde
->int_mask
)
1905 sde
->sdma_int_cnt
++;
1906 sdma_make_progress(sde
, status
);
1907 write_sequnlock(&sde
->head_lock
);
1911 * sdma_engine_error() - error handler for engine
1913 * @status: sdma interrupt reason
1915 void sdma_engine_error(struct sdma_engine
*sde
, u64 status
)
1917 unsigned long flags
;
1919 #ifdef CONFIG_SDMA_VERBOSITY
1920 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1922 (unsigned long long)status
,
1923 sdma_state_names
[sde
->state
.current_state
]);
1925 spin_lock_irqsave(&sde
->tail_lock
, flags
);
1926 write_seqlock(&sde
->head_lock
);
1927 if (status
& ALL_SDMA_ENG_HALT_ERRS
)
1928 __sdma_process_event(sde
, sdma_event_e60_hw_halted
);
1929 if (status
& ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK
)) {
1931 "SDMA (%u) engine error: 0x%llx state %s\n",
1933 (unsigned long long)status
,
1934 sdma_state_names
[sde
->state
.current_state
]);
1935 dump_sdma_state(sde
);
1937 write_sequnlock(&sde
->head_lock
);
1938 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
1941 static void sdma_sendctrl(struct sdma_engine
*sde
, unsigned op
)
1943 u64 set_senddmactrl
= 0;
1944 u64 clr_senddmactrl
= 0;
1945 unsigned long flags
;
1947 #ifdef CONFIG_SDMA_VERBOSITY
1948 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1950 (op
& SDMA_SENDCTRL_OP_ENABLE
) ? 1 : 0,
1951 (op
& SDMA_SENDCTRL_OP_INTENABLE
) ? 1 : 0,
1952 (op
& SDMA_SENDCTRL_OP_HALT
) ? 1 : 0,
1953 (op
& SDMA_SENDCTRL_OP_CLEANUP
) ? 1 : 0);
1956 if (op
& SDMA_SENDCTRL_OP_ENABLE
)
1957 set_senddmactrl
|= SD(CTRL_SDMA_ENABLE_SMASK
);
1959 clr_senddmactrl
|= SD(CTRL_SDMA_ENABLE_SMASK
);
1961 if (op
& SDMA_SENDCTRL_OP_INTENABLE
)
1962 set_senddmactrl
|= SD(CTRL_SDMA_INT_ENABLE_SMASK
);
1964 clr_senddmactrl
|= SD(CTRL_SDMA_INT_ENABLE_SMASK
);
1966 if (op
& SDMA_SENDCTRL_OP_HALT
)
1967 set_senddmactrl
|= SD(CTRL_SDMA_HALT_SMASK
);
1969 clr_senddmactrl
|= SD(CTRL_SDMA_HALT_SMASK
);
1971 spin_lock_irqsave(&sde
->senddmactrl_lock
, flags
);
1973 sde
->p_senddmactrl
|= set_senddmactrl
;
1974 sde
->p_senddmactrl
&= ~clr_senddmactrl
;
1976 if (op
& SDMA_SENDCTRL_OP_CLEANUP
)
1977 write_sde_csr(sde
, SD(CTRL
),
1978 sde
->p_senddmactrl
|
1979 SD(CTRL_SDMA_CLEANUP_SMASK
));
1981 write_sde_csr(sde
, SD(CTRL
), sde
->p_senddmactrl
);
1983 spin_unlock_irqrestore(&sde
->senddmactrl_lock
, flags
);
1985 #ifdef CONFIG_SDMA_VERBOSITY
1986 sdma_dumpstate(sde
);
1990 static void sdma_setlengen(struct sdma_engine
*sde
)
1992 #ifdef CONFIG_SDMA_VERBOSITY
1993 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
1994 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
1998 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1999 * count to enable generation checking and load the internal
2000 * generation counter.
2002 write_sde_csr(sde
, SD(LEN_GEN
),
2003 (sde
->descq_cnt
/ 64) << SD(LEN_GEN_LENGTH_SHIFT
));
2004 write_sde_csr(sde
, SD(LEN_GEN
),
2005 ((sde
->descq_cnt
/ 64) << SD(LEN_GEN_LENGTH_SHIFT
)) |
2006 (4ULL << SD(LEN_GEN_GENERATION_SHIFT
)));
2009 static inline void sdma_update_tail(struct sdma_engine
*sde
, u16 tail
)
2011 /* Commit writes to memory and advance the tail on the chip */
2012 smp_wmb(); /* see get_txhead() */
2013 writeq(tail
, sde
->tail_csr
);
2017 * This is called when changing to state s10_hw_start_up_halt_wait as
2018 * a result of send buffer errors or send DMA descriptor errors.
