1 // SPDX-License-Identifier: GPL-2.0
3 * Code for working with individual keys, and sorted sets of keys with in a
6 * Copyright 2012 Google, Inc.
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
19 #ifdef CONFIG_BCACHE_DEBUG
21 void bch_dump_bset(struct btree_keys
*b
, struct bset
*i
, unsigned int set
)
23 struct bkey
*k
, *next
;
25 for (k
= i
->start
; k
< bset_bkey_last(i
); k
= next
) {
28 pr_err("block %u key %u/%u: ", set
,
29 (unsigned int) ((u64
*) k
- i
->d
), i
->keys
);
32 b
->ops
->key_dump(b
, k
);
34 pr_err("%llu:%llu\n", KEY_INODE(k
), KEY_OFFSET(k
));
36 if (next
< bset_bkey_last(i
) &&
37 bkey_cmp(k
, b
->ops
->is_extents
?
38 &START_KEY(next
) : next
) > 0)
39 pr_err("Key skipped backwards\n");
43 void bch_dump_bucket(struct btree_keys
*b
)
48 for (i
= 0; i
<= b
->nsets
; i
++)
49 bch_dump_bset(b
, b
->set
[i
].data
,
50 bset_sector_offset(b
, b
->set
[i
].data
));
54 int __bch_count_data(struct btree_keys
*b
)
57 struct btree_iter iter
;
60 if (b
->ops
->is_extents
)
61 for_each_key(b
, k
, &iter
)
66 void __bch_check_keys(struct btree_keys
*b
, const char *fmt
, ...)
69 struct bkey
*k
, *p
= NULL
;
70 struct btree_iter iter
;
73 for_each_key(b
, k
, &iter
) {
74 if (b
->ops
->is_extents
) {
75 err
= "Keys out of order";
76 if (p
&& bkey_cmp(&START_KEY(p
), &START_KEY(k
)) > 0)
79 if (bch_ptr_invalid(b
, k
))
82 err
= "Overlapping keys";
83 if (p
&& bkey_cmp(p
, &START_KEY(k
)) > 0)
86 if (bch_ptr_bad(b
, k
))
89 err
= "Duplicate keys";
90 if (p
&& !bkey_cmp(p
, k
))
96 err
= "Key larger than btree node key";
97 if (p
&& bkey_cmp(p
, &b
->key
) > 0)
108 panic("bch_check_keys error: %s:\n", err
);
111 static void bch_btree_iter_next_check(struct btree_iter
*iter
)
113 struct bkey
*k
= iter
->data
->k
, *next
= bkey_next(k
);
115 if (next
< iter
->data
->end
&&
116 bkey_cmp(k
, iter
->b
->ops
->is_extents
?
117 &START_KEY(next
) : next
) > 0) {
118 bch_dump_bucket(iter
->b
);
119 panic("Key skipped backwards\n");
125 static inline void bch_btree_iter_next_check(struct btree_iter
*iter
) {}
131 int __bch_keylist_realloc(struct keylist
*l
, unsigned int u64s
)
133 size_t oldsize
= bch_keylist_nkeys(l
);
134 size_t newsize
= oldsize
+ u64s
;
135 uint64_t *old_keys
= l
->keys_p
== l
->inline_keys
? NULL
: l
->keys_p
;
138 newsize
= roundup_pow_of_two(newsize
);
140 if (newsize
<= KEYLIST_INLINE
||
141 roundup_pow_of_two(oldsize
) == newsize
)
144 new_keys
= krealloc(old_keys
, sizeof(uint64_t) * newsize
, GFP_NOIO
);
150 memcpy(new_keys
, l
->inline_keys
, sizeof(uint64_t) * oldsize
);
152 l
->keys_p
= new_keys
;
153 l
->top_p
= new_keys
+ oldsize
;
158 /* Pop the top key of keylist by pointing l->top to its previous key */
159 struct bkey
*bch_keylist_pop(struct keylist
*l
)
161 struct bkey
*k
= l
->keys
;
166 while (bkey_next(k
) != l
->top
)
172 /* Pop the bottom key of keylist and update l->top_p */
173 void bch_keylist_pop_front(struct keylist
*l
)
175 l
->top_p
-= bkey_u64s(l
->keys
);
179 bch_keylist_bytes(l
));
182 /* Key/pointer manipulation */
184 void bch_bkey_copy_single_ptr(struct bkey
*dest
, const struct bkey
*src
,
187 BUG_ON(i
> KEY_PTRS(src
));
189 /* Only copy the header, key, and one pointer. */
190 memcpy(dest
, src
, 2 * sizeof(uint64_t));
191 dest
->ptr
[0] = src
->ptr
[i
];
192 SET_KEY_PTRS(dest
, 1);
193 /* We didn't copy the checksum so clear that bit. */
194 SET_KEY_CSUM(dest
, 0);
197 bool __bch_cut_front(const struct bkey
*where
, struct bkey
*k
)
199 unsigned int i
, len
= 0;
201 if (bkey_cmp(where
, &START_KEY(k
)) <= 0)
204 if (bkey_cmp(where
, k
) < 0)
205 len
= KEY_OFFSET(k
) - KEY_OFFSET(where
);
207 bkey_copy_key(k
, where
);
209 for (i
= 0; i
< KEY_PTRS(k
); i
++)
210 SET_PTR_OFFSET(k
, i
, PTR_OFFSET(k
, i
) + KEY_SIZE(k
) - len
);
212 BUG_ON(len
> KEY_SIZE(k
));
213 SET_KEY_SIZE(k
, len
);
217 bool __bch_cut_back(const struct bkey
*where
, struct bkey
*k
)
219 unsigned int len
= 0;
221 if (bkey_cmp(where
, k
) >= 0)
224 BUG_ON(KEY_INODE(where
) != KEY_INODE(k
));
226 if (bkey_cmp(where
, &START_KEY(k
)) > 0)
227 len
= KEY_OFFSET(where
) - KEY_START(k
);
229 bkey_copy_key(k
