1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida
);
37 static LIST_HEAD(input_dev_list
);
38 static LIST_HEAD(input_handler_list
);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex
);
48 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
50 static inline int is_event_supported(unsigned int code
,
51 unsigned long *bm
, unsigned int max
)
53 return code
<= max
&& test_bit(code
, bm
);
56 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
59 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
62 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
63 return (old_val
* 3 + value
) / 4;
65 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
66 return (old_val
+ value
) / 2;
72 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
74 if (test_bit(EV_REP
, dev
->evbit
) &&
75 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
76 dev
->timer
.function
) {
77 dev
->repeat_key
= code
;
78 mod_timer(&dev
->timer
,
79 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
83 static void input_stop_autorepeat(struct input_dev
*dev
)
85 del_timer(&dev
->timer
);
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
93 static unsigned int input_to_handler(struct input_handle
*handle
,
94 struct input_value
*vals
, unsigned int count
)
96 struct input_handler
*handler
= handle
->handler
;
97 struct input_value
*end
= vals
;
98 struct input_value
*v
;
100 if (handler
->filter
) {
101 for (v
= vals
; v
!= vals
+ count
; v
++) {
102 if (handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
115 handler
->events(handle
, vals
, count
);
116 else if (handler
->event
)
117 for (v
= vals
; v
!= vals
+ count
; v
++)
118 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
128 static void input_pass_values(struct input_dev
*dev
,
129 struct input_value
*vals
, unsigned int count
)
131 struct input_handle
*handle
;
132 struct input_value
*v
;
139 handle
= rcu_dereference(dev
->grab
);
141 count
= input_to_handler(handle
, vals
, count
);
143 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
145 count
= input_to_handler(handle
, vals
, count
);
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP
, dev
->evbit
) && test_bit(EV_KEY
, dev
->evbit
)) {
155 for (v
= vals
; v
!= vals
+ count
; v
++) {
156 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
158 input_start_autorepeat(dev
, v
->code
);
160 input_stop_autorepeat(dev
);
166 static void input_pass_event(struct input_dev
*dev
,
167 unsigned int type
, unsigned int code
, int value
)
169 struct input_value vals
[] = { { type
, code
, value
} };
171 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
179 static void input_repeat_key(struct timer_list
*t
)
181 struct input_dev
*dev
= from_timer(dev
, t
, timer
);
184 spin_lock_irqsave(&dev
->event_lock
, flags
);
186 if (test_bit(dev
->repeat_key
, dev
->key
) &&
187 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
188 struct input_value vals
[] = {
189 { EV_KEY
, dev
->repeat_key
, 2 },
193 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
195 if (dev
->rep
[REP_PERIOD
])
196 mod_timer(&dev
->timer
, jiffies
+
197 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
200 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
203 #define INPUT_IGNORE_EVENT 0
204 #define INPUT_PASS_TO_HANDLERS 1
205 #define INPUT_PASS_TO_DEVICE 2
207 #define INPUT_FLUSH 8
208 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
210 static int input_handle_abs_event(struct input_dev
*dev
,
211 unsigned int code
, int *pval
)
213 struct input_mt
*mt
= dev
->mt
;
217 if (code
== ABS_MT_SLOT
) {
219 * "Stage" the event; we'll flush it later, when we
220 * get actual touch data.
222 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
225 return INPUT_IGNORE_EVENT
;
228 is_mt_event
= input_is_mt_value(code
);
231 pold
= &dev
->absinfo
[code
].value
;
233 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
236 * Bypass filtering for multi-touch events when
237 * not employing slots.
243 *pval
= input_defuzz_abs_event(*pval
, *pold
,
244 dev
->absinfo
[code
].fuzz
);
246 return INPUT_IGNORE_EVENT
;
251 /* Flush pending "slot" event */
252 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
253 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
254 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
257 return INPUT_PASS_TO_HANDLERS
;
260 static int input_get_disposition(struct input_dev
*dev
,
261 unsigned int type
, unsigned int code
, int *pval
)
263 int disposition
= INPUT_IGNORE_EVENT
;
271 disposition
= INPUT_PASS_TO_ALL
;
275 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
278 disposition
= INPUT_PASS_TO_HANDLERS
;
284 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
286 /* auto-repeat bypasses state updates */
288 disposition
= INPUT_PASS_TO_HANDLERS
;
292 if (!!test_bit(code
, dev
->key
) != !!value
) {
294 __change_bit(code
, dev
->key
);
295 disposition
= INPUT_PASS_TO_HANDLERS
;
301 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
302 !!test_bit(code
, dev
->sw
) != !!value
) {
304 __change_bit(code
, dev
->sw
);
305 disposition
= INPUT_PASS_TO_HANDLERS
;
310 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
311 disposition
= input_handle_abs_event(dev
, code
, &value
);
316 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
317 disposition
= INPUT_PASS_TO_HANDLERS
;
322 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
323 disposition
= INPUT_PASS_TO_ALL
;
328 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
329 !!test_bit(code
, dev
->led
) != !!value
) {
331 __change_bit(code
, dev
->led
);
332 disposition
= INPUT_PASS_TO_ALL
;
337 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
339 if (!!test_bit(code
, dev
->snd
) != !!value
)
340 __change_bit(code
, dev
->snd
);
341 disposition
= INPUT_PASS_TO_ALL
;
346 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
347 dev
->rep
[code
] = value
;
348 disposition
= INPUT_PASS_TO_ALL
;
354 disposition
= INPUT_PASS_TO_ALL
;
358 disposition
= INPUT_PASS_TO_ALL
;
366 static void input_handle_event(struct input_dev
*dev
,
367 unsigned int type
, unsigned int code
, int value
)
369 int disposition
= input_get_disposition(dev
, type
, code
, &value
);
371 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
372 add_input_randomness(type
, code
, value
);
374 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
375 dev
->event(dev
, type
, code
, value
);
380 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
381 struct input_value
*v
;
383 if (disposition
& INPUT_SLOT
) {
384 v
= &dev
->vals
[dev
->num_vals
++];
386 v
->code
= ABS_MT_SLOT
;
387 v
->value
= dev
->mt
->slot
;
390 v
= &dev
->vals
[dev
->num_vals
++];
396 if (disposition
& INPUT_FLUSH
) {
397 if (dev
->num_vals
>= 2)
398 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
401 * Reset the timestamp on flush so we won't end up
402 * with a stale one. Note we only need to reset the
403 * monolithic one as we use its presence when deciding
404 * whether to generate a synthetic timestamp.
406 dev
->timestamp
[INPUT_CLK_MONO
] = ktime_set(0, 0);
407 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
408 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
409 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
416 * input_event() - report new input event
417 * @dev: device that generated the event
418 * @type: type of the event
420 * @value: value of the event
422 * This function should be used by drivers implementing various input
423 * devices to report input events. See also input_inject_event().
