1 // SPDX-License-Identifier: GPL-2.0
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * Copyright (C) 2014 Renesas Electronics Corporation
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
33 #define arm_iommu_create_mapping(...) NULL
34 #define arm_iommu_attach_device(...) -ENODEV
35 #define arm_iommu_release_mapping(...) do {} while (0)
36 #define arm_iommu_detach_device(...) do {} while (0)
39 #define IPMMU_CTX_MAX 8U
40 #define IPMMU_CTX_INVALID -1
42 #define IPMMU_UTLB_MAX 48U
44 struct ipmmu_features
{
45 bool use_ns_alias_offset
;
46 bool has_cache_leaf_nodes
;
47 unsigned int number_of_contexts
;
48 unsigned int num_utlbs
;
50 bool twobit_imttbcr_sl0
;
51 bool reserved_context
;
53 unsigned int ctx_offset_base
;
54 unsigned int ctx_offset_stride
;
55 unsigned int utlb_offset_base
;
58 struct ipmmu_vmsa_device
{
61 struct iommu_device iommu
;
62 struct ipmmu_vmsa_device
*root
;
63 const struct ipmmu_features
*features
;
65 spinlock_t lock
; /* Protects ctx and domains[] */
66 DECLARE_BITMAP(ctx
, IPMMU_CTX_MAX
);
67 struct ipmmu_vmsa_domain
*domains
[IPMMU_CTX_MAX
];
68 s8 utlb_ctx
[IPMMU_UTLB_MAX
];
70 struct iommu_group
*group
;
71 struct dma_iommu_mapping
*mapping
;
74 struct ipmmu_vmsa_domain
{
75 struct ipmmu_vmsa_device
*mmu
;
76 struct iommu_domain io_domain
;
78 struct io_pgtable_cfg cfg
;
79 struct io_pgtable_ops
*iop
;
81 unsigned int context_id
;
82 struct mutex mutex
; /* Protects mappings */
85 static struct ipmmu_vmsa_domain
*to_vmsa_domain(struct iommu_domain
*dom
)
87 return container_of(dom
, struct ipmmu_vmsa_domain
, io_domain
);
90 static struct ipmmu_vmsa_device
*to_ipmmu(struct device
*dev
)
92 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
94 return fwspec
? fwspec
->iommu_priv
: NULL
;
97 #define TLB_LOOP_TIMEOUT 100 /* 100us */
99 /* -----------------------------------------------------------------------------
100 * Registers Definition
103 #define IM_NS_ALIAS_OFFSET 0x800
105 /* MMU "context" registers */
106 #define IMCTR 0x0000 /* R-Car Gen2/3 */
107 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
108 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
109 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
111 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */
112 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
113 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
114 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
115 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
116 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
117 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
119 #define IMBUSCR 0x000c /* R-Car Gen2 only */
120 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
121 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
123 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
124 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
126 #define IMSTR 0x0020 /* R-Car Gen2/3 */
127 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
128 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
129 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
130 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
132 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */
134 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
135 #define IMEUAR 0x0034 /* R-Car Gen3 only */
138 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
139 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
140 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
141 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
142 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
143 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
145 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
146 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
147 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
149 /* -----------------------------------------------------------------------------
