1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
43 * register_bcache: Return errors out to userspace correctly
45 * Writeback: don't undirty key until after a cache flush
47 * Create an iterator for key pointers
49 * On btree write error, mark bucket such that it won't be freed from the cache
52 * Check for bad keys in replay
54 * Refcount journal entries in journal_replay
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
68 * Add a tracepoint or somesuch to watch for writeback starvation
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
122 #define btree(fn, key, b, op, ...) \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
128 if (!IS_ERR(_child)) { \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
132 _r = PTR_ERR(_child); \
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
140 * @op: pointer to struct btree_op
142 #define btree_root(fn, c, op, ...) \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
154 bch_cannibalize_unlock(c); \
157 } while (_r == -EINTR); \
159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
163 static inline struct bset
*write_block(struct btree
*b
)
165 return ((void *) btree_bset_first(b
)) + b
->written
* block_bytes(b
->c
);
168 static void bch_btree_init_next(struct btree
*b
)
170 /* If not a leaf node, always sort */
171 if (b
->level
&& b
->keys
.nsets
)
172 bch_btree_sort(&b
->keys
, &b
->c
->sort
);
174 bch_btree_sort_lazy(&b
->keys
, &b
->c
->sort
);
176 if (b
->written
< btree_blocks(b
))
177 bch_bset_init_next(&b
->keys
, write_block(b
),
178 bset_magic(&b
->c
->sb
));
182 /* Btree key manipulation */
184 void bkey_put(struct cache_set
*c
, struct bkey
*k
)
188 for (i
= 0; i
< KEY_PTRS(k
); i
++)
189 if (ptr_available(c
, k
, i
))
190 atomic_dec_bug(&PTR_BUCKET(c
, k
, i
)->pin
);
195 static uint64_t btree_csum_set(struct btree
*b
, struct bset
*i
)
197 uint64_t crc
= b
->key
.ptr
[0];
198 void *data
= (void *) i
+ 8, *end
= bset_bkey_last(i
);
200 crc
= bch_crc64_update(crc
, data
, end
- data
);
201 return crc
^ 0xffffffffffffffffULL
;
204 void bch_btree_node_read_done(struct btree
*b
)
206 const char *err
= "bad btree header";
207 struct bset
*i
= btree_bset_first(b
);
208 struct btree_iter
*iter
;
211 * c->fill_iter can allocate an iterator with more memory space
212 * than static MAX_BSETS.
213 * See the comment arount cache_set->fill_iter.
215 iter
= mempool_alloc(&b
->c
->fill_iter
, GFP_NOIO
);
216 iter
->size
= b
->c
->sb
.bucket_size
/ b
->c
->sb
.block_size
;
219 #ifdef CONFIG_BCACHE_DEBUG
227 b
->written
< btree_blocks(b
) && i
->seq
== b
->keys
.set
[0].data
->seq
;
228 i
= write_block(b
)) {
229 err
= "unsupported bset version";
230 if (i
->version
> BCACHE_BSET_VERSION
)
233 err
= "bad btree header";
234 if (b
->written
+ set_blocks(i
, block_bytes(b
->c
)) >
239 if (i
->magic
!= bset_magic(&b
->c
->sb
))
242 err
= "bad checksum";
243 switch (i
->version
) {
245 if (i
->csum
!= csum_set(i
))
248 case BCACHE_BSET_VERSION
:
249 if (i
->csum
!= btree_csum_set(b
, i
))
255 if (i
!= b
->keys
.set
[0].data
&& !i
->keys
)
258 bch_btree_iter_push(iter
, i
->start
, bset_bkey_last(i
));
260 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
263 err
= "corrupted btree";
264 for (i
= write_block(b
);
265 bset_sector_offset(&b
->keys
, i
) < KEY_SIZE(&b
->key
);
266 i
= ((void *) i
) + block_bytes(b
->c
))
267 if (i
->seq
== b
->keys
.set
[0].data
->seq
)
270 bch_btree_sort_and_fix_extents(&b
->keys
, iter
, &b
->c
->sort
);
272 i
= b
->keys
.set
[0].data
;
273 err
= "short btree key";
274 if (b
->keys
.set
[0].size
&&
275 bkey_cmp(&b
->key
, &b
->keys
.set
[0].end
) < 0)
278 if (b