2020 static void sdma_hw_start_up(struct sdma_engine
*sde
)
2024 #ifdef CONFIG_SDMA_VERBOSITY
2025 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
2026 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
2029 sdma_setlengen(sde
);
2030 sdma_update_tail(sde
, 0); /* Set SendDmaTail */
2033 reg
= SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK
) <<
2034 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT
);
2035 write_sde_csr(sde
, SD(ENG_ERR_CLEAR
), reg
);
2039 * set_sdma_integrity
2041 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2043 static void set_sdma_integrity(struct sdma_engine
*sde
)
2045 struct hfi1_devdata
*dd
= sde
->dd
;
2047 write_sde_csr(sde
, SD(CHECK_ENABLE
),
2048 hfi1_pkt_base_sdma_integrity(dd
));
2051 static void init_sdma_regs(
2052 struct sdma_engine
*sde
,
2057 #ifdef CONFIG_SDMA_VERBOSITY
2058 struct hfi1_devdata
*dd
= sde
->dd
;
2060 dd_dev_err(dd
, "CONFIG SDMA(%u) %s:%d %s()\n",
2061 sde
->this_idx
, slashstrip(__FILE__
), __LINE__
, __func__
);
2064 write_sde_csr(sde
, SD(BASE_ADDR
), sde
->descq_phys
);
2065 sdma_setlengen(sde
);
2066 sdma_update_tail(sde
, 0); /* Set SendDmaTail */
2067 write_sde_csr(sde
, SD(RELOAD_CNT
), idle_cnt
);
2068 write_sde_csr(sde
, SD(DESC_CNT
), 0);
2069 write_sde_csr(sde
, SD(HEAD_ADDR
), sde
->head_phys
);
2070 write_sde_csr(sde
, SD(MEMORY
),
2071 ((u64
)credits
<< SD(MEMORY_SDMA_MEMORY_CNT_SHIFT
)) |
2072 ((u64
)(credits
* sde
->this_idx
) <<
2073 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT
)));
2074 write_sde_csr(sde
, SD(ENG_ERR_MASK
), ~0ull);
2075 set_sdma_integrity(sde
);
2076 opmask
= OPCODE_CHECK_MASK_DISABLED
;
2077 opval
= OPCODE_CHECK_VAL_DISABLED
;
2078 write_sde_csr(sde
, SD(CHECK_OPCODE
),
2079 (opmask
<< SEND_CTXT_CHECK_OPCODE_MASK_SHIFT
) |
2080 (opval
<< SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT
));
2083 #ifdef CONFIG_SDMA_VERBOSITY
2085 #define sdma_dumpstate_helper0(reg) do { \
2086 csr = read_csr(sde->dd, reg); \
2087 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2090 #define sdma_dumpstate_helper(reg) do { \
2091 csr = read_sde_csr(sde, reg); \
2092 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2093 #reg, sde->this_idx, csr); \
2096 #define sdma_dumpstate_helper2(reg) do { \
2097 csr = read_csr(sde->dd, reg + (8 * i)); \
2098 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2102 void sdma_dumpstate(struct sdma_engine
*sde
)
2107 sdma_dumpstate_helper(SD(CTRL
));
2108 sdma_dumpstate_helper(SD(STATUS
));
2109 sdma_dumpstate_helper0(SD(ERR_STATUS
));
2110 sdma_dumpstate_helper0(SD(ERR_MASK
));
2111 sdma_dumpstate_helper(SD(ENG_ERR_STATUS
));
2112 sdma_dumpstate_helper(SD(ENG_ERR_MASK
));
2114 for (i
= 0; i
< CCE_NUM_INT_CSRS
; ++i
) {
2115 sdma_dumpstate_helper2(CCE_INT_STATUS
);
2116 sdma_dumpstate_helper2(CCE_INT_MASK
);
2117 sdma_dumpstate_helper2(CCE_INT_BLOCKED
);
2120 sdma_dumpstate_helper(SD(TAIL
));
2121 sdma_dumpstate_helper(SD(HEAD
));
2122 sdma_dumpstate_helper(SD(PRIORITY_THLD
));
2123 sdma_dumpstate_helper(SD(IDLE_CNT
));
2124 sdma_dumpstate_helper(SD(RELOAD_CNT
));
2125 sdma_dumpstate_helper(SD(DESC_CNT
));
2126 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT
));
2127 sdma_dumpstate_helper(SD(MEMORY
));
2128 sdma_dumpstate_helper0(SD(ENGINES
));
2129 sdma_dumpstate_helper0(SD(MEM_SIZE
));
2130 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2131 sdma_dumpstate_helper(SD(BASE_ADDR
));
2132 sdma_dumpstate_helper(SD(LEN_GEN
));
2133 sdma_dumpstate_helper(SD(HEAD_ADDR
));
2134 sdma_dumpstate_helper(SD(CHECK_ENABLE
));
2135 sdma_dumpstate_helper(SD(CHECK_VL
));
2136 sdma_dumpstate_helper(SD(CHECK_JOB_KEY
));
2137 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY
));
2138 sdma_dumpstate_helper(SD(CHECK_SLID
));
2139 sdma_dumpstate_helper(SD(CHECK_OPCODE
));
2143 static void dump_sdma_state(struct sdma_engine
*sde
)
2145 struct hw_sdma_desc
*descqp
;
2150 u16 head
, tail
, cnt
;
2152 head
= sde
->descq_head
& sde
->sdma_mask
;
2153 tail
= sde
->descq_tail
& sde
->sdma_mask
;
2154 cnt
= sdma_descq_freecnt(sde
);
2157 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2158 sde
->this_idx
, head
, tail
, cnt
,
2159 !list_empty(&sde
->flushlist
));
2161 /* print info for each entry in the descriptor queue */
2162 while (head
!= tail
) {
2163 char flags
[6] = { 'x', 'x', 'x', 'x', 0 };
2165 descqp
= &sde
->descq
[head
];
2166 desc
[0] = le64_to_cpu(descqp
->qw
[0]);
2167 desc
[1] = le64_to_cpu(descqp
->qw
[1]);
2168 flags
[0] = (desc
[1] & SDMA_DESC1_INT_REQ_FLAG
) ? 'I' : '-';
2169 flags
[1] = (desc
[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG
) ?
2171 flags
[2] = (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
) ? 'F' : '-';
2172 flags
[3] = (desc
[0] & SDMA_DESC0_LAST_DESC_FLAG
) ? 'L' : '-';
2173 addr
= (desc
[0] >> SDMA_DESC0_PHY_ADDR_SHIFT
)
2174 & SDMA_DESC0_PHY_ADDR_MASK
;
2175 gen
= (desc
[1] >> SDMA_DESC1_GENERATION_SHIFT
)
2176 & SDMA_DESC1_GENERATION_MASK
;
2177 len
= (desc
[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT
)
2178 & SDMA_DESC0_BYTE_COUNT_MASK
;
2180 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2181 head
, flags
, addr
, gen
, len
);
2183 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2185 if (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
)
2187 "\taidx: %u amode: %u alen: %u\n",
2189 SDMA_DESC1_HEADER_INDEX_SMASK
) >>
2190 SDMA_DESC1_HEADER_INDEX_SHIFT
),
2192 SDMA_DESC1_HEADER_MODE_SMASK
) >>
2193 SDMA_DESC1_HEADER_MODE_SHIFT
),
2195 SDMA_DESC1_HEADER_DWS_SMASK
) >>
2196 SDMA_DESC1_HEADER_DWS_SHIFT
));
2198 head
&= sde
->sdma_mask
;
2203 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2205 * sdma_seqfile_dump_sde() - debugfs dump of sde
2207 * @sde: send dma engine to dump
2209 * This routine dumps the sde to the indicated seq file.