425 * NOTE: input_event() may be safely used right after input device was
426 * allocated with input_allocate_device(), even before it is registered
427 * with input_register_device(), but the event will not reach any of the
428 * input handlers. Such early invocation of input_event() may be used
429 * to 'seed' initial state of a switch or initial position of absolute
432 void input_event(struct input_dev
*dev
,
433 unsigned int type
, unsigned int code
, int value
)
437 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
439 spin_lock_irqsave(&dev
->event_lock
, flags
);
440 input_handle_event(dev
, type
, code
, value
);
441 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
444 EXPORT_SYMBOL(input_event
);
447 * input_inject_event() - send input event from input handler
448 * @handle: input handle to send event through
449 * @type: type of the event
451 * @value: value of the event
453 * Similar to input_event() but will ignore event if device is
454 * "grabbed" and handle injecting event is not the one that owns
457 void input_inject_event(struct input_handle
*handle
,
458 unsigned int type
, unsigned int code
, int value
)
460 struct input_dev
*dev
= handle
->dev
;
461 struct input_handle
*grab
;
464 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
465 spin_lock_irqsave(&dev
->event_lock
, flags
);
468 grab
= rcu_dereference(dev
->grab
);
469 if (!grab
|| grab
== handle
)
470 input_handle_event(dev
, type
, code
, value
);
473 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
476 EXPORT_SYMBOL(input_inject_event
);
479 * input_alloc_absinfo - allocates array of input_absinfo structs
480 * @dev: the input device emitting absolute events
482 * If the absinfo struct the caller asked for is already allocated, this
483 * functions will not do anything.
485 void input_alloc_absinfo(struct input_dev
*dev
)
490 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(*dev
->absinfo
), GFP_KERNEL
);
492 dev_err(dev
->dev
.parent
?: &dev
->dev
,
493 "%s: unable to allocate memory\n", __func__
);
495 * We will handle this allocation failure in
496 * input_register_device() when we refuse to register input
497 * device with ABS bits but without absinfo.
501 EXPORT_SYMBOL(input_alloc_absinfo
);
503 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
504 int min
, int max
, int fuzz
, int flat
)
506 struct input_absinfo
*absinfo
;
508 input_alloc_absinfo(dev
);
512 absinfo
= &dev
->absinfo
[axis
];
513 absinfo
->minimum
= min
;
514 absinfo
->maximum
= max
;
515 absinfo
->fuzz
= fuzz
;
516 absinfo
->flat
= flat
;
518 __set_bit(EV_ABS
, dev
->evbit
);
519 __set_bit(axis
, dev
->absbit
);
521 EXPORT_SYMBOL(input_set_abs_params
);
525 * input_grab_device - grabs device for exclusive use
526 * @handle: input handle that wants to own the device
528 * When a device is grabbed by an input handle all events generated by
529 * the device are delivered only to this handle. Also events injected
530 * by other input handles are ignored while device is grabbed.
532 int input_grab_device(struct input_handle
*handle
)
534 struct input_dev
*dev
= handle
->dev
;
537 retval
= mutex_lock_interruptible(&dev
->mutex
);
546 rcu_assign_pointer(dev
->grab
, handle
);
549 mutex_unlock(&dev
->mutex
);
552 EXPORT_SYMBOL(input_grab_device
);
554 static void __input_release_device(struct input_handle
*handle
)
556 struct input_dev
*dev
= handle
->dev
;
557 struct input_handle
*grabber
;
559 grabber
= rcu_dereference_protected(dev
->grab
,
560 lockdep_is_held(&dev
->mutex
));
561 if (grabber
== handle
) {
562 rcu_assign_pointer(dev
->grab
, NULL
);
563 /* Make sure input_pass_event() notices that grab is gone */
566 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
567 if (handle
->open
&& handle
->handler
->start
)
568 handle
->handler
->start(handle
);
573 * input_release_device - release previously grabbed device
574 * @handle: input handle that owns the device
576 * Releases previously grabbed device so that other input handles can
577 * start receiving input events. Upon release all handlers attached
578 * to the device have their start() method called so they have a change
579 * to synchronize device state with the rest of the system.
581 void input_release_device(struct input_handle
*handle
)
583 struct input_dev
*dev
= handle
->dev
;
585 mutex_lock(&dev
->mutex
);
586 __input_release_device(handle
);
587 mutex_unlock(&dev
->mutex
);
589 EXPORT_SYMBOL(input_release_device
);
592 * input_open_device - open input device
593 * @handle: handle through which device is being accessed
595 * This function should be called by input handlers when they
596 * want to start receive events from given input device.
598 int input_open_device(struct input_handle
*handle
)
600 struct input_dev
*dev
= handle
->dev
;
603 retval
= mutex_lock_interruptible(&dev
->mutex
);
607 if (dev
->going_away
) {
616 * Device is already opened, so we can exit immediately and
623 retval
= dev
->open(dev
);
628 * Make sure we are not delivering any more events
629 * through this handle
637 input_dev_poller_start(dev
->poller
);
640 mutex_unlock(&dev
->mutex
);
643 EXPORT_SYMBOL(input_open_device
);
645 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
647 struct input_dev
*dev
= handle
->dev
;
650 retval
= mutex_lock_interruptible(&dev
->mutex
);
655 retval
= dev
->flush(dev
, file
);
657 mutex_unlock(&dev
->mutex
);
660 EXPORT_SYMBOL(input_flush_device
);
663 * input_close_device - close input device
664 * @handle: handle through which device is being accessed
666 * This function should be called by input handlers when they
667 * want to stop receive events from given input device.
669 void input_close_device(struct input_handle
*handle
)
671 struct input_dev
*dev
= handle
->dev
;
673 mutex_lock(&dev
->mutex
);
675 __input_release_device(handle
);
679 input_dev_poller_stop(dev
->poller
);
685 if (!--handle
->open
) {
687 * synchronize_rcu() makes sure that input_pass_event()
688 * completed and that no more input events are delivered
689 * through this handle
694 mutex_unlock(&dev
->mutex
);
696 EXPORT_SYMBOL(input_close_device
);
699 * Simulate keyup events for all keys that are marked as pressed.
700 * The function must be called with dev->event_lock held.
702 static void input_dev_release_keys(struct input_dev
*dev
)
704 bool need_sync
= false;
707 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
708 for_each_set_bit(code
, dev
->key
, KEY_CNT
) {
709 input_pass_event(dev
, EV_KEY
, code
, 0);
714 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
716 memset(dev
->key
, 0, sizeof(dev
->key
));
721 * Prepare device for unregistering
723 static void input_disconnect_device(struct input_dev
*dev
)
725 struct input_handle
*handle
;
728 * Mark device as going away. Note that we take dev->mutex here
729 * not to protect access to dev->going_away but rather to ensure
730 * that there are no threads in the middle of input_open_device()
732 mutex_lock(&dev
->mutex
);
733 dev
->going_away
= true;
734 mutex_unlock(&dev
->mutex
);
736 spin_lock_irq(&dev
->event_lock
);
739 * Simulate keyup events for all pressed keys so that handlers
740 * are not left with "stuck" keys. The driver may continue
741 * generate events even after we done here but they will not
742 * reach any handlers.
