treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
blobf05742ac0949712e2480948449bc2a3b74b3445c
1 /*
2 * Copyright(c) 2015-2018 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 #include <asm/page.h>
48 #include <linux/string.h>
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55 struct exp_tid_set *set,
56 struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59 struct tid_user_buf *tbuf,
60 u32 rcventry, struct tid_group *grp,
61 u16 pageidx, unsigned int npages);
62 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
63 struct tid_rb_node *tnode);
64 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
65 const struct mmu_notifier_range *range,
66 unsigned long cur_seq);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68 struct tid_group *grp,
69 unsigned int start, u16 count,
70 u32 *tidlist, unsigned int *tididx,
71 unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73 struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
76 static const struct mmu_interval_notifier_ops tid_mn_ops = {
77 .invalidate = tid_rb_invalidate,
81 * Initialize context and file private data needed for Expected
82 * receive caching. This needs to be done after the context has
83 * been configured with the eager/expected RcvEntry counts.
85 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
86 struct hfi1_ctxtdata *uctxt)
88 int ret = 0;
90 spin_lock_init(&fd->tid_lock);
91 spin_lock_init(&fd->invalid_lock);
93 fd->entry_to_rb = kcalloc(uctxt->expected_count,
94 sizeof(struct rb_node *),
95 GFP_KERNEL);
96 if (!fd->entry_to_rb)
97 return -ENOMEM;
99 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
100 fd->invalid_tid_idx = 0;
101 fd->invalid_tids = kcalloc(uctxt->expected_count,
102 sizeof(*fd->invalid_tids),
103 GFP_KERNEL);
104 if (!fd->invalid_tids) {
105 kfree(fd->entry_to_rb);
106 fd->entry_to_rb = NULL;
107 return -ENOMEM;
109 fd->use_mn = true;
113 * PSM does not have a good way to separate, count, and
114 * effectively enforce a limit on RcvArray entries used by
115 * subctxts (when context sharing is used) when TID caching
116 * is enabled. To help with that, we calculate a per-process
117 * RcvArray entry share and enforce that.
118 * If TID caching is not in use, PSM deals with usage on its
119 * own. In that case, we allow any subctxt to take all of the
120 * entries.
122 * Make sure that we set the tid counts only after successful
123 * init.
125 spin_lock(&fd->tid_lock);
126 if (uctxt->subctxt_cnt && fd->use_mn) {
127 u16 remainder;
129 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
130 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
131 if (remainder && fd->subctxt < remainder)
132 fd->tid_limit++;
133 } else {
134 fd->tid_limit = uctxt->expected_count;
136 spin_unlock(&fd->tid_lock);
138 return ret;
141 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
143 struct hfi1_ctxtdata *uctxt = fd->uctxt;
145 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
146 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
147 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
148 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
150 kfree(fd->invalid_tids);
151 fd->invalid_tids = NULL;
153 kfree(fd->entry_to_rb);
154 fd->entry_to_rb = NULL;
158 * Release pinned receive buffer pages.
160 * @mapped - true if the pages have been DMA mapped. false otherwise.
161 * @idx - Index of the first page to unpin.
162 * @npages - No of pages to unpin.
164 * If the pages have been DMA mapped (indicated by mapped parameter), their
165 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
166 * their info will be passed via a struct tid_user_buf.
168 static void unpin_rcv_pages(struct hfi1_filedata *fd,
169 struct tid_user_buf *tidbuf,
170 struct tid_rb_node *node,
171 unsigned int idx,
172 unsigned int npages,
173 bool mapped)
175 struct page **pages;
176 struct hfi1_devdata *dd = fd->uctxt->dd;
178 if (mapped) {
179 pci_unmap_single(dd->pcidev, node->dma_addr,
180 node->npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
181 pages = &node->pages[idx];
182 } else {
183 pages = &tidbuf->pages[idx];
185 hfi1_release_user_pages(fd->mm, pages, npages, mapped);
186 fd->tid_n_pinned -= npages;
190 * Pin receive buffer pages.