->written
< btree_blocks(b
))
279 bch_bset_init_next(&b
->keys
, write_block(b
),
280 bset_magic(&b
->c
->sb
));
282 mempool_free(iter
, &b
->c
->fill_iter
);
285 set_btree_node_io_error(b
);
286 bch_cache_set_error(b
->c
, "%s at bucket %zu, block %u, %u keys",
287 err
, PTR_BUCKET_NR(b
->c
, &b
->key
, 0),
288 bset_block_offset(b
, i
), i
->keys
);
292 static void btree_node_read_endio(struct bio
*bio
)
294 struct closure
*cl
= bio
->bi_private
;
299 static void bch_btree_node_read(struct btree
*b
)
301 uint64_t start_time
= local_clock();
305 trace_bcache_btree_read(b
);
307 closure_init_stack(&cl
);
309 bio
= bch_bbio_alloc(b
->c
);
310 bio
->bi_iter
.bi_size
= KEY_SIZE(&b
->key
) << 9;
311 bio
->bi_end_io
= btree_node_read_endio
;
312 bio
->bi_private
= &cl
;
313 bio
->bi_opf
= REQ_OP_READ
| REQ_META
;
315 bch_bio_map(bio
, b
->keys
.set
[0].data
);
317 bch_submit_bbio(bio
, b
->c
, &b
->key
, 0);
321 set_btree_node_io_error(b
);
323 bch_bbio_free(bio
, b
->c
);
325 if (btree_node_io_error(b
))
328 bch_btree_node_read_done(b
);
329 bch_time_stats_update(&b
->c
->btree_read_time
, start_time
);
333 bch_cache_set_error(b
->c
, "io error reading bucket %zu",
334 PTR_BUCKET_NR(b
->c
, &b
->key
, 0));
337 static void btree_complete_write(struct btree
*b
, struct btree_write
*w
)
339 if (w
->prio_blocked
&&
340 !atomic_sub_return(w
->prio_blocked
, &b
->c
->prio_blocked
))
341 wake_up_allocators(b
->c
);
344 atomic_dec_bug(w
->journal
);
345 __closure_wake_up(&b
->c
->journal
.wait
);
352 static void btree_node_write_unlock(struct closure
*cl
)
354 struct btree
*b
= container_of(cl
, struct btree
, io
);
359 static void __btree_node_write_done(struct closure
*cl
)
361 struct btree
*b
= container_of(cl
, struct btree
, io
);
362 struct btree_write
*w
= btree_prev_write(b
);
364 bch_bbio_free(b
->bio
, b
->c
);
366 btree_complete_write(b
, w
);
368 if (btree_node_dirty(b
))
369 schedule_delayed_work(&b
->work
, 30 * HZ
);
371 closure_return_with_destructor(cl
, btree_node_write_unlock
);
374 static void btree_node_write_done(struct closure
*cl
)
376 struct btree
*b
= container_of(cl
, struct btree
, io
);
378 bio_free_pages(b
->bio
);
379 __btree_node_write_done(cl
);
382 static void btree_node_write_endio(struct bio
*bio
)
384 struct closure
*cl
= bio
->bi_private
;
385 struct btree
*b
= container_of(cl
, struct btree
, io
);
388 set_btree_node_io_error(b
);
390 bch_bbio_count_io_errors(b
->c
, bio
, bio
->bi_status
, "writing btree");
394 static void do_btree_node_write(struct btree
*b
)
396 struct closure
*cl
= &b
->io
;
397 struct bset
*i
= btree_bset_last(b
);
400 i
->version
= BCACHE_BSET_VERSION
;
401 i
->csum
= btree_csum_set(b
, i
);
404 b
->bio
= bch_bbio_alloc(b
->c
);
406 b
->bio
->bi_end_io
= btree_node_write_endio
;
407 b
->bio
->bi_private
= cl
;
408 b
->bio
->bi_iter
.bi_size
= roundup(set_bytes(i
), block_bytes(b
->c
));
409 b
->bio
->bi_opf
= REQ_OP_WRITE
| REQ_META
| REQ_FUA
;
410 bch_bio_map(b
->bio
, i
);
413 * If we're appending to a leaf node, we don't technically need FUA -
414 * this write just needs to be persisted before the next journal write,
415 * which will be marked FLUSH|FUA.
417 * Similarly if we're writing a new btree root - the pointer is going to
418 * be in the next journal entry.
420 * But if we're writing a new btree node (that isn't a root) or
421 * appending to a non leaf btree node, we need either FUA or a flush
422 * when we write the parent with the new pointer. FUA is cheaper than a
423 * flush, and writes appending to leaf nodes aren't blocking anything so
424 * just make all btree node writes FUA to keep things sane.
