treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / md / bcache / bset.c
blob4385303836d8e7cfe873bd497e90ed978ec7c50d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
6 * Copyright 2012 Google, Inc.
7 */
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
11 #include "util.h"
12 #include "bset.h"
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
19 #ifdef CONFIG_BCACHE_DEBUG
21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
23 struct bkey *k, *next;
25 for (k = i->start; k < bset_bkey_last(i); k = next) {
26 next = bkey_next(k);
28 pr_err("block %u key %u/%u: ", set,
29 (unsigned int) ((u64 *) k - i->d), i->keys);
31 if (b->ops->key_dump)
32 b->ops->key_dump(b, k);
33 else
34 pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
36 if (next < bset_bkey_last(i) &&
37 bkey_cmp(k, b->ops->is_extents ?
38 &START_KEY(next) : next) > 0)
39 pr_err("Key skipped backwards\n");
43 void bch_dump_bucket(struct btree_keys *b)
45 unsigned int i;
47 console_lock();
48 for (i = 0; i <= b->nsets; i++)
49 bch_dump_bset(b, b->set[i].data,
50 bset_sector_offset(b, b->set[i].data));
51 console_unlock();
54 int __bch_count_data(struct btree_keys *b)
56 unsigned int ret = 0;
57 struct btree_iter iter;
58 struct bkey *k;
60 if (b->ops->is_extents)
61 for_each_key(b, k, &iter)
62 ret += KEY_SIZE(k);
63 return ret;
66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
68 va_list args;
69 struct bkey *k, *p = NULL;
70 struct btree_iter iter;
71 const char *err;
73 for_each_key(b, k, &iter) {
74 if (b->ops->is_extents) {
75 err = "Keys out of order";
76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 goto bug;
79 if (bch_ptr_invalid(b, k))
80 continue;
82 err = "Overlapping keys";
83 if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 goto bug;
85 } else {
86 if (bch_ptr_bad(b, k))
87 continue;
89 err = "Duplicate keys";
90 if (p && !bkey_cmp(p, k))
91 goto bug;
93 p = k;
95 #if 0
96 err = "Key larger than btree node key";
97 if (p && bkey_cmp(p, &b->key) > 0)
98 goto bug;
99 #endif
100 return;
101 bug:
102 bch_dump_bucket(b);
104 va_start(args, fmt);
105 vprintk(fmt, args);
106 va_end(args);
108 panic("bch_check_keys error: %s:\n", err);
111 static void bch_btree_iter_next_check(struct btree_iter *iter)
113 struct bkey *k = iter->data->k, *next = bkey_next(k);
115 if (next < iter->data->end &&
116 bkey_cmp(k, iter->b->ops->is_extents ?
117 &START_KEY(next) : next) > 0) {
118 bch_dump_bucket(iter->b);
119 panic("Key skipped backwards\n");
123 #else
125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
127 #endif
129 /* Keylists */
131 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
133 size_t oldsize = bch_keylist_nkeys(l);
134 size_t newsize = oldsize + u64s;
135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 uint64_t *new_keys;
138 newsize = roundup_pow_of_two(newsize);
140 if (newsize <= KEYLIST_INLINE ||
141 roundup_pow_of_two(oldsize) == newsize)
142 return 0;
144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
146 if (!new_keys)
147 return -ENOMEM;
149 if (!old_keys)
150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
152 l->keys_p = new_keys;
153 l->top_p = new_keys + oldsize;
155 return 0;
158 /* Pop the top key of keylist by pointing l->top to its previous key */
159 struct bkey *bch_keylist_pop(struct keylist *l)
161 struct bkey *k = l->keys;
163 if (k == l->top)
164 return NULL;
166 while (bkey_next(k) != l->top)
167 k = bkey_next(k);
169 return l->top = k;
172 /* Pop the bottom key of keylist and update l->top_p */
173 void bch_keylist_pop_front(struct keylist *l)
175 l->top_p -= bkey_u64s(l->keys);
177 memmove(l->keys,
178 bkey_next(l->keys),
179 bch_keylist_bytes(l));
182 /* Key/pointer manipulation */
184 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
185 unsigned int i)
187 BUG_ON(i > KEY_PTRS(src));
189 /* Only copy the header, key, and one pointer. */
190 memcpy(dest, src, 2 * sizeof(uint64_t));
191 dest->ptr[0] = src->ptr[i];
192 SET_KEY_PTRS(dest, 1);
193 /* We didn't copy the checksum so clear that bit. */
194 SET_KEY_CSUM(dest, 0);
197 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
199 unsigned int i, len = 0;
201 if (bkey_cmp(where, &START_KEY(k)) <= 0)