150 * Root device handling
153 static struct platform_driver ipmmu_driver
;
155 static bool ipmmu_is_root(struct ipmmu_vmsa_device
*mmu
)
157 return mmu
->root
== mmu
;
160 static int __ipmmu_check_device(struct device
*dev
, void *data
)
162 struct ipmmu_vmsa_device
*mmu
= dev_get_drvdata(dev
);
163 struct ipmmu_vmsa_device
**rootp
= data
;
165 if (ipmmu_is_root(mmu
))
171 static struct ipmmu_vmsa_device
*ipmmu_find_root(void)
173 struct ipmmu_vmsa_device
*root
= NULL
;
175 return driver_for_each_device(&ipmmu_driver
.driver
, NULL
, &root
,
176 __ipmmu_check_device
) == 0 ? root
: NULL
;
179 /* -----------------------------------------------------------------------------
183 static u32
ipmmu_read(struct ipmmu_vmsa_device
*mmu
, unsigned int offset
)
185 return ioread32(mmu
->base
+ offset
);
188 static void ipmmu_write(struct ipmmu_vmsa_device
*mmu
, unsigned int offset
,
191 iowrite32(data
, mmu
->base
+ offset
);
194 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device
*mmu
,
195 unsigned int context_id
, unsigned int reg
)
197 return mmu
->features
->ctx_offset_base
+
198 context_id
* mmu
->features
->ctx_offset_stride
+ reg
;
201 static u32
ipmmu_ctx_read(struct ipmmu_vmsa_device
*mmu
,
202 unsigned int context_id
, unsigned int reg
)
204 return ipmmu_read(mmu
, ipmmu_ctx_reg(mmu
, context_id
, reg
));
207 static void ipmmu_ctx_write(struct ipmmu_vmsa_device
*mmu
,
208 unsigned int context_id
, unsigned int reg
, u32 data
)
210 ipmmu_write(mmu
, ipmmu_ctx_reg(mmu
, context_id
, reg
), data
);
213 static u32
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain
*domain
,
216 return ipmmu_ctx_read(domain
->mmu
->root
, domain
->context_id
, reg
);
219 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain
*domain
,
220 unsigned int reg
, u32 data
)
222 ipmmu_ctx_write(domain
->mmu
->root
, domain
->context_id
, reg
, data
);
225 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain
*domain
,
226 unsigned int reg
, u32 data
)
228 if (domain
->mmu
!= domain
->mmu
->root
)
229 ipmmu_ctx_write(domain
->mmu
, domain
->context_id
, reg
, data
);
231 ipmmu_ctx_write(domain
->mmu
->root
, domain
->context_id
, reg
, data
);
234 static u32
ipmmu_utlb_reg(struct ipmmu_vmsa_device
*mmu
, unsigned int reg
)
236 return mmu
->features
->utlb_offset_base
+ reg
;
239 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device
*mmu
,
240 unsigned int utlb
, u32 data
)
242 ipmmu_write(mmu
, ipmmu_utlb_reg(mmu
, IMUASID(utlb
)), data
);
245 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device
*mmu
,
246 unsigned int utlb
, u32 data
)
248 ipmmu_write(mmu
, ipmmu_utlb_reg(mmu
, IMUCTR(utlb
)), data
);
251 /* -----------------------------------------------------------------------------
252 * TLB and microTLB Management
255 /* Wait for any pending TLB invalidations to complete */
256 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain
*domain
)
258 unsigned int count
= 0;
260 while (ipmmu_ctx_read_root(domain
, IMCTR
) & IMCTR_FLUSH
) {
262 if (++count
== TLB_LOOP_TIMEOUT
) {
263 dev_err_ratelimited(domain
->mmu
->dev
,
264 "TLB sync timed out -- MMU may be deadlocked\n");
271 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain
*domain
)
275 reg
= ipmmu_ctx_read_root(domain
, IMCTR
);
277 ipmmu_ctx_write_all(domain
, IMCTR
, reg
);
279 ipmmu_tlb_sync(domain
);
283 * Enable MMU translation for the microTLB.
285 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain
*domain
,
288 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
291 * TODO: Reference-count the microTLB as several bus masters can be
292 * connected to the same microTLB.
295 /* TODO: What should we set the ASID to ? */
296 ipmmu_imuasid_write(mmu
, utlb
, 0);
297 /* TODO: Do we need to flush the microTLB ? */
298 ipmmu_imuctr_write(mmu
, utlb
, IMUCTR_TTSEL_MMU(domain
->context_id
) |
299 IMUCTR_FLUSH
| IMUCTR_MMUEN
);
300 mmu
->utlb_ctx
[utlb
] = domain
->context_id
;
304 * Disable MMU translation for the microTLB.
