treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / iommu / ipmmu-vmsa.c
blobd02edd2751f32077bdb1ebed449c5958b8abcd19
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 */
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...) NULL
34 #define arm_iommu_attach_device(...) -ENODEV
35 #define arm_iommu_release_mapping(...) do {} while (0)
36 #define arm_iommu_detach_device(...) do {} while (0)
37 #endif
39 #define IPMMU_CTX_MAX 8U
40 #define IPMMU_CTX_INVALID -1
42 #define IPMMU_UTLB_MAX 48U
44 struct ipmmu_features {
45 bool use_ns_alias_offset;
46 bool has_cache_leaf_nodes;
47 unsigned int number_of_contexts;
48 unsigned int num_utlbs;
49 bool setup_imbuscr;
50 bool twobit_imttbcr_sl0;
51 bool reserved_context;
52 bool cache_snoop;
53 unsigned int ctx_offset_base;
54 unsigned int ctx_offset_stride;
55 unsigned int utlb_offset_base;
58 struct ipmmu_vmsa_device {
59 struct device *dev;
60 void __iomem *base;
61 struct iommu_device iommu;
62 struct ipmmu_vmsa_device *root;
63 const struct ipmmu_features *features;
64 unsigned int num_ctx;
65 spinlock_t lock; /* Protects ctx and domains[] */
66 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
67 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
68 s8 utlb_ctx[IPMMU_UTLB_MAX];
70 struct iommu_group *group;
71 struct dma_iommu_mapping *mapping;
74 struct ipmmu_vmsa_domain {
75 struct ipmmu_vmsa_device *mmu;
76 struct iommu_domain io_domain;
78 struct io_pgtable_cfg cfg;
79 struct io_pgtable_ops *iop;
81 unsigned int context_id;
82 struct mutex mutex; /* Protects mappings */
85 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
87 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
90 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
92 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
94 return fwspec ? fwspec->iommu_priv : NULL;
97 #define TLB_LOOP_TIMEOUT 100 /* 100us */
99 /* -----------------------------------------------------------------------------
100 * Registers Definition
103 #define IM_NS_ALIAS_OFFSET 0x800
105 /* MMU "context" registers */
106 #define IMCTR 0x0000 /* R-Car Gen2/3 */
107 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
108 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
109 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
111 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */
112 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
113 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
114 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
115 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
116 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
117 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
119 #define IMBUSCR 0x000c /* R-Car Gen2 only */
120 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
121 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
123 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
124 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
126 #define IMSTR 0x0020 /* R-Car Gen2/3 */
127 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
128 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
129 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
130 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
132 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */
134 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
135 #define IMEUAR 0x0034 /* R-Car Gen3 only */
137 /* uTLB registers */
138 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
139 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
140 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
141 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
142 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
143 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
145 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
146 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
147 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
149 /* -----------------------------------------------------------------------------
150 * Root device handling
153 static struct platform_driver ipmmu_driver;
155 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
157 return mmu->root == mmu;
160 static int __ipmmu_check_device(struct device *dev, void *data)
162 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
163 struct ipmmu_vmsa_device **rootp = data;
165 if (ipmmu_is_root(mmu))
166 *rootp = mmu;
168 return 0;
171 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
173 struct ipmmu_vmsa_device *root = NULL;
175 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
176 __ipmmu_check_device) == 0 ? root : NULL;
179 /* -----------------------------------------------------------------------------
180 * Read/Write Access
183 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
185 return ioread32(mmu->base + offset);
188 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
189 u32 data)
191 iowrite32(data, mmu->base + offset);
194 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
195 unsigned int context_id, unsigned int reg)
197 return mmu->features->ctx_offset_base +
198 context_id * mmu->features->ctx_offset_stride + reg;
201 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
202 unsigned int context_id, unsigned int reg)
204 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
207 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
208 unsigned int context_id, unsigned int reg, u32 data)
210 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
213 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
214 unsigned int reg)
216 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
219 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
220 unsigned int reg, u32 data)
222 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
225 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
226 unsigned int reg, u32 data)
228 if (domain->mmu != domain->mmu->root)
229 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
231 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
234 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
236 return mmu->features->utlb_offset_base + reg;
239 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
240 unsigned int utlb, u32 data)
242 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
245 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
246 unsigned int utlb, u32 data)
248 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
251 /* -----------------------------------------------------------------------------
252 * TLB and microTLB Management
255 /* Wait for any pending TLB invalidations to complete */
256 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
258 unsigned int count = 0;
260 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
261 cpu_relax();
262 if (++count == TLB_LOOP_TIMEOUT) {
263 dev_err_ratelimited(domain->mmu->dev,
264 "TLB sync timed out -- MMU may be deadlocked\n");
265 return;
267 udelay(1);
271 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
273 u32 reg;
275 reg = ipmmu_ctx_read_root(domain, IMCTR);
276 reg |= IMCTR_FLUSH;
277 ipmmu_ctx_write_all(domain, IMCTR, reg);
279 ipmmu_tlb_sync(domain);
283 * Enable MMU translation for the microTLB.