744 input_dev_release_keys(dev
);
746 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
749 spin_unlock_irq(&dev
->event_lock
);
753 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
754 * @ke: keymap entry containing scancode to be converted.
755 * @scancode: pointer to the location where converted scancode should
758 * This function is used to convert scancode stored in &struct keymap_entry
759 * into scalar form understood by legacy keymap handling methods. These
760 * methods expect scancodes to be represented as 'unsigned int'.
762 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
763 unsigned int *scancode
)
767 *scancode
= *((u8
*)ke
->scancode
);
771 *scancode
= *((u16
*)ke
->scancode
);
775 *scancode
= *((u32
*)ke
->scancode
);
784 EXPORT_SYMBOL(input_scancode_to_scalar
);
787 * Those routines handle the default case where no [gs]etkeycode() is
788 * defined. In this case, an array indexed by the scancode is used.
791 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
794 switch (dev
->keycodesize
) {
796 return ((u8
*)dev
->keycode
)[index
];
799 return ((u16
*)dev
->keycode
)[index
];
802 return ((u32
*)dev
->keycode
)[index
];
806 static int input_default_getkeycode(struct input_dev
*dev
,
807 struct input_keymap_entry
*ke
)
812 if (!dev
->keycodesize
)
815 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
818 error
= input_scancode_to_scalar(ke
, &index
);
823 if (index
>= dev
->keycodemax
)
826 ke
->keycode
= input_fetch_keycode(dev
, index
);
828 ke
->len
= sizeof(index
);
829 memcpy(ke
->scancode
, &index
, sizeof(index
));
834 static int input_default_setkeycode(struct input_dev
*dev
,
835 const struct input_keymap_entry
*ke
,
836 unsigned int *old_keycode
)
842 if (!dev
->keycodesize
)
845 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
848 error
= input_scancode_to_scalar(ke
, &index
);
853 if (index
>= dev
->keycodemax
)
856 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
857 (ke
->keycode
>> (dev
->keycodesize
* 8)))
860 switch (dev
->keycodesize
) {
862 u8
*k
= (u8
*)dev
->keycode
;
863 *old_keycode
= k
[index
];
864 k
[index
] = ke
->keycode
;
868 u16
*k
= (u16
*)dev
->keycode
;
869 *old_keycode
= k
[index
];
870 k
[index
] = ke
->keycode
;
874 u32
*k
= (u32
*)dev
->keycode
;
875 *old_keycode
= k
[index
];
876 k
[index
] = ke
->keycode
;
881 if (*old_keycode
<= KEY_MAX
) {
882 __clear_bit(*old_keycode
, dev
->keybit
);
883 for (i
= 0; i
< dev
->keycodemax
; i
++) {
884 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
885 __set_bit(*old_keycode
, dev
->keybit
);
886 /* Setting the bit twice is useless, so break */
892 __set_bit(ke
->keycode
, dev
->keybit
);
897 * input_get_keycode - retrieve keycode currently mapped to a given scancode
898 * @dev: input device which keymap is being queried
901 * This function should be called by anyone interested in retrieving current
902 * keymap. Presently evdev handlers use it.
904 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
909 spin_lock_irqsave(&dev
->event_lock
, flags
);
910 retval
= dev
->getkeycode(dev
, ke
);
911 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
915 EXPORT_SYMBOL(input_get_keycode
);
918 * input_set_keycode - attribute a keycode to a given scancode
919 * @dev: input device which keymap is being updated
920 * @ke: new keymap entry
922 * This function should be called by anyone needing to update current
923 * keymap. Presently keyboard and evdev handlers use it.
925 int input_set_keycode(struct input_dev
*dev
,
926 const struct input_keymap_entry
*ke
)
929 unsigned int old_keycode
;
932 if (ke
->keycode
> KEY_MAX
)
935 spin_lock_irqsave(&dev
->event_lock
, flags
);
937 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
941 /* Make sure KEY_RESERVED did not get enabled. */
942 __clear_bit(KEY_RESERVED
, dev
->keybit
);
945 * Simulate keyup event if keycode is not present
946 * in the keymap anymore
948 if (old_keycode
> KEY_MAX
) {
949 dev_warn(dev
->dev
.parent
?: &dev
->dev
,
950 "%s: got too big old keycode %#x\n",
951 __func__
, old_keycode
);
952 } else if (test_bit(EV_KEY
, dev
->evbit
) &&
953 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
954 __test_and_clear_bit(old_keycode
, dev
->key
)) {
955 struct input_value vals
[] = {
956 { EV_KEY
, old_keycode
, 0 },
960 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
964 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
968 EXPORT_SYMBOL(input_set_keycode
);
970 bool input_match_device_id(const struct input_dev
*dev
,
971 const struct input_device_id
*id
)
973 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
974 if (id
->bustype
!= dev
->id
.bustype
)
977 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
978 if (id
->vendor
!= dev
->id
.vendor
)
981 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
982 if (id
->product
!= dev
->id
.product
)
985 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
986 if (id
->version
!= dev
->id
.version
)
989 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
) ||
990 !bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
) ||
991 !bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
) ||
992 !bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
) ||
993 !bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
) ||
994 !bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
) ||
995 !bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
) ||
996 !bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
) ||
997 !bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
) ||
998 !bitmap_subset(id
->propbit
, dev
->propbit
, INPUT_PROP_MAX
)) {
1004 EXPORT_SYMBOL(input_match_device_id
);
1006 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
1007 struct input_dev
*dev
)
1009 const struct input_device_id
*id
;
1011 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
1012 if (input_match_device_id(dev
, id
) &&
1013 (!handler
->match
|| handler
->match(handler
, dev
))) {
1021 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
1023 const struct input_device_id
*id
;
1026 id
= input_match_device(handler
, dev
);
1030 error
= handler
->connect(handler
, dev
, id
);
1031 if (error
&& error
!= -ENODEV
)
1032 pr_err("failed to attach handler %s to device %s, error: %d\n",
1033 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1038 #ifdef CONFIG_COMPAT
1040 static int input_bits_to_string(char *buf
, int buf_size
,
1041 unsigned long bits
, bool skip_empty
)
1045 if (in_compat_syscall()) {
1046 u32 dword
= bits
>> 32;
1047 if (dword
|| !skip_empty
)
1048 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1050 dword
= bits
& 0xffffffffUL
;
1051 if (dword
|| !skip_empty
|| len
)
1052 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1055 if (bits
|| !skip_empty
)
1056 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1062 #else /* !CONFIG_COMPAT */
1064 static int input_bits_to_string(char *buf
, int buf_size
,
1065 unsigned long bits
, bool skip_empty
)
1067 return bits
|| !skip_empty
?