192 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
194 int pinned;
195 unsigned int npages;
196 unsigned long vaddr = tidbuf->vaddr;
197 struct page **pages = NULL;
198 struct hfi1_devdata *dd = fd->uctxt->dd;
200 /* Get the number of pages the user buffer spans */
201 npages = num_user_pages(vaddr, tidbuf->length);
202 if (!npages)
203 return -EINVAL;
205 if (npages > fd->uctxt->expected_count) {
206 dd_dev_err(dd, "Expected buffer too big\n");
207 return -EINVAL;
210 /* Verify that access is OK for the user buffer */
211 if (!access_ok((void __user *)vaddr,
212 npages * PAGE_SIZE)) {
213 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
214 (void *)vaddr, npages);
215 return -EFAULT;
217 /* Allocate the array of struct page pointers needed for pinning */
218 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
219 if (!pages)
220 return -ENOMEM;
223 * Pin all the pages of the user buffer. If we can't pin all the
224 * pages, accept the amount pinned so far and program only that.
225 * User space knows how to deal with partially programmed buffers.
227 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
228 kfree(pages);
229 return -ENOMEM;
232 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
233 if (pinned <= 0) {
234 kfree(pages);
235 return pinned;
237 tidbuf->pages = pages;
238 tidbuf->npages = npages;
239 fd->tid_n_pinned += pinned;
240 return pinned;
244 * RcvArray entry allocation for Expected Receives is done by the
245 * following algorithm:
247 * The context keeps 3 lists of groups of RcvArray entries:
248 * 1. List of empty groups - tid_group_list
249 * This list is created during user context creation and
250 * contains elements which describe sets (of 8) of empty
251 * RcvArray entries.
252 * 2. List of partially used groups - tid_used_list
253 * This list contains sets of RcvArray entries which are
254 * not completely used up. Another mapping request could
255 * use some of all of the remaining entries.
256 * 3. List of full groups - tid_full_list
257 * This is the list where sets that are completely used
258 * up go.
260 * An attempt to optimize the usage of RcvArray entries is
261 * made by finding all sets of physically contiguous pages in a
262 * user's buffer.
263 * These physically contiguous sets are further split into
264 * sizes supported by the receive engine of the HFI. The
265 * resulting sets of pages are stored in struct tid_pageset,
266 * which describes the sets as:
267 * * .count - number of pages in this set
268 * * .idx - starting index into struct page ** array
269 * of this set
271 * From this point on, the algorithm deals with the page sets
272 * described above. The number of pagesets is divided by the
273 * RcvArray group size to produce the number of full groups
274 * needed.
276 * Groups from the 3 lists are manipulated using the following
277 * rules:
278 * 1. For each set of 8 pagesets, a complete group from
279 * tid_group_list is taken, programmed, and moved to
280 * the tid_full_list list.
281 * 2. For all remaining pagesets:
282 * 2.1 If the tid_used_list is empty and the tid_group_list
283 * is empty, stop processing pageset and return only
284 * what has been programmed up to this point.
285 * 2.2 If the tid_used_list is empty and the tid_group_list
286 * is not empty, move a group from tid_group_list to
287 * tid_used_list.
288 * 2.3 For each group is tid_used_group, program as much as
289 * can fit into the group. If the group becomes fully
290 * used, move it to tid_full_list.
292 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
293 struct hfi1_tid_info *tinfo)
295 int ret = 0, need_group = 0, pinned;
296 struct hfi1_ctxtdata *uctxt = fd->uctxt;
297 struct hfi1_devdata *dd = uctxt->dd;
298 unsigned int ngroups, pageidx = 0, pageset_count,
299 tididx = 0, mapped, mapped_pages = 0;
300 u32 *tidlist = NULL;
301 struct tid_user_buf *tidbuf;
303 if (!PAGE_ALIGNED(tinfo->vaddr))
304 return -EINVAL;
306 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
307 if (!tidbuf)
308 return -ENOMEM;
310 tidbuf->vaddr = tinfo->vaddr;
311 tidbuf->length = tinfo->length;
312 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
313 GFP_KERNEL);
314 if (!tidbuf->psets) {
315 kfree(tidbuf);
316 return -ENOMEM;
319 pinned = pin_rcv_pages(fd, tidbuf);
320 if (pinned <= 0) {
321 kfree(tidbuf->psets);
322 kfree(tidbuf);
323 return pinned;
326 /* Find sets of physically contiguous pages */
327 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
330 * We don't need to access this under a lock since tid_used is per
331 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
332 * and hfi1_user_exp_rcv_setup() at the same time.