427 bkey_copy(&k
.key
, &b
->key
);
428 SET_PTR_OFFSET(&k
.key
, 0, PTR_OFFSET(&k
.key
, 0) +
429 bset_sector_offset(&b
->keys
, i
));
431 if (!bch_bio_alloc_pages(b
->bio
, __GFP_NOWARN
|GFP_NOWAIT
)) {
433 void *addr
= (void *) ((unsigned long) i
& ~(PAGE_SIZE
- 1));
434 struct bvec_iter_all iter_all
;
436 bio_for_each_segment_all(bv
, b
->bio
, iter_all
) {
437 memcpy(page_address(bv
->bv_page
), addr
, PAGE_SIZE
);
441 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
443 continue_at(cl
, btree_node_write_done
, NULL
);
446 * No problem for multipage bvec since the bio is
450 bch_bio_map(b
->bio
, i
);
452 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
455 continue_at_nobarrier(cl
, __btree_node_write_done
, NULL
);
459 void __bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
461 struct bset
*i
= btree_bset_last(b
);
463 lockdep_assert_held(&b
->write_lock
);
465 trace_bcache_btree_write(b
);
467 BUG_ON(current
->bio_list
);
468 BUG_ON(b
->written
>= btree_blocks(b
));
469 BUG_ON(b
->written
&& !i
->keys
);
470 BUG_ON(btree_bset_first(b
)->seq
!= i
->seq
);
471 bch_check_keys(&b
->keys
, "writing");
473 cancel_delayed_work(&b
->work
);
475 /* If caller isn't waiting for write, parent refcount is cache set */
477 closure_init(&b
->io
, parent
?: &b
->c
->cl
);
479 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
480 change_bit(BTREE_NODE_write_idx
, &b
->flags
);
482 do_btree_node_write(b
);
484 atomic_long_add(set_blocks(i
, block_bytes(b
->c
)) * b
->c
->sb
.block_size
,
485 &PTR_CACHE(b
->c
, &b
->key
, 0)->btree_sectors_written
);
487 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
490 void bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
492 unsigned int nsets
= b
->keys
.nsets
;
494 lockdep_assert_held(&b
->lock
);
496 __bch_btree_node_write(b
, parent
);
499 * do verify if there was more than one set initially (i.e. we did a
500 * sort) and we sorted down to a single set:
502 if (nsets
&& !b
->keys
.nsets
)
505 bch_btree_init_next(b
);
508 static void bch_btree_node_write_sync(struct btree
*b
)
512 closure_init_stack(&cl
);
514 mutex_lock(&b
->write_lock
);
515 bch_btree_node_write(b
, &cl
);
516 mutex_unlock(&b
->write_lock
);
521 static void btree_node_write_work(struct work_struct
*w
)
523 struct btree
*b
= container_of(to_delayed_work(w
), struct btree
, work
);
525 mutex_lock(&b
->write_lock
);
526 if (btree_node_dirty(b
))
527 __bch_btree_node_write(b
, NULL
);
528 mutex_unlock(&b
->write_lock
);
531 static void bch_btree_leaf_dirty(struct btree
*b
, atomic_t
*journal_ref
)
533 struct bset
*i
= btree_bset_last(b
);
534 struct btree_write
*w
= btree_current_write(b
);
536 lockdep_assert_held(&b
->write_lock
);
541 if (!btree_node_dirty(b
))
542 schedule_delayed_work(&b
->work
, 30 * HZ
);
544 set_btree_node_dirty(b
);
547 * w->journal is always the oldest journal pin of all bkeys
548 * in the leaf node, to make sure the oldest jset seq won't
549 * be increased before this btree node is flushed.