1068 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1073 #ifdef CONFIG_PROC_FS
1075 static struct proc_dir_entry
*proc_bus_input_dir
;
1076 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1077 static int input_devices_state
;
1079 static inline void input_wakeup_procfs_readers(void)
1081 input_devices_state
++;
1082 wake_up(&input_devices_poll_wait
);
1085 static __poll_t
input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1087 poll_wait(file
, &input_devices_poll_wait
, wait
);
1088 if (file
->f_version
!= input_devices_state
) {
1089 file
->f_version
= input_devices_state
;
1090 return EPOLLIN
| EPOLLRDNORM
;
1096 union input_seq_state
{
1099 bool mutex_acquired
;
1104 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1106 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1109 /* We need to fit into seq->private pointer */
1110 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1112 error
= mutex_lock_interruptible(&input_mutex
);
1114 state
->mutex_acquired
= false;
1115 return ERR_PTR(error
);
1118 state
->mutex_acquired
= true;
1120 return seq_list_start(&input_dev_list
, *pos
);
1123 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1125 return seq_list_next(v
, &input_dev_list
, pos
);
1128 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1130 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1132 if (state
->mutex_acquired
)
1133 mutex_unlock(&input_mutex
);
1136 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1137 unsigned long *bitmap
, int max
)
1140 bool skip_empty
= true;
1143 seq_printf(seq
, "B: %s=", name
);
1145 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1146 if (input_bits_to_string(buf
, sizeof(buf
),
1147 bitmap
[i
], skip_empty
)) {
1149 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1154 * If no output was produced print a single 0.
1159 seq_putc(seq
, '\n');
1162 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1164 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1165 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1166 struct input_handle
*handle
;
1168 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1169 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1171 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1172 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1173 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1174 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1175 seq_puts(seq
, "H: Handlers=");
1177 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1178 seq_printf(seq
, "%s ", handle
->name
);
1179 seq_putc(seq
, '\n');
1181 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1183 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1184 if (test_bit(EV_KEY
, dev
->evbit
))
1185 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1186 if (test_bit(EV_REL
, dev
->evbit
))
1187 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1188 if (test_bit(EV_ABS
, dev
->evbit
))
1189 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1190 if (test_bit(EV_MSC
, dev
->evbit
))
1191 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1192 if (test_bit(EV_LED
, dev
->evbit
))
1193 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1194 if (test_bit(EV_SND
, dev
->evbit
))
1195 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1196 if (test_bit(EV_FF
, dev
->evbit
))
1197 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1198 if (test_bit(EV_SW
, dev
->evbit
))
1199 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1201 seq_putc(seq
, '\n');
1207 static const struct seq_operations input_devices_seq_ops
= {
1208 .start
= input_devices_seq_start
,
1209 .next
= input_devices_seq_next
,
1210 .stop
= input_seq_stop
,
1211 .show
= input_devices_seq_show
,
1214 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1216 return seq_open(file
, &input_devices_seq_ops
);
1219 static const struct proc_ops input_devices_proc_ops
= {
1220 .proc_open
= input_proc_devices_open
,
1221 .proc_poll
= input_proc_devices_poll
,
1222 .proc_read
= seq_read
,
1223 .proc_lseek
= seq_lseek
,
1224 .proc_release
= seq_release
,
1227 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1229 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1232 /* We need to fit into seq->private pointer */
1233 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1235 error
= mutex_lock_interruptible(&input_mutex
);
1237 state
->mutex_acquired
= false;
1238 return ERR_PTR(error
);
1241 state
->mutex_acquired
= true;
1244 return seq_list_start(&input_handler_list
, *pos
);
1247 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1249 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1251 state
->pos
= *pos
+ 1;
1252 return seq_list_next(v
, &input_handler_list
, pos
);
1255 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1257 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1258 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1260 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1261 if (handler
->filter
)
1262 seq_puts(seq
, " (filter)");
1263 if (handler
->legacy_minors
)
1264 seq_printf(seq
, " Minor=%d", handler
->minor
);
1265 seq_putc(seq
, '\n');
1270 static const struct seq_operations input_handlers_seq_ops
= {
1271 .start
= input_handlers_seq_start
,
1272 .next
= input_handlers_seq_next
,
1273 .stop
= input_seq_stop
,
1274 .show
= input_handlers_seq_show
,
1277 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1279 return seq_open(file
, &input_handlers_seq_ops
);
1282 static const struct proc_ops input_handlers_proc_ops
= {
1283 .proc_open
= input_proc_handlers_open
,
1284 .proc_read
= seq_read
,
1285 .proc_lseek
= seq_lseek
,
1286 .proc_release
= seq_release
,
1289 static int __init
input_proc_init(void)
1291 struct proc_dir_entry
*entry
;
1293 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1294 if (!proc_bus_input_dir
)
1297 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1298 &input_devices_proc_ops
);
1302 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1303 &input_handlers_proc_ops
);
1309 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1310 fail1
: remove_proc_entry("bus/input", NULL
);
1314 static void input_proc_exit(void)
1316 remove_proc_entry("devices", proc_bus_input_dir
);
1317 remove_proc_entry("handlers", proc_bus_input_dir
);
1318 remove_proc_entry("bus/input", NULL
);
1321 #else /* !CONFIG_PROC_FS */
1322 static inline void input_wakeup_procfs_readers(void) { }
1323 static inline int input_proc_init(void) { return 0; }
1324 static inline void input_proc_exit(void) { }
1327 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1328 static ssize_t input_dev_show_##name(struct device *dev, \
1329 struct device_attribute *attr, \
1332 struct input_dev *input_dev = to_input_dev(dev); \
1334 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1335 input_dev->name ? input_dev->name : ""); \
1337 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1339 INPUT_DEV_STRING_ATTR_SHOW(name
);
1340 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1341 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1343 static int input_print_modalias_bits(char *buf
, int size
,
1344 char name
, unsigned long *bm
,
1345 unsigned int min_bit
, unsigned int max_bit
)
1349 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1350 for (i
= min_bit
; i
< max_bit
; i
++)
1351 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1352 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1356 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1361 len
= snprintf(buf
, max(size
, 0),
1362 "input:b%04Xv%04Xp%04Xe%04X-",
1363 id
->id
.bustype
, id
->id
.vendor
,
1364 id
->id
.product
, id
->id
.version
);
1366 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1367 'e', id
->evbit
, 0, EV_MAX
);
1368 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1369 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1370 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1371 'r', id
->relbit
, 0, REL_MAX
);
1372 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1373 'a', id
->absbit
, 0, ABS_MAX
);
1374 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1375 'm', id
->mscbit