334 spin_lock(&fd->tid_lock);
335 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
336 pageset_count = fd->tid_limit - fd->tid_used;
337 else
338 pageset_count = tidbuf->n_psets;
339 spin_unlock(&fd->tid_lock);
341 if (!pageset_count)
342 goto bail;
344 ngroups = pageset_count / dd->rcv_entries.group_size;
345 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
346 if (!tidlist) {
347 ret = -ENOMEM;
348 goto nomem;
351 tididx = 0;
354 * From this point on, we are going to be using shared (between master
355 * and subcontexts) context resources. We need to take the lock.
357 mutex_lock(&uctxt->exp_mutex);
359 * The first step is to program the RcvArray entries which are complete
360 * groups.
362 while (ngroups && uctxt->tid_group_list.count) {
363 struct tid_group *grp =
364 tid_group_pop(&uctxt->tid_group_list);
366 ret = program_rcvarray(fd, tidbuf, grp,
367 pageidx, dd->rcv_entries.group_size,
368 tidlist, &tididx, &mapped);
370 * If there was a failure to program the RcvArray
371 * entries for the entire group, reset the grp fields
372 * and add the grp back to the free group list.
374 if (ret <= 0) {
375 tid_group_add_tail(grp, &uctxt->tid_group_list);
376 hfi1_cdbg(TID,
377 "Failed to program RcvArray group %d", ret);
378 goto unlock;
381 tid_group_add_tail(grp, &uctxt->tid_full_list);
382 ngroups--;
383 pageidx += ret;
384 mapped_pages += mapped;
387 while (pageidx < pageset_count) {
388 struct tid_group *grp, *ptr;
390 * If we don't have any partially used tid groups, check
391 * if we have empty groups. If so, take one from there and
392 * put in the partially used list.
394 if (!uctxt->tid_used_list.count || need_group) {
395 if (!uctxt->tid_group_list.count)
396 goto unlock;
398 grp = tid_group_pop(&uctxt->tid_group_list);
399 tid_group_add_tail(grp, &uctxt->tid_used_list);
400 need_group = 0;
403 * There is an optimization opportunity here - instead of
404 * fitting as many page sets as we can, check for a group
405 * later on in the list that could fit all of them.
407 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
408 list) {
409 unsigned use = min_t(unsigned, pageset_count - pageidx,
410 grp->size - grp->used);
412 ret = program_rcvarray(fd, tidbuf, grp,
413 pageidx, use, tidlist,
414 &tididx, &mapped);
415 if (ret < 0) {
416 hfi1_cdbg(TID,
417 "Failed to program RcvArray entries %d",
418 ret);
419 goto unlock;
420 } else if (ret > 0) {
421 if (grp->used == grp->size)
422 tid_group_move(grp,
423 &uctxt->tid_used_list,
424 &uctxt->tid_full_list);
425 pageidx += ret;
426 mapped_pages += mapped;
427 need_group = 0;
428 /* Check if we are done so we break out early */
429 if (pageidx >= pageset_count)
430 break;
431 } else if (WARN_ON(ret == 0)) {
433 * If ret is 0, we did not program any entries
434 * into this group, which can only happen if
435 * we've screwed up the accounting somewhere.
436 * Warn and try to continue.
438 need_group = 1;
442 unlock:
443 mutex_unlock(&uctxt->exp_mutex);
444 nomem:
445 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
446 mapped_pages, ret);
447 if (tididx) {
448 spin_lock(&fd->tid_lock);
449 fd->tid_used += tididx;
450 spin_unlock(&fd->tid_lock);
451 tinfo->tidcnt = tididx;
452 tinfo->length = mapped_pages * PAGE_SIZE;
454 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
455 tidlist, sizeof(tidlist[0]) * tididx)) {
457 * On failure to copy to the user level, we need to undo
458 * everything done so far so we don't leak resources.
460 tinfo->tidlist = (unsigned long)&tidlist;
461 hfi1_user_exp_rcv_clear(fd, tinfo);
462 tinfo->tidlist = 0;
463 ret = -EFAULT;
464 goto bail;
469 * If not everything was mapped (due to insufficient RcvArray entries,
470 * for example), unpin all unmapped pages so we can pin them nex time.