2211 void sdma_seqfile_dump_sde(struct seq_file
*s
, struct sdma_engine
*sde
)
2214 struct hw_sdma_desc
*descqp
;
2220 head
= sde
->descq_head
& sde
->sdma_mask
;
2221 tail
= READ_ONCE(sde
->descq_tail
) & sde
->sdma_mask
;
2222 seq_printf(s
, SDE_FMT
, sde
->this_idx
,
2224 sdma_state_name(sde
->state
.current_state
),
2225 (unsigned long long)read_sde_csr(sde
, SD(CTRL
)),
2226 (unsigned long long)read_sde_csr(sde
, SD(STATUS
)),
2227 (unsigned long long)read_sde_csr(sde
, SD(ENG_ERR_STATUS
)),
2228 (unsigned long long)read_sde_csr(sde
, SD(TAIL
)), tail
,
2229 (unsigned long long)read_sde_csr(sde
, SD(HEAD
)), head
,
2230 (unsigned long long)le64_to_cpu(*sde
->head_dma
),
2231 (unsigned long long)read_sde_csr(sde
, SD(MEMORY
)),
2232 (unsigned long long)read_sde_csr(sde
, SD(LEN_GEN
)),
2233 (unsigned long long)read_sde_csr(sde
, SD(RELOAD_CNT
)),
2234 (unsigned long long)sde
->last_status
,
2235 (unsigned long long)sde
->ahg_bits
,
2240 !list_empty(&sde
->flushlist
),
2241 sde
->descq_full_count
,
2242 (unsigned long long)read_sde_csr(sde
, SEND_DMA_CHECK_SLID
));
2244 /* print info for each entry in the descriptor queue */
2245 while (head
!= tail
) {
2246 char flags
[6] = { 'x', 'x', 'x', 'x', 0 };
2248 descqp
= &sde
->descq
[head
];
2249 desc
[0] = le64_to_cpu(descqp
->qw
[0]);
2250 desc
[1] = le64_to_cpu(descqp
->qw
[1]);
2251 flags
[0] = (desc
[1] & SDMA_DESC1_INT_REQ_FLAG
) ? 'I' : '-';
2252 flags
[1] = (desc
[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG
) ?
2254 flags
[2] = (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
) ? 'F' : '-';
2255 flags
[3] = (desc
[0] & SDMA_DESC0_LAST_DESC_FLAG
) ? 'L' : '-';
2256 addr
= (desc
[0] >> SDMA_DESC0_PHY_ADDR_SHIFT
)
2257 & SDMA_DESC0_PHY_ADDR_MASK
;
2258 gen
= (desc
[1] >> SDMA_DESC1_GENERATION_SHIFT
)
2259 & SDMA_DESC1_GENERATION_MASK
;
2260 len
= (desc
[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT
)
2261 & SDMA_DESC0_BYTE_COUNT_MASK
;
2263 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2264 head
, flags
, addr
, gen
, len
);
2265 if (desc
[0] & SDMA_DESC0_FIRST_DESC_FLAG
)
2266 seq_printf(s
, "\t\tahgidx: %u ahgmode: %u\n",
2268 SDMA_DESC1_HEADER_INDEX_SMASK
) >>
2269 SDMA_DESC1_HEADER_INDEX_SHIFT
),
2271 SDMA_DESC1_HEADER_MODE_SMASK
) >>
2272 SDMA_DESC1_HEADER_MODE_SHIFT
));
2273 head
= (head
+ 1) & sde
->sdma_mask
;
2278 * add the generation number into
2279 * the qw1 and return
2281 static inline u64
add_gen(struct sdma_engine
*sde
, u64 qw1
)
2283 u8 generation
= (sde
->descq_tail
>> sde
->sdma_shift
) & 3;
2285 qw1
&= ~SDMA_DESC1_GENERATION_SMASK
;
2286 qw1
|= ((u64
)generation
& SDMA_DESC1_GENERATION_MASK
)
2287 << SDMA_DESC1_GENERATION_SHIFT
;
2292 * This routine submits the indicated tx
2294 * Space has already been guaranteed and
2295 * tail side of ring is locked.
2297 * The hardware tail update is done
2298 * in the caller and that is facilitated
2299 * by returning the new tail.
2301 * There is special case logic for ahg
2302 * to not add the generation number for
2303 * up to 2 descriptors that follow the
2307 static inline u16
submit_tx(struct sdma_engine
*sde
, struct sdma_txreq
*tx
)
2311 struct sdma_desc
*descp
= tx
->descp
;
2312 u8 skip
= 0, mode
= ahg_mode(tx
);
2314 tail
= sde
->descq_tail
& sde
->sdma_mask
;
2315 sde
->descq
[tail
].qw
[0] = cpu_to_le64(descp
->qw
[0]);
2316 sde
->descq
[tail
].qw
[1] = cpu_to_le64(add_gen(sde
, descp
->qw
[1]));
2317 trace_hfi1_sdma_descriptor(sde
, descp
->qw
[0], descp
->qw
[1],
2318 tail
, &sde
->descq
[tail
]);
2319 tail
= ++sde
->descq_tail
& sde
->sdma_mask
;
2321 if (mode
> SDMA_AHG_APPLY_UPDATE1
)
2323 for (i
= 1; i
< tx
->num_desc
; i
++, descp
++) {
2326 sde
->descq
[tail
].qw
[0] = cpu_to_le64(descp
->qw
[0]);
2328 /* edits don't have generation */
2332 /* replace generation with real one for non-edits */
2333 qw1
= add_gen(sde
, descp
->qw
[1]);
2335 sde
->descq
[tail
].qw
[1] = cpu_to_le64(qw1
);
2336 trace_hfi1_sdma_descriptor(sde
, descp
->qw
[0], qw1
,
2337 tail
, &sde
->descq
[tail
]);
2338 tail
= ++sde
->descq_tail
& sde
->sdma_mask
;
2340 tx
->next_descq_idx
= tail
;
2341 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2342 tx
->sn
= sde
->tail_sn
++;
2343 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2344 WARN_ON_ONCE(sde
->tx_ring
[sde
->tx_tail
& sde
->sdma_mask
]);
2346 sde
->tx_ring
[sde
->tx_tail
++ & sde
->sdma_mask
] = tx
;
2347 sde
->desc_avail
-= tx
->num_desc
;
2352 * Check for progress
2354 static int sdma_check_progress(
2355 struct sdma_engine
*sde
,
2356 struct iowait_work
*wait
,
2357 struct sdma_txreq
*tx
,
2362 sde
->desc_avail
= sdma_descq_freecnt(sde
);
2363 if (tx
->num_desc
<= sde
->desc_avail
)
2365 /* pulse the head_lock */
2366 if (wait
&& iowait_ioww_to_iow(wait
)->sleep
) {
2369 seq
= raw_seqcount_begin(
2370 (const seqcount_t
*)&sde
->head_lock
.seqcount
);
2371 ret
= wait
->iow
->sleep(sde
, wait
, tx
, seq
, pkts_sent
);
2373 sde
->desc_avail
= sdma_descq_freecnt(sde
);
2381 * sdma_send_txreq() - submit a tx req to ring
2382 * @sde: sdma engine to use
2383 * @wait: SE wait structure to use when full (may be NULL)
2384 * @tx: sdma_txreq to submit
2385 * @pkts_sent: has any packet been sent yet?