, 0, MSC_MAX
);
1376 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1377 'l', id
->ledbit
, 0, LED_MAX
);
1378 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1379 's', id
->sndbit
, 0, SND_MAX
);
1380 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1381 'f', id
->ffbit
, 0, FF_MAX
);
1382 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1383 'w', id
->swbit
, 0, SW_MAX
);
1386 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1391 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1392 struct device_attribute
*attr
,
1395 struct input_dev
*id
= to_input_dev(dev
);
1398 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1400 return min_t(int, len
, PAGE_SIZE
);
1402 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1404 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1405 int max
, int add_cr
);
1407 static ssize_t
input_dev_show_properties(struct device
*dev
,
1408 struct device_attribute
*attr
,
1411 struct input_dev
*input_dev
= to_input_dev(dev
);
1412 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1413 INPUT_PROP_MAX
, true);
1414 return min_t(int, len
, PAGE_SIZE
);
1416 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1418 static struct attribute
*input_dev_attrs
[] = {
1419 &dev_attr_name
.attr
,
1420 &dev_attr_phys
.attr
,
1421 &dev_attr_uniq
.attr
,
1422 &dev_attr_modalias
.attr
,
1423 &dev_attr_properties
.attr
,
1427 static const struct attribute_group input_dev_attr_group
= {
1428 .attrs
= input_dev_attrs
,
1431 #define INPUT_DEV_ID_ATTR(name) \
1432 static ssize_t input_dev_show_id_##name(struct device *dev, \
1433 struct device_attribute *attr, \
1436 struct input_dev *input_dev = to_input_dev(dev); \
1437 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1439 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1441 INPUT_DEV_ID_ATTR(bustype
);
1442 INPUT_DEV_ID_ATTR(vendor
);
1443 INPUT_DEV_ID_ATTR(product
);
1444 INPUT_DEV_ID_ATTR(version
);
1446 static struct attribute
*input_dev_id_attrs
[] = {
1447 &dev_attr_bustype
.attr
,
1448 &dev_attr_vendor
.attr
,
1449 &dev_attr_product
.attr
,
1450 &dev_attr_version
.attr
,
1454 static const struct attribute_group input_dev_id_attr_group
= {
1456 .attrs
= input_dev_id_attrs
,
1459 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1460 int max
, int add_cr
)
1464 bool skip_empty
= true;
1466 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1467 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1468 bitmap
[i
], skip_empty
);
1472 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1477 * If no output was produced print a single 0.
1480 len
= snprintf(buf
, buf_size
, "%d", 0);
1483 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1488 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1489 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1490 struct device_attribute *attr, \
1493 struct input_dev *input_dev = to_input_dev(dev); \
1494 int len = input_print_bitmap(buf, PAGE_SIZE, \
1495 input_dev->bm##bit, ev##_MAX, \
1497 return min_t(int, len, PAGE_SIZE); \
1499 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1501 INPUT_DEV_CAP_ATTR(EV
, ev
);
1502 INPUT_DEV_CAP_ATTR(KEY
, key
);
1503 INPUT_DEV_CAP_ATTR(REL
, rel
);
1504 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1505 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1506 INPUT_DEV_CAP_ATTR(LED
, led
);
1507 INPUT_DEV_CAP_ATTR(SND
, snd
);
1508 INPUT_DEV_CAP_ATTR(FF
, ff
);
1509 INPUT_DEV_CAP_ATTR(SW
, sw
);
1511 static struct attribute
*input_dev_caps_attrs
[] = {
1524 static const struct attribute_group input_dev_caps_attr_group
= {
1525 .name
= "capabilities",
1526 .attrs
= input_dev_caps_attrs
,
1529 static const struct attribute_group
*input_dev_attr_groups
[] = {
1530 &input_dev_attr_group
,
1531 &input_dev_id_attr_group
,
1532 &input_dev_caps_attr_group
,
1533 &input_poller_attribute_group
,
1537 static void input_dev_release(struct device
*device
)
1539 struct input_dev
*dev
= to_input_dev(device
);
1541 input_ff_destroy(dev
);
1542 input_mt_destroy_slots(dev
);
1544 kfree(dev
->absinfo
);
1548 module_put(THIS_MODULE
);
1552 * Input uevent interface - loading event handlers based on
1555 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1556 const char *name
, unsigned long *bitmap
, int max
)
1560 if (add_uevent_var(env
, "%s", name
))
1563 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1564 sizeof(env
->buf
) - env
->buflen
,
1565 bitmap
, max
, false);
1566 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1573 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1574 struct input_dev
*dev
)
1578 if (add_uevent_var(env
, "MODALIAS="))
1581 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1582 sizeof(env
->buf
) - env
->buflen
,
1584 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1591 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1593 int err = add_uevent_var(env, fmt, val); \
1598 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1600 int err = input_add_uevent_bm_var(env, name, bm, max); \
1605 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1607 int err = input_add_uevent_modalias_var(env, dev); \
1612 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1614 struct input_dev
*dev
= to_input_dev(device
);
1616 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1617 dev
->id
.bustype
, dev
->id
.vendor
,
1618 dev
->id
.product
, dev
->id
.version
);
1620 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1622 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1624 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1626 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1628 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1629 if (test_bit(EV_KEY
, dev
->evbit
))
1630 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1631 if (test_bit(EV_REL
, dev
->evbit
))
1632 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1633 if (test_bit(EV_ABS
, dev
->evbit
))
1634 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1635 if (test_bit(EV_MSC
, dev
->evbit
))
1636 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1637 if (test_bit(EV_LED
, dev
->evbit
))
1638 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1639 if (test_bit(EV_SND
, dev
->evbit
))
1640 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1641 if (test_bit(EV_FF
, dev
->evbit
))
1642 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1643 if (test_bit(EV_SW
, dev
->evbit
))
1644 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1646 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1651 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1656 if (!test_bit(EV_##type, dev->evbit)) \
1659 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1660 active = test_bit(i, dev->bits); \
1661 if (!active && !on) \
1664 dev->event(dev, EV_##type, i, on ? active : 0); \
1668 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1673 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1674 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1676 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1677 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1678 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1683 * input_reset_device() - reset/restore the state of input device
1684 * @dev: input device whose state needs to be reset
1686 * This function tries to reset the state of an opened input device and
1687 * bring internal state and state if the hardware in sync with each other.
1688 * We mark all keys as released, restore LED state, repeat rate, etc.
1690 void input_reset_device(struct input_dev
*dev
)
1692 unsigned long flags
;
1694 mutex_lock(&dev
->mutex
);
1695 spin_lock_irqsave(&dev
->event_lock
, flags
);
1697 input_dev_toggle(dev
, true);
1698 input_dev_release_keys(dev
);
1700 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1701 mutex_unlock(&dev
->mutex
);
1703 EXPORT_SYMBOL(input_reset_device
);
1705 #ifdef CONFIG_PM_SLEEP
1706 static int input_dev_suspend(struct device
*dev
)
1708 struct input_dev
*input_dev
= to_input_dev(dev
);
1710 spin_lock_irq(&input_dev
->event_lock
);
1713 * Keys that are pressed now are unlikely to be
1714 * still pressed when we resume.