472 if (mapped_pages != pinned)
473 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
474 (pinned - mapped_pages), false);
475 bail:
476 kfree(tidbuf->psets);
477 kfree(tidlist);
478 kfree(tidbuf->pages);
479 kfree(tidbuf);
480 return ret > 0 ? 0 : ret;
483 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
484 struct hfi1_tid_info *tinfo)
486 int ret = 0;
487 struct hfi1_ctxtdata *uctxt = fd->uctxt;
488 u32 *tidinfo;
489 unsigned tididx;
491 if (unlikely(tinfo->tidcnt > fd->tid_used))
492 return -EINVAL;
494 tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
495 sizeof(tidinfo[0]) * tinfo->tidcnt);
496 if (IS_ERR(tidinfo))
497 return PTR_ERR(tidinfo);
499 mutex_lock(&uctxt->exp_mutex);
500 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
501 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
502 if (ret) {
503 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
504 ret);
505 break;
508 spin_lock(&fd->tid_lock);
509 fd->tid_used -= tididx;
510 spin_unlock(&fd->tid_lock);
511 tinfo->tidcnt = tididx;
512 mutex_unlock(&uctxt->exp_mutex);
514 kfree(tidinfo);
515 return ret;
518 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
519 struct hfi1_tid_info *tinfo)
521 struct hfi1_ctxtdata *uctxt = fd->uctxt;
522 unsigned long *ev = uctxt->dd->events +
523 (uctxt_offset(uctxt) + fd->subctxt);
524 u32 *array;
525 int ret = 0;
528 * copy_to_user() can sleep, which will leave the invalid_lock
529 * locked and cause the MMU notifier to be blocked on the lock
530 * for a long time.
531 * Copy the data to a local buffer so we can release the lock.
533 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
534 if (!array)
535 return -EFAULT;
537 spin_lock(&fd->invalid_lock);
538 if (fd->invalid_tid_idx) {
539 memcpy(array, fd->invalid_tids, sizeof(*array) *
540 fd->invalid_tid_idx);
541 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
542 fd->invalid_tid_idx);
543 tinfo->tidcnt = fd->invalid_tid_idx;
544 fd->invalid_tid_idx = 0;
546 * Reset the user flag while still holding the lock.
547 * Otherwise, PSM can miss events.
549 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
550 } else {
551 tinfo->tidcnt = 0;
553 spin_unlock(&fd->invalid_lock);
555 if (tinfo->tidcnt) {
556 if (copy_to_user((void __user *)tinfo->tidlist,
557 array, sizeof(*array) * tinfo->tidcnt))
558 ret = -EFAULT;
560 kfree(array);
562 return ret;
565 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
567 unsigned pagecount, pageidx, setcount = 0, i;
568 unsigned long pfn, this_pfn;
569 struct page **pages = tidbuf->pages;
570 struct tid_pageset *list = tidbuf->psets;
572 if (!npages)
573 return 0;
576 * Look for sets of physically contiguous pages in the user buffer.
577 * This will allow us to optimize Expected RcvArray entry usage by
578 * using the bigger supported sizes.
580 pfn = page_to_pfn(pages[0]);
581 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
582 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
585 * If the pfn's are not sequential, pages are not physically
586 * contiguous.
588 if (this_pfn != ++pfn) {
590 * At this point we have to loop over the set of
591 * physically contiguous pages and break them down it
592 * sizes supported by the HW.
593 * There are two main constraints:
594 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
595 * If the total set size is bigger than that
596 * program only a MAX_EXPECTED_BUFFER chunk.
597 * 2. The buffer size has to be a power of two. If
598 * it is not, round down to the closes power of
599 * 2 and program that size.
601 while (pagecount) {
602 int maxpages = pagecount;
603 u32 bufsize = pagecount * PAGE_SIZE;
605 if (bufsize > MAX_EXPECTED_BUFFER)
606 maxpages =
607 MAX_EXPECTED_BUFFER >>
608 PAGE_SHIFT;
609 else if (!is_power_of_2(bufsize))
610 maxpages =
611 rounddown_pow_of_two(bufsize) >>
612 PAGE_SHIFT;
614 list[setcount].idx = pageidx;
615 list[setcount].count = maxpages;
616 pagecount -= maxpages;
617 pageidx += maxpages;
618 setcount++;
620 pageidx = i;
621 pagecount = 1;
622 pfn = this_pfn;
623 } else {
624 pagecount++;
627 return setcount;
631 * program_rcvarray() - program an RcvArray group with receive buffers
632 * @fd: filedata pointer
633 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
634 * virtual address, buffer length, page pointers, pagesets (array of
635 * struct tid_pageset holding information on physically contiguous
636 * chunks from the user buffer), and other fields.