553 journal_pin_cmp(b
->c
, w
->journal
, journal_ref
)) {
554 atomic_dec_bug(w
->journal
);
559 w
->journal
= journal_ref
;
560 atomic_inc(w
->journal
);
564 /* Force write if set is too big */
565 if (set_bytes(i
) > PAGE_SIZE
- 48 &&
567 bch_btree_node_write(b
, NULL
);
571 * Btree in memory cache - allocation/freeing
572 * mca -> memory cache
575 #define mca_reserve(c) (((c->root && c->root->level) \
576 ? c->root->level : 1) * 8 + 16)
577 #define mca_can_free(c) \
578 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
580 static void mca_data_free(struct btree
*b
)
582 BUG_ON(b
->io_mutex
.count
!= 1);
584 bch_btree_keys_free(&b
->keys
);
586 b
->c
->btree_cache_used
--;
587 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
590 static void mca_bucket_free(struct btree
*b
)
592 BUG_ON(btree_node_dirty(b
));
595 hlist_del_init_rcu(&b
->hash
);
596 list_move(&b
->list
, &b
->c
->btree_cache_freeable
);
599 static unsigned int btree_order(struct bkey
*k
)
601 return ilog2(KEY_SIZE(k
) / PAGE_SECTORS
?: 1);
604 static void mca_data_alloc(struct btree
*b
, struct bkey
*k
, gfp_t gfp
)
606 if (!bch_btree_keys_alloc(&b
->keys
,
608 ilog2(b
->c
->btree_pages
),
611 b
->c
->btree_cache_used
++;
612 list_move(&b
->list
, &b
->c
->btree_cache
);
614 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
618 static struct btree
*mca_bucket_alloc(struct cache_set
*c
,
619 struct bkey
*k
, gfp_t gfp
)
622 * kzalloc() is necessary here for initialization,
623 * see code comments in bch_btree_keys_init().
625 struct btree
*b
= kzalloc(sizeof(struct btree
), gfp
);
630 init_rwsem(&b
->lock
);
631 lockdep_set_novalidate_class(&b
->lock
);
632 mutex_init(&b
->write_lock
);
633 lockdep_set_novalidate_class(&b
->write_lock
);
634 INIT_LIST_HEAD(&b
->list
);
635 INIT_DELAYED_WORK(&b
->work
, btree_node_write_work
);
637 sema_init(&b
->io_mutex
, 1);
639 mca_data_alloc(b
, k
, gfp
);
643 static int mca_reap(struct btree
*b
, unsigned int min_order
, bool flush
)
647 closure_init_stack(&cl
);
648 lockdep_assert_held(&b
->c
->bucket_lock
);
650 if (!down_write_trylock(&b
->lock
))
653 BUG_ON(btree_node_dirty(b
) && !b
->keys
.set
[0].data
);
655 if (b
->keys
.page_order
< min_order
)
659 if (btree_node_dirty(b
))
662 if (down_trylock(&b
->io_mutex
))
669 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
670 * __bch_btree_node_write(). To avoid an extra flush, acquire
671 * b->write_lock before checking BTREE_NODE_dirty bit.
673 mutex_lock(&b
->write_lock
);
675 * If this btree node is selected in btree_flush_write() by journal
676 * code, delay and retry until the node is flushed by journal code
677 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
679 if (btree_node_journal_flush(b
)) {
680 pr_debug("bnode %p is flushing by journal, retry", b
);
681 mutex_unlock(&b
->write_lock
);
686 if (btree_node_dirty(b
))
687 __bch_btree_node_write(b
, &cl
);
688 mutex_unlock(&b
->write_lock
);
692 /* wait for any in flight btree write */
702 static unsigned long bch_mca_scan(struct shrinker
*shrink
,
703 struct shrink_control
*sc
)
705 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
707 unsigned long i
, nr
= sc
->nr_to_scan
;
708 unsigned long freed
= 0;
709 unsigned int btree_cache_used
;
711 if (c
->shrinker_disabled
)
714 if (c
->btree_cache_alloc_lock
)
717 /* Return -1 if we can't do anything right now */
718 if (sc
->gfp_mask
& __GFP_IO
)
719 mutex_lock(&c
->bucket_lock
);
720 else if (!mutex_trylock(&c
->bucket_lock
))
724 * It's _really_ critical that we don't free too many btree nodes - we
725 * have to always leave ourselves a reserve. The reserve is how we
726 * guarantee that allocating memory for a new btree node can always
727 * succeed, so that inserting keys into the btree can always succeed and
728 * IO can always make forward progress:
730 nr
/= c
->btree_pages
;
733 nr
= min_t(unsigned long, nr
, mca_can_free(c
));
736 btree_cache_used
= c
->btree_cache_used
;
737 list_for_each_entry_safe_reverse(b
, t
, &c
->btree_cache_freeable
, list
) {
741 if (!mca_reap(b
, 0, false)) {
750 list_for_each_entry_safe_reverse(b
, t
, &c
->btree_cache
, list
) {
751 if (nr
<= 0 || i
>= btree_cache_used
)
754 if (!mca_reap(b
, 0, false)) {
765 mutex_unlock(&c
->bucket_lock
);
766 return freed
* c
->btree_pages
;
769 static unsigned long bch_mca_count(struct shrinker
*shrink
,
770 struct shrink_control
*sc
)
772 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
774 if (c
->shrinker_disabled
)
777 if (c
->btree_cache_alloc_lock
)
780 return mca_can_free(c
) * c
->btree_pages
;
783 void bch_btree_cache_free(struct cache_set
*c
)
788 closure_init_stack(&cl
);
790 if (c
->shrink
.list
.next
)
791 unregister_shrinker(&c
->shrink
);
793 mutex_lock(&c
->bucket_lock
);
795 #ifdef CONFIG_BCACHE_DEBUG
797 list_move(&c
->verify_data
->list
, &c
->btree_cache
);
799 free_pages((unsigned long) c
->verify_ondisk
, ilog2(bucket_pages(c
)));
802 list_splice(&c
->btree_cache_freeable
,
805 while (!list_empty(&c
->btree_cache
)) {
806 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
809 * This function is called by cache_set_free(), no I/O
810 * request on cache now, it is unnecessary to acquire
811 * b->write_lock before clearing BTREE_NODE_dirty anymore.