1716 input_dev_release_keys(input_dev
);
1718 /* Turn off LEDs and sounds, if any are active. */
1719 input_dev_toggle(input_dev
, false);
1721 spin_unlock_irq(&input_dev
->event_lock
);
1726 static int input_dev_resume(struct device
*dev
)
1728 struct input_dev
*input_dev
= to_input_dev(dev
);
1730 spin_lock_irq(&input_dev
->event_lock
);
1732 /* Restore state of LEDs and sounds, if any were active. */
1733 input_dev_toggle(input_dev
, true);
1735 spin_unlock_irq(&input_dev
->event_lock
);
1740 static int input_dev_freeze(struct device
*dev
)
1742 struct input_dev
*input_dev
= to_input_dev(dev
);
1744 spin_lock_irq(&input_dev
->event_lock
);
1747 * Keys that are pressed now are unlikely to be
1748 * still pressed when we resume.
1750 input_dev_release_keys(input_dev
);
1752 spin_unlock_irq(&input_dev
->event_lock
);
1757 static int input_dev_poweroff(struct device
*dev
)
1759 struct input_dev
*input_dev
= to_input_dev(dev
);
1761 spin_lock_irq(&input_dev
->event_lock
);
1763 /* Turn off LEDs and sounds, if any are active. */
1764 input_dev_toggle(input_dev
, false);
1766 spin_unlock_irq(&input_dev
->event_lock
);
1771 static const struct dev_pm_ops input_dev_pm_ops
= {
1772 .suspend
= input_dev_suspend
,
1773 .resume
= input_dev_resume
,
1774 .freeze
= input_dev_freeze
,
1775 .poweroff
= input_dev_poweroff
,
1776 .restore
= input_dev_resume
,
1778 #endif /* CONFIG_PM */
1780 static const struct device_type input_dev_type
= {
1781 .groups
= input_dev_attr_groups
,
1782 .release
= input_dev_release
,
1783 .uevent
= input_dev_uevent
,
1784 #ifdef CONFIG_PM_SLEEP
1785 .pm
= &input_dev_pm_ops
,
1789 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1791 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1794 struct class input_class
= {
1796 .devnode
= input_devnode
,
1798 EXPORT_SYMBOL_GPL(input_class
);
1801 * input_allocate_device - allocate memory for new input device
1803 * Returns prepared struct input_dev or %NULL.
1805 * NOTE: Use input_free_device() to free devices that have not been
1806 * registered; input_unregister_device() should be used for already
1807 * registered devices.
1809 struct input_dev
*input_allocate_device(void)
1811 static atomic_t input_no
= ATOMIC_INIT(-1);
1812 struct input_dev
*dev
;
1814 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1816 dev
->dev
.type
= &input_dev_type
;
1817 dev
->dev
.class = &input_class
;
1818 device_initialize(&dev
->dev
);
1819 mutex_init(&dev
->mutex
);
1820 spin_lock_init(&dev
->event_lock
);
1821 timer_setup(&dev
->timer
, NULL
, 0);
1822 INIT_LIST_HEAD(&dev
->h_list
);
1823 INIT_LIST_HEAD(&dev
->node
);
1825 dev_set_name(&dev
->dev
, "input%lu",
1826 (unsigned long)atomic_inc_return(&input_no
));
1828 __module_get(THIS_MODULE
);
1833 EXPORT_SYMBOL(input_allocate_device
);
1835 struct input_devres
{
1836 struct input_dev
*input
;
1839 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1841 struct input_devres
*devres
= res
;
1843 return devres
->input
== data
;
1846 static void devm_input_device_release(struct device
*dev
, void *res
)
1848 struct input_devres
*devres
= res
;
1849 struct input_dev
*input
= devres
->input
;
1851 dev_dbg(dev
, "%s: dropping reference to %s\n",
1852 __func__
, dev_name(&input
->dev
));
1853 input_put_device(input
);
1857 * devm_input_allocate_device - allocate managed input device
1858 * @dev: device owning the input device being created
1860 * Returns prepared struct input_dev or %NULL.
1862 * Managed input devices do not need to be explicitly unregistered or
1863 * freed as it will be done automatically when owner device unbinds from
1864 * its driver (or binding fails). Once managed input device is allocated,
1865 * it is ready to be set up and registered in the same fashion as regular
1866 * input device. There are no special devm_input_device_[un]register()
1867 * variants, regular ones work with both managed and unmanaged devices,
1868 * should you need them. In most cases however, managed input device need
1869 * not be explicitly unregistered or freed.
1871 * NOTE: the owner device is set up as parent of input device and users
1872 * should not override it.
1874 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1876 struct input_dev
*input
;
1877 struct input_devres
*devres
;
1879 devres
= devres_alloc(devm_input_device_release
,
1880 sizeof(*devres
), GFP_KERNEL
);
1884 input
= input_allocate_device();
1886 devres_free(devres
);
1890 input
->dev
.parent
= dev
;
1891 input
->devres_managed
= true;
1893 devres
->input
= input
;
1894 devres_add(dev
, devres
);
1898 EXPORT_SYMBOL(devm_input_allocate_device
);
1901 * input_free_device - free memory occupied by input_dev structure
1902 * @dev: input device to free
1904 * This function should only be used if input_register_device()
1905 * was not called yet or if it failed. Once device was registered
1906 * use input_unregister_device() and memory will be freed once last
1907 * reference to the device is dropped.
1909 * Device should be allocated by input_allocate_device().
1911 * NOTE: If there are references to the input device then memory
1912 * will not be freed until last reference is dropped.
1914 void input_free_device(struct input_dev
*dev
)
1917 if (dev
->devres_managed
)
1918 WARN_ON(devres_destroy(dev
->dev
.parent
,
1919 devm_input_device_release
,
1920 devm_input_device_match
,
1922 input_put_device(dev
);
1925 EXPORT_SYMBOL(input_free_device
);
1928 * input_set_timestamp - set timestamp for input events
1929 * @dev: input device to set timestamp for
1930 * @timestamp: the time at which the event has occurred
1931 * in CLOCK_MONOTONIC
1933 * This function is intended to provide to the input system a more
1934 * accurate time of when an event actually occurred. The driver should
1935 * call this function as soon as a timestamp is acquired ensuring
1936 * clock conversions in input_set_timestamp are done correctly.
1938 * The system entering suspend state between timestamp acquisition and
1939 * calling input_set_timestamp can result in inaccurate conversions.
1941 void input_set_timestamp(struct input_dev
*dev
, ktime_t timestamp
)
1943 dev
->timestamp
[INPUT_CLK_MONO
] = timestamp
;
1944 dev
->timestamp
[INPUT_CLK_REAL
] = ktime_mono_to_real(timestamp
);
1945 dev
->timestamp
[INPUT_CLK_BOOT
] = ktime_mono_to_any(timestamp
,
1948 EXPORT_SYMBOL(input_set_timestamp
);
1951 * input_get_timestamp - get timestamp for input events
1952 * @dev: input device to get timestamp from
1954 * A valid timestamp is a timestamp of non-zero value.