, where
);
231 BUG_ON(len
> KEY_SIZE(k
));
232 SET_KEY_SIZE(k
, len
);
236 /* Auxiliary search trees */
239 #define BKEY_MID_BITS 3
240 #define BKEY_EXPONENT_BITS 7
241 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
242 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
245 unsigned int exponent
:BKEY_EXPONENT_BITS
;
246 unsigned int m
:BKEY_MID_BITS
;
247 unsigned int mantissa
:BKEY_MANTISSA_BITS
;
251 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
252 * it used to be 64, but I realized the lookup code would touch slightly less
253 * memory if it was 128.
255 * It definites the number of bytes (in struct bset) per struct bkey_float in
256 * the auxiliar search tree - when we're done searching the bset_float tree we
257 * have this many bytes left that we do a linear search over.
259 * Since (after level 5) every level of the bset_tree is on a new cacheline,
260 * we're touching one fewer cacheline in the bset tree in exchange for one more
261 * cacheline in the linear search - but the linear search might stop before it
262 * gets to the second cacheline.
265 #define BSET_CACHELINE 128
267 /* Space required for the btree node keys */
268 static inline size_t btree_keys_bytes(struct btree_keys
*b
)
270 return PAGE_SIZE
<< b
->page_order
;
273 static inline size_t btree_keys_cachelines(struct btree_keys
*b
)
275 return btree_keys_bytes(b
) / BSET_CACHELINE
;
278 /* Space required for the auxiliary search trees */
279 static inline size_t bset_tree_bytes(struct btree_keys
*b
)
281 return btree_keys_cachelines(b
) * sizeof(struct bkey_float
);
284 /* Space required for the prev pointers */
285 static inline size_t bset_prev_bytes(struct btree_keys
*b
)
287 return btree_keys_cachelines(b
) * sizeof(uint8_t);
290 /* Memory allocation */
292 void bch_btree_keys_free(struct btree_keys
*b
)
294 struct bset_tree
*t
= b
->set
;
296 if (bset_prev_bytes(b
) < PAGE_SIZE
)
299 free_pages((unsigned long) t
->prev
,
300 get_order(bset_prev_bytes(b
)));
302 if (bset_tree_bytes(b
) < PAGE_SIZE
)
305 free_pages((unsigned long) t
->tree
,
306 get_order(bset_tree_bytes(b
)));
308 free_pages((unsigned long) t
->data
, b
->page_order
);
315 int bch_btree_keys_alloc(struct btree_keys
*b
,
316 unsigned int page_order
,
319 struct bset_tree
*t
= b
->set
;
323 b
->page_order
= page_order
;
325 t
->data
= (void *) __get_free_pages(gfp
, b
->page_order
);
329 t
->tree
= bset_tree_bytes(b
) < PAGE_SIZE
330 ? kmalloc(bset_tree_bytes(b
), gfp
)
331 : (void *) __get_free_pages(gfp
, get_order(bset_tree_bytes(b
)));
335 t
->prev
= bset_prev_bytes(b
) < PAGE_SIZE
336 ? kmalloc(bset_prev_bytes(b
), gfp
)
337 : (void *) __get_free_pages(gfp
, get_order(bset_prev_bytes(b
)));
343 bch_btree_keys_free(b
);
347 void bch_btree_keys_init(struct btree_keys
*b
, const struct btree_keys_ops
*ops
,
348 bool *expensive_debug_checks
)
351 b
->expensive_debug_checks
= expensive_debug_checks
;
353 b
->last_set_unwritten
= 0;
356 * struct btree_keys in embedded in struct btree, and struct
357 * bset_tree is embedded into struct btree_keys. They are all
358 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
359 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
360 * don't have to initiate b->set[].size and b->set[].data here
365 /* Binary tree stuff for auxiliary search trees */
368 * return array index next to j when does in-order traverse
369 * of a binary tree which is stored in a linear array
371 static unsigned int inorder_next(unsigned int j
, unsigned int size
)
373 if (j
* 2 + 1 < size
) {
385 * return array index previous to j when does in-order traverse
386 * of a binary tree which is stored in a linear array
388 static unsigned int inorder_prev(unsigned int j
, unsigned int size
)
393 while (j
* 2 + 1 < size
)
402 * I have no idea why this code works... and I'm the one who wrote it
404 * However, I do know what it does:
405 * Given a binary tree constructed in an array (i.e. how you normally implement
406 * a heap), it converts a node in the tree - referenced by array index - to the
407 * index it would have if you did an inorder traversal.