813 if (btree_node_dirty(b
)) {
814 btree_complete_write(b
, btree_current_write(b
));
815 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
820 while (!list_empty(&c
->btree_cache_freed
)) {
821 b
= list_first_entry(&c
->btree_cache_freed
,
824 cancel_delayed_work_sync(&b
->work
);
828 mutex_unlock(&c
->bucket_lock
);
831 int bch_btree_cache_alloc(struct cache_set
*c
)
835 for (i
= 0; i
< mca_reserve(c
); i
++)
836 if (!mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
))
839 list_splice_init(&c
->btree_cache
,
840 &c
->btree_cache_freeable
);
842 #ifdef CONFIG_BCACHE_DEBUG
843 mutex_init(&c
->verify_lock
);
845 c
->verify_ondisk
= (void *)
846 __get_free_pages(GFP_KERNEL
, ilog2(bucket_pages(c
)));
848 c
->verify_data
= mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
);
850 if (c
->verify_data
&&
851 c
->verify_data
->keys
.set
->data
)
852 list_del_init(&c
->verify_data
->list
);
854 c
->verify_data
= NULL
;
857 c
->shrink
.count_objects
= bch_mca_count
;
858 c
->shrink
.scan_objects
= bch_mca_scan
;
860 c
->shrink
.batch
= c
->btree_pages
* 2;
862 if (register_shrinker(&c
->shrink
))
863 pr_warn("bcache: %s: could not register shrinker",
869 /* Btree in memory cache - hash table */
871 static struct hlist_head
*mca_hash(struct cache_set
*c
, struct bkey
*k
)
873 return &c
->bucket_hash
[hash_32(PTR_HASH(c
, k
), BUCKET_HASH_BITS
)];
876 static struct btree
*mca_find(struct cache_set
*c
, struct bkey
*k
)
881 hlist_for_each_entry_rcu(b
, mca_hash(c
, k
), hash
)
882 if (PTR_HASH(c
, &b
->key
) == PTR_HASH(c
, k
))
890 static int mca_cannibalize_lock(struct cache_set
*c
, struct btree_op
*op
)
892 spin_lock(&c
->btree_cannibalize_lock
);
893 if (likely(c
->btree_cache_alloc_lock
== NULL
)) {
894 c
->btree_cache_alloc_lock
= current
;
895 } else if (c
->btree_cache_alloc_lock
!= current
) {
897 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
898 TASK_UNINTERRUPTIBLE
);
899 spin_unlock(&c
->btree_cannibalize_lock
);
902 spin_unlock(&c
->btree_cannibalize_lock
);
907 static struct btree
*mca_cannibalize(struct cache_set
*c
, struct btree_op
*op
,
912 trace_bcache_btree_cache_cannibalize(c
);
914 if (mca_cannibalize_lock(c
, op
))
915 return ERR_PTR(-EINTR
);
917 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
918 if (!mca_reap(b
, btree_order(k
), false))
921 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
922 if (!mca_reap(b
, btree_order(k
), true))
925 WARN(1, "btree cache cannibalize failed\n");
926 return ERR_PTR(-ENOMEM
);
930 * We can only have one thread cannibalizing other cached btree nodes at a time,
931 * or we'll deadlock. We use an open coded mutex to ensure that, which a
932 * cannibalize_bucket() will take. This means every time we unlock the root of
933 * the btree, we need to release this lock if we have it held.