306 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain
*domain
,
309 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
311 ipmmu_imuctr_write(mmu
, utlb
, 0);
312 mmu
->utlb_ctx
[utlb
] = IPMMU_CTX_INVALID
;
315 static void ipmmu_tlb_flush_all(void *cookie
)
317 struct ipmmu_vmsa_domain
*domain
= cookie
;
319 ipmmu_tlb_invalidate(domain
);
322 static void ipmmu_tlb_flush(unsigned long iova
, size_t size
,
323 size_t granule
, void *cookie
)
325 ipmmu_tlb_flush_all(cookie
);
328 static const struct iommu_flush_ops ipmmu_flush_ops
= {
329 .tlb_flush_all
= ipmmu_tlb_flush_all
,
330 .tlb_flush_walk
= ipmmu_tlb_flush
,
331 .tlb_flush_leaf
= ipmmu_tlb_flush
,
334 /* -----------------------------------------------------------------------------
335 * Domain/Context Management
338 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device
*mmu
,
339 struct ipmmu_vmsa_domain
*domain
)
344 spin_lock_irqsave(&mmu
->lock
, flags
);
346 ret
= find_first_zero_bit(mmu
->ctx
, mmu
->num_ctx
);
347 if (ret
!= mmu
->num_ctx
) {
348 mmu
->domains
[ret
] = domain
;
349 set_bit(ret
, mmu
->ctx
);
353 spin_unlock_irqrestore(&mmu
->lock
, flags
);
358 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device
*mmu
,
359 unsigned int context_id
)
363 spin_lock_irqsave(&mmu
->lock
, flags
);
365 clear_bit(context_id
, mmu
->ctx
);
366 mmu
->domains
[context_id
] = NULL
;
368 spin_unlock_irqrestore(&mmu
->lock
, flags
);
371 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain
*domain
)
377 ttbr
= domain
->cfg
.arm_lpae_s1_cfg
.ttbr
[0];
378 ipmmu_ctx_write_root(domain
, IMTTLBR0
, ttbr
);
379 ipmmu_ctx_write_root(domain
, IMTTUBR0
, ttbr
>> 32);
383 * We use long descriptors and allocate the whole 32-bit VA space to
386 if (domain
->mmu
->features
->twobit_imttbcr_sl0
)
387 tmp
= IMTTBCR_SL0_TWOBIT_LVL_1
;
389 tmp
= IMTTBCR_SL0_LVL_1
;
391 if (domain
->mmu
->features
->cache_snoop
)
392 tmp
|= IMTTBCR_SH0_INNER_SHAREABLE
| IMTTBCR_ORGN0_WB_WA
|
395 ipmmu_ctx_write_root(domain
, IMTTBCR
, IMTTBCR_EAE
| tmp
);
398 ipmmu_ctx_write_root(domain
, IMMAIR0
,
399 domain
->cfg
.arm_lpae_s1_cfg
.mair
);
402 if (domain
->mmu
->features
->setup_imbuscr
)
403 ipmmu_ctx_write_root(domain
, IMBUSCR
,
404 ipmmu_ctx_read_root(domain
, IMBUSCR
) &
405 ~(IMBUSCR_DVM
| IMBUSCR_BUSSEL_MASK
));
409 * Clear all interrupt flags.
411 ipmmu_ctx_write_root(domain
, IMSTR
, ipmmu_ctx_read_root(domain
, IMSTR
));
415 * Enable the MMU and interrupt generation. The long-descriptor
416 * translation table format doesn't use TEX remapping. Don't enable AF
417 * software management as we have no use for it. Flush the TLB as
418 * required when modifying the context registers.
420 ipmmu_ctx_write_all(domain
, IMCTR
,
421 IMCTR_INTEN
| IMCTR_FLUSH
| IMCTR_MMUEN
);
424 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain
*domain
)
429 * Allocate the page table operations.
431 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
432 * access, Long-descriptor format" that the NStable bit being set in a
433 * table descriptor will result in the NStable and NS bits of all child
434 * entries being ignored and considered as being set. The IPMMU seems
435 * not to comply with this, as it generates a secure access page fault
436 * if any of the NStable and NS bits isn't set when running in
439 domain
->cfg
.quirks
= IO_PGTABLE_QUIRK_ARM_NS
;
440 domain
->cfg
.pgsize_bitmap
= SZ_1G
| SZ_2M
| SZ_4K
;
441 domain
->cfg
.ias
= 32;
442 domain
->cfg
.oas
= 40;
443 domain
->cfg
.tlb
= &ipmmu_flush_ops
;
444 domain
->io_domain
.geometry
.aperture_end
= DMA_BIT_MASK(32);
445 domain
->io_domain
.geometry
.force_aperture
= true;
447 * TODO: Add support for coherent walk through CCI with DVM and remove
448 * cache handling. For now, delegate it to the io-pgtable code.
450 domain
->cfg
.coherent_walk
= false;
451 domain
->cfg
.iommu_dev
= domain
->mmu
->root
->dev
;
454 * Find an unused context.