409 * Also tested for every j, size up to size somewhere around 6 million.
411 * The binary tree starts at array index 1, not 0
412 * extra is a function of size:
413 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
415 static unsigned int __to_inorder(unsigned int j
,
419 unsigned int b
= fls(j
);
420 unsigned int shift
= fls(size
- 1) - b
;
428 j
-= (j
- extra
) >> 1;
434 * Return the cacheline index in bset_tree->data, where j is index
435 * from a linear array which stores the auxiliar binary tree
437 static unsigned int to_inorder(unsigned int j
, struct bset_tree
*t
)
439 return __to_inorder(j
, t
->size
, t
->extra
);
442 static unsigned int __inorder_to_tree(unsigned int j
,
454 j
|= roundup_pow_of_two(size
) >> shift
;
460 * Return an index from a linear array which stores the auxiliar binary
461 * tree, j is the cacheline index of t->data.
463 static unsigned int inorder_to_tree(unsigned int j
, struct bset_tree
*t
)
465 return __inorder_to_tree(j
, t
->size
, t
->extra
);
469 void inorder_test(void)
471 unsigned long done
= 0;
472 ktime_t start
= ktime_get();
474 for (unsigned int size
= 2;
478 (size
- rounddown_pow_of_two(size
- 1)) << 1;
479 unsigned int i
= 1, j
= rounddown_pow_of_two(size
- 1);
482 pr_notice("loop %u, %llu per us\n", size
,
483 done
/ ktime_us_delta(ktime_get(), start
));
486 if (__inorder_to_tree(i
, size
, extra
) != j
)
487 panic("size %10u j %10u i %10u", size
, j
, i
);
489 if (__to_inorder(j
, size
, extra
) != i
)
490 panic("size %10u j %10u i %10u", size
, j
, i
);
492 if (j
== rounddown_pow_of_two(size
) - 1)
495 BUG_ON(inorder_prev(inorder_next(j
, size
), size
) != j
);
497 j
= inorder_next(j
, size
);
507 * Cacheline/offset <-> bkey pointer arithmetic:
509 * t->tree is a binary search tree in an array; each node corresponds to a key
510 * in one cacheline in t->set (BSET_CACHELINE bytes).
512 * This means we don't have to store the full index of the key that a node in
513 * the binary tree points to; to_inorder() gives us the cacheline, and then
514 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
516 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
519 * To construct the bfloat for an arbitrary key we need to know what the key
520 * immediately preceding it is: we have to check if the two keys differ in the
521 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
522 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
525 static struct bkey
*cacheline_to_bkey(struct bset_tree
*t
,
526 unsigned int cacheline
,
529 return ((void *) t
->data
) + cacheline
* BSET_CACHELINE
+ offset
* 8;
532 static unsigned int bkey_to_cacheline(struct bset_tree
*t
, struct bkey
*k
)
534 return ((void *) k
- (void *) t
->data
) / BSET_CACHELINE
;
537 static unsigned int bkey_to_cacheline_offset(struct bset_tree
*t
,
538 unsigned int cacheline
,
541 return (u64
*) k
- (u64
*) cacheline_to_bkey(t
, cacheline
, 0);
544 static struct bkey
*tree_to_bkey(struct bset_tree
*t
, unsigned int j
)
546 return cacheline_to_bkey(t
, to_inorder(j
, t
), t
->tree
[j
].m
);
549 static struct bkey
*tree_to_prev_bkey(struct bset_tree
*t
, unsigned int j
)
551 return (void *) (((uint64_t *) tree_to_bkey(t
, j
)) - t
->prev
[j
]);
555 * For the write set - the one we're currently inserting keys into - we don't
556 * maintain a full search tree, we just keep a simple lookup table in t->prev.
558 static struct bkey
*table_to_bkey(struct bset_tree
*t
, unsigned int cacheline
)
560 return cacheline_to_bkey(t
, cacheline
, t
->prev
[cacheline
]);
563 static inline uint64_t shrd128(uint64_t high
, uint64_t low
, uint8_t shift
)
566 low
|= (high
<< 1) << (63U - shift
);
571 * Calculate mantissa value for struct bkey_float.