202 return false;
204 if (bkey_cmp(where, k) < 0)
205 len = KEY_OFFSET(k) - KEY_OFFSET(where);
206 else
207 bkey_copy_key(k, where);
209 for (i = 0; i < KEY_PTRS(k); i++)
210 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
212 BUG_ON(len > KEY_SIZE(k));
213 SET_KEY_SIZE(k, len);
214 return true;
217 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
219 unsigned int len = 0;
221 if (bkey_cmp(where, k) >= 0)
222 return false;
224 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
226 if (bkey_cmp(where, &START_KEY(k)) > 0)
227 len = KEY_OFFSET(where) - KEY_START(k);
229 bkey_copy_key(k, where);
231 BUG_ON(len > KEY_SIZE(k));
232 SET_KEY_SIZE(k, len);
233 return true;
236 /* Auxiliary search trees */
238 /* 32 bits total: */
239 #define BKEY_MID_BITS 3
240 #define BKEY_EXPONENT_BITS 7
241 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
242 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
244 struct bkey_float {
245 unsigned int exponent:BKEY_EXPONENT_BITS;
246 unsigned int m:BKEY_MID_BITS;
247 unsigned int mantissa:BKEY_MANTISSA_BITS;
248 } __packed;
251 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
252 * it used to be 64, but I realized the lookup code would touch slightly less
253 * memory if it was 128.
255 * It definites the number of bytes (in struct bset) per struct bkey_float in
256 * the auxiliar search tree - when we're done searching the bset_float tree we
257 * have this many bytes left that we do a linear search over.
259 * Since (after level 5) every level of the bset_tree is on a new cacheline,
260 * we're touching one fewer cacheline in the bset tree in exchange for one more
261 * cacheline in the linear search - but the linear search might stop before it
262 * gets to the second cacheline.
265 #define BSET_CACHELINE 128
267 /* Space required for the btree node keys */
268 static inline size_t btree_keys_bytes(struct btree_keys *b)
270 return PAGE_SIZE << b->page_order;
273 static inline size_t btree_keys_cachelines(struct btree_keys *b)
275 return btree_keys_bytes(b) / BSET_CACHELINE;
278 /* Space required for the auxiliary search trees */
279 static inline size_t bset_tree_bytes(struct btree_keys *b)
281 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
284 /* Space required for the prev pointers */
285 static inline size_t bset_prev_bytes(struct btree_keys *b)
287 return btree_keys_cachelines(b) * sizeof(uint8_t);
290 /* Memory allocation */
292 void bch_btree_keys_free(struct btree_keys *b)
294 struct bset_tree *t = b->set;
296 if (bset_prev_bytes(b) < PAGE_SIZE)
297 kfree(t->prev);
298 else
299 free_pages((unsigned long) t->prev,
300 get_order(bset_prev_bytes(b)));
302 if (bset_tree_bytes(b) < PAGE_SIZE)
303 kfree(t->tree);
304 else
305 free_pages((unsigned long) t->tree,
306 get_order(bset_tree_bytes(b)));
308 free_pages((unsigned long) t->data, b->page_order);
310 t->prev = NULL;
311 t->tree = NULL;
312 t->data = NULL;
315 int bch_btree_keys_alloc(struct btree_keys *b,
316 unsigned int page_order,
317 gfp_t gfp)
319 struct bset_tree *t = b->set;
321 BUG_ON(t->data);
323 b->page_order = page_order;
325 t->data = (void *) __get_free_pages(gfp, b->page_order);
326 if (!t->data)
327 goto err;
329 t->tree = bset_tree_bytes(b) < PAGE_SIZE
330 ? kmalloc(bset_tree_bytes(b), gfp)
331 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
332 if (!t->tree)
333 goto err;
335 t->prev = bset_prev_bytes(b) < PAGE_SIZE
336 ? kmalloc(bset_prev_bytes(b), gfp)
337 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
338 if (!t->prev)
339 goto err;
341 return 0;
342 err:
343 bch_btree_keys_free(b);
344 return -ENOMEM;
347 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348 bool *expensive_debug_checks)
350 b->ops = ops;
351 b->expensive_debug_checks = expensive_debug_checks;
352 b->nsets = 0;
353 b->last_set_unwritten = 0;
356 * struct btree_keys in embedded in struct btree, and struct
357 * bset_tree is embedded into struct btree_keys. They are all
358 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
359 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
360 * don't have to initiate b->set[].size and b->set[].data here
361 * any more.