637 * @grp: RcvArray group
638 * @start: starting index into sets array
639 * @count: number of struct tid_pageset's to program
640 * @tidlist: the array of u32 elements when the information about the
641 * programmed RcvArray entries is to be encoded.
642 * @tididx: starting offset into tidlist
643 * @pmapped: (output parameter) number of pages programmed into the RcvArray
644 * entries.
646 * This function will program up to 'count' number of RcvArray entries from the
647 * group 'grp'. To make best use of write-combining writes, the function will
648 * perform writes to the unused RcvArray entries which will be ignored by the
649 * HW. Each RcvArray entry will be programmed with a physically contiguous
650 * buffer chunk from the user's virtual buffer.
652 * Return:
653 * -EINVAL if the requested count is larger than the size of the group,
654 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
655 * number of RcvArray entries programmed.
657 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
658 struct tid_group *grp,
659 unsigned int start, u16 count,
660 u32 *tidlist, unsigned int *tididx,
661 unsigned int *pmapped)
663 struct hfi1_ctxtdata *uctxt = fd->uctxt;
664 struct hfi1_devdata *dd = uctxt->dd;
665 u16 idx;
666 u32 tidinfo = 0, rcventry, useidx = 0;
667 int mapped = 0;
669 /* Count should never be larger than the group size */
670 if (count > grp->size)
671 return -EINVAL;
673 /* Find the first unused entry in the group */
674 for (idx = 0; idx < grp->size; idx++) {
675 if (!(grp->map & (1 << idx))) {
676 useidx = idx;
677 break;
679 rcv_array_wc_fill(dd, grp->base + idx);
682 idx = 0;
683 while (idx < count) {
684 u16 npages, pageidx, setidx = start + idx;
685 int ret = 0;
688 * If this entry in the group is used, move to the next one.
689 * If we go past the end of the group, exit the loop.
691 if (useidx >= grp->size) {
692 break;
693 } else if (grp->map & (1 << useidx)) {
694 rcv_array_wc_fill(dd, grp->base + useidx);
695 useidx++;
696 continue;
699 rcventry = grp->base + useidx;
700 npages = tbuf->psets[setidx].count;
701 pageidx = tbuf->psets[setidx].idx;
703 ret = set_rcvarray_entry(fd, tbuf,
704 rcventry, grp, pageidx,
705 npages);
706 if (ret)
707 return ret;
708 mapped += npages;
710 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
711 EXP_TID_SET(LEN, npages);
712 tidlist[(*tididx)++] = tidinfo;
713 grp->used++;
714 grp->map |= 1 << useidx++;
715 idx++;
718 /* Fill the rest of the group with "blank" writes */
719 for (; useidx < grp->size; useidx++)
720 rcv_array_wc_fill(dd, grp->base + useidx);
721 *pmapped = mapped;
722 return idx;
725 static int set_rcvarray_entry(struct hfi1_filedata *fd,
726 struct tid_user_buf *tbuf,
727 u32 rcventry, struct tid_group *grp,
728 u16 pageidx, unsigned int npages)
730 int ret;
731 struct hfi1_ctxtdata *uctxt = fd->uctxt;
732 struct tid_rb_node *node;
733 struct hfi1_devdata *dd = uctxt->dd;
734 dma_addr_t phys;
735 struct page **pages = tbuf->pages + pageidx;
738 * Allocate the node first so we can handle a potential
739 * failure before we've programmed anything.
741 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
742 GFP_KERNEL);
743 if (!node)
744 return -ENOMEM;
746 phys = pci_map_single(dd->pcidev,
747 __va(page_to_phys(pages[0])),
748 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
749 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
750 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
751 phys);
752 kfree(node);
753 return -EFAULT;
756 node->fdata = fd;
757 node->phys = page_to_phys(pages[0]);
758 node->npages = npages;
759 node->rcventry = rcventry;
760 node->dma_addr = phys;
761 node->grp = grp;
762 node->freed = false;
763 memcpy(node->pages, pages, sizeof(struct page *) * npages);
765 if (fd->use_mn) {
766 ret = mmu_interval_notifier_insert(
767 &node->notifier, fd->mm,
768 tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE,
769 &tid_mn_ops);
770 if (ret)
771 goto out_unmap;
773 * FIXME: This is in the wrong order, the notifier should be
774 * established before the pages are pinned by pin_rcv_pages.