1956 ktime_t
*input_get_timestamp(struct input_dev
*dev
)
1958 const ktime_t invalid_timestamp
= ktime_set(0, 0);
1960 if (!ktime_compare(dev
->timestamp
[INPUT_CLK_MONO
], invalid_timestamp
))
1961 input_set_timestamp(dev
, ktime_get());
1963 return dev
->timestamp
;
1965 EXPORT_SYMBOL(input_get_timestamp
);
1968 * input_set_capability - mark device as capable of a certain event
1969 * @dev: device that is capable of emitting or accepting event
1970 * @type: type of the event (EV_KEY, EV_REL, etc...)
1973 * In addition to setting up corresponding bit in appropriate capability
1974 * bitmap the function also adjusts dev->evbit.
1976 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1980 __set_bit(code
, dev
->keybit
);
1984 __set_bit(code
, dev
->relbit
);
1988 input_alloc_absinfo(dev
);
1992 __set_bit(code
, dev
->absbit
);
1996 __set_bit(code
, dev
->mscbit
);
2000 __set_bit(code
, dev
->swbit
);
2004 __set_bit(code
, dev
->ledbit
);
2008 __set_bit(code
, dev
->sndbit
);
2012 __set_bit(code
, dev
->ffbit
);
2020 pr_err("%s: unknown type %u (code %u)\n", __func__
, type
, code
);
2025 __set_bit(type
, dev
->evbit
);
2027 EXPORT_SYMBOL(input_set_capability
);
2029 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
2033 unsigned int events
;
2036 mt_slots
= dev
->mt
->num_slots
;
2037 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
2038 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
2039 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
2040 mt_slots
= clamp(mt_slots
, 2, 32);
2041 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
2047 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
2049 if (test_bit(EV_ABS
, dev
->evbit
))
2050 for_each_set_bit(i
, dev
->absbit
, ABS_CNT
)
2051 events
+= input_is_mt_axis(i
) ? mt_slots
: 1;
2053 if (test_bit(EV_REL
, dev
->evbit
))
2054 events
+= bitmap_weight(dev
->relbit
, REL_CNT
);
2056 /* Make room for KEY and MSC events */
2062 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2064 if (!test_bit(EV_##type, dev->evbit)) \
2065 memset(dev->bits##bit, 0, \
2066 sizeof(dev->bits##bit)); \
2069 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2071 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2072 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2073 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2074 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2075 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2076 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2077 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2078 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2081 static void __input_unregister_device(struct input_dev
*dev
)
2083 struct input_handle
*handle
, *next
;
2085 input_disconnect_device(dev
);
2087 mutex_lock(&input_mutex
);
2089 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2090 handle
->handler
->disconnect(handle
);
2091 WARN_ON(!list_empty(&dev
->h_list
));
2093 del_timer_sync(&dev
->timer
);
2094 list_del_init(&dev
->node
);
2096 input_wakeup_procfs_readers();
2098 mutex_unlock(&input_mutex
);
2100 device_del(&dev
->dev
);
2103 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2105 struct input_devres
*devres
= res
;
2106 struct input_dev
*input
= devres
->input
;
2108 dev_dbg(dev
, "%s: unregistering device %s\n",
2109 __func__
, dev_name(&input
->dev
));
2110 __input_unregister_device(input
);
2114 * input_enable_softrepeat - enable software autorepeat
2115 * @dev: input device
2116 * @delay: repeat delay
2117 * @period: repeat period
2119 * Enable software autorepeat on the input device.
2121 void input_enable_softrepeat(struct input_dev
*dev
, int delay
, int period
)
2123 dev
->timer
.function
= input_repeat_key
;
2124 dev
->rep
[REP_DELAY
] = delay
;
2125 dev
->rep
[REP_PERIOD
] = period
;
2127 EXPORT_SYMBOL(input_enable_softrepeat
);
2130 * input_register_device - register device with input core
2131 * @dev: device to be registered
2133 * This function registers device with input core. The device must be
2134 * allocated with input_allocate_device() and all it's capabilities
2135 * set up before registering.
2136 * If function fails the device must be freed with input_free_device().
2137 * Once device has been successfully registered it can be unregistered
2138 * with input_unregister_device(); input_free_device() should not be
2139 * called in this case.
2141 * Note that this function is also used to register managed input devices
2142 * (ones allocated with devm_input_allocate_device()). Such managed input
2143 * devices need not be explicitly unregistered or freed, their tear down
2144 * is controlled by the devres infrastructure. It is also worth noting
2145 * that tear down of managed input devices is internally a 2-step process:
2146 * registered managed input device is first unregistered, but stays in
2147 * memory and can still handle input_event() calls (although events will
2148 * not be delivered anywhere). The freeing of managed input device will
2149 * happen later, when devres stack is unwound to the point where device
2150 * allocation was made.
2152 int input_register_device(struct input_dev
*dev
)
2154 struct input_devres
*devres
= NULL
;
2155 struct input_handler
*handler
;
2156 unsigned int packet_size
;
2160 if (test_bit(EV_ABS
, dev
->evbit
) && !dev
->absinfo
) {
2162 "Absolute device without dev->absinfo, refusing to register\n");
2166 if (dev
->devres_managed
) {
2167 devres
= devres_alloc(devm_input_device_unregister
,
2168 sizeof(*devres
), GFP_KERNEL
);
2172 devres
->input
= dev
;
2175 /* Every input device generates EV_SYN/SYN_REPORT events. */
2176 __set_bit(EV_SYN
, dev
->evbit
);
2178 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2179 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2181 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2182 input_cleanse_bitmasks(dev
);
2184 packet_size
= input_estimate_events_per_packet(dev
);
2185 if (dev
->hint_events_per_packet
< packet_size
)
2186 dev
->hint_events_per_packet
= packet_size
;
2188 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2189 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2192 goto err_devres_free
;
2196 * If delay and period are pre-set by the driver, then autorepeating
2197 * is handled by the driver itself and we don't do it in input.c.
2199 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
])
2200 input_enable_softrepeat(dev
, 250, 33);
2202 if (!dev
->getkeycode
)
2203 dev
->getkeycode
= input_default_getkeycode
;
2205 if (!dev
->setkeycode
)
2206 dev
->setkeycode
= input_default_setkeycode
;
2209 input_dev_poller_finalize(dev
->poller
);
2211 error
= device_add(&dev
->dev
);
2215 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2216 pr_info("%s as %s\n",
2217 dev
->name
? dev
->name
: "Unspecified device",
2218 path
? path
: "N/A");
2221 error
= mutex_lock_interruptible(&input_mutex
);
2223 goto err_device_del
;
2225 list_add_tail(&dev
->node
, &input_dev_list
);
2227 list_for_each_entry(handler
, &input_handler_list
, node
)
2228 input_attach_handler(dev
, handler
);
2230 input_wakeup_procfs_readers();
2232 mutex_unlock(&input_mutex
);
2234 if (dev
->devres_managed
) {
2235 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2236 __func__
, dev_name(&dev
->dev
));
2237 devres_add(dev
->dev
.parent
, devres
);
2242 device_del(&dev
->dev
);
2247 devres_free(devres
);
2250 EXPORT_SYMBOL(input_register_device
);
2253 * input_unregister_device - unregister previously registered device
2254 * @dev: device to be unregistered
2256 * This function unregisters an input device. Once device is unregistered
2257 * the caller should not try to access it as it may get freed at any moment.