456 ret
= ipmmu_domain_allocate_context(domain
->mmu
->root
, domain
);
460 domain
->context_id
= ret
;
462 domain
->iop
= alloc_io_pgtable_ops(ARM_32_LPAE_S1
, &domain
->cfg
,
465 ipmmu_domain_free_context(domain
->mmu
->root
,
470 ipmmu_domain_setup_context(domain
);
474 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain
*domain
)
480 * Disable the context. Flush the TLB as required when modifying the
483 * TODO: Is TLB flush really needed ?
485 ipmmu_ctx_write_all(domain
, IMCTR
, IMCTR_FLUSH
);
486 ipmmu_tlb_sync(domain
);
487 ipmmu_domain_free_context(domain
->mmu
->root
, domain
->context_id
);
490 /* -----------------------------------------------------------------------------
494 static irqreturn_t
ipmmu_domain_irq(struct ipmmu_vmsa_domain
*domain
)
496 const u32 err_mask
= IMSTR_MHIT
| IMSTR_ABORT
| IMSTR_PF
| IMSTR_TF
;
497 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
501 status
= ipmmu_ctx_read_root(domain
, IMSTR
);
502 if (!(status
& err_mask
))
505 iova
= ipmmu_ctx_read_root(domain
, IMELAR
);
506 if (IS_ENABLED(CONFIG_64BIT
))
507 iova
|= (u64
)ipmmu_ctx_read_root(domain
, IMEUAR
) << 32;
510 * Clear the error status flags. Unlike traditional interrupt flag
511 * registers that must be cleared by writing 1, this status register
512 * seems to require 0. The error address register must be read before,
513 * otherwise its value will be 0.
515 ipmmu_ctx_write_root(domain
, IMSTR
, 0);
517 /* Log fatal errors. */
518 if (status
& IMSTR_MHIT
)
519 dev_err_ratelimited(mmu
->dev
, "Multiple TLB hits @0x%lx\n",
521 if (status
& IMSTR_ABORT
)
522 dev_err_ratelimited(mmu
->dev
, "Page Table Walk Abort @0x%lx\n",
525 if (!(status
& (IMSTR_PF
| IMSTR_TF
)))
529 * Try to handle page faults and translation faults.
531 * TODO: We need to look up the faulty device based on the I/O VA. Use
532 * the IOMMU device for now.
534 if (!report_iommu_fault(&domain
->io_domain
, mmu
->dev
, iova
, 0))
537 dev_err_ratelimited(mmu
->dev
,
538 "Unhandled fault: status 0x%08x iova 0x%lx\n",
544 static irqreturn_t
ipmmu_irq(int irq
, void *dev
)
546 struct ipmmu_vmsa_device
*mmu
= dev
;
547 irqreturn_t status
= IRQ_NONE
;
551 spin_lock_irqsave(&mmu
->lock
, flags
);
554 * Check interrupts for all active contexts.
556 for (i
= 0; i
< mmu
->num_ctx
; i
++) {
557 if (!mmu
->domains
[i
])
559 if (ipmmu_domain_irq(mmu
->domains
[i
]) == IRQ_HANDLED
)
560 status
= IRQ_HANDLED
;
563 spin_unlock_irqrestore(&mmu
->lock
, flags
);
568 /* -----------------------------------------------------------------------------
572 static struct iommu_domain
*__ipmmu_domain_alloc(unsigned type
)
574 struct ipmmu_vmsa_domain
*domain
;
576 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
580 mutex_init(&domain
->mutex
);
582 return &domain
->io_domain
;
585 static struct iommu_domain
*ipmmu_domain_alloc(unsigned type
)
587 struct iommu_domain
*io_domain
= NULL
;
590 case IOMMU_DOMAIN_UNMANAGED
:
591 io_domain
= __ipmmu_domain_alloc(type
);
594 case IOMMU_DOMAIN_DMA
:
595 io_domain
= __ipmmu_domain_alloc(type
);
596 if (io_domain
&& iommu_get_dma_cookie(io_domain
)) {
606 static void ipmmu_domain_free(struct iommu_domain
*io_domain
)
608 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
611 * Free the domain resources. We assume that all devices have already
614 iommu_put_dma_cookie(io_domain
);
615 ipmmu_domain_destroy_context(domain
);
616 free_io_pgtable_ops(domain
->iop
);
620 static int ipmmu_attach_device(struct iommu_domain
*io_domain
,
623 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
624 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
625 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
630 dev_err(dev
, "Cannot attach to IPMMU\n");
634 mutex_lock(&domain
->mutex
);
637 /* The domain hasn't been used yet, initialize it. */
639 ret
= ipmmu_domain_init_context(domain
);
641 dev_err(dev
, "Unable to initialize IPMMU context\n");
644 dev_info(dev
, "Using IPMMU context %u\n",
647 } else if (domain
->mmu
!= mmu
) {
649 * Something is wrong, we can't attach two devices using
650 * different IOMMUs to the same domain.
