2 * Copyright(c) 2015-2018 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/string.h>
51 #include "user_exp_rcv.h"
54 static void unlock_exp_tids(struct hfi1_ctxtdata
*uctxt
,
55 struct exp_tid_set
*set
,
56 struct hfi1_filedata
*fd
);
57 static u32
find_phys_blocks(struct tid_user_buf
*tidbuf
, unsigned int npages
);
58 static int set_rcvarray_entry(struct hfi1_filedata
*fd
,
59 struct tid_user_buf
*tbuf
,
60 u32 rcventry
, struct tid_group
*grp
,
61 u16 pageidx
, unsigned int npages
);
62 static void cacheless_tid_rb_remove(struct hfi1_filedata
*fdata
,
63 struct tid_rb_node
*tnode
);
64 static bool tid_rb_invalidate(struct mmu_interval_notifier
*mni
,
65 const struct mmu_notifier_range
*range
,
66 unsigned long cur_seq
);
67 static int program_rcvarray(struct hfi1_filedata
*fd
, struct tid_user_buf
*,
68 struct tid_group
*grp
,
69 unsigned int start
, u16 count
,
70 u32
*tidlist
, unsigned int *tididx
,
71 unsigned int *pmapped
);
72 static int unprogram_rcvarray(struct hfi1_filedata
*fd
, u32 tidinfo
,
73 struct tid_group
**grp
);
74 static void clear_tid_node(struct hfi1_filedata
*fd
, struct tid_rb_node
*node
);
76 static const struct mmu_interval_notifier_ops tid_mn_ops
= {
77 .invalidate
= tid_rb_invalidate
,
81 * Initialize context and file private data needed for Expected
82 * receive caching. This needs to be done after the context has
83 * been configured with the eager/expected RcvEntry counts.
85 int hfi1_user_exp_rcv_init(struct hfi1_filedata
*fd
,
86 struct hfi1_ctxtdata
*uctxt
)
90 spin_lock_init(&fd
->tid_lock
);
91 spin_lock_init(&fd
->invalid_lock
);
93 fd
->entry_to_rb
= kcalloc(uctxt
->expected_count
,
94 sizeof(struct rb_node
*),
99 if (!HFI1_CAP_UGET_MASK(uctxt
->flags
, TID_UNMAP
)) {
100 fd
->invalid_tid_idx
= 0;
101 fd
->invalid_tids
= kcalloc(uctxt
->expected_count
,
102 sizeof(*fd
->invalid_tids
),
104 if (!fd
->invalid_tids
) {
105 kfree(fd
->entry_to_rb
);
106 fd
->entry_to_rb
= NULL
;
113 * PSM does not have a good way to separate, count, and
114 * effectively enforce a limit on RcvArray entries used by
115 * subctxts (when context sharing is used) when TID caching
116 * is enabled. To help with that, we calculate a per-process
117 * RcvArray entry share and enforce that.
118 * If TID caching is not in use, PSM deals with usage on its
119 * own. In that case, we allow any subctxt to take all of the
122 * Make sure that we set the tid counts only after successful
125 spin_lock(&fd
->tid_lock
);
126 if (uctxt
->subctxt_cnt
&& fd
->use_mn
) {
129 fd
->tid_limit
= uctxt
->expected_count
/ uctxt
->subctxt_cnt
;
130 remainder
= uctxt
->expected_count
% uctxt
->subctxt_cnt
;
131 if (remainder
&& fd
->subctxt
< remainder
)
134 fd
->tid_limit
= uctxt
->expected_count
;
136 spin_unlock(&fd
->tid_lock
);
141 void hfi1_user_exp_rcv_free(struct hfi1_filedata
*fd
)
143 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
145 if (!EXP_TID_SET_EMPTY(uctxt
->tid_full_list
))
146 unlock_exp_tids(uctxt
, &uctxt
->tid_full_list
, fd
);
147 if (!EXP_TID_SET_EMPTY(uctxt
->tid_used_list
))
148 unlock_exp_tids(uctxt
, &uctxt
->tid_used_list
, fd
);
150 kfree(fd
->invalid_tids
);
151 fd
->invalid_tids
= NULL
;
153 kfree(fd
->entry_to_rb
);
154 fd
->entry_to_rb
= NULL
;
158 * Release pinned receive buffer pages.