285 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
286 unsigned int utlb)
288 struct ipmmu_vmsa_device *mmu = domain->mmu;
291 * TODO: Reference-count the microTLB as several bus masters can be
292 * connected to the same microTLB.
295 /* TODO: What should we set the ASID to ? */
296 ipmmu_imuasid_write(mmu, utlb, 0);
297 /* TODO: Do we need to flush the microTLB ? */
298 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
299 IMUCTR_FLUSH | IMUCTR_MMUEN);
300 mmu->utlb_ctx[utlb] = domain->context_id;
304 * Disable MMU translation for the microTLB.
306 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
307 unsigned int utlb)
309 struct ipmmu_vmsa_device *mmu = domain->mmu;
311 ipmmu_imuctr_write(mmu, utlb, 0);
312 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
315 static void ipmmu_tlb_flush_all(void *cookie)
317 struct ipmmu_vmsa_domain *domain = cookie;
319 ipmmu_tlb_invalidate(domain);
322 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
323 size_t granule, void *cookie)
325 ipmmu_tlb_flush_all(cookie);
328 static const struct iommu_flush_ops ipmmu_flush_ops = {
329 .tlb_flush_all = ipmmu_tlb_flush_all,
330 .tlb_flush_walk = ipmmu_tlb_flush,
331 .tlb_flush_leaf = ipmmu_tlb_flush,
334 /* -----------------------------------------------------------------------------
335 * Domain/Context Management
338 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
339 struct ipmmu_vmsa_domain *domain)
341 unsigned long flags;
342 int ret;
344 spin_lock_irqsave(&mmu->lock, flags);
346 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
347 if (ret != mmu->num_ctx) {
348 mmu->domains[ret] = domain;
349 set_bit(ret, mmu->ctx);
350 } else
351 ret = -EBUSY;
353 spin_unlock_irqrestore(&mmu->lock, flags);
355 return ret;
358 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
359 unsigned int context_id)
361 unsigned long flags;
363 spin_lock_irqsave(&mmu->lock, flags);
365 clear_bit(context_id, mmu->ctx);
366 mmu->domains[context_id] = NULL;
368 spin_unlock_irqrestore(&mmu->lock, flags);
371 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
373 u64 ttbr;
374 u32 tmp;
376 /* TTBR0 */
377 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
378 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
379 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
382 * TTBCR
383 * We use long descriptors and allocate the whole 32-bit VA space to
384 * TTBR0.
386 if (domain->mmu->features->twobit_imttbcr_sl0)
387 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
388 else
389 tmp = IMTTBCR_SL0_LVL_1;
391 if (domain->mmu->features->cache_snoop)
392 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
393 IMTTBCR_IRGN0_WB_WA;
395 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
397 /* MAIR0 */
398 ipmmu_ctx_write_root(domain, IMMAIR0,
399 domain->cfg.arm_lpae_s1_cfg.mair);
401 /* IMBUSCR */
402 if (domain->mmu->features->setup_imbuscr)
403 ipmmu_ctx_write_root(domain, IMBUSCR,
404 ipmmu_ctx_read_root(domain, IMBUSCR) &
405 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
408 * IMSTR
409 * Clear all interrupt flags.
411 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
414 * IMCTR
415 * Enable the MMU and interrupt generation. The long-descriptor
416 * translation table format doesn't use TEX remapping. Don't enable AF
417 * software management as we have no use for it. Flush the TLB as
418 * required when modifying the context registers.