2259 void input_unregister_device(struct input_dev
*dev
)
2261 if (dev
->devres_managed
) {
2262 WARN_ON(devres_destroy(dev
->dev
.parent
,
2263 devm_input_device_unregister
,
2264 devm_input_device_match
,
2266 __input_unregister_device(dev
);
2268 * We do not do input_put_device() here because it will be done
2269 * when 2nd devres fires up.
2272 __input_unregister_device(dev
);
2273 input_put_device(dev
);
2276 EXPORT_SYMBOL(input_unregister_device
);
2279 * input_register_handler - register a new input handler
2280 * @handler: handler to be registered
2282 * This function registers a new input handler (interface) for input
2283 * devices in the system and attaches it to all input devices that
2284 * are compatible with the handler.
2286 int input_register_handler(struct input_handler
*handler
)
2288 struct input_dev
*dev
;
2291 error
= mutex_lock_interruptible(&input_mutex
);
2295 INIT_LIST_HEAD(&handler
->h_list
);
2297 list_add_tail(&handler
->node
, &input_handler_list
);
2299 list_for_each_entry(dev
, &input_dev_list
, node
)
2300 input_attach_handler(dev
, handler
);
2302 input_wakeup_procfs_readers();
2304 mutex_unlock(&input_mutex
);
2307 EXPORT_SYMBOL(input_register_handler
);
2310 * input_unregister_handler - unregisters an input handler
2311 * @handler: handler to be unregistered
2313 * This function disconnects a handler from its input devices and
2314 * removes it from lists of known handlers.
2316 void input_unregister_handler(struct input_handler
*handler
)
2318 struct input_handle
*handle
, *next
;
2320 mutex_lock(&input_mutex
);
2322 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2323 handler
->disconnect(handle
);
2324 WARN_ON(!list_empty(&handler
->h_list
));
2326 list_del_init(&handler
->node
);
2328 input_wakeup_procfs_readers();
2330 mutex_unlock(&input_mutex
);
2332 EXPORT_SYMBOL(input_unregister_handler
);
2335 * input_handler_for_each_handle - handle iterator
2336 * @handler: input handler to iterate
2337 * @data: data for the callback
2338 * @fn: function to be called for each handle
2340 * Iterate over @bus's list of devices, and call @fn for each, passing
2341 * it @data and stop when @fn returns a non-zero value. The function is
2342 * using RCU to traverse the list and therefore may be using in atomic
2343 * contexts. The @fn callback is invoked from RCU critical section and
2344 * thus must not sleep.
2346 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2347 int (*fn
)(struct input_handle
*, void *))
2349 struct input_handle
*handle
;
2354 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2355 retval
= fn(handle
, data
);
2364 EXPORT_SYMBOL(input_handler_for_each_handle
);
2367 * input_register_handle - register a new input handle
2368 * @handle: handle to register
2370 * This function puts a new input handle onto device's
2371 * and handler's lists so that events can flow through
2372 * it once it is opened using input_open_device().
2374 * This function is supposed to be called from handler's
2377 int input_register_handle(struct input_handle
*handle
)
2379 struct input_handler
*handler
= handle
->handler
;
2380 struct input_dev
*dev
= handle
->dev
;
2384 * We take dev->mutex here to prevent race with
2385 * input_release_device().
2387 error
= mutex_lock_interruptible(&dev
->mutex
);
2392 * Filters go to the head of the list, normal handlers
2395 if (handler
->filter
)
2396 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2398 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2400 mutex_unlock(&dev
->mutex
);
2403 * Since we are supposed to be called from ->connect()
2404 * which is mutually exclusive with ->disconnect()
2405 * we can't be racing with input_unregister_handle()
2406 * and so separate lock is not needed here.
2408 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2411 handler
->start(handle
);
2415 EXPORT_SYMBOL(input_register_handle
);
2418 * input_unregister_handle - unregister an input handle
2419 * @handle: handle to unregister
2421 * This function removes input handle from device's
2422 * and handler's lists.
2424 * This function is supposed to be called from handler's
2425 * disconnect() method.
2427 void input_unregister_handle(struct input_handle
*handle
)
2429 struct input_dev
*dev
= handle
->dev
;
2431 list_del_rcu(&handle
->h_node
);
2434 * Take dev->mutex to prevent race with input_release_device().
2436 mutex_lock(&dev
->mutex
);
2437 list_del_rcu(&handle
->d_node
);
2438 mutex_unlock(&dev
->mutex
);
2442 EXPORT_SYMBOL(input_unregister_handle
);
2445 * input_get_new_minor - allocates a new input minor number
2446 * @legacy_base: beginning or the legacy range to be searched
2447 * @legacy_num: size of legacy range
2448 * @allow_dynamic: whether we can also take ID from the dynamic range
2450 * This function allocates a new device minor for from input major namespace.
2451 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2452 * parameters and whether ID can be allocated from dynamic range if there are
2453 * no free IDs in legacy range.
2455 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2459 * This function should be called from input handler's ->connect()
2460 * methods, which are serialized with input_mutex, so no additional
2461 * locking is needed here.
2463 if (legacy_base
>= 0) {
2464 int minor
= ida_simple_get(&input_ida
,
2466 legacy_base
+ legacy_num
,
2468 if (minor
>= 0 || !allow_dynamic
)
2472 return ida_simple_get(&input_ida
,
2473 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2476 EXPORT_SYMBOL(input_get_new_minor
);
2479 * input_free_minor - release previously allocated minor
2480 * @minor: minor to be released
2482 * This function releases previously allocated input minor so that it can be
2485 void input_free_minor(unsigned int minor
)
2487 ida_simple_remove(&input_ida
, minor
);
2489 EXPORT_SYMBOL(input_free_minor
);
2491 static int __init
input_init(void)
2495 err
= class_register(&input_class
);
2497 pr_err("unable to register input_dev class\n");
2501 err
= input_proc_init();
2505 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2506 INPUT_MAX_CHAR_DEVICES
, "input");
2508 pr_err("unable to register char major %d", INPUT_MAJOR
);
2514 fail2
: input_proc_exit();
2515 fail1
: class_unregister(&input_class
);
2519 static void __exit
input_exit(void)
2522 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2523 INPUT_MAX_CHAR_DEVICES
);
2524 class_unregister(&input_class
);
2527 subsys_initcall(input_init
);
2528 module_exit(input_exit
);