160 * @mapped - true if the pages have been DMA mapped. false otherwise.
161 * @idx - Index of the first page to unpin.
162 * @npages - No of pages to unpin.
164 * If the pages have been DMA mapped (indicated by mapped parameter), their
165 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
166 * their info will be passed via a struct tid_user_buf.
168 static void unpin_rcv_pages(struct hfi1_filedata
*fd
,
169 struct tid_user_buf
*tidbuf
,
170 struct tid_rb_node
*node
,
176 struct hfi1_devdata
*dd
= fd
->uctxt
->dd
;
179 pci_unmap_single(dd
->pcidev
, node
->dma_addr
,
180 node
->npages
* PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
181 pages
= &node
->pages
[idx
];
183 pages
= &tidbuf
->pages
[idx
];
185 hfi1_release_user_pages(fd
->mm
, pages
, npages
, mapped
);
186 fd
->tid_n_pinned
-= npages
;
190 * Pin receive buffer pages.
192 static int pin_rcv_pages(struct hfi1_filedata
*fd
, struct tid_user_buf
*tidbuf
)
196 unsigned long vaddr
= tidbuf
->vaddr
;
197 struct page
**pages
= NULL
;
198 struct hfi1_devdata
*dd
= fd
->uctxt
->dd
;
200 /* Get the number of pages the user buffer spans */
201 npages
= num_user_pages(vaddr
, tidbuf
->length
);
205 if (npages
> fd
->uctxt
->expected_count
) {
206 dd_dev_err(dd
, "Expected buffer too big\n");
210 /* Verify that access is OK for the user buffer */
211 if (!access_ok((void __user
*)vaddr
,
212 npages
* PAGE_SIZE
)) {
213 dd_dev_err(dd
, "Fail vaddr %p, %u pages, !access_ok\n",
214 (void *)vaddr
, npages
);
217 /* Allocate the array of struct page pointers needed for pinning */
218 pages
= kcalloc(npages
, sizeof(*pages
), GFP_KERNEL
);
223 * Pin all the pages of the user buffer. If we can't pin all the
224 * pages, accept the amount pinned so far and program only that.
225 * User space knows how to deal with partially programmed buffers.
227 if (!hfi1_can_pin_pages(dd
, fd
->mm
, fd
->tid_n_pinned
, npages
)) {
232 pinned
= hfi1_acquire_user_pages(fd
->mm
, vaddr
, npages
, true, pages
);
237 tidbuf
->pages
= pages
;
238 tidbuf
->npages
= npages
;
239 fd
->tid_n_pinned
+= pinned
;
244 * RcvArray entry allocation for Expected Receives is done by the
245 * following algorithm:
247 * The context keeps 3 lists of groups of RcvArray entries:
248 * 1. List of empty groups - tid_group_list
249 * This list is created during user context creation and
250 * contains elements which describe sets (of 8) of empty
252 * 2. List of partially used groups - tid_used_list
253 * This list contains sets of RcvArray entries which are
254 * not completely used up. Another mapping request could
255 * use some of all of the remaining entries.
256 * 3. List of full groups - tid_full_list
257 * This is the list where sets that are completely used
260 * An attempt to optimize the usage of RcvArray entries is
261 * made by finding all sets of physically contiguous pages in a
263 * These physically contiguous sets are further split into
264 * sizes supported by the receive engine of the HFI. The
265 * resulting sets of pages are stored in struct tid_pageset,
266 * which describes the sets as:
267 * * .count - number of pages in this set
268 * * .idx - starting index into struct page ** array
271 * From this point on, the algorithm deals with the page sets
272 * described above. The number of pagesets is divided by the
273 * RcvArray group size to produce the number of full groups
276 * Groups from the 3 lists are manipulated using the following
278 * 1. For each set of 8 pagesets, a complete group from
279 * tid_group_list is taken, programmed, and moved to
280 * the tid_full_list list.
281 * 2. For all remaining pagesets:
282 * 2.1 If the tid_used_list is empty and the tid_group_list
283 * is empty, stop processing pageset and return only
284 * what has been programmed up to this point.