652 dev_err(dev
, "Can't attach IPMMU %s to domain on IPMMU %s\n",
653 dev_name(mmu
->dev
), dev_name(domain
->mmu
->dev
));
656 dev_info(dev
, "Reusing IPMMU context %u\n", domain
->context_id
);
658 mutex_unlock(&domain
->mutex
);
663 for (i
= 0; i
< fwspec
->num_ids
; ++i
)
664 ipmmu_utlb_enable(domain
, fwspec
->ids
[i
]);
669 static void ipmmu_detach_device(struct iommu_domain
*io_domain
,
672 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
673 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
676 for (i
= 0; i
< fwspec
->num_ids
; ++i
)
677 ipmmu_utlb_disable(domain
, fwspec
->ids
[i
]);
680 * TODO: Optimize by disabling the context when no device is attached.
684 static int ipmmu_map(struct iommu_domain
*io_domain
, unsigned long iova
,
685 phys_addr_t paddr
, size_t size
, int prot
, gfp_t gfp
)
687 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
692 return domain
->iop
->map(domain
->iop
, iova
, paddr
, size
, prot
);
695 static size_t ipmmu_unmap(struct iommu_domain
*io_domain
, unsigned long iova
,
696 size_t size
, struct iommu_iotlb_gather
*gather
)
698 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
700 return domain
->iop
->unmap(domain
->iop
, iova
, size
, gather
);
703 static void ipmmu_flush_iotlb_all(struct iommu_domain
*io_domain
)
705 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
708 ipmmu_tlb_flush_all(domain
);
711 static void ipmmu_iotlb_sync(struct iommu_domain
*io_domain
,
712 struct iommu_iotlb_gather
*gather
)
714 ipmmu_flush_iotlb_all(io_domain
);
717 static phys_addr_t
ipmmu_iova_to_phys(struct iommu_domain
*io_domain
,
720 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
722 /* TODO: Is locking needed ? */
724 return domain
->iop
->iova_to_phys(domain
->iop
, iova
);
727 static int ipmmu_init_platform_device(struct device
*dev
,
728 struct of_phandle_args
*args
)
730 struct iommu_fwspec
*fwspec
= dev_iommu_fwspec_get(dev
);
731 struct platform_device
*ipmmu_pdev
;
733 ipmmu_pdev
= of_find_device_by_node(args
->np
);
737 fwspec
->iommu_priv
= platform_get_drvdata(ipmmu_pdev
);
742 static const struct soc_device_attribute soc_rcar_gen3
[] = {
743 { .soc_id
= "r8a774a1", },
744 { .soc_id
= "r8a774b1", },
745 { .soc_id
= "r8a774c0", },
746 { .soc_id
= "r8a7795", },
747 { .soc_id
= "r8a7796", },
748 { .soc_id
= "r8a77965", },
749 { .soc_id
= "r8a77970", },
750 { .soc_id
= "r8a77990", },
751 { .soc_id
= "r8a77995", },
755 static const struct soc_device_attribute soc_rcar_gen3_whitelist
[] = {
756 { .soc_id
= "r8a774b1", },
757 { .soc_id
= "r8a774c0", },
758 { .soc_id
= "r8a7795", .revision
= "ES3.*" },
759 { .soc_id
= "r8a77965", },
760 { .soc_id
= "r8a77990", },
761 { .soc_id
= "r8a77995", },
765 static const char * const rcar_gen3_slave_whitelist
[] = {
768 static bool ipmmu_slave_whitelist(struct device
*dev
)
773 * For R-Car Gen3 use a white list to opt-in slave devices.
774 * For Other SoCs, this returns true anyway.