572 * If most significant bit of f->exponent is not set, then
573 * - f->exponent >> 6 is 0
574 * - p[0] points to bkey->low
575 * - p[-1] borrows bits from KEY_INODE() of bkey->high
576 * if most isgnificant bits of f->exponent is set, then
577 * - f->exponent >> 6 is 1
578 * - p[0] points to bits from KEY_INODE() of bkey->high
579 * - p[-1] points to other bits from KEY_INODE() of
581 * See make_bfloat() to check when most significant bit of f->exponent
584 static inline unsigned int bfloat_mantissa(const struct bkey
*k
,
585 struct bkey_float
*f
)
587 const uint64_t *p
= &k
->low
- (f
->exponent
>> 6);
589 return shrd128(p
[-1], p
[0], f
->exponent
& 63) & BKEY_MANTISSA_MASK
;
592 static void make_bfloat(struct bset_tree
*t
, unsigned int j
)
594 struct bkey_float
*f
= &t
->tree
[j
];
595 struct bkey
*m
= tree_to_bkey(t
, j
);
596 struct bkey
*p
= tree_to_prev_bkey(t
, j
);
598 struct bkey
*l
= is_power_of_2(j
)
600 : tree_to_prev_bkey(t
, j
>> ffs(j
));
602 struct bkey
*r
= is_power_of_2(j
+ 1)
603 ? bset_bkey_idx(t
->data
, t
->data
->keys
- bkey_u64s(&t
->end
))
604 : tree_to_bkey(t
, j
>> (ffz(j
) + 1));
606 BUG_ON(m
< l
|| m
> r
);
607 BUG_ON(bkey_next(p
) != m
);
610 * If l and r have different KEY_INODE values (different backing
611 * device), f->exponent records how many least significant bits
612 * are different in KEY_INODE values and sets most significant
613 * bits to 1 (by +64).
614 * If l and r have same KEY_INODE value, f->exponent records
615 * how many different bits in least significant bits of bkey->low.
616 * See bfloat_mantiss() how the most significant bit of
617 * f->exponent is used to calculate bfloat mantissa value.
619 if (KEY_INODE(l
) != KEY_INODE(r
))
620 f
->exponent
= fls64(KEY_INODE(r
) ^ KEY_INODE(l
)) + 64;
622 f
->exponent
= fls64(r
->low
^ l
->low
);
624 f
->exponent
= max_t(int, f
->exponent
- BKEY_MANTISSA_BITS
, 0);
627 * Setting f->exponent = 127 flags this node as failed, and causes the
628 * lookup code to fall back to comparing against the original key.
631 if (bfloat_mantissa(m
, f
) != bfloat_mantissa(p
, f
))
632 f
->mantissa
= bfloat_mantissa(m
, f
) - 1;
637 static void bset_alloc_tree(struct btree_keys
*b
, struct bset_tree
*t
)
640 unsigned int j
= roundup(t
[-1].size
,
641 64 / sizeof(struct bkey_float
));
643 t
->tree
= t
[-1].tree
+ j
;
644 t
->prev
= t
[-1].prev
+ j
;
647 while (t
< b
->set
+ MAX_BSETS
)
651 static void bch_bset_build_unwritten_tree(struct btree_keys
*b
)
653 struct bset_tree
*t
= bset_tree_last(b
);
655 BUG_ON(b
->last_set_unwritten
);
656 b
->last_set_unwritten
= 1;
658 bset_alloc_tree(b
, t
);
660 if (t
->tree
!= b
->set
->tree
+ btree_keys_cachelines(b
)) {
661 t
->prev
[0] = bkey_to_cacheline_offset(t
, 0, t
->data
->start
);
666 void bch_bset_init_next(struct btree_keys
*b
, struct bset
*i
, uint64_t magic
)
668 if (i
!= b
->set
->data
) {
669 b
->set
[++b
->nsets
].data
= i
;
670 i
->seq
= b
->set
->data
->seq
;
672 get_random_bytes(&i
->seq
, sizeof(uint64_t));
678 bch_bset_build_unwritten_tree(b
);
682 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
683 * accelerate bkey search in a btree node (pointed by bset_tree->data in
684 * memory). After search in the auxiliar tree by calling bset_search_tree(),
685 * a struct bset_search_iter is returned which indicates range [l, r] from
686 * bset_tree->data where the searching bkey might be inside. Then a followed
687 * linear comparison does the exact search, see __bch_bset_search() for how
688 * the auxiliary tree is used.