285 * 2.2 If the tid_used_list is empty and the tid_group_list
286 * is not empty, move a group from tid_group_list to
288 * 2.3 For each group is tid_used_group, program as much as
289 * can fit into the group. If the group becomes fully
290 * used, move it to tid_full_list.
292 int hfi1_user_exp_rcv_setup(struct hfi1_filedata
*fd
,
293 struct hfi1_tid_info
*tinfo
)
295 int ret
= 0, need_group
= 0, pinned
;
296 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
297 struct hfi1_devdata
*dd
= uctxt
->dd
;
298 unsigned int ngroups
, pageidx
= 0, pageset_count
,
299 tididx
= 0, mapped
, mapped_pages
= 0;
301 struct tid_user_buf
*tidbuf
;
303 if (!PAGE_ALIGNED(tinfo
->vaddr
))
306 tidbuf
= kzalloc(sizeof(*tidbuf
), GFP_KERNEL
);
310 tidbuf
->vaddr
= tinfo
->vaddr
;
311 tidbuf
->length
= tinfo
->length
;
312 tidbuf
->psets
= kcalloc(uctxt
->expected_count
, sizeof(*tidbuf
->psets
),
314 if (!tidbuf
->psets
) {
319 pinned
= pin_rcv_pages(fd
, tidbuf
);
321 kfree(tidbuf
->psets
);
326 /* Find sets of physically contiguous pages */
327 tidbuf
->n_psets
= find_phys_blocks(tidbuf
, pinned
);
330 * We don't need to access this under a lock since tid_used is per
331 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
332 * and hfi1_user_exp_rcv_setup() at the same time.
334 spin_lock(&fd
->tid_lock
);
335 if (fd
->tid_used
+ tidbuf
->n_psets
> fd
->tid_limit
)
336 pageset_count
= fd
->tid_limit
- fd
->tid_used
;
338 pageset_count
= tidbuf
->n_psets
;
339 spin_unlock(&fd
->tid_lock
);
344 ngroups
= pageset_count
/ dd
->rcv_entries
.group_size
;
345 tidlist
= kcalloc(pageset_count
, sizeof(*tidlist
), GFP_KERNEL
);
354 * From this point on, we are going to be using shared (between master
355 * and subcontexts) context resources. We need to take the lock.
357 mutex_lock(&uctxt
->exp_mutex
);
359 * The first step is to program the RcvArray entries which are complete
362 while (ngroups
&& uctxt
->tid_group_list
.count
) {
363 struct tid_group
*grp
=
364 tid_group_pop(&uctxt
->tid_group_list
);
366 ret
= program_rcvarray(fd
, tidbuf
, grp
,
367 pageidx
, dd
->rcv_entries
.group_size
,
368 tidlist
, &tididx
, &mapped
);
370 * If there was a failure to program the RcvArray
371 * entries for the entire group, reset the grp fields
372 * and add the grp back to the free group list.
375 tid_group_add_tail(grp
, &uctxt
->tid_group_list
);
377 "Failed to program RcvArray group %d", ret
);
381 tid_group_add_tail(grp
, &uctxt
->tid_full_list
);
384 mapped_pages
+= mapped
;
387 while (pageidx
< pageset_count
) {
388 struct tid_group
*grp
, *ptr
;
390 * If we don't have any partially used tid groups, check
391 * if we have empty groups. If so, take one from there and
392 * put in the partially used list.
394 if (!uctxt
->tid_used_list
.count
|| need_group
) {
395 if (!uctxt
->tid_group_list
.count
)
398 grp
= tid_group_pop(&uctxt
->tid_group_list
);
399 tid_group_add_tail(grp
, &uctxt
->tid_used_list
);
403 * There is an optimization opportunity here - instead of
404 * fitting as many page sets as we can, check for a group
405 * later on in the list that could fit all of them.