365 /* Binary tree stuff for auxiliary search trees */
368 * return array index next to j when does in-order traverse
369 * of a binary tree which is stored in a linear array
371 static unsigned int inorder_next(unsigned int j, unsigned int size)
373 if (j * 2 + 1 < size) {
374 j = j * 2 + 1;
376 while (j * 2 < size)
377 j *= 2;
378 } else
379 j >>= ffz(j) + 1;
381 return j;
385 * return array index previous to j when does in-order traverse
386 * of a binary tree which is stored in a linear array
388 static unsigned int inorder_prev(unsigned int j, unsigned int size)
390 if (j * 2 < size) {
391 j = j * 2;
393 while (j * 2 + 1 < size)
394 j = j * 2 + 1;
395 } else
396 j >>= ffs(j);
398 return j;
402 * I have no idea why this code works... and I'm the one who wrote it
404 * However, I do know what it does:
405 * Given a binary tree constructed in an array (i.e. how you normally implement
406 * a heap), it converts a node in the tree - referenced by array index - to the
407 * index it would have if you did an inorder traversal.
409 * Also tested for every j, size up to size somewhere around 6 million.
411 * The binary tree starts at array index 1, not 0
412 * extra is a function of size:
413 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
415 static unsigned int __to_inorder(unsigned int j,
416 unsigned int size,
417 unsigned int extra)
419 unsigned int b = fls(j);
420 unsigned int shift = fls(size - 1) - b;
422 j ^= 1U << (b - 1);
423 j <<= 1;
424 j |= 1;
425 j <<= shift;
427 if (j > extra)
428 j -= (j - extra) >> 1;
430 return j;
434 * Return the cacheline index in bset_tree->data, where j is index
435 * from a linear array which stores the auxiliar binary tree
437 static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
439 return __to_inorder(j, t->size, t->extra);
442 static unsigned int __inorder_to_tree(unsigned int j,
443 unsigned int size,
444 unsigned int extra)
446 unsigned int shift;
448 if (j > extra)
449 j += j - extra;
451 shift = ffs(j);
453 j >>= shift;
454 j |= roundup_pow_of_two(size) >> shift;
456 return j;
460 * Return an index from a linear array which stores the auxiliar binary
461 * tree, j is the cacheline index of t->data.
463 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
465 return __inorder_to_tree(j, t->size, t->extra);
468 #if 0
469 void inorder_test(void)
471 unsigned long done = 0;
472 ktime_t start = ktime_get();
474 for (unsigned int size = 2;
475 size < 65536000;
476 size++) {
477 unsigned int extra =
478 (size - rounddown_pow_of_two(size - 1)) << 1;
479 unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
481 if (!(size % 4096))
482 pr_notice("loop %u, %llu per us\n", size,
483 done / ktime_us_delta(ktime_get(), start));
485 while (1) {
486 if (__inorder_to_tree(i, size, extra) != j)
487 panic("size %10u j %10u i %10u", size, j, i);
489 if (__to_inorder(j, size, extra) != i)
490 panic("size %10u j %10u i %10u", size, j, i);
492 if (j == rounddown_pow_of_two(size) - 1)
493 break;
495 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
497 j = inorder_next(j, size);
498 i++;
501 done += size - 1;
504 #endif
507 * Cacheline/offset <-> bkey pointer arithmetic:
509 * t->tree is a binary search tree in an array; each node corresponds to a key
510 * in one cacheline in t->set (BSET_CACHELINE bytes).
512 * This means we don't have to store the full index of the key that a node in
513 * the binary tree points to; to_inorder() gives us the cacheline, and then
514 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
516 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
517 * make this work.
519 * To construct the bfloat for an arbitrary key we need to know what the key
520 * immediately preceding it is: we have to check if the two keys differ in the
521 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
522 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
525 static struct bkey *cacheline_to_bkey(struct bset_tree *t,
526 unsigned int cacheline,
527 unsigned int offset)
529 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
532 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
534 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
537 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
538 unsigned int cacheline,
539 struct bkey *k)
541 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
544 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
546 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
549 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
551 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
555 * For the write set - the one we're currently inserting keys into - we don't
556 * maintain a full search tree, we just keep a simple lookup table in t->prev.