2387 * The call submits the tx into the ring. If a iowait structure is non-NULL
2388 * the packet will be queued to the list in wait.
2391 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2392 * ring (wait == NULL)
2393 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2395 int sdma_send_txreq(struct sdma_engine
*sde
,
2396 struct iowait_work
*wait
,
2397 struct sdma_txreq
*tx
,
2402 unsigned long flags
;
2404 /* user should have supplied entire packet */
2405 if (unlikely(tx
->tlen
))
2407 tx
->wait
= iowait_ioww_to_iow(wait
);
2408 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2410 if (unlikely(!__sdma_running(sde
)))
2412 if (unlikely(tx
->num_desc
> sde
->desc_avail
))
2414 tail
= submit_tx(sde
, tx
);
2416 iowait_sdma_inc(iowait_ioww_to_iow(wait
));
2417 sdma_update_tail(sde
, tail
);
2419 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2423 iowait_sdma_inc(iowait_ioww_to_iow(wait
));
2424 tx
->next_descq_idx
= 0;
2425 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2426 tx
->sn
= sde
->tail_sn
++;
2427 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2429 spin_lock(&sde
->flushlist_lock
);
2430 list_add_tail(&tx
->list
, &sde
->flushlist
);
2431 spin_unlock(&sde
->flushlist_lock
);
2432 iowait_inc_wait_count(wait
, tx
->num_desc
);
2433 queue_work_on(sde
->cpu
, system_highpri_wq
, &sde
->flush_worker
);
2437 ret
= sdma_check_progress(sde
, wait
, tx
, pkts_sent
);
2438 if (ret
== -EAGAIN
) {
2442 sde
->descq_full_count
++;
2447 * sdma_send_txlist() - submit a list of tx req to ring
2448 * @sde: sdma engine to use
2449 * @wait: SE wait structure to use when full (may be NULL)
2450 * @tx_list: list of sdma_txreqs to submit
2451 * @count: pointer to a u16 which, after return will contain the total number of
2452 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2453 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2454 * which are added to SDMA engine flush list if the SDMA engine state is
2457 * The call submits the list into the ring.
2459 * If the iowait structure is non-NULL and not equal to the iowait list
2460 * the unprocessed part of the list will be appended to the list in wait.
2462 * In all cases, the tx_list will be updated so the head of the tx_list is
2463 * the list of descriptors that have yet to be transmitted.
2465 * The intent of this call is to provide a more efficient
2466 * way of submitting multiple packets to SDMA while holding the tail
2471 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2472 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2474 int sdma_send_txlist(struct sdma_engine
*sde
, struct iowait_work
*wait
,
2475 struct list_head
*tx_list
, u16
*count_out
)
2477 struct sdma_txreq
*tx
, *tx_next
;
2479 unsigned long flags
;
2480 u16 tail
= INVALID_TAIL
;
2481 u32 submit_count
= 0, flush_count
= 0, total_count
;
2483 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2485 list_for_each_entry_safe(tx
, tx_next
, tx_list
, list
) {
2486 tx
->wait
= iowait_ioww_to_iow(wait
);
2487 if (unlikely(!__sdma_running(sde
)))
2489 if (unlikely(tx
->num_desc
> sde
->desc_avail
))
2491 if (unlikely(tx
->tlen
)) {
2495 list_del_init(&tx
->list
);
2496 tail
= submit_tx(sde
, tx
);
2498 if (tail
!= INVALID_TAIL
&&
2499 (submit_count
& SDMA_TAIL_UPDATE_THRESH
) == 0) {
2500 sdma_update_tail(sde
, tail
);
2501 tail
= INVALID_TAIL
;
2505 total_count
= submit_count
+ flush_count
;
2507 iowait_sdma_add(iowait_ioww_to_iow(wait
), total_count
);
2508 iowait_starve_clear(submit_count
> 0,
2509 iowait_ioww_to_iow(wait
));
2511 if (tail
!= INVALID_TAIL
)
2512 sdma_update_tail(sde
, tail
);
2513 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2514 *count_out
= total_count
;
2517 spin_lock(&sde
->flushlist_lock
);
2518 list_for_each_entry_safe(tx
, tx_next
, tx_list
, list
) {
2519 tx
->wait
= iowait_ioww_to_iow(wait
);
2520 list_del_init(&tx
->list
);
2521 tx
->next_descq_idx
= 0;
2522 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523 tx
->sn
= sde
->tail_sn
++;
2524 trace_hfi1_sdma_in_sn(sde
, tx
->sn
);
2526 list_add_tail(&tx
->list
, &sde
->flushlist
);
2528 iowait_inc_wait_count(wait
, tx
->num_desc
);
2530 spin_unlock(&sde
->flushlist_lock
);
2531 queue_work_on(sde
->cpu
, system_highpri_wq
, &sde
->flush_worker
);
2535 ret
= sdma_check_progress(sde
, wait
, tx
, submit_count
> 0);
2536 if (ret
== -EAGAIN
) {
2540 sde
->descq_full_count
++;
2544 static void sdma_process_event(struct sdma_engine
*sde
, enum sdma_events event
)
2546 unsigned long flags
;
2548 spin_lock_irqsave(&sde
->tail_lock
, flags
);
2549 write_seqlock(&sde
->head_lock
);
2551 __sdma_process_event(sde
, event
);
2553 if (sde
->state
.current_state
== sdma_state_s99_running
)
2554 sdma_desc_avail(sde
, sdma_descq_freecnt(sde
));
2556 write_sequnlock(&sde
->head_lock
);
2557 spin_unlock_irqrestore(&sde
->tail_lock
, flags
);
2560 static void __sdma_process_event(struct sdma_engine
*sde
,
2561 enum sdma_events event
)
2563 struct sdma_state
*ss
= &sde
->state
;
2564 int need_progress
= 0;
2566 /* CONFIG SDMA temporary */
2567 #ifdef CONFIG_SDMA_VERBOSITY
2568 dd_dev_err(sde
->dd
, "CONFIG SDMA(%u) [%s] %s\n", sde
->this_idx
,
2569 sdma_state_names
[ss
->current_state
],
2570 sdma_event_names
[event
]);
2573 switch (ss
->current_state
) {
2574 case sdma_state_s00_hw_down
:
2576 case sdma_event_e00_go_hw_down
:
2578 case sdma_event_e30_go_running
:
2580 * If down, but running requested (usually result
2581 * of link up, then we need to start up.