776 if (!soc_device_match(soc_rcar_gen3
))
779 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
780 if (!soc_device_match(soc_rcar_gen3_whitelist
))
783 /* Check whether this slave device can work with the IPMMU */
784 for (i
= 0; i
< ARRAY_SIZE(rcar_gen3_slave_whitelist
); i
++) {
785 if (!strcmp(dev_name(dev
), rcar_gen3_slave_whitelist
[i
]))
789 /* Otherwise, do not allow use of IPMMU */
793 static int ipmmu_of_xlate(struct device
*dev
,
794 struct of_phandle_args
*spec
)
796 if (!ipmmu_slave_whitelist(dev
))
799 iommu_fwspec_add_ids(dev
, spec
->args
, 1);
801 /* Initialize once - xlate() will call multiple times */
805 return ipmmu_init_platform_device(dev
, spec
);
808 static int ipmmu_init_arm_mapping(struct device
*dev
)
810 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
811 struct iommu_group
*group
;
814 /* Create a device group and add the device to it. */
815 group
= iommu_group_alloc();
817 dev_err(dev
, "Failed to allocate IOMMU group\n");
818 return PTR_ERR(group
);
821 ret
= iommu_group_add_device(group
, dev
);
822 iommu_group_put(group
);
825 dev_err(dev
, "Failed to add device to IPMMU group\n");
830 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
831 * VAs. This will allocate a corresponding IOMMU domain.
834 * - Create one mapping per context (TLB).
835 * - Make the mapping size configurable ? We currently use a 2GB mapping
836 * at a 1GB offset to ensure that NULL VAs will fault.
839 struct dma_iommu_mapping
*mapping
;
841 mapping
= arm_iommu_create_mapping(&platform_bus_type
,
843 if (IS_ERR(mapping
)) {
844 dev_err(mmu
->dev
, "failed to create ARM IOMMU mapping\n");
845 ret
= PTR_ERR(mapping
);
849 mmu
->mapping
= mapping
;
852 /* Attach the ARM VA mapping to the device. */
853 ret
= arm_iommu_attach_device(dev
, mmu
->mapping
);
855 dev_err(dev
, "Failed to attach device to VA mapping\n");
862 iommu_group_remove_device(dev
);
864 arm_iommu_release_mapping(mmu
->mapping
);
869 static int ipmmu_add_device(struct device
*dev
)
871 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
872 struct iommu_group
*group
;
876 * Only let through devices that have been verified in xlate()
881 if (IS_ENABLED(CONFIG_ARM
) && !IS_ENABLED(CONFIG_IOMMU_DMA
)) {
882 ret
= ipmmu_init_arm_mapping(dev
);
886 group
= iommu_group_get_for_dev(dev
);
888 return PTR_ERR(group
);
890 iommu_group_put(group
);
893 iommu_device_link(&mmu
->iommu
, dev
);
897 static void ipmmu_remove_device(struct device
*dev
)
899 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
901 iommu_device_unlink(&mmu
->iommu
, dev
);
902 arm_iommu_detach_device(dev
);
903 iommu_group_remove_device(dev
);
906 static struct iommu_group
*ipmmu_find_group(struct device
*dev
)
908 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
909 struct iommu_group
*group
;
912 return iommu_group_ref_get(mmu
->group
);
914 group
= iommu_group_alloc();
921 static const struct iommu_ops ipmmu_ops
= {
922 .domain_alloc
= ipmmu_domain_alloc
,
923 .domain_free
= ipmmu_domain_free
,
924 .attach_dev
= ipmmu_attach_device
,
925 .detach_dev
= ipmmu_detach_device
,
927 .unmap
= ipmmu_unmap
,
928 .flush_iotlb_all
= ipmmu_flush_iotlb_all
,
929 .iotlb_sync
= ipmmu_iotlb_sync
,
930 .iova_to_phys
= ipmmu_iova_to_phys
,
931 .add_device
= ipmmu_add_device
,
932 .remove_device
= ipmmu_remove_device
,
933 .device_group
= ipmmu_find_group
,
934 .pgsize_bitmap
= SZ_1G
| SZ_2M
| SZ_4K
,
935 .of_xlate
= ipmmu_of_xlate
,
938 /* -----------------------------------------------------------------------------
939 * Probe/remove and init
942 static void ipmmu_device_reset(struct ipmmu_vmsa_device
*mmu
)
946 /* Disable all contexts. */
947 for (i