690 void bch_bset_build_written_tree(struct btree_keys
*b
)
692 struct bset_tree
*t
= bset_tree_last(b
);
693 struct bkey
*prev
= NULL
, *k
= t
->data
->start
;
694 unsigned int j
, cacheline
= 1;
696 b
->last_set_unwritten
= 0;
698 bset_alloc_tree(b
, t
);
700 t
->size
= min_t(unsigned int,
701 bkey_to_cacheline(t
, bset_bkey_last(t
->data
)),
702 b
->set
->tree
+ btree_keys_cachelines(b
) - t
->tree
);
709 t
->extra
= (t
->size
- rounddown_pow_of_two(t
->size
- 1)) << 1;
711 /* First we figure out where the first key in each cacheline is */
712 for (j
= inorder_next(0, t
->size
);
714 j
= inorder_next(j
, t
->size
)) {
715 while (bkey_to_cacheline(t
, k
) < cacheline
)
716 prev
= k
, k
= bkey_next(k
);
718 t
->prev
[j
] = bkey_u64s(prev
);
719 t
->tree
[j
].m
= bkey_to_cacheline_offset(t
, cacheline
++, k
);
722 while (bkey_next(k
) != bset_bkey_last(t
->data
))
727 /* Then we build the tree */
728 for (j
= inorder_next(0, t
->size
);
730 j
= inorder_next(j
, t
->size
))
736 void bch_bset_fix_invalidated_key(struct btree_keys
*b
, struct bkey
*k
)
739 unsigned int inorder
, j
= 1;
741 for (t
= b
->set
; t
<= bset_tree_last(b
); t
++)
742 if (k
< bset_bkey_last(t
->data
))
747 if (!t
->size
|| !bset_written(b
, t
))
750 inorder
= bkey_to_cacheline(t
, k
);
752 if (k
== t
->data
->start
)
755 if (bkey_next(k
) == bset_bkey_last(t
->data
)) {
760 j
= inorder_to_tree(inorder
, t
);
764 k
== tree_to_bkey(t
, j
))
768 } while (j
< t
->size
);
770 j
= inorder_to_tree(inorder
+ 1, t
);
774 k
== tree_to_prev_bkey(t
, j
))
778 } while (j
< t
->size
);
781 static void bch_bset_fix_lookup_table(struct btree_keys
*b
,
785 unsigned int shift
= bkey_u64s(k
);
786 unsigned int j
= bkey_to_cacheline(t
, k
);
788 /* We're getting called from btree_split() or btree_gc, just bail out */
793 * k is the key we just inserted; we need to find the entry in the
794 * lookup table for the first key that is strictly greater than k:
795 * it's either k's cacheline or the next one
797 while (j
< t
->size
&&
798 table_to_bkey(t
, j
) <= k
)
802 * Adjust all the lookup table entries, and find a new key for any that
803 * have gotten too big
805 for (; j
< t
->size
; j
++) {
808 if (t
->prev
[j
] > 7) {
809 k
= table_to_bkey(t
, j
- 1);
811 while (k
< cacheline_to_bkey(t
, j
, 0))
814 t
->prev
[j
] = bkey_to_cacheline_offset(t
, j
, k
);
818 if (t
->size
== b
->set
->tree
+ btree_keys_cachelines(b
) - t
->tree
)
821 /* Possibly add a new entry to the end of the lookup table */
823 for (k
= table_to_bkey(t
, t
->size
- 1);
824 k
!= bset_bkey_last(t
->data
);
826 if (t
->size
== bkey_to_cacheline(t
, k
)) {
828 bkey_to_cacheline_offset(t
, t
->size
, k
);
834 * Tries to merge l and r: l should be lower than r
835 * Returns true if we were able to merge. If we did merge, l will be the merged
836 * key, r will be untouched.
838 bool bch_bkey_try_merge(struct btree_keys
*b
, struct bkey
*l
, struct bkey
*r
)
840 if (!b
->ops
->key_merge
)
844 * Generic header checks
845 * Assumes left and right are in order
846 * Left and right must be exactly aligned
848 if (!bch_bkey_equal_header(l
, r
) ||
849 bkey_cmp(l
, &START_KEY(r
)))
852 return b
->ops
->key_merge(b
, l
, r
);
855 void bch_bset_insert(struct btree_keys
*b
, struct bkey
*where
,
858 struct bset_tree
*t
= bset_tree_last(b
);
860 BUG_ON(!b
->last_set_unwritten
);
861 BUG_ON(bset_byte_offset(b
, t
->data
) +
862 __set_bytes(t
->data
, t
->data
->keys
+ bkey_u64s(insert
)) >
863 PAGE_SIZE
<< b
->page_order
);
865 memmove((uint64_t *) where
+ bkey_u64s(insert
),
867 (void *) bset_bkey_last(t
->data
) - (void *) where
);
869 t
->data
->keys
+= bkey_u64s(insert
);
870 bkey_copy(where
, insert
);
871 bch_bset_fix_lookup_table(b
, t
, where
);
874 unsigned int bch_btree_insert_key(struct btree_keys
*b
, struct bkey
*k
,
875 struct bkey
*replace_key
)
877 unsigned int status
= BTREE_INSERT_STATUS_NO_INSERT
;
878 struct bset
*i
= bset_tree_last(b
)->data
;
879 struct bkey
*m
, *prev
= NULL
;
880 struct btree_iter iter
;
881 struct bkey preceding_key_on_stack
= ZERO_KEY
;
882 struct bkey
*preceding_key_p
= &preceding_key_on_stack
;
884 BUG_ON(b
->ops
->is_extents
&& !KEY_SIZE(k
));
887 * If k has preceding key, preceding_key_p will be set to address
888 * of k's preceding key; otherwise preceding_key_p will be set
889 * to NULL inside preceding_key().