420 ipmmu_ctx_write_all(domain, IMCTR,
421 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
424 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
426 int ret;
429 * Allocate the page table operations.
431 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
432 * access, Long-descriptor format" that the NStable bit being set in a
433 * table descriptor will result in the NStable and NS bits of all child
434 * entries being ignored and considered as being set. The IPMMU seems
435 * not to comply with this, as it generates a secure access page fault
436 * if any of the NStable and NS bits isn't set when running in
437 * non-secure mode.
439 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
440 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
441 domain->cfg.ias = 32;
442 domain->cfg.oas = 40;
443 domain->cfg.tlb = &ipmmu_flush_ops;
444 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
445 domain->io_domain.geometry.force_aperture = true;
447 * TODO: Add support for coherent walk through CCI with DVM and remove
448 * cache handling. For now, delegate it to the io-pgtable code.
450 domain->cfg.coherent_walk = false;
451 domain->cfg.iommu_dev = domain->mmu->root->dev;
454 * Find an unused context.
456 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
457 if (ret < 0)
458 return ret;
460 domain->context_id = ret;
462 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
463 domain);
464 if (!domain->iop) {
465 ipmmu_domain_free_context(domain->mmu->root,
466 domain->context_id);
467 return -EINVAL;
470 ipmmu_domain_setup_context(domain);
471 return 0;
474 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
476 if (!domain->mmu)
477 return;
480 * Disable the context. Flush the TLB as required when modifying the
481 * context registers.
483 * TODO: Is TLB flush really needed ?
485 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
486 ipmmu_tlb_sync(domain);
487 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
490 /* -----------------------------------------------------------------------------
491 * Fault Handling
494 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
496 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
497 struct ipmmu_vmsa_device *mmu = domain->mmu;
498 unsigned long iova;
499 u32 status;
501 status = ipmmu_ctx_read_root(domain, IMSTR);
502 if (!(status & err_mask))
503 return IRQ_NONE;
505 iova = ipmmu_ctx_read_root(domain, IMELAR);
506 if (IS_ENABLED(CONFIG_64BIT))
507 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
510 * Clear the error status flags. Unlike traditional interrupt flag
511 * registers that must be cleared by writing 1, this status register
512 * seems to require 0. The error address register must be read before,
513 * otherwise its value will be 0.
515 ipmmu_ctx_write_root(domain, IMSTR, 0);
517 /* Log fatal errors. */
518 if (status & IMSTR_MHIT)
519 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
520 iova);
521 if (status & IMSTR_ABORT)
522 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
523 iova);
525 if (!(status & (IMSTR_PF | IMSTR_TF)))
526 return IRQ_NONE;
529 * Try to handle page faults and translation faults.
531 * TODO: We need to look up the faulty device based on the I/O VA. Use
532 * the IOMMU device for now.
534 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
535 return IRQ_HANDLED;
537 dev_err_ratelimited(mmu->dev,
538 "Unhandled fault: status 0x%08x iova 0x%lx\n",
539 status, iova);
541 return IRQ_HANDLED;
544 static irqreturn_t ipmmu_irq(int irq, void *dev)
546 struct ipmmu_vmsa_device *mmu = dev;
547 irqreturn_t status = IRQ_NONE;
548 unsigned int i;
549 unsigned long flags;
551 spin_lock_irqsave(&mmu->lock, flags);
554 * Check interrupts for all active contexts.
556 for (i = 0; i < mmu->num_ctx; i++) {
557 if (!mmu->domains[i])
558 continue;
559 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
560 status = IRQ_HANDLED;
563 spin_unlock_irqrestore(&mmu->lock, flags);
565 return status;
568 /* -----------------------------------------------------------------------------
569 * IOMMU Operations
572 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
574 struct ipmmu_vmsa_domain *domain;
576 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
577 if (!domain)
578 return NULL;
580 mutex_init(&domain->mutex);
582 return &domain->io_domain;
585 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
587 struct iommu_domain *io_domain = NULL;
589 switch (type) {
590 case IOMMU_DOMAIN_UNMANAGED:
591 io_domain = __ipmmu_domain_alloc(type);
592 break;
594 case IOMMU_DOMAIN_DMA:
595 io_domain = __ipmmu_domain_alloc(type);
596 if (io_domain && iommu_get_dma_cookie(io_domain)) {
597 kfree(io_domain);
598 io_domain = NULL;
600 break;
603 return io_domain;
606 static void ipmmu_domain_free(struct iommu_domain *io_domain)
608 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
611 * Free the domain resources. We assume that all devices have already
612 * been detached.