= 0; i
< mmu
->num_ctx
; ++i
)
948 ipmmu_ctx_write(mmu
, i
, IMCTR
, 0);
951 static const struct ipmmu_features ipmmu_features_default
= {
952 .use_ns_alias_offset
= true,
953 .has_cache_leaf_nodes
= false,
954 .number_of_contexts
= 1, /* software only tested with one context */
956 .setup_imbuscr
= true,
957 .twobit_imttbcr_sl0
= false,
958 .reserved_context
= false,
960 .ctx_offset_base
= 0,
961 .ctx_offset_stride
= 0x40,
962 .utlb_offset_base
= 0,
965 static const struct ipmmu_features ipmmu_features_rcar_gen3
= {
966 .use_ns_alias_offset
= false,
967 .has_cache_leaf_nodes
= true,
968 .number_of_contexts
= 8,
970 .setup_imbuscr
= false,
971 .twobit_imttbcr_sl0
= true,
972 .reserved_context
= true,
973 .cache_snoop
= false,
974 .ctx_offset_base
= 0,
975 .ctx_offset_stride
= 0x40,
976 .utlb_offset_base
= 0,
979 static const struct of_device_id ipmmu_of_ids
[] = {
981 .compatible
= "renesas,ipmmu-vmsa",
982 .data
= &ipmmu_features_default
,
984 .compatible
= "renesas,ipmmu-r8a774a1",
985 .data
= &ipmmu_features_rcar_gen3
,
987 .compatible
= "renesas,ipmmu-r8a774b1",
988 .data
= &ipmmu_features_rcar_gen3
,
990 .compatible
= "renesas,ipmmu-r8a774c0",
991 .data
= &ipmmu_features_rcar_gen3
,
993 .compatible
= "renesas,ipmmu-r8a7795",
994 .data
= &ipmmu_features_rcar_gen3
,
996 .compatible
= "renesas,ipmmu-r8a7796",
997 .data
= &ipmmu_features_rcar_gen3
,
999 .compatible
= "renesas,ipmmu-r8a77965",
1000 .data
= &ipmmu_features_rcar_gen3
,
1002 .compatible
= "renesas,ipmmu-r8a77970",
1003 .data
= &ipmmu_features_rcar_gen3
,
1005 .compatible
= "renesas,ipmmu-r8a77990",
1006 .data
= &ipmmu_features_rcar_gen3
,
1008 .compatible
= "renesas,ipmmu-r8a77995",
1009 .data
= &ipmmu_features_rcar_gen3
,
1015 static int ipmmu_probe(struct platform_device
*pdev
)
1017 struct ipmmu_vmsa_device
*mmu
;
1018 struct resource
*res
;
1022 mmu
= devm_kzalloc(&pdev
->dev
, sizeof(*mmu
), GFP_KERNEL
);
1024 dev_err(&pdev
->dev
, "cannot allocate device data\n");
1028 mmu
->dev
= &pdev
->dev
;
1029 spin_lock_init(&mmu
->lock
);
1030 bitmap_zero(mmu
->ctx
, IPMMU_CTX_MAX
);
1031 mmu
->features
= of_device_get_match_data(&pdev
->dev
);
1032 memset(mmu
->utlb_ctx
, IPMMU_CTX_INVALID
, mmu
->features
->num_utlbs
);
1033 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(40));
1035 /* Map I/O memory and request IRQ. */
1036 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1037 mmu
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1038 if (IS_ERR(mmu
->base
))
1039 return PTR_ERR(mmu
->base
);
1042 * The IPMMU has two register banks, for secure and non-secure modes.
1043 * The bank mapped at the beginning of the IPMMU address space
1044 * corresponds to the running mode of the CPU. When running in secure
1045 * mode the non-secure register bank is also available at an offset.
1047 * Secure mode operation isn't clearly documented and is thus currently
1048 * not implemented in the driver. Furthermore, preliminary tests of
1049 * non-secure operation with the main register bank were not successful.
1050 * Offset the registers base unconditionally to point to the non-secure
1051 * alias space for now.
1053 if (mmu
->features
->use_ns_alias_offset
)
1054 mmu
->base
+= IM_NS_ALIAS_OFFSET
;
1056 mmu
->num_ctx
= min(IPMMU_CTX_MAX
, mmu
->features
->number_of_contexts
);
1059 * Determine if this IPMMU instance is a root device by checking for
1060 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1062 if (!mmu
->features
->has_cache_leaf_nodes
||
1063 !of_find_property(pdev
->dev
.of_node
, "renesas,ipmmu-main", NULL
))
1066 mmu
->root
= ipmmu_find_root();
1069 * Wait until the root device has been registered for sure.