407 list_for_each_entry_safe(grp
, ptr
, &uctxt
->tid_used_list
.list
,
409 unsigned use
= min_t(unsigned, pageset_count
- pageidx
,
410 grp
->size
- grp
->used
);
412 ret
= program_rcvarray(fd
, tidbuf
, grp
,
413 pageidx
, use
, tidlist
,
417 "Failed to program RcvArray entries %d",
420 } else if (ret
> 0) {
421 if (grp
->used
== grp
->size
)
423 &uctxt
->tid_used_list
,
424 &uctxt
->tid_full_list
);
426 mapped_pages
+= mapped
;
428 /* Check if we are done so we break out early */
429 if (pageidx
>= pageset_count
)
431 } else if (WARN_ON(ret
== 0)) {
433 * If ret is 0, we did not program any entries
434 * into this group, which can only happen if
435 * we've screwed up the accounting somewhere.
436 * Warn and try to continue.
443 mutex_unlock(&uctxt
->exp_mutex
);
445 hfi1_cdbg(TID
, "total mapped: tidpairs:%u pages:%u (%d)", tididx
,
448 spin_lock(&fd
->tid_lock
);
449 fd
->tid_used
+= tididx
;
450 spin_unlock(&fd
->tid_lock
);
451 tinfo
->tidcnt
= tididx
;
452 tinfo
->length
= mapped_pages
* PAGE_SIZE
;
454 if (copy_to_user(u64_to_user_ptr(tinfo
->tidlist
),
455 tidlist
, sizeof(tidlist
[0]) * tididx
)) {
457 * On failure to copy to the user level, we need to undo
458 * everything done so far so we don't leak resources.
460 tinfo
->tidlist
= (unsigned long)&tidlist
;
461 hfi1_user_exp_rcv_clear(fd
, tinfo
);
469 * If not everything was mapped (due to insufficient RcvArray entries,
470 * for example), unpin all unmapped pages so we can pin them nex time.
472 if (mapped_pages
!= pinned
)
473 unpin_rcv_pages(fd
, tidbuf
, NULL
, mapped_pages
,
474 (pinned
- mapped_pages
), false);
476 kfree(tidbuf
->psets
);
478 kfree(tidbuf
->pages
);
480 return ret
> 0 ? 0 : ret
;
483 int hfi1_user_exp_rcv_clear(struct hfi1_filedata
*fd
,
484 struct hfi1_tid_info
*tinfo
)
487 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
491 if (unlikely(tinfo
->tidcnt
> fd
->tid_used
))
494 tidinfo
= memdup_user(u64_to_user_ptr(tinfo
->tidlist
),
495 sizeof(tidinfo
[0]) * tinfo
->tidcnt
);
497 return PTR_ERR(tidinfo
);
499 mutex_lock(&uctxt
->exp_mutex
);
500 for (tididx
= 0; tididx
< tinfo
->tidcnt
; tididx
++) {
501 ret
= unprogram_rcvarray(fd
, tidinfo
[tididx
], NULL
);
503 hfi1_cdbg(TID
, "Failed to unprogram rcv array %d",
508 spin_lock(&fd
->tid_lock
);
509 fd
->tid_used
-= tididx
;
510 spin_unlock(&fd
->tid_lock
);
511 tinfo
->tidcnt
= tididx
;
512 mutex_unlock(&uctxt
->exp_mutex
);
518 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata
*fd
,
519 struct hfi1_tid_info
*tinfo
)
521 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
522 unsigned long *ev
= uctxt
->dd
->events
+
523 (uctxt_offset(uctxt
) + fd
->subctxt
);
528 * copy_to_user() can sleep, which will leave the invalid_lock
529 * locked and cause the MMU notifier to be blocked on the lock
531 * Copy the data to a local buffer so we can release the lock.
533 array
= kcalloc(uctxt
->expected_count
, sizeof(*array
), GFP_KERNEL
);
537 spin_lock(&fd
->invalid_lock
);
538 if (fd
->invalid_tid_idx
) {
539 memcpy(array
, fd
->invalid_tids
, sizeof(*array
) *
540 fd
->invalid_tid_idx
);
541 memset(fd
->invalid_tids
, 0, sizeof(*fd
->invalid_tids
) *
542 fd
->invalid_tid_idx
);
543 tinfo
->tidcnt
= fd
->invalid_tid_idx
;
544 fd
->invalid_tid_idx
= 0;
546 * Reset the user flag while still holding the lock.
547 * Otherwise, PSM can miss events.