776 mmu_interval_read_begin(&node->notifier);
778 fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
780 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
781 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
782 node->notifier.interval_tree.start, node->phys,
783 phys);
784 return 0;
786 out_unmap:
787 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
788 node->rcventry, node->notifier.interval_tree.start,
789 node->phys, ret);
790 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
791 PCI_DMA_FROMDEVICE);
792 kfree(node);
793 return -EFAULT;
796 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
797 struct tid_group **grp)
799 struct hfi1_ctxtdata *uctxt = fd->uctxt;
800 struct hfi1_devdata *dd = uctxt->dd;
801 struct tid_rb_node *node;
802 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
803 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
805 if (tididx >= uctxt->expected_count) {
806 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
807 tididx, uctxt->ctxt);
808 return -EINVAL;
811 if (tidctrl == 0x3)
812 return -EINVAL;
814 rcventry = tididx + (tidctrl - 1);
816 node = fd->entry_to_rb[rcventry];
817 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
818 return -EBADF;
820 if (grp)
821 *grp = node->grp;
823 if (fd->use_mn)
824 mmu_interval_notifier_remove(&node->notifier);
825 cacheless_tid_rb_remove(fd, node);
827 return 0;
830 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
832 struct hfi1_ctxtdata *uctxt = fd->uctxt;
833 struct hfi1_devdata *dd = uctxt->dd;
835 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
836 node->npages,
837 node->notifier.interval_tree.start, node->phys,
838 node->dma_addr);
841 * Make sure device has seen the write before we unpin the
842 * pages.
844 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
846 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
848 node->grp->used--;
849 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
851 if (node->grp->used == node->grp->size - 1)
852 tid_group_move(node->grp, &uctxt->tid_full_list,
853 &uctxt->tid_used_list);
854 else if (!node->grp->used)
855 tid_group_move(node->grp, &uctxt->tid_used_list,
856 &uctxt->tid_group_list);
857 kfree(node);
861 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
862 * clearing nodes in the non-cached case.
864 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
865 struct exp_tid_set *set,
866 struct hfi1_filedata *fd)
868 struct tid_group *grp, *ptr;
869 int i;
871 list_for_each_entry_safe(grp, ptr, &set->list, list) {
872 list_del_init(&grp->list);
874 for (i = 0; i < grp->size; i++) {
875 if (grp->map & (1 << i)) {
876 u16 rcventry = grp->base + i;
877 struct tid_rb_node *node;
879 node = fd->entry_to_rb[rcventry -
880 uctxt->expected_base];
881 if (!node || node->rcventry != rcventry)
882 continue;
884 if (fd->use_mn)
885 mmu_interval_notifier_remove(
886 &node->notifier);
887 cacheless_tid_rb_remove(fd, node);
893 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
894 const struct mmu_notifier_range *range,
895 unsigned long cur_seq)
897 struct tid_rb_node *node =
898 container_of(mni, struct tid_rb_node, notifier);
899 struct hfi1_filedata *fdata = node->fdata;
900 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
902 if (node->freed)
903 return true;
905 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt,
906 node->notifier.interval_tree.start,
907 node->rcventry, node->npages, node->dma_addr);
908 node->freed = true;
910 spin_lock(&fdata->invalid_lock);
911 if (fdata->invalid_tid_idx < uctxt->expected_count) {
912 fdata->invalid_tids[fdata->invalid_tid_idx] =
913 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
914 fdata->invalid_tids[fdata->invalid_tid_idx] |=
915 EXP_TID_SET(LEN, node->npages);
916 if (!fdata->invalid_tid_idx) {
917 unsigned long *ev;
920 * hfi1_set_uevent_bits() sets a user event flag
921 * for all processes. Because calling into the
922 * driver to process TID cache invalidations is
923 * expensive and TID cache invalidations are
924 * handled on a per-process basis, we can
925 * optimize this to set the flag only for the
926 * process in question.
928 ev = uctxt->dd->events +
929 (uctxt_offset(uctxt) + fdata->subctxt);
930 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
932 fdata->invalid_tid_idx++;
934 spin_unlock(&fdata->invalid_lock);
935 return true;
938 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
939 struct tid_rb_node *tnode)
941 u32 base = fdata->uctxt->expected_base;
943 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
944 clear_tid_node(fdata, tnode);