558 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
560 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
563 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
565 low >>= shift;
566 low |= (high << 1) << (63U - shift);
567 return low;
571 * Calculate mantissa value for struct bkey_float.
572 * If most significant bit of f->exponent is not set, then
573 * - f->exponent >> 6 is 0
574 * - p[0] points to bkey->low
575 * - p[-1] borrows bits from KEY_INODE() of bkey->high
576 * if most isgnificant bits of f->exponent is set, then
577 * - f->exponent >> 6 is 1
578 * - p[0] points to bits from KEY_INODE() of bkey->high
579 * - p[-1] points to other bits from KEY_INODE() of
580 * bkey->high too.
581 * See make_bfloat() to check when most significant bit of f->exponent
582 * is set or not.
584 static inline unsigned int bfloat_mantissa(const struct bkey *k,
585 struct bkey_float *f)
587 const uint64_t *p = &k->low - (f->exponent >> 6);
589 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
592 static void make_bfloat(struct bset_tree *t, unsigned int j)
594 struct bkey_float *f = &t->tree[j];
595 struct bkey *m = tree_to_bkey(t, j);
596 struct bkey *p = tree_to_prev_bkey(t, j);
598 struct bkey *l = is_power_of_2(j)
599 ? t->data->start
600 : tree_to_prev_bkey(t, j >> ffs(j));
602 struct bkey *r = is_power_of_2(j + 1)
603 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
604 : tree_to_bkey(t, j >> (ffz(j) + 1));
606 BUG_ON(m < l || m > r);
607 BUG_ON(bkey_next(p) != m);
610 * If l and r have different KEY_INODE values (different backing
611 * device), f->exponent records how many least significant bits
612 * are different in KEY_INODE values and sets most significant
613 * bits to 1 (by +64).
614 * If l and r have same KEY_INODE value, f->exponent records
615 * how many different bits in least significant bits of bkey->low.
616 * See bfloat_mantiss() how the most significant bit of
617 * f->exponent is used to calculate bfloat mantissa value.
619 if (KEY_INODE(l) != KEY_INODE(r))
620 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
621 else
622 f->exponent = fls64(r->low ^ l->low);
624 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
627 * Setting f->exponent = 127 flags this node as failed, and causes the
628 * lookup code to fall back to comparing against the original key.
631 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
632 f->mantissa = bfloat_mantissa(m, f) - 1;
633 else
634 f->exponent = 127;
637 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
639 if (t != b->set) {
640 unsigned int j = roundup(t[-1].size,
641 64 / sizeof(struct bkey_float));
643 t->tree = t[-1].tree + j;
644 t->prev = t[-1].prev + j;
647 while (t < b->set + MAX_BSETS)
648 t++->size = 0;
651 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
653 struct bset_tree *t = bset_tree_last(b);
655 BUG_ON(b->last_set_unwritten);
656 b->last_set_unwritten = 1;
658 bset_alloc_tree(b, t);
660 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
661 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
662 t->size = 1;
666 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
668 if (i != b->set->data) {
669 b->set[++b->nsets].data = i;
670 i->seq = b->set->data->seq;
671 } else
672 get_random_bytes(&i->seq, sizeof(uint64_t));
674 i->magic = magic;
675 i->version = 0;
676 i->keys = 0;
678 bch_bset_build_unwritten_tree(b);
682 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
683 * accelerate bkey search in a btree node (pointed by bset_tree->data in
684 * memory). After search in the auxiliar tree by calling bset_search_tree(),
685 * a struct bset_search_iter is returned which indicates range [l, r] from
686 * bset_tree->data where the searching bkey might be inside. Then a followed
687 * linear comparison does the exact search, see __bch_bset_search() for how
688 * the auxiliary tree is used.