549 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT
, ev
);
553 spin_unlock(&fd
->invalid_lock
);
556 if (copy_to_user((void __user
*)tinfo
->tidlist
,
557 array
, sizeof(*array
) * tinfo
->tidcnt
))
565 static u32
find_phys_blocks(struct tid_user_buf
*tidbuf
, unsigned int npages
)
567 unsigned pagecount
, pageidx
, setcount
= 0, i
;
568 unsigned long pfn
, this_pfn
;
569 struct page
**pages
= tidbuf
->pages
;
570 struct tid_pageset
*list
= tidbuf
->psets
;
576 * Look for sets of physically contiguous pages in the user buffer.
577 * This will allow us to optimize Expected RcvArray entry usage by
578 * using the bigger supported sizes.
580 pfn
= page_to_pfn(pages
[0]);
581 for (pageidx
= 0, pagecount
= 1, i
= 1; i
<= npages
; i
++) {
582 this_pfn
= i
< npages
? page_to_pfn(pages
[i
]) : 0;
585 * If the pfn's are not sequential, pages are not physically
588 if (this_pfn
!= ++pfn
) {
590 * At this point we have to loop over the set of
591 * physically contiguous pages and break them down it
592 * sizes supported by the HW.
593 * There are two main constraints:
594 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
595 * If the total set size is bigger than that
596 * program only a MAX_EXPECTED_BUFFER chunk.
597 * 2. The buffer size has to be a power of two. If
598 * it is not, round down to the closes power of
599 * 2 and program that size.
602 int maxpages
= pagecount
;
603 u32 bufsize
= pagecount
* PAGE_SIZE
;
605 if (bufsize
> MAX_EXPECTED_BUFFER
)
607 MAX_EXPECTED_BUFFER
>>
609 else if (!is_power_of_2(bufsize
))
611 rounddown_pow_of_two(bufsize
) >>
614 list
[setcount
].idx
= pageidx
;
615 list
[setcount
].count
= maxpages
;
616 pagecount
-= maxpages
;
631 * program_rcvarray() - program an RcvArray group with receive buffers
632 * @fd: filedata pointer
633 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
634 * virtual address, buffer length, page pointers, pagesets (array of
635 * struct tid_pageset holding information on physically contiguous
636 * chunks from the user buffer), and other fields.
637 * @grp: RcvArray group
638 * @start: starting index into sets array
639 * @count: number of struct tid_pageset's to program
640 * @tidlist: the array of u32 elements when the information about the
641 * programmed RcvArray entries is to be encoded.
642 * @tididx: starting offset into tidlist
643 * @pmapped: (output parameter) number of pages programmed into the RcvArray
646 * This function will program up to 'count' number of RcvArray entries from the
647 * group 'grp'. To make best use of write-combining writes, the function will
648 * perform writes to the unused RcvArray entries which will be ignored by the
649 * HW. Each RcvArray entry will be programmed with a physically contiguous
650 * buffer chunk from the user's virtual buffer.
653 * -EINVAL if the requested count is larger than the size of the group,
654 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
655 * number of RcvArray entries programmed.
657 static int program_rcvarray(struct hfi1_filedata
*fd
, struct tid_user_buf
*tbuf
,
658 struct tid_group
*grp
,
659 unsigned int start
, u16 count
,
660 u32
*tidlist
, unsigned int *tididx
,
661 unsigned int *pmapped
)
663 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
664 struct hfi1_devdata
*dd
= uctxt
->dd
;
666 u32 tidinfo
= 0, rcventry
, useidx
= 0;
669 /* Count should never be larger than the group size */
670 if (count
> grp
->size
)
673 /* Find the first unused entry in the group */
674 for (idx
= 0; idx
< grp
->size
; idx
++) {
675 if (!(grp
->map
& (1 << idx
))) {
679 rcv_array_wc_fill(dd
, grp
->base
+ idx
);
683 while (idx
< count
) {
684 u16 npages
, pageidx
, setidx
= start
+ idx
;
688 * If this entry in the group is used, move to the next one.
689 * If we go past the end of the group, exit the loop.