935 static void bch_cannibalize_unlock(struct cache_set
*c
)
937 spin_lock(&c
->btree_cannibalize_lock
);
938 if (c
->btree_cache_alloc_lock
== current
) {
939 c
->btree_cache_alloc_lock
= NULL
;
940 wake_up(&c
->btree_cache_wait
);
942 spin_unlock(&c
->btree_cannibalize_lock
);
945 static struct btree
*mca_alloc(struct cache_set
*c
, struct btree_op
*op
,
946 struct bkey
*k
, int level
)
950 BUG_ON(current
->bio_list
);
952 lockdep_assert_held(&c
->bucket_lock
);
957 /* btree_free() doesn't free memory; it sticks the node on the end of
958 * the list. Check if there's any freed nodes there:
960 list_for_each_entry(b
, &c
->btree_cache_freeable
, list
)
961 if (!mca_reap(b
, btree_order(k
), false))
964 /* We never free struct btree itself, just the memory that holds the on
965 * disk node. Check the freed list before allocating a new one:
967 list_for_each_entry(b
, &c
->btree_cache_freed
, list
)
968 if (!mca_reap(b
, 0, false)) {
969 mca_data_alloc(b
, k
, __GFP_NOWARN
|GFP_NOIO
);
970 if (!b
->keys
.set
[0].data
)
976 b
= mca_bucket_alloc(c
, k
, __GFP_NOWARN
|GFP_NOIO
);
980 BUG_ON(!down_write_trylock(&b
->lock
));
981 if (!b
->keys
.set
->data
)
984 BUG_ON(b
->io_mutex
.count
!= 1);
986 bkey_copy(&b
->key
, k
);
987 list_move(&b
->list
, &c
->btree_cache
);
988 hlist_del_init_rcu(&b
->hash
);
989 hlist_add_head_rcu(&b
->hash
, mca_hash(c
, k
));
991 lock_set_subclass(&b
->lock
.dep_map
, level
+ 1, _THIS_IP_
);
992 b
->parent
= (void *) ~0UL;
998 bch_btree_keys_init(&b
->keys
, &bch_extent_keys_ops
,
999 &b
->c
->expensive_debug_checks
);
1001 bch_btree_keys_init(&b
->keys
, &bch_btree_keys_ops
,
1002 &b
->c
->expensive_debug_checks
);
1009 b
= mca_cannibalize(c
, op
, k
);
1017 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1018 * in from disk if necessary.
1020 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1022 * The btree node will have either a read or a write lock held, depending on
1023 * level and op->lock.
1025 struct btree
*bch_btree_node_get(struct cache_set
*c
, struct btree_op
*op
,
1026 struct bkey
*k
, int level
, bool write
,
1027 struct btree
*parent
)
1037 if (current
->bio_list
)
1038 return ERR_PTR(-EAGAIN
);
1040 mutex_lock(&c
->bucket_lock
);
1041 b
= mca_alloc(c
, op
, k
, level
);
1042 mutex_unlock(&c
->bucket_lock
);
1049 bch_btree_node_read(b
);
1052 downgrade_write(&b
->lock
);
1054 rw_lock(write
, b
, level
);
1055 if (PTR_HASH(c
, &b
->key
) != PTR_HASH(c
, k
)) {
1056 rw_unlock(write
, b
);
1059 BUG_ON(b
->level
!= level
);
1062 if (btree_node_io_error(b
)) {
1063 rw_unlock(write
, b
);
1064 return ERR_PTR(-EIO
);
1067 BUG_ON(!b
->written
);
1071 for (; i
<= b
->keys
.nsets
&& b
->keys
.set
[i
].size
; i
++) {
1072 prefetch(b
->keys
.set
[i
].tree
);
1073 prefetch(b
->keys
.set
[i
].data
);
1076 for (; i
<= b
->keys
.nsets
; i
++)
1077 prefetch(b
->keys
.set
[i
].data
);
1082 static void btree_node_prefetch(struct btree
*parent
, struct bkey
*k
)
1086 mutex_lock(&parent
->c
->bucket_lock
);
1087 b
= mca_alloc(parent
->c
, NULL
, k
, parent
->level
- 1);
1088 mutex_unlock(&parent
->c
->bucket_lock
);
1090 if (!IS_ERR_OR_NULL(b
)) {
1092 bch_btree_node_read(b
);
1099 static void btree_node_free(struct btree
*b
)
1101 trace_bcache_btree_node_free(b
);
1103 BUG_ON(b
== b
->c
->root
);
1106 mutex_lock(&b
->write_lock
);
1108 * If the btree node is selected and flushing in btree_flush_write(),
1109 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1110 * then it is safe to free the