690 void bch_bset_build_written_tree(struct btree_keys *b)
692 struct bset_tree *t = bset_tree_last(b);
693 struct bkey *prev = NULL, *k = t->data->start;
694 unsigned int j, cacheline = 1;
696 b->last_set_unwritten = 0;
698 bset_alloc_tree(b, t);
700 t->size = min_t(unsigned int,
701 bkey_to_cacheline(t, bset_bkey_last(t->data)),
702 b->set->tree + btree_keys_cachelines(b) - t->tree);
704 if (t->size < 2) {
705 t->size = 0;
706 return;
709 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
711 /* First we figure out where the first key in each cacheline is */
712 for (j = inorder_next(0, t->size);
714 j = inorder_next(j, t->size)) {
715 while (bkey_to_cacheline(t, k) < cacheline)
716 prev = k, k = bkey_next(k);
718 t->prev[j] = bkey_u64s(prev);
719 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
722 while (bkey_next(k) != bset_bkey_last(t->data))
723 k = bkey_next(k);
725 t->end = *k;
727 /* Then we build the tree */
728 for (j = inorder_next(0, t->size);
730 j = inorder_next(j, t->size))
731 make_bfloat(t, j);
734 /* Insert */
736 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
738 struct bset_tree *t;
739 unsigned int inorder, j = 1;
741 for (t = b->set; t <= bset_tree_last(b); t++)
742 if (k < bset_bkey_last(t->data))
743 goto found_set;
745 BUG();
746 found_set:
747 if (!t->size || !bset_written(b, t))
748 return;
750 inorder = bkey_to_cacheline(t, k);
752 if (k == t->data->start)
753 goto fix_left;
755 if (bkey_next(k) == bset_bkey_last(t->data)) {
756 t->end = *k;
757 goto fix_right;
760 j = inorder_to_tree(inorder, t);
762 if (j &&
763 j < t->size &&
764 k == tree_to_bkey(t, j))
765 fix_left: do {
766 make_bfloat(t, j);
767 j = j * 2;
768 } while (j < t->size);
770 j = inorder_to_tree(inorder + 1, t);
772 if (j &&
773 j < t->size &&
774 k == tree_to_prev_bkey(t, j))
775 fix_right: do {
776 make_bfloat(t, j);
777 j = j * 2 + 1;
778 } while (j < t->size);
781 static void bch_bset_fix_lookup_table(struct btree_keys *b,
782 struct bset_tree *t,
783 struct bkey *k)
785 unsigned int shift = bkey_u64s(k);
786 unsigned int j = bkey_to_cacheline(t, k);
788 /* We're getting called from btree_split() or btree_gc, just bail out */
789 if (!t->size)
790 return;
793 * k is the key we just inserted; we need to find the entry in the
794 * lookup table for the first key that is strictly greater than k:
795 * it's either k's cacheline or the next one
797 while (j < t->size &&
798 table_to_bkey(t, j) <= k)
799 j++;
802 * Adjust all the lookup table entries, and find a new key for any that
803 * have gotten too big
805 for (; j < t->size; j++) {
806 t->prev[j] += shift;
808 if (t->prev[j] > 7) {
809 k = table_to_bkey(t, j - 1);
811 while (k < cacheline_to_bkey(t, j, 0))
812 k = bkey_next(k);
814 t->prev[j] = bkey_to_cacheline_offset(t, j, k);
818 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
819 return;
821 /* Possibly add a new entry to the end of the lookup table */
823 for (k = table_to_bkey(t, t->size - 1);
824 k != bset_bkey_last(t->data);
825 k = bkey_next(k))
826 if (t->size == bkey_to_cacheline(t, k)) {
827 t->prev[t->size] =
828 bkey_to_cacheline_offset(t, t->size, k);
829 t->size++;
834 * Tries to merge l and r: l should be lower than r
835 * Returns true if we were able to merge. If we did merge, l will be the merged
836 * key, r will be untouched.
838 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
840 if (!b->ops->key_merge)
841 return false;
844 * Generic header checks
845 * Assumes left and right are in order
846 * Left and right must be exactly aligned
848 if (!bch_bkey_equal_header(l, r) ||
849 bkey_cmp(l, &START_KEY(r)))
850 return false;
852 return b->ops->key_merge(b, l, r);
855 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
856 struct bkey *insert)
858 struct bset_tree *t = bset_tree_last(b);
860 BUG_ON(!b->last_set_unwritten);
861 BUG_ON(bset_byte_offset(b, t->data) +
862 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
863 PAGE_SIZE << b->page_order);
865 memmove((uint64_t *) where + bkey_u64s(insert),
866 where,
867 (void *) bset_bkey_last(t->data) - (void *) where);
869 t->data->keys += bkey_u64s(insert);
870 bkey_copy(where, insert);
871 bch_bset_fix_lookup_table(b, t, where);
874 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
875 struct bkey *replace_key)
877 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
878 struct bset *i = bset_tree_last(b)->data;
879 struct bkey *m, *prev = NULL;
880 struct btree_iter iter;
881 struct bkey preceding_key_on_stack = ZERO_KEY;
882 struct bkey *preceding_key_p = &preceding_key_on_stack;
884 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
887 * If k has preceding key, preceding_key_p will be set to address
888 * of k's preceding key; otherwise preceding_key_p will be set
889 * to NULL inside preceding_key().