691 if (useidx
>= grp
->size
) {
693 } else if (grp
->map
& (1 << useidx
)) {
694 rcv_array_wc_fill(dd
, grp
->base
+ useidx
);
699 rcventry
= grp
->base
+ useidx
;
700 npages
= tbuf
->psets
[setidx
].count
;
701 pageidx
= tbuf
->psets
[setidx
].idx
;
703 ret
= set_rcvarray_entry(fd
, tbuf
,
704 rcventry
, grp
, pageidx
,
710 tidinfo
= rcventry2tidinfo(rcventry
- uctxt
->expected_base
) |
711 EXP_TID_SET(LEN
, npages
);
712 tidlist
[(*tididx
)++] = tidinfo
;
714 grp
->map
|= 1 << useidx
++;
718 /* Fill the rest of the group with "blank" writes */
719 for (; useidx
< grp
->size
; useidx
++)
720 rcv_array_wc_fill(dd
, grp
->base
+ useidx
);
725 static int set_rcvarray_entry(struct hfi1_filedata
*fd
,
726 struct tid_user_buf
*tbuf
,
727 u32 rcventry
, struct tid_group
*grp
,
728 u16 pageidx
, unsigned int npages
)
731 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
732 struct tid_rb_node
*node
;
733 struct hfi1_devdata
*dd
= uctxt
->dd
;
735 struct page
**pages
= tbuf
->pages
+ pageidx
;
738 * Allocate the node first so we can handle a potential
739 * failure before we've programmed anything.
741 node
= kzalloc(sizeof(*node
) + (sizeof(struct page
*) * npages
),
746 phys
= pci_map_single(dd
->pcidev
,
747 __va(page_to_phys(pages
[0])),
748 npages
* PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
749 if (dma_mapping_error(&dd
->pcidev
->dev
, phys
)) {
750 dd_dev_err(dd
, "Failed to DMA map Exp Rcv pages 0x%llx\n",
757 node
->phys
= page_to_phys(pages
[0]);
758 node
->npages
= npages
;
759 node
->rcventry
= rcventry
;
760 node
->dma_addr
= phys
;
763 memcpy(node
->pages
, pages
, sizeof(struct page
*) * npages
);
766 ret
= mmu_interval_notifier_insert(
767 &node
->notifier
, fd
->mm
,
768 tbuf
->vaddr
+ (pageidx
* PAGE_SIZE
), npages
* PAGE_SIZE
,
773 * FIXME: This is in the wrong order, the notifier should be
774 * established before the pages are pinned by pin_rcv_pages.
776 mmu_interval_read_begin(&node
->notifier
);
778 fd
->entry_to_rb
[node
->rcventry
- uctxt
->expected_base
] = node
;
780 hfi1_put_tid(dd
, rcventry
, PT_EXPECTED
, phys
, ilog2(npages
) + 1);
781 trace_hfi1_exp_tid_reg(uctxt
->ctxt
, fd
->subctxt
, rcventry
, npages
,
782 node
->notifier
.interval_tree
.start
, node
->phys
,
787 hfi1_cdbg(TID
, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
788 node
->rcventry
, node
->notifier
.interval_tree
.start
,
790 pci_unmap_single(dd
->pcidev
, phys
, npages
* PAGE_SIZE
,
796 static int unprogram_rcvarray(struct hfi1_filedata
*fd
, u32 tidinfo
,
797 struct tid_group
**grp
)
799 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
800 struct hfi1_devdata
*dd
= uctxt
->dd
;
801 struct tid_rb_node
*node
;
802 u8 tidctrl
= EXP_TID_GET(tidinfo
, CTRL
);
803 u32 tididx
= EXP_TID_GET(tidinfo
, IDX
) << 1, rcventry
;
805 if (tididx
>= uctxt
->expected_count
) {
806 dd_dev_err(dd
, "Invalid RcvArray entry (%u) index for ctxt %u\n",
807 tididx
, uctxt
->ctxt
);
814 rcventry
= tididx
+ (tidctrl
- 1);
816 node
= fd
->entry_to_rb
[rcventry
];
817 if (!node
|| node
->rcventry
!= (uctxt
->expected_base
+ rcventry
))
824 mmu_interval_notifier_remove(&node
->notifier
);
825 cacheless_tid_rb_remove(fd
, node
);
830 static void clear_tid_node(struct hfi1_filedata
*fd
, struct tid_rb_node
*node
)
832 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
833 struct hfi1_devdata
*dd
= uctxt
->dd
;
835 trace_hfi1_exp_tid_unreg(uctxt
->ctxt
, fd
->subctxt
, node
->rcventry
,
837 node
->notifier
.interval_tree
.start
, node
->phys
,
841 * Make sure device has seen the write before we unpin the
844 hfi1_put_tid(dd
, node
->rcventry
, PT_INVALID_FLUSH
, 0, 0);
846 unpin_rcv_pages(fd
, NULL
, node
, 0, node
->npages
, true);
849 node
->grp
->map
&= ~(1 << (node
->rcventry
- node
->grp
->base
));
851 if (node
->grp
->used
== node
->grp
->size
- 1)
852 tid_group_move(node
->grp
, &uctxt
->tid_full_list
,
853 &uctxt
->tid_used_list
);
854 else if (!node
->grp
->used
)
855 tid_group_move(node
->grp
, &uctxt
->tid_used_list
,
856 &uctxt
->tid_group_list
);
861 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
862 * clearing nodes in the non-cached case.