891 if (b
->ops
->is_extents
)
892 preceding_key(&START_KEY(k
), &preceding_key_p
);
894 preceding_key(k
, &preceding_key_p
);
896 m
= bch_btree_iter_init(b
, &iter
, preceding_key_p
);
898 if (b
->ops
->insert_fixup(b
, k
, &iter
, replace_key
))
901 status
= BTREE_INSERT_STATUS_INSERT
;
903 while (m
!= bset_bkey_last(i
) &&
904 bkey_cmp(k
, b
->ops
->is_extents
? &START_KEY(m
) : m
) > 0)
905 prev
= m
, m
= bkey_next(m
);
907 /* prev is in the tree, if we merge we're done */
908 status
= BTREE_INSERT_STATUS_BACK_MERGE
;
910 bch_bkey_try_merge(b
, prev
, k
))
913 status
= BTREE_INSERT_STATUS_OVERWROTE
;
914 if (m
!= bset_bkey_last(i
) &&
915 KEY_PTRS(m
) == KEY_PTRS(k
) && !KEY_SIZE(m
))
918 status
= BTREE_INSERT_STATUS_FRONT_MERGE
;
919 if (m
!= bset_bkey_last(i
) &&
920 bch_bkey_try_merge(b
, k
, m
))
923 bch_bset_insert(b
, m
, k
);
924 copy
: bkey_copy(m
, k
);
931 struct bset_search_iter
{
935 static struct bset_search_iter
bset_search_write_set(struct bset_tree
*t
,
936 const struct bkey
*search
)
938 unsigned int li
= 0, ri
= t
->size
;
940 while (li
+ 1 != ri
) {
941 unsigned int m
= (li
+ ri
) >> 1;
943 if (bkey_cmp(table_to_bkey(t
, m
), search
) > 0)
949 return (struct bset_search_iter
) {
950 table_to_bkey(t
, li
),
951 ri
< t
->size
? table_to_bkey(t
, ri
) : bset_bkey_last(t
->data
)
955 static struct bset_search_iter
bset_search_tree(struct bset_tree
*t
,
956 const struct bkey
*search
)
959 struct bkey_float
*f
;
960 unsigned int inorder
, j
, n
= 1;
963 unsigned int p
= n
<< 4;
966 prefetch(&t
->tree
[p
]);
971 if (likely(f
->exponent
!= 127)) {
972 if (f
->mantissa
>= bfloat_mantissa(search
, f
))
977 if (bkey_cmp(tree_to_bkey(t
, j
), search
) > 0)
982 } while (n
< t
->size
);
984 inorder
= to_inorder(j
, t
);
987 * n would have been the node we recursed to - the low bit tells us if
988 * we recursed left or recursed right.
991 l
= cacheline_to_bkey(t
, inorder
, f
->m
);
993 if (++inorder
!= t
->size
) {
994 f
= &t
->tree
[inorder_next(j
, t
->size
)];
995 r
= cacheline_to_bkey(t
, inorder
, f
->m
);
997 r
= bset_bkey_last(t
->data
);
999 r
= cacheline_to_bkey(t
, inorder
, f
->m
);
1002 f
= &t
->tree
[inorder_prev(j
, t
->size
)];
1003 l
= cacheline_to_bkey(t
, inorder
, f
->m
);
1008 return (struct bset_search_iter
) {l
, r
};
1011 struct bkey
*__bch_bset_search(struct btree_keys
*b
, struct bset_tree
*t
,
1012 const struct bkey
*search
)
1014 struct bset_search_iter i
;
1017 * First, we search for a cacheline, then lastly we do a linear search
1018 * within that cacheline.
1020 * To search for the cacheline, there's three different possibilities:
1021 * * The set is too small to have a search tree, so we just do a linear
1022 * search over the whole set.
1023 * * The set is the one we're currently inserting into; keeping a full
1024 * auxiliary search tree up to date would be too expensive, so we
1025 * use a much simpler lookup table to do a binary search -
1026 * bset_search_write_set().