614 iommu_put_dma_cookie(io_domain);
615 ipmmu_domain_destroy_context(domain);
616 free_io_pgtable_ops(domain->iop);
617 kfree(domain);
620 static int ipmmu_attach_device(struct iommu_domain *io_domain,
621 struct device *dev)
623 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
624 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
625 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
626 unsigned int i;
627 int ret = 0;
629 if (!mmu) {
630 dev_err(dev, "Cannot attach to IPMMU\n");
631 return -ENXIO;
634 mutex_lock(&domain->mutex);
636 if (!domain->mmu) {
637 /* The domain hasn't been used yet, initialize it. */
638 domain->mmu = mmu;
639 ret = ipmmu_domain_init_context(domain);
640 if (ret < 0) {
641 dev_err(dev, "Unable to initialize IPMMU context\n");
642 domain->mmu = NULL;
643 } else {
644 dev_info(dev, "Using IPMMU context %u\n",
645 domain->context_id);
647 } else if (domain->mmu != mmu) {
649 * Something is wrong, we can't attach two devices using
650 * different IOMMUs to the same domain.
652 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
653 dev_name(mmu->dev), dev_name(domain->mmu->dev));
654 ret = -EINVAL;
655 } else
656 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
658 mutex_unlock(&domain->mutex);
660 if (ret < 0)
661 return ret;
663 for (i = 0; i < fwspec->num_ids; ++i)
664 ipmmu_utlb_enable(domain, fwspec->ids[i]);
666 return 0;
669 static void ipmmu_detach_device(struct iommu_domain *io_domain,
670 struct device *dev)
672 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
673 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
674 unsigned int i;
676 for (i = 0; i < fwspec->num_ids; ++i)
677 ipmmu_utlb_disable(domain, fwspec->ids[i]);
680 * TODO: Optimize by disabling the context when no device is attached.
684 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
685 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
687 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
689 if (!domain)
690 return -ENODEV;
692 return domain->iop->map(domain->iop, iova, paddr, size, prot);
695 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
696 size_t size, struct iommu_iotlb_gather *gather)
698 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
700 return domain->iop->unmap(domain->iop, iova, size, gather);
703 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
705 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
707 if (domain->mmu)
708 ipmmu_tlb_flush_all(domain);
711 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
712 struct iommu_iotlb_gather *gather)
714 ipmmu_flush_iotlb_all(io_domain);
717 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
718 dma_addr_t iova)
720 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
722 /* TODO: Is locking needed ? */
724 return domain->iop->iova_to_phys(domain->iop, iova);
727 static int ipmmu_init_platform_device(struct device *dev,
728 struct of_phandle_args *args)
730 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
731 struct platform_device *ipmmu_pdev;
733 ipmmu_pdev = of_find_device_by_node(args->np);
734 if (!ipmmu_pdev)
735 return -ENODEV;
737 fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
739 return 0;
742 static const struct soc_device_attribute soc_rcar_gen3[] = {
743 { .soc_id = "r8a774a1", },
744 { .soc_id = "r8a774b1", },
745 { .soc_id = "r8a774c0", },
746 { .soc_id = "r8a7795", },
747 { .soc_id = "r8a7796", },
748 { .soc_id = "r8a77965", },
749 { .soc_id = "r8a77970", },
750 { .soc_id = "r8a77990", },
751 { .soc_id = "r8a77995", },
752 { /* sentinel */ }
755 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
756 { .soc_id = "r8a774b1", },
757 { .soc_id = "r8a774c0", },
758 { .soc_id = "r8a7795", .revision = "ES3.*" },
759 { .soc_id = "r8a77965", },
760 { .soc_id = "r8a77990", },
761 { .soc_id = "r8a77995", },
762 { /* sentinel */ }
765 static const char * const rcar_gen3_slave_whitelist[] = {
768 static bool ipmmu_slave_whitelist(struct device *dev)
770 unsigned int i;
773 * For R-Car Gen3 use a white list to opt-in slave devices.