864 static void unlock_exp_tids(struct hfi1_ctxtdata
*uctxt
,
865 struct exp_tid_set
*set
,
866 struct hfi1_filedata
*fd
)
868 struct tid_group
*grp
, *ptr
;
871 list_for_each_entry_safe(grp
, ptr
, &set
->list
, list
) {
872 list_del_init(&grp
->list
);
874 for (i
= 0; i
< grp
->size
; i
++) {
875 if (grp
->map
& (1 << i
)) {
876 u16 rcventry
= grp
->base
+ i
;
877 struct tid_rb_node
*node
;
879 node
= fd
->entry_to_rb
[rcventry
-
880 uctxt
->expected_base
];
881 if (!node
|| node
->rcventry
!= rcventry
)
885 mmu_interval_notifier_remove(
887 cacheless_tid_rb_remove(fd
, node
);
893 static bool tid_rb_invalidate(struct mmu_interval_notifier
*mni
,
894 const struct mmu_notifier_range
*range
,
895 unsigned long cur_seq
)
897 struct tid_rb_node
*node
=
898 container_of(mni
, struct tid_rb_node
, notifier
);
899 struct hfi1_filedata
*fdata
= node
->fdata
;
900 struct hfi1_ctxtdata
*uctxt
= fdata
->uctxt
;
905 trace_hfi1_exp_tid_inval(uctxt
->ctxt
, fdata
->subctxt
,
906 node
->notifier
.interval_tree
.start
,
907 node
->rcventry
, node
->npages
, node
->dma_addr
);
910 spin_lock(&fdata
->invalid_lock
);
911 if (fdata
->invalid_tid_idx
< uctxt
->expected_count
) {
912 fdata
->invalid_tids
[fdata
->invalid_tid_idx
] =
913 rcventry2tidinfo(node
->rcventry
- uctxt
->expected_base
);
914 fdata
->invalid_tids
[fdata
->invalid_tid_idx
] |=
915 EXP_TID_SET(LEN
, node
->npages
);
916 if (!fdata
->invalid_tid_idx
) {
920 * hfi1_set_uevent_bits() sets a user event flag
921 * for all processes. Because calling into the
922 * driver to process TID cache invalidations is
923 * expensive and TID cache invalidations are
924 * handled on a per-process basis, we can
925 * optimize this to set the flag only for the
926 * process in question.
928 ev
= uctxt
->dd
->events
+
929 (uctxt_offset(uctxt
) + fdata
->subctxt
);
930 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT
, ev
);
932 fdata
->invalid_tid_idx
++;
934 spin_unlock(&fdata
->invalid_lock
);
938 static void cacheless_tid_rb_remove(struct hfi1_filedata
*fdata
,
939 struct tid_rb_node
*tnode
)
941 u32 base
= fdata
->uctxt
->expected_base
;
943 fdata
->entry_to_rb
[tnode
->rcventry
- base
] = NULL
;
944 clear_tid_node(fdata
, tnode
);