1027 * * Or we use the auxiliary search tree we constructed earlier -
1028 * bset_search_tree()
1031 if (unlikely(!t
->size
)) {
1032 i
.l
= t
->data
->start
;
1033 i
.r
= bset_bkey_last(t
->data
);
1034 } else if (bset_written(b
, t
)) {
1036 * Each node in the auxiliary search tree covers a certain range
1037 * of bits, and keys above and below the set it covers might
1038 * differ outside those bits - so we have to special case the
1039 * start and end - handle that here:
1042 if (unlikely(bkey_cmp(search
, &t
->end
) >= 0))
1043 return bset_bkey_last(t
->data
);
1045 if (unlikely(bkey_cmp(search
, t
->data
->start
) < 0))
1046 return t
->data
->start
;
1048 i
= bset_search_tree(t
, search
);
1051 t
->size
< bkey_to_cacheline(t
, bset_bkey_last(t
->data
)));
1053 i
= bset_search_write_set(t
, search
);
1056 if (btree_keys_expensive_checks(b
)) {
1057 BUG_ON(bset_written(b
, t
) &&
1058 i
.l
!= t
->data
->start
&&
1059 bkey_cmp(tree_to_prev_bkey(t
,
1060 inorder_to_tree(bkey_to_cacheline(t
, i
.l
), t
)),
1063 BUG_ON(i
.r
!= bset_bkey_last(t
->data
) &&
1064 bkey_cmp(i
.r
, search
) <= 0);
1067 while (likely(i
.l
!= i
.r
) &&
1068 bkey_cmp(i
.l
, search
) <= 0)
1069 i
.l
= bkey_next(i
.l
);
1074 /* Btree iterator */
1076 typedef bool (btree_iter_cmp_fn
)(struct btree_iter_set
,
1077 struct btree_iter_set
);
1079 static inline bool btree_iter_cmp(struct btree_iter_set l
,
1080 struct btree_iter_set r
)
1082 return bkey_cmp(l
.k
, r
.k
) > 0;
1085 static inline bool btree_iter_end(struct btree_iter
*iter
)
1090 void bch_btree_iter_push(struct btree_iter
*iter
, struct bkey
*k
,
1094 BUG_ON(!heap_add(iter
,
1095 ((struct btree_iter_set
) { k
, end
}),
1099 static struct bkey
*__bch_btree_iter_init(struct btree_keys
*b
,
1100 struct btree_iter
*iter
,
1101 struct bkey
*search
,
1102 struct bset_tree
*start
)
1104 struct bkey
*ret
= NULL
;
1106 iter
->size
= ARRAY_SIZE(iter
->data
);
1109 #ifdef CONFIG_BCACHE_DEBUG
1113 for (; start
<= bset_tree_last(b
); start
++) {
1114 ret
= bch_bset_search(b
, start
, search
);
1115 bch_btree_iter_push(iter
, ret
, bset_bkey_last(start
->data
));
1121 struct bkey
*bch_btree_iter_init(struct btree_keys
*b
,
1122 struct btree_iter
*iter
,
1123 struct bkey
*search
)
1125 return __bch_btree_iter_init(b
, iter
, search
, b
->set
);
1128 static inline struct bkey
*__bch_btree_iter_next(struct btree_iter
*iter
,
1129 btree_iter_cmp_fn
*cmp
)
1131 struct btree_iter_set b __maybe_unused
;
1132 struct bkey
*ret
= NULL
;
1134 if (!btree_iter_end(iter
)) {
1135 bch_btree_iter_next_check(iter
);
1137 ret
= iter
->data
->k
;
1138 iter
->data
->k
= bkey_next(iter
->data
->k
);
1140 if (iter
->data
->k
> iter
->data
->end
) {
1141 WARN_ONCE(1, "bset was corrupt!\n");
1142 iter
->data
->k
= iter
->data
->end
;
1145 if (iter
->data
->k
== iter
->data
->end
)
1146 heap_pop(iter
, b
, cmp
);
1148 heap_sift(iter
, 0, cmp
);
1154 struct bkey
*bch_btree_iter_next(struct btree_iter
*iter
)
1156 return __bch_btree_iter_next(iter
, btree_iter_cmp
);
1160 struct bkey
*bch_btree_iter_next_filter(struct btree_iter
*iter
,
1161 struct btree_keys
*b
, ptr_filter_fn fn
)
1166 ret
= bch_btree_iter_next(iter
);
1167 } while (ret
&& fn(b
, ret
));
1174 void bch_bset_sort_state_free(struct bset_sort_state
*state
)
1176 mempool_exit(&state
->pool
);
1179 int bch_bset_sort_state_init(struct bset_sort_state
*state
,
1180 unsigned int page_order
)
1182 spin_lock_init(&state
->time
.lock
);
1184 state
->page_order
= page_order
;
1185 state
->crit_factor
= int_sqrt(1 << page_order
);
1187 return mempool_init_page_pool(&state
->pool
, 1, page_order
);
1190 static void btree_mergesort(struct btree_keys
*b
, struct bset
*out
,
1191 struct btree_iter
*iter
,
1192 bool fixup
, bool remove_stale
)
1195 struct bkey
*k
, *last
= NULL
;
1197 bool (*bad
)(struct btree_keys
*, const struct bkey
*) = remove_stale
1201 /* Heapify the iterator, using our comparison function */
1202 for (i
= iter
->used
/ 2 - 1; i
>= 0; --i
)
1203 heap_sift(iter
, i
, b
->ops
->sort_cmp
);
1205 while (!btree_iter_end(iter
)) {
1206 if (b
->ops
->sort_fixup
&& fixup
)
1207 k
= b
->ops
->sort_fixup(iter
, &tmp
.k
);
1212 k
= __bch_btree_iter_next(iter
, b
->ops
->sort_cmp
);
1220 } else if (!bch_bkey_try_merge(b
, last
, k
)) {
1221 last
= bkey_next(last
);
1226 out
->keys
= last
? (uint64_t *) bkey_next(last
) - out
->d
: 0;
1228 pr_debug("sorted %i keys", out
->keys
);
1231 static void __btree_sort(struct btree_keys
*b
, struct btree_iter
*iter
,
1232 unsigned int start
, unsigned int order
, bool fixup
,
1233 struct bset_sort_state
*state
)
1235 uint64_t start_time
;
1236 bool used_mempool
= false;
1237 struct bset
*out
= (void *) __get_free_pages(__GFP_NOWARN
|GFP_NOWAIT
,
1242 BUG_ON(order
> state
->page_order
);
1244 outp
= mempool_alloc(&state
->pool
, GFP_NOIO
);
1245 out
= page_address(outp
);
1246 used_mempool
= true;
1247 order
= state
->page_order
;
1250 start_time
= local_clock();
1252 btree_mergesort(b
, out
, iter
, fixup
, false);
1255 if (!start
&& order
== b
->page_order
) {
1257 * Our temporary buffer is the same size as the btree node's
1258 * buffer, we can just swap buffers instead of doing a big
1261 * Don't worry event 'out' is allocated from mempool, it can
1262 * still be swapped here. Because state->pool is a page mempool
1263 * creaated by by mempool_init_page_pool(), which allocates
1264 * pages by alloc_pages() indeed.