2582 * This can happen when hw down is requested while
2583 * bringing the link up with traffic active on
2586 ss
->go_s99_running
= 1;
2587 /* fall through -- and start dma engine */
2588 case sdma_event_e10_go_hw_start
:
2589 /* This reference means the state machine is started */
2590 sdma_get(&sde
->state
);
2592 sdma_state_s10_hw_start_up_halt_wait
);
2594 case sdma_event_e15_hw_halt_done
:
2596 case sdma_event_e25_hw_clean_up_done
:
2598 case sdma_event_e40_sw_cleaned
:
2599 sdma_sw_tear_down(sde
);
2601 case sdma_event_e50_hw_cleaned
:
2603 case sdma_event_e60_hw_halted
:
2605 case sdma_event_e70_go_idle
:
2607 case sdma_event_e80_hw_freeze
:
2609 case sdma_event_e81_hw_frozen
:
2611 case sdma_event_e82_hw_unfreeze
:
2613 case sdma_event_e85_link_down
:
2615 case sdma_event_e90_sw_halted
:
2620 case sdma_state_s10_hw_start_up_halt_wait
:
2622 case sdma_event_e00_go_hw_down
:
2623 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2624 sdma_sw_tear_down(sde
);
2626 case sdma_event_e10_go_hw_start
:
2628 case sdma_event_e15_hw_halt_done
:
2630 sdma_state_s15_hw_start_up_clean_wait
);
2631 sdma_start_hw_clean_up(sde
);
2633 case sdma_event_e25_hw_clean_up_done
:
2635 case sdma_event_e30_go_running
:
2636 ss
->go_s99_running
= 1;
2638 case sdma_event_e40_sw_cleaned
:
2640 case sdma_event_e50_hw_cleaned
:
2642 case sdma_event_e60_hw_halted
:
2643 schedule_work(&sde
->err_halt_worker
);
2645 case sdma_event_e70_go_idle
:
2646 ss
->go_s99_running
= 0;
2648 case sdma_event_e80_hw_freeze
:
2650 case sdma_event_e81_hw_frozen
:
2652 case sdma_event_e82_hw_unfreeze
:
2654 case sdma_event_e85_link_down
:
2656 case sdma_event_e90_sw_halted
:
2661 case sdma_state_s15_hw_start_up_clean_wait
:
2663 case sdma_event_e00_go_hw_down
:
2664 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2665 sdma_sw_tear_down(sde
);
2667 case sdma_event_e10_go_hw_start
:
2669 case sdma_event_e15_hw_halt_done
:
2671 case sdma_event_e25_hw_clean_up_done
:
2672 sdma_hw_start_up(sde
);
2673 sdma_set_state(sde
, ss
->go_s99_running
?
2674 sdma_state_s99_running
:
2675 sdma_state_s20_idle
);
2677 case sdma_event_e30_go_running
:
2678 ss
->go_s99_running
= 1;
2680 case sdma_event_e40_sw_cleaned
:
2682 case sdma_event_e50_hw_cleaned
:
2684 case sdma_event_e60_hw_halted
:
2686 case sdma_event_e70_go_idle
:
2687 ss
->go_s99_running
= 0;
2689 case sdma_event_e80_hw_freeze
:
2691 case sdma_event_e81_hw_frozen
:
2693 case sdma_event_e82_hw_unfreeze
:
2695 case sdma_event_e85_link_down
:
2697 case sdma_event_e90_sw_halted
:
2702 case sdma_state_s20_idle
:
2704 case sdma_event_e00_go_hw_down
:
2705 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2706 sdma_sw_tear_down(sde
);
2708 case sdma_event_e10_go_hw_start
:
2710 case sdma_event_e15_hw_halt_done
:
2712 case sdma_event_e25_hw_clean_up_done
:
2714 case sdma_event_e30_go_running
:
2715 sdma_set_state(sde
, sdma_state_s99_running
);
2716 ss
->go_s99_running
= 1;
2718 case sdma_event_e40_sw_cleaned
:
2720 case sdma_event_e50_hw_cleaned
:
2722 case sdma_event_e60_hw_halted
:
2723 sdma_set_state(sde
, sdma_state_s50_hw_halt_wait
);
2724 schedule_work(&sde
->err_halt_worker
);
2726 case sdma_event_e70_go_idle
:
2728 case sdma_event_e85_link_down
:
2730 case sdma_event_e80_hw_freeze
:
2731 sdma_set_state(sde
, sdma_state_s80_hw_freeze
);
2732 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
2733 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
2735 case sdma_event_e81_hw_frozen
:
2737 case sdma_event_e82_hw_unfreeze
:
2739 case sdma_event_e90_sw_halted
:
2744 case sdma_state_s30_sw_clean_up_wait
:
2746 case sdma_event_e00_go_hw_down
:
2747 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2749 case sdma_event_e10_go_hw_start
:
2751 case sdma_event_e15_hw_halt_done
:
2753 case sdma_event_e25_hw_clean_up_done
:
2755 case sdma_event_e30_go_running
:
2756 ss
->go_s99_running
= 1;
2758 case sdma_event_e40_sw_cleaned
:
2759 sdma_set_state(sde
, sdma_state_s40_hw_clean_up_wait
);
2760 sdma_start_hw_clean_up(sde
);
2762 case sdma_event_e50_hw_cleaned
:
2764 case sdma_event_e60_hw_halted
:
2766 case sdma_event_e70_go_idle
:
2767 ss
->go_s99_running
= 0;
2769 case sdma_event_e80_hw_freeze
:
2771 case sdma_event_e81_hw_frozen
:
2773 case sdma_event_e82_hw_unfreeze
:
2775 case sdma_event_e85_link_down
:
2776 ss
->go_s99_running
= 0;
2778 case sdma_event_e90_sw_halted
:
2783 case sdma_state_s40_hw_clean_up_wait
:
2785 case sdma_event_e00_go_hw_down
:
2786 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2787 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2789 case sdma_event_e10_go_hw_start
:
2791 case sdma_event_e15_hw_halt_done
:
2793 case sdma_event_e25_hw_clean_up_done
:
2794 sdma_hw_start_up(sde
);
2795 sdma_set_state(sde
, ss
->go_s99_running
?