891 if (b->ops->is_extents)
892 preceding_key(&START_KEY(k), &preceding_key_p);
893 else
894 preceding_key(k, &preceding_key_p);
896 m = bch_btree_iter_init(b, &iter, preceding_key_p);
898 if (b->ops->insert_fixup(b, k, &iter, replace_key))
899 return status;
901 status = BTREE_INSERT_STATUS_INSERT;
903 while (m != bset_bkey_last(i) &&
904 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
905 prev = m, m = bkey_next(m);
907 /* prev is in the tree, if we merge we're done */
908 status = BTREE_INSERT_STATUS_BACK_MERGE;
909 if (prev &&
910 bch_bkey_try_merge(b, prev, k))
911 goto merged;
912 #if 0
913 status = BTREE_INSERT_STATUS_OVERWROTE;
914 if (m != bset_bkey_last(i) &&
915 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
916 goto copy;
917 #endif
918 status = BTREE_INSERT_STATUS_FRONT_MERGE;
919 if (m != bset_bkey_last(i) &&
920 bch_bkey_try_merge(b, k, m))
921 goto copy;
923 bch_bset_insert(b, m, k);
924 copy: bkey_copy(m, k);
925 merged:
926 return status;
929 /* Lookup */
931 struct bset_search_iter {
932 struct bkey *l, *r;
935 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
936 const struct bkey *search)
938 unsigned int li = 0, ri = t->size;
940 while (li + 1 != ri) {
941 unsigned int m = (li + ri) >> 1;
943 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
944 ri = m;
945 else
946 li = m;
949 return (struct bset_search_iter) {
950 table_to_bkey(t, li),
951 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
955 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
956 const struct bkey *search)
958 struct bkey *l, *r;
959 struct bkey_float *f;
960 unsigned int inorder, j, n = 1;
962 do {
963 unsigned int p = n << 4;
965 if (p < t->size)
966 prefetch(&t->tree[p]);
968 j = n;
969 f = &t->tree[j];
971 if (likely(f->exponent != 127)) {
972 if (f->mantissa >= bfloat_mantissa(search, f))
973 n = j * 2;
974 else
975 n = j * 2 + 1;
976 } else {
977 if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
978 n = j * 2;
979 else
980 n = j * 2 + 1;
982 } while (n < t->size);
984 inorder = to_inorder(j, t);
987 * n would have been the node we recursed to - the low bit tells us if
988 * we recursed left or recursed right.
990 if (n & 1) {
991 l = cacheline_to_bkey(t, inorder, f->m);
993 if (++inorder != t->size) {
994 f = &t->tree[inorder_next(j, t->size)];
995 r = cacheline_to_bkey(t, inorder, f->m);
996 } else
997 r = bset_bkey_last(t->data);
998 } else {
999 r = cacheline_to_bkey(t, inorder, f->m);
1001 if (--inorder) {
1002 f = &t->tree[inorder_prev(j, t->size)];
1003 l = cacheline_to_bkey(t, inorder, f->m);
1004 } else
1005 l = t->data->start;
1008 return (struct bset_search_iter) {l, r};
1011 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1012 const struct bkey *search)
1014 struct bset_search_iter i;
1017 * First, we search for a cacheline, then lastly we do a linear search
1018 * within that cacheline.
1020 * To search for the cacheline, there's three different possibilities:
1021 * * The set is too small to have a search tree, so we just do a linear
1022 * search over the whole set.
1023 * * The set is the one we're currently inserting into; keeping a full
1024 * auxiliary search tree up to date would be too expensive, so we
1025 * use a much simpler lookup table to do a binary search -
1026 * bset_search_write_set().