1267 out
->magic
= b
->set
->data
->magic
;
1268 out
->seq
= b
->set
->data
->seq
;
1269 out
->version
= b
->set
->data
->version
;
1270 swap(out
, b
->set
->data
);
1272 b
->set
[start
].data
->keys
= out
->keys
;
1273 memcpy(b
->set
[start
].data
->start
, out
->start
,
1274 (void *) bset_bkey_last(out
) - (void *) out
->start
);
1278 mempool_free(virt_to_page(out
), &state
->pool
);
1280 free_pages((unsigned long) out
, order
);
1282 bch_bset_build_written_tree(b
);
1285 bch_time_stats_update(&state
->time
, start_time
);
1288 void bch_btree_sort_partial(struct btree_keys
*b
, unsigned int start
,
1289 struct bset_sort_state
*state
)
1291 size_t order
= b
->page_order
, keys
= 0;
1292 struct btree_iter iter
;
1293 int oldsize
= bch_count_data(b
);
1295 __bch_btree_iter_init(b
, &iter
, NULL
, &b
->set
[start
]);
1300 for (i
= start
; i
<= b
->nsets
; i
++)
1301 keys
+= b
->set
[i
].data
->keys
;
1303 order
= get_order(__set_bytes(b
->set
->data
, keys
));
1306 __btree_sort(b
, &iter
, start
, order
, false, state
);
1308 EBUG_ON(oldsize
>= 0 && bch_count_data(b
) != oldsize
);
1311 void bch_btree_sort_and_fix_extents(struct btree_keys
*b
,
1312 struct btree_iter
*iter
,
1313 struct bset_sort_state
*state
)
1315 __btree_sort(b
, iter
, 0, b
->page_order
, true, state
);
1318 void bch_btree_sort_into(struct btree_keys
*b
, struct btree_keys
*new,
1319 struct bset_sort_state
*state
)
1321 uint64_t start_time
= local_clock();
1322 struct btree_iter iter
;
1324 bch_btree_iter_init(b
, &iter
, NULL
);
1326 btree_mergesort(b
, new->set
->data
, &iter
, false, true);
1328 bch_time_stats_update(&state
->time
, start_time
);
1330 new->set
->size
= 0; // XXX: why?
1333 #define SORT_CRIT (4096 / sizeof(uint64_t))
1335 void bch_btree_sort_lazy(struct btree_keys
*b
, struct bset_sort_state
*state
)
1337 unsigned int crit
= SORT_CRIT
;
1340 /* Don't sort if nothing to do */
1344 for (i
= b
->nsets
- 1; i
>= 0; --i
) {
1345 crit
*= state
->crit_factor
;
1347 if (b
->set
[i
].data
->keys
< crit
) {
1348 bch_btree_sort_partial(b
, i
, state
);
1353 /* Sort if we'd overflow */
1354 if (b
->nsets
+ 1 == MAX_BSETS
) {
1355 bch_btree_sort(b
, state
);
1360 bch_bset_build_written_tree(b
);
1363 void bch_btree_keys_stats(struct btree_keys
*b
, struct bset_stats
*stats
)
1367 for (i
= 0; i
<= b
->nsets
; i
++) {
1368 struct bset_tree
*t
= &b
->set
[i
];
1369 size_t bytes
= t
->data
->keys
* sizeof(uint64_t);
1372 if (bset_written(b
, t
)) {
1373 stats
->sets_written
++;
1374 stats
->bytes_written
+= bytes
;
1376 stats
->floats
+= t
->size
- 1;
1378 for (j
= 1; j
< t
->size
; j
++)
1379 if (t
->tree
[j
].exponent
== 127)
1382 stats
->sets_unwritten
++;
1383 stats
->bytes_unwritten
+= bytes
;