2796 sdma_state_s99_running
:
2797 sdma_state_s20_idle
);
2799 case sdma_event_e30_go_running
:
2800 ss
->go_s99_running
= 1;
2802 case sdma_event_e40_sw_cleaned
:
2804 case sdma_event_e50_hw_cleaned
:
2806 case sdma_event_e60_hw_halted
:
2808 case sdma_event_e70_go_idle
:
2809 ss
->go_s99_running
= 0;
2811 case sdma_event_e80_hw_freeze
:
2813 case sdma_event_e81_hw_frozen
:
2815 case sdma_event_e82_hw_unfreeze
:
2817 case sdma_event_e85_link_down
:
2818 ss
->go_s99_running
= 0;
2820 case sdma_event_e90_sw_halted
:
2825 case sdma_state_s50_hw_halt_wait
:
2827 case sdma_event_e00_go_hw_down
:
2828 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2829 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2831 case sdma_event_e10_go_hw_start
:
2833 case sdma_event_e15_hw_halt_done
:
2834 sdma_set_state(sde
, sdma_state_s30_sw_clean_up_wait
);
2835 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2837 case sdma_event_e25_hw_clean_up_done
:
2839 case sdma_event_e30_go_running
:
2840 ss
->go_s99_running
= 1;
2842 case sdma_event_e40_sw_cleaned
:
2844 case sdma_event_e50_hw_cleaned
:
2846 case sdma_event_e60_hw_halted
:
2847 schedule_work(&sde
->err_halt_worker
);
2849 case sdma_event_e70_go_idle
:
2850 ss
->go_s99_running
= 0;
2852 case sdma_event_e80_hw_freeze
:
2854 case sdma_event_e81_hw_frozen
:
2856 case sdma_event_e82_hw_unfreeze
:
2858 case sdma_event_e85_link_down
:
2859 ss
->go_s99_running
= 0;
2861 case sdma_event_e90_sw_halted
:
2866 case sdma_state_s60_idle_halt_wait
:
2868 case sdma_event_e00_go_hw_down
:
2869 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2870 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2872 case sdma_event_e10_go_hw_start
:
2874 case sdma_event_e15_hw_halt_done
:
2875 sdma_set_state(sde
, sdma_state_s30_sw_clean_up_wait
);
2876 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2878 case sdma_event_e25_hw_clean_up_done
:
2880 case sdma_event_e30_go_running
:
2881 ss
->go_s99_running
= 1;
2883 case sdma_event_e40_sw_cleaned
:
2885 case sdma_event_e50_hw_cleaned
:
2887 case sdma_event_e60_hw_halted
:
2888 schedule_work(&sde
->err_halt_worker
);
2890 case sdma_event_e70_go_idle
:
2891 ss
->go_s99_running
= 0;
2893 case sdma_event_e80_hw_freeze
:
2895 case sdma_event_e81_hw_frozen
:
2897 case sdma_event_e82_hw_unfreeze
:
2899 case sdma_event_e85_link_down
:
2901 case sdma_event_e90_sw_halted
:
2906 case sdma_state_s80_hw_freeze
:
2908 case sdma_event_e00_go_hw_down
:
2909 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2910 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2912 case sdma_event_e10_go_hw_start
:
2914 case sdma_event_e15_hw_halt_done
:
2916 case sdma_event_e25_hw_clean_up_done
:
2918 case sdma_event_e30_go_running
:
2919 ss
->go_s99_running
= 1;
2921 case sdma_event_e40_sw_cleaned
:
2923 case sdma_event_e50_hw_cleaned
:
2925 case sdma_event_e60_hw_halted
:
2927 case sdma_event_e70_go_idle
:
2928 ss
->go_s99_running
= 0;
2930 case sdma_event_e80_hw_freeze
:
2932 case sdma_event_e81_hw_frozen
:
2933 sdma_set_state(sde
, sdma_state_s82_freeze_sw_clean
);
2934 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2936 case sdma_event_e82_hw_unfreeze
:
2938 case sdma_event_e85_link_down
:
2940 case sdma_event_e90_sw_halted
:
2945 case sdma_state_s82_freeze_sw_clean
:
2947 case sdma_event_e00_go_hw_down
:
2948 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2949 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2951 case sdma_event_e10_go_hw_start
:
2953 case sdma_event_e15_hw_halt_done
:
2955 case sdma_event_e25_hw_clean_up_done
:
2957 case sdma_event_e30_go_running
:
2958 ss
->go_s99_running
= 1;
2960 case sdma_event_e40_sw_cleaned
:
2961 /* notify caller this engine is done cleaning */
2962 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
2963 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
2965 case sdma_event_e50_hw_cleaned
:
2967 case sdma_event_e60_hw_halted
:
2969 case sdma_event_e70_go_idle
:
2970 ss
->go_s99_running
= 0;
2972 case sdma_event_e80_hw_freeze
:
2974 case sdma_event_e81_hw_frozen
:
2976 case sdma_event_e82_hw_unfreeze
:
2977 sdma_hw_start_up(sde
);
2978 sdma_set_state(sde
, ss
->go_s99_running
?
2979 sdma_state_s99_running
:
2980 sdma_state_s20_idle
);
2982 case sdma_event_e85_link_down
:
2984 case sdma_event_e90_sw_halted
:
2989 case sdma_state_s99_running
:
2991 case sdma_event_e00_go_hw_down
:
2992 sdma_set_state(sde
, sdma_state_s00_hw_down
);
2993 tasklet_hi_schedule(&sde
->sdma_sw_clean_up_task
);
2995 case sdma_event_e10_go_hw_start
:
2997 case sdma_event_e15_hw_halt_done
:
2999 case sdma_event_e25_hw_clean_up_done
:
3001 case sdma_event_e30_go_running
:
3003 case sdma_event_e40_sw_cleaned
:
3005 case sdma_event_e50_hw_cleaned
:
3007 case sdma_event_e60_hw_halted
:
3009 sdma_err_progress_check_schedule(sde
);
3011 case sdma_event_e90_sw_halted
:
3013 * SW initiated halt does not perform engines
3016 sdma_set_state(sde
, sdma_state_s50_hw_halt_wait
);
3017 schedule_work(&sde
->err_halt_worker
);
3019 case sdma_event_e70_go_idle
:
3020 sdma_set_state(sde
, sdma_state_s60_idle_halt_wait
);
3022 case sdma_event_e85_link_down
:
3023 ss
->go_s99_running
= 0;
3025 case sdma_event_e80_hw_freeze
:
3026 sdma_set_state(sde
, sdma_state_s80_hw_freeze
);
3027 atomic_dec(&sde
->dd
->sdma_unfreeze_count
);
3028 wake_up_interruptible(&sde
->dd
->sdma_unfreeze_wq
);
3030 case sdma_event_e81_hw_frozen
:
3032 case sdma_event_e82_hw_unfreeze
:
3038 ss
->last_event
= event
;
3040 sdma_make_progress(sde
, 0);
3044 * _extend_sdma_tx_descs() - helper to extend txreq
3046 * This is called once the initial nominal allocation
3047 * of descriptors in the sdma_txreq is exhausted.