1027 * * Or we use the auxiliary search tree we constructed earlier -
1028 * bset_search_tree()
1031 if (unlikely(!t->size)) {
1032 i.l = t->data->start;
1033 i.r = bset_bkey_last(t->data);
1034 } else if (bset_written(b, t)) {
1036 * Each node in the auxiliary search tree covers a certain range
1037 * of bits, and keys above and below the set it covers might
1038 * differ outside those bits - so we have to special case the
1039 * start and end - handle that here:
1042 if (unlikely(bkey_cmp(search, &t->end) >= 0))
1043 return bset_bkey_last(t->data);
1045 if (unlikely(bkey_cmp(search, t->data->start) < 0))
1046 return t->data->start;
1048 i = bset_search_tree(t, search);
1049 } else {
1050 BUG_ON(!b->nsets &&
1051 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1053 i = bset_search_write_set(t, search);
1056 if (btree_keys_expensive_checks(b)) {
1057 BUG_ON(bset_written(b, t) &&
1058 i.l != t->data->start &&
1059 bkey_cmp(tree_to_prev_bkey(t,
1060 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1061 search) > 0);
1063 BUG_ON(i.r != bset_bkey_last(t->data) &&
1064 bkey_cmp(i.r, search) <= 0);
1067 while (likely(i.l != i.r) &&
1068 bkey_cmp(i.l, search) <= 0)
1069 i.l = bkey_next(i.l);
1071 return i.l;
1074 /* Btree iterator */
1076 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1077 struct btree_iter_set);
1079 static inline bool btree_iter_cmp(struct btree_iter_set l,
1080 struct btree_iter_set r)
1082 return bkey_cmp(l.k, r.k) > 0;
1085 static inline bool btree_iter_end(struct btree_iter *iter)
1087 return !iter->used;
1090 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1091 struct bkey *end)
1093 if (k != end)
1094 BUG_ON(!heap_add(iter,
1095 ((struct btree_iter_set) { k, end }),
1096 btree_iter_cmp));
1099 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1100 struct btree_iter *iter,
1101 struct bkey *search,
1102 struct bset_tree *start)
1104 struct bkey *ret = NULL;
1106 iter->size = ARRAY_SIZE(iter->data);
1107 iter->used = 0;
1109 #ifdef CONFIG_BCACHE_DEBUG
1110 iter->b = b;
1111 #endif
1113 for (; start <= bset_tree_last(b); start++) {
1114 ret = bch_bset_search(b, start, search);
1115 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1118 return ret;
1121 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1122 struct btree_iter *iter,
1123 struct bkey *search)
1125 return __bch_btree_iter_init(b, iter, search, b->set);
1128 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1129 btree_iter_cmp_fn *cmp)
1131 struct btree_iter_set b __maybe_unused;
1132 struct bkey *ret = NULL;
1134 if (!btree_iter_end(iter)) {
1135 bch_btree_iter_next_check(iter);
1137 ret = iter->data->k;
1138 iter->data->k = bkey_next(iter->data->k);
1140 if (iter->data->k > iter->data->end) {
1141 WARN_ONCE(1, "bset was corrupt!\n");
1142 iter->data->k = iter->data->end;
1145 if (iter->data->k == iter->data->end)
1146 heap_pop(iter, b, cmp);
1147 else
1148 heap_sift(iter, 0, cmp);
1151 return ret;
1154 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1156 return __bch_btree_iter_next(iter, btree_iter_cmp);
1160 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1161 struct btree_keys *b, ptr_filter_fn fn)
1163 struct bkey *ret;
1165 do {
1166 ret = bch_btree_iter_next(iter);
1167 } while (ret && fn(b, ret));
1169 return ret;
1172 /* Mergesort */
1174 void bch_bset_sort_state_free(struct bset_sort_state *state)
1176 mempool_exit(&state->pool);
1179 int bch_bset_sort_state_init(struct bset_sort_state *state,
1180 unsigned int page_order)
1182 spin_lock_init(&state->time.lock);
1184 state->page_order = page_order;
1185 state->crit_factor = int_sqrt(1 << page_order);
1187 return mempool_init_page_pool(&state->pool, 1, page_order);
1190 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1191 struct btree_iter *iter,
1192 bool fixup, bool remove_stale)
1194 int i;
1195 struct bkey *k, *last = NULL;
1196 BKEY_PADDED(k) tmp;
1197 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1198 ? bch_ptr_bad
1199 : bch_ptr_invalid;
1201 /* Heapify the iterator, using our comparison function */
1202 for (i = iter->used / 2 - 1; i >= 0; --i)
1203 heap_sift(iter, i, b->ops->sort_cmp);
1205 while (!btree_iter_end(iter)) {
1206 if (b->ops->sort_fixup && fixup)