774 * For Other SoCs, this returns true anyway.
776 if (!soc_device_match(soc_rcar_gen3))
777 return true;
779 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
780 if (!soc_device_match(soc_rcar_gen3_whitelist))
781 return false;
783 /* Check whether this slave device can work with the IPMMU */
784 for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
785 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
786 return true;
789 /* Otherwise, do not allow use of IPMMU */
790 return false;
793 static int ipmmu_of_xlate(struct device *dev,
794 struct of_phandle_args *spec)
796 if (!ipmmu_slave_whitelist(dev))
797 return -ENODEV;
799 iommu_fwspec_add_ids(dev, spec->args, 1);
801 /* Initialize once - xlate() will call multiple times */
802 if (to_ipmmu(dev))
803 return 0;
805 return ipmmu_init_platform_device(dev, spec);
808 static int ipmmu_init_arm_mapping(struct device *dev)
810 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
811 struct iommu_group *group;
812 int ret;
814 /* Create a device group and add the device to it. */
815 group = iommu_group_alloc();
816 if (IS_ERR(group)) {
817 dev_err(dev, "Failed to allocate IOMMU group\n");
818 return PTR_ERR(group);
821 ret = iommu_group_add_device(group, dev);
822 iommu_group_put(group);
824 if (ret < 0) {
825 dev_err(dev, "Failed to add device to IPMMU group\n");
826 return ret;
830 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
831 * VAs. This will allocate a corresponding IOMMU domain.
833 * TODO:
834 * - Create one mapping per context (TLB).
835 * - Make the mapping size configurable ? We currently use a 2GB mapping
836 * at a 1GB offset to ensure that NULL VAs will fault.
838 if (!mmu->mapping) {
839 struct dma_iommu_mapping *mapping;
841 mapping = arm_iommu_create_mapping(&platform_bus_type,
842 SZ_1G, SZ_2G);
843 if (IS_ERR(mapping)) {
844 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
845 ret = PTR_ERR(mapping);
846 goto error;
849 mmu->mapping = mapping;
852 /* Attach the ARM VA mapping to the device. */
853 ret = arm_iommu_attach_device(dev, mmu->mapping);
854 if (ret < 0) {
855 dev_err(dev, "Failed to attach device to VA mapping\n");
856 goto error;
859 return 0;
861 error:
862 iommu_group_remove_device(dev);
863 if (mmu->mapping)
864 arm_iommu_release_mapping(mmu->mapping);
866 return ret;
869 static int ipmmu_add_device(struct device *dev)
871 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
872 struct iommu_group *group;
873 int ret;
876 * Only let through devices that have been verified in xlate()
878 if (!mmu)
879 return -ENODEV;
881 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
882 ret = ipmmu_init_arm_mapping(dev);
883 if (ret)
884 return ret;
885 } else {
886 group = iommu_group_get_for_dev(dev);
887 if (IS_ERR(group))
888 return PTR_ERR(group);
890 iommu_group_put(group);
893 iommu_device_link(&mmu->iommu, dev);
894 return 0;
897 static void ipmmu_remove_device(struct device *dev)
899 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
901 iommu_device_unlink(&mmu->iommu, dev);
902 arm_iommu_detach_device(dev);
903 iommu_group_remove_device(dev);
906 static struct iommu_group *ipmmu_find_group(struct device *dev)
908 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
909 struct iommu_group *group;
911 if (mmu->group)
912 return iommu_group_ref_get(mmu->group);
914 group = iommu_group_alloc();
915 if (!IS_ERR(group))
916 mmu->group = group;
918 return group;
921 static const struct iommu_ops ipmmu_ops = {
922 .domain_alloc = ipmmu_domain_alloc,
923 .domain_free = ipmmu_domain_free,
924 .attach_dev = ipmmu_attach_device,
925 .detach_dev = ipmmu_detach_device,
926 .map = ipmmu_map,
927 .unmap = ipmmu_unmap,
928 .flush_iotlb_all = ipmmu_flush_iotlb_all,