3049 * The code will bump the allocation up to the max
3050 * of MAX_DESC (64) descriptors. There doesn't seem
3051 * much point in an interim step. The last descriptor
3052 * is reserved for coalesce buffer in order to support
3053 * cases where input packet has >MAX_DESC iovecs.
3056 static int _extend_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
)
3060 /* Handle last descriptor */
3061 if (unlikely((tx
->num_desc
== (MAX_DESC
- 1)))) {
3062 /* if tlen is 0, it is for padding, release last descriptor */
3064 tx
->desc_limit
= MAX_DESC
;
3065 } else if (!tx
->coalesce_buf
) {
3066 /* allocate coalesce buffer with space for padding */
3067 tx
->coalesce_buf
= kmalloc(tx
->tlen
+ sizeof(u32
),
3069 if (!tx
->coalesce_buf
)
3071 tx
->coalesce_idx
= 0;
3076 if (unlikely(tx
->num_desc
== MAX_DESC
))
3079 tx
->descp
= kmalloc_array(
3081 sizeof(struct sdma_desc
),
3086 /* reserve last descriptor for coalescing */
3087 tx
->desc_limit
= MAX_DESC
- 1;
3088 /* copy ones already built */
3089 for (i
= 0; i
< tx
->num_desc
; i
++)
3090 tx
->descp
[i
] = tx
->descs
[i
];
3093 __sdma_txclean(dd
, tx
);
3098 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3100 * This is called once the initial nominal allocation of descriptors
3101 * in the sdma_txreq is exhausted.
3103 * This function calls _extend_sdma_tx_descs to extend or allocate
3104 * coalesce buffer. If there is a allocated coalesce buffer, it will
3105 * copy the input packet data into the coalesce buffer. It also adds
3106 * coalesce buffer descriptor once when whole packet is received.
3110 * 0 - coalescing, don't populate descriptor
3111 * 1 - continue with populating descriptor
3113 int ext_coal_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
,
3114 int type
, void *kvaddr
, struct page
*page
,
3115 unsigned long offset
, u16 len
)
3120 rval
= _extend_sdma_tx_descs(dd
, tx
);
3122 __sdma_txclean(dd
, tx
);
3126 /* If coalesce buffer is allocated, copy data into it */
3127 if (tx
->coalesce_buf
) {
3128 if (type
== SDMA_MAP_NONE
) {
3129 __sdma_txclean(dd
, tx
);
3133 if (type
== SDMA_MAP_PAGE
) {
3134 kvaddr
= kmap(page
);
3136 } else if (WARN_ON(!kvaddr
)) {
3137 __sdma_txclean(dd
, tx
);
3141 memcpy(tx
->coalesce_buf
+ tx
->coalesce_idx
, kvaddr
, len
);
3142 tx
->coalesce_idx
+= len
;
3143 if (type
== SDMA_MAP_PAGE
)
3146 /* If there is more data, return */
3147 if (tx
->tlen
- tx
->coalesce_idx
)
3150 /* Whole packet is received; add any padding */
3151 pad_len
= tx
->packet_len
& (sizeof(u32
) - 1);
3153 pad_len
= sizeof(u32
) - pad_len
;
3154 memset(tx
->coalesce_buf
+ tx
->coalesce_idx
, 0, pad_len
);
3155 /* padding is taken care of for coalescing case */
3156 tx
->packet_len
+= pad_len
;
3157 tx
->tlen
+= pad_len
;
3160 /* dma map the coalesce buffer */
3161 addr
= dma_map_single(&dd
->pcidev
->dev
,
3166 if (unlikely(dma_mapping_error(&dd
->pcidev
->dev
, addr
))) {
3167 __sdma_txclean(dd
, tx
);
3171 /* Add descriptor for coalesce buffer */
3172 tx
->desc_limit
= MAX_DESC
;
3173 return _sdma_txadd_daddr(dd
, SDMA_MAP_SINGLE
, tx
,
3180 /* Update sdes when the lmc changes */
3181 void sdma_update_lmc(struct hfi1_devdata
*dd
, u64 mask
, u32 lid
)
3183 struct sdma_engine
*sde
;
3187 sreg
= ((mask
& SD(CHECK_SLID_MASK_MASK
)) <<
3188 SD(CHECK_SLID_MASK_SHIFT
)) |
3189 (((lid
& mask
) & SD(CHECK_SLID_VALUE_MASK
)) <<
3190 SD(CHECK_SLID_VALUE_SHIFT
));
3192 for (i
= 0; i
< dd
->num_sdma
; i
++) {
3193 hfi1_cdbg(LINKVERB
, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3195 sde
= &dd
->per_sdma
[i
];
3196 write_sde_csr(sde
, SD(CHECK_SLID
), sreg
);
3200 /* tx not dword sized - pad */
3201 int _pad_sdma_tx_descs(struct hfi1_devdata
*dd
, struct sdma_txreq
*tx
)
3206 if ((unlikely(tx
->num_desc
== tx
->desc_limit
))) {
3207 rval
= _extend_sdma_tx_descs(dd
, tx
);
3209 __sdma_txclean(dd
, tx
);
3213 /* finish the one just added */
3218 sizeof(u32
) - (tx
->packet_len
& (sizeof(u32
) - 1)));
3219 _sdma_close_tx(dd
, tx
);
3224 * Add ahg to the sdma_txreq
3226 * The logic will consume up to 3
3227 * descriptors at the beginning of
3230 void _sdma_txreq_ahgadd(
3231 struct sdma_txreq
*tx
,
3237 u32 i
, shift
= 0, desc
= 0;
3240 WARN_ON_ONCE(num_ahg
> 9 || (ahg_hlen
& 3) || ahg_hlen
== 4);
3243 mode
= SDMA_AHG_APPLY_UPDATE1
;
3244 else if (num_ahg
<= 5)
3245 mode
= SDMA_AHG_APPLY_UPDATE2
;
3247 mode
= SDMA_AHG_APPLY_UPDATE3
;
3249 /* initialize to consumed descriptors to zero */
3251 case SDMA_AHG_APPLY_UPDATE3