1072 return -EPROBE_DEFER
;
1074 /* Root devices have mandatory IRQs */
1075 if (ipmmu_is_root(mmu
)) {
1076 irq
= platform_get_irq(pdev
, 0);
1080 ret
= devm_request_irq(&pdev
->dev
, irq
, ipmmu_irq
, 0,
1081 dev_name(&pdev
->dev
), mmu
);
1083 dev_err(&pdev
->dev
, "failed to request IRQ %d\n", irq
);
1087 ipmmu_device_reset(mmu
);
1089 if (mmu
->features
->reserved_context
) {
1090 dev_info(&pdev
->dev
, "IPMMU context 0 is reserved\n");
1091 set_bit(0, mmu
->ctx
);
1096 * Register the IPMMU to the IOMMU subsystem in the following cases:
1097 * - R-Car Gen2 IPMMU (all devices registered)
1098 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1100 if (!mmu
->features
->has_cache_leaf_nodes
|| !ipmmu_is_root(mmu
)) {
1101 ret
= iommu_device_sysfs_add(&mmu
->iommu
, &pdev
->dev
, NULL
,
1102 dev_name(&pdev
->dev
));
1106 iommu_device_set_ops(&mmu
->iommu
, &ipmmu_ops
);
1107 iommu_device_set_fwnode(&mmu
->iommu
,
1108 &pdev
->dev
.of_node
->fwnode
);
1110 ret
= iommu_device_register(&mmu
->iommu
);
1114 #if defined(CONFIG_IOMMU_DMA)
1115 if (!iommu_present(&platform_bus_type
))
1116 bus_set_iommu(&platform_bus_type
, &ipmmu_ops
);
1121 * We can't create the ARM mapping here as it requires the bus to have
1122 * an IOMMU, which only happens when bus_set_iommu() is called in
1123 * ipmmu_init() after the probe function returns.
1126 platform_set_drvdata(pdev
, mmu
);
1131 static int ipmmu_remove(struct platform_device
*pdev
)
1133 struct ipmmu_vmsa_device
*mmu
= platform_get_drvdata(pdev
);
1135 iommu_device_sysfs_remove(&mmu
->iommu
);
1136 iommu_device_unregister(&mmu
->iommu
);
1138 arm_iommu_release_mapping(mmu
->mapping
);
1140 ipmmu_device_reset(mmu
);
1145 #ifdef CONFIG_PM_SLEEP
1146 static int ipmmu_resume_noirq(struct device
*dev
)
1148 struct ipmmu_vmsa_device
*mmu
= dev_get_drvdata(dev
);
1151 /* Reset root MMU and restore contexts */
1152 if (ipmmu_is_root(mmu
)) {
1153 ipmmu_device_reset(mmu
);
1155 for (i
= 0; i
< mmu
->num_ctx
; i
++) {
1156 if (!mmu
->domains
[i
])
1159 ipmmu_domain_setup_context(mmu
->domains
[i
]);
1163 /* Re-enable active micro-TLBs */
1164 for (i
= 0; i
< mmu
->features
->num_utlbs
; i
++) {
1165 if (mmu
->utlb_ctx
[i
] == IPMMU_CTX_INVALID
)
1168 ipmmu_utlb_enable(mmu
->root
->domains
[mmu
->utlb_ctx
[i
]], i
);
1174 static const struct dev_pm_ops ipmmu_pm
= {
1175 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL
, ipmmu_resume_noirq
)
1177 #define DEV_PM_OPS &ipmmu_pm
1179 #define DEV_PM_OPS NULL
1180 #endif /* CONFIG_PM_SLEEP */
1182 static struct platform_driver ipmmu_driver
= {
1184 .name
= "ipmmu-vmsa",
1185 .of_match_table
= of_match_ptr(ipmmu_of_ids
),
1188 .probe
= ipmmu_probe
,
1189 .remove
= ipmmu_remove
,
1192 static int __init
ipmmu_init(void)
1194 struct device_node
*np
;
1195 static bool setup_done
;
1201 np
= of_find_matching_node(NULL
, ipmmu_of_ids
);
1207 ret
= platform_driver_register(&ipmmu_driver
);
1211 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1212 if (!iommu_present(&platform_bus_type
))
1213 bus_set_iommu(&platform_bus_type
, &ipmmu_ops
);
1219 subsys_initcall(ipmmu_init
);