929 .iotlb_sync = ipmmu_iotlb_sync,
930 .iova_to_phys = ipmmu_iova_to_phys,
931 .add_device = ipmmu_add_device,
932 .remove_device = ipmmu_remove_device,
933 .device_group = ipmmu_find_group,
934 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
935 .of_xlate = ipmmu_of_xlate,
938 /* -----------------------------------------------------------------------------
939 * Probe/remove and init
942 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
944 unsigned int i;
946 /* Disable all contexts. */
947 for (i = 0; i < mmu->num_ctx; ++i)
948 ipmmu_ctx_write(mmu, i, IMCTR, 0);
951 static const struct ipmmu_features ipmmu_features_default = {
952 .use_ns_alias_offset = true,
953 .has_cache_leaf_nodes = false,
954 .number_of_contexts = 1, /* software only tested with one context */
955 .num_utlbs = 32,
956 .setup_imbuscr = true,
957 .twobit_imttbcr_sl0 = false,
958 .reserved_context = false,
959 .cache_snoop = true,
960 .ctx_offset_base = 0,
961 .ctx_offset_stride = 0x40,
962 .utlb_offset_base = 0,
965 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
966 .use_ns_alias_offset = false,
967 .has_cache_leaf_nodes = true,
968 .number_of_contexts = 8,
969 .num_utlbs = 48,
970 .setup_imbuscr = false,
971 .twobit_imttbcr_sl0 = true,
972 .reserved_context = true,
973 .cache_snoop = false,
974 .ctx_offset_base = 0,
975 .ctx_offset_stride = 0x40,
976 .utlb_offset_base = 0,
979 static const struct of_device_id ipmmu_of_ids[] = {
981 .compatible = "renesas,ipmmu-vmsa",
982 .data = &ipmmu_features_default,
983 }, {
984 .compatible = "renesas,ipmmu-r8a774a1",
985 .data = &ipmmu_features_rcar_gen3,
986 }, {
987 .compatible = "renesas,ipmmu-r8a774b1",
988 .data = &ipmmu_features_rcar_gen3,
989 }, {
990 .compatible = "renesas,ipmmu-r8a774c0",
991 .data = &ipmmu_features_rcar_gen3,
992 }, {
993 .compatible = "renesas,ipmmu-r8a7795",
994 .data = &ipmmu_features_rcar_gen3,
995 }, {
996 .compatible = "renesas,ipmmu-r8a7796",
997 .data = &ipmmu_features_rcar_gen3,
998 }, {
999 .compatible = "renesas,ipmmu-r8a77965",
1000 .data = &ipmmu_features_rcar_gen3,
1001 }, {
1002 .compatible = "renesas,ipmmu-r8a77970",
1003 .data = &ipmmu_features_rcar_gen3,
1004 }, {
1005 .compatible = "renesas,ipmmu-r8a77990",
1006 .data = &ipmmu_features_rcar_gen3,
1007 }, {
1008 .compatible = "renesas,ipmmu-r8a77995",
1009 .data = &ipmmu_features_rcar_gen3,
1010 }, {
1011 /* Terminator */
1015 static int ipmmu_probe(struct platform_device *pdev)
1017 struct ipmmu_vmsa_device *mmu;
1018 struct resource *res;
1019 int irq;
1020 int ret;
1022 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1023 if (!mmu) {
1024 dev_err(&pdev->dev, "cannot allocate device data\n");
1025 return -ENOMEM;
1028 mmu->dev = &pdev->dev;
1029 spin_lock_init(&mmu->lock);
1030 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1031 mmu->features = of_device_get_match_data(&pdev->dev);
1032 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1033 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1035 /* Map I/O memory and request IRQ. */
1036 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1037 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1038 if (IS_ERR(mmu->base))
1039 return PTR_ERR(mmu->base);
1042 * The IPMMU has two register banks, for secure and non-secure modes.
1043 * The bank mapped at the beginning of the IPMMU address space
1044 * corresponds to the running mode of the CPU. When running in secure
1045 * mode the non-secure register bank is also available at an offset.
1047 * Secure mode operation isn't clearly documented and is thus currently
1048 * not implemented in the driver. Furthermore, preliminary tests of
1049 * non-secure operation with the main register bank were not successful.