1207 k = b->ops->sort_fixup(iter, &tmp.k);
1208 else
1209 k = NULL;
1211 if (!k)
1212 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1214 if (bad(b, k))
1215 continue;
1217 if (!last) {
1218 last = out->start;
1219 bkey_copy(last, k);
1220 } else if (!bch_bkey_try_merge(b, last, k)) {
1221 last = bkey_next(last);
1222 bkey_copy(last, k);
1226 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1228 pr_debug("sorted %i keys", out->keys);
1231 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1232 unsigned int start, unsigned int order, bool fixup,
1233 struct bset_sort_state *state)
1235 uint64_t start_time;
1236 bool used_mempool = false;
1237 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1238 order);
1239 if (!out) {
1240 struct page *outp;
1242 BUG_ON(order > state->page_order);
1244 outp = mempool_alloc(&state->pool, GFP_NOIO);
1245 out = page_address(outp);
1246 used_mempool = true;
1247 order = state->page_order;
1250 start_time = local_clock();
1252 btree_mergesort(b, out, iter, fixup, false);
1253 b->nsets = start;
1255 if (!start && order == b->page_order) {
1257 * Our temporary buffer is the same size as the btree node's
1258 * buffer, we can just swap buffers instead of doing a big
1259 * memcpy()
1261 * Don't worry event 'out' is allocated from mempool, it can
1262 * still be swapped here. Because state->pool is a page mempool
1263 * creaated by by mempool_init_page_pool(), which allocates
1264 * pages by alloc_pages() indeed.
1267 out->magic = b->set->data->magic;
1268 out->seq = b->set->data->seq;
1269 out->version = b->set->data->version;
1270 swap(out, b->set->data);
1271 } else {
1272 b->set[start].data->keys = out->keys;
1273 memcpy(b->set[start].data->start, out->start,
1274 (void *) bset_bkey_last(out) - (void *) out->start);
1277 if (used_mempool)
1278 mempool_free(virt_to_page(out), &state->pool);
1279 else
1280 free_pages((unsigned long) out, order);
1282 bch_bset_build_written_tree(b);
1284 if (!start)
1285 bch_time_stats_update(&state->time, start_time);
1288 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1289 struct bset_sort_state *state)
1291 size_t order = b->page_order, keys = 0;
1292 struct btree_iter iter;
1293 int oldsize = bch_count_data(b);
1295 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1297 if (start) {
1298 unsigned int i;
1300 for (i = start; i <= b->nsets; i++)
1301 keys += b->set[i].data->keys;
1303 order = get_order(__set_bytes(b->set->data, keys));
1306 __btree_sort(b, &iter, start, order, false, state);
1308 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1311 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1312 struct btree_iter *iter,
1313 struct bset_sort_state *state)
1315 __btree_sort(b, iter, 0, b->page_order, true, state);
1318 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1319 struct bset_sort_state *state)
1321 uint64_t start_time = local_clock();
1322 struct btree_iter iter;
1324 bch_btree_iter_init(b, &iter, NULL);
1326 btree_mergesort(b, new->set->data, &iter, false, true);
1328 bch_time_stats_update(&state->time, start_time);
1330 new->set->size = 0; // XXX: why?
1333 #define SORT_CRIT (4096 / sizeof(uint64_t))
1335 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1337 unsigned int crit = SORT_CRIT;
1338 int i;
1340 /* Don't sort if nothing to do */
1341 if (!b->nsets)
1342 goto out;
1344 for (i = b->nsets - 1; i >= 0; --i) {
1345 crit *= state->crit_factor;
1347 if (b->set[i].data->keys < crit) {
1348 bch_btree_sort_partial(b, i, state);
1349 return;
1353 /* Sort if we'd overflow */
1354 if (b->nsets + 1 == MAX_BSETS) {
1355 bch_btree_sort(b, state);
1356 return;
1359 out:
1360 bch_bset_build_written_tree(b);
1363 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1365 unsigned int i;
1367 for (i = 0; i <= b->nsets; i++) {
1368 struct bset_tree *t = &b->set[i];
1369 size_t bytes = t->data->keys * sizeof(uint64_t);
1370 size_t j;
1372 if (bset_written(b, t)) {
1373 stats->sets_written++;
1374 stats->bytes_written += bytes;
1376 stats->floats += t->size - 1;
1378 for (j = 1; j < t->size; j++)
1379 if (t->tree[j].exponent == 127)
1380 stats->failed++;
1381 } else {
1382 stats->sets_unwritten++;
1383 stats->bytes_unwritten += bytes;