:
3253 tx
->descs
[2].qw
[0] = 0;
3254 tx
->descs
[2].qw
[1] = 0;
3256 case SDMA_AHG_APPLY_UPDATE2
:
3258 tx
->descs
[1].qw
[0] = 0;
3259 tx
->descs
[1].qw
[1] = 0;
3263 tx
->descs
[0].qw
[1] |=
3264 (((u64
)ahg_entry
& SDMA_DESC1_HEADER_INDEX_MASK
)
3265 << SDMA_DESC1_HEADER_INDEX_SHIFT
) |
3266 (((u64
)ahg_hlen
& SDMA_DESC1_HEADER_DWS_MASK
)
3267 << SDMA_DESC1_HEADER_DWS_SHIFT
) |
3268 (((u64
)mode
& SDMA_DESC1_HEADER_MODE_MASK
)
3269 << SDMA_DESC1_HEADER_MODE_SHIFT
) |
3270 (((u64
)ahg
[0] & SDMA_DESC1_HEADER_UPDATE1_MASK
)
3271 << SDMA_DESC1_HEADER_UPDATE1_SHIFT
);
3272 for (i
= 0; i
< (num_ahg
- 1); i
++) {
3273 if (!shift
&& !(i
& 2))
3275 tx
->descs
[desc
].qw
[!!(i
& 2)] |=
3278 shift
= (shift
+ 32) & 63;
3283 * sdma_ahg_alloc - allocate an AHG entry
3284 * @sde: engine to allocate from
3287 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3288 * -ENOSPC if an entry is not available
3290 int sdma_ahg_alloc(struct sdma_engine
*sde
)
3296 trace_hfi1_ahg_allocate(sde
, -EINVAL
);
3300 nr
= ffz(READ_ONCE(sde
->ahg_bits
));
3302 trace_hfi1_ahg_allocate(sde
, -ENOSPC
);
3305 oldbit
= test_and_set_bit(nr
, &sde
->ahg_bits
);
3310 trace_hfi1_ahg_allocate(sde
, nr
);
3315 * sdma_ahg_free - free an AHG entry
3316 * @sde: engine to return AHG entry
3317 * @ahg_index: index to free
3319 * This routine frees the indicate AHG entry.
3321 void sdma_ahg_free(struct sdma_engine
*sde
, int ahg_index
)
3325 trace_hfi1_ahg_deallocate(sde
, ahg_index
);
3326 if (ahg_index
< 0 || ahg_index
> 31)
3328 clear_bit(ahg_index
, &sde
->ahg_bits
);
3332 * SPC freeze handling for SDMA engines. Called when the driver knows
3333 * the SPC is going into a freeze but before the freeze is fully
3334 * settled. Generally an error interrupt.
3336 * This event will pull the engine out of running so no more entries can be
3337 * added to the engine's queue.
3339 void sdma_freeze_notify(struct hfi1_devdata
*dd
, int link_down
)
3342 enum sdma_events event
= link_down
? sdma_event_e85_link_down
:
3343 sdma_event_e80_hw_freeze
;
3345 /* set up the wait but do not wait here */
3346 atomic_set(&dd
->sdma_unfreeze_count
, dd
->num_sdma
);
3348 /* tell all engines to stop running and wait */
3349 for (i
= 0; i
< dd
->num_sdma
; i
++)
3350 sdma_process_event(&dd
->per_sdma
[i
], event
);
3352 /* sdma_freeze() will wait for all engines to have stopped */
3356 * SPC freeze handling for SDMA engines. Called when the driver knows
3357 * the SPC is fully frozen.
3359 void sdma_freeze(struct hfi1_devdata
*dd
)
3365 * Make sure all engines have moved out of the running state before
3368 ret
= wait_event_interruptible(dd
->sdma_unfreeze_wq
,
3369 atomic_read(&dd
->sdma_unfreeze_count
) <=
3371 /* interrupted or count is negative, then unloading - just exit */
3372 if (ret
|| atomic_read(&dd
->sdma_unfreeze_count
) < 0)
3375 /* set up the count for the next wait */
3376 atomic_set(&dd
->sdma_unfreeze_count
, dd
->num_sdma
);
3378 /* tell all engines that the SPC is frozen, they can start cleaning */
3379 for (i
= 0; i
< dd
->num_sdma
; i
++)
3380 sdma_process_event(&dd
->per_sdma
[i
], sdma_event_e81_hw_frozen
);
3383 * Wait for everyone to finish software clean before exiting. The
3384 * software clean will read engine CSRs, so must be completed before
3385 * the next step, which will clear the engine CSRs.
3387 (void)wait_event_interruptible(dd
->sdma_unfreeze_wq
,
3388 atomic_read(&dd
->sdma_unfreeze_count
) <= 0);
3389 /* no need to check results - done no matter what */
3393 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3395 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3396 * that is left is a software clean. We could do it after the SPC is fully
3397 * frozen, but then we'd have to add another state to wait for the unfreeze.
3398 * Instead, just defer the software clean until the unfreeze step.
3400 void sdma_unfreeze(struct hfi1_devdata
*dd
)
3404 /* tell all engines start freeze clean up */
3405 for (i
= 0; i
< dd
->num_sdma
; i
++)
3406 sdma_process_event(&dd
->per_sdma
[i
],
3407 sdma_event_e82_hw_unfreeze
);
3411 * _sdma_engine_progress_schedule() - schedule progress on engine
3412 * @sde: sdma_engine to schedule progress
3415 void _sdma_engine_progress_schedule(
3416 struct sdma_engine
*sde
)
3418 trace_hfi1_sdma_engine_progress(sde
, sde
->progress_mask
);
3419 /* assume we have selected a good cpu */
3421 CCE_INT_FORCE
+ (8 * (IS_SDMA_START
/ 64)),
3422 sde
->progress_mask
);