1050 * Offset the registers base unconditionally to point to the non-secure
1051 * alias space for now.
1053 if (mmu->features->use_ns_alias_offset)
1054 mmu->base += IM_NS_ALIAS_OFFSET;
1056 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1059 * Determine if this IPMMU instance is a root device by checking for
1060 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1062 if (!mmu->features->has_cache_leaf_nodes ||
1063 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1064 mmu->root = mmu;
1065 else
1066 mmu->root = ipmmu_find_root();
1069 * Wait until the root device has been registered for sure.
1071 if (!mmu->root)
1072 return -EPROBE_DEFER;
1074 /* Root devices have mandatory IRQs */
1075 if (ipmmu_is_root(mmu)) {
1076 irq = platform_get_irq(pdev, 0);
1077 if (irq < 0)
1078 return irq;
1080 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1081 dev_name(&pdev->dev), mmu);
1082 if (ret < 0) {
1083 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1084 return ret;
1087 ipmmu_device_reset(mmu);
1089 if (mmu->features->reserved_context) {
1090 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1091 set_bit(0, mmu->ctx);
1096 * Register the IPMMU to the IOMMU subsystem in the following cases:
1097 * - R-Car Gen2 IPMMU (all devices registered)
1098 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1100 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1101 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1102 dev_name(&pdev->dev));
1103 if (ret)
1104 return ret;
1106 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1107 iommu_device_set_fwnode(&mmu->iommu,
1108 &pdev->dev.of_node->fwnode);
1110 ret = iommu_device_register(&mmu->iommu);
1111 if (ret)
1112 return ret;
1114 #if defined(CONFIG_IOMMU_DMA)
1115 if (!iommu_present(&platform_bus_type))
1116 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1117 #endif
1121 * We can't create the ARM mapping here as it requires the bus to have
1122 * an IOMMU, which only happens when bus_set_iommu() is called in
1123 * ipmmu_init() after the probe function returns.
1126 platform_set_drvdata(pdev, mmu);
1128 return 0;
1131 static int ipmmu_remove(struct platform_device *pdev)
1133 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1135 iommu_device_sysfs_remove(&mmu->iommu);
1136 iommu_device_unregister(&mmu->iommu);
1138 arm_iommu_release_mapping(mmu->mapping);
1140 ipmmu_device_reset(mmu);
1142 return 0;
1145 #ifdef CONFIG_PM_SLEEP
1146 static int ipmmu_resume_noirq(struct device *dev)
1148 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1149 unsigned int i;
1151 /* Reset root MMU and restore contexts */
1152 if (ipmmu_is_root(mmu)) {
1153 ipmmu_device_reset(mmu);
1155 for (i = 0; i < mmu->num_ctx; i++) {
1156 if (!mmu->domains[i])
1157 continue;
1159 ipmmu_domain_setup_context(mmu->domains[i]);
1163 /* Re-enable active micro-TLBs */
1164 for (i = 0; i < mmu->features->num_utlbs; i++) {
1165 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1166 continue;
1168 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1171 return 0;
1174 static const struct dev_pm_ops ipmmu_pm = {
1175 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1177 #define DEV_PM_OPS &ipmmu_pm
1178 #else
1179 #define DEV_PM_OPS NULL
1180 #endif /* CONFIG_PM_SLEEP */
1182 static struct platform_driver ipmmu_driver = {
1183 .driver = {
1184 .name = "ipmmu-vmsa",
1185 .of_match_table = of_match_ptr(ipmmu_of_ids),
1186 .pm = DEV_PM_OPS,
1188 .probe = ipmmu_probe,
1189 .remove = ipmmu_remove,
1192 static int __init ipmmu_init(void)
1194 struct device_node *np;
1195 static bool setup_done;
1196 int ret;
1198 if (setup_done)
1199 return 0;
1201 np = of_find_matching_node(NULL, ipmmu_of_ids);
1202 if (!np)
1203 return 0;
1205 of_node_put(np);
1207 ret = platform_driver_register(&ipmmu_driver);
1208 if (ret < 0)
1209 return ret;
1211 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1212 if (!iommu_present(&platform_bus_type))
1213 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1214 #endif
1216 setup_done = true;
1217 return 0;
1219 subsys_initcall(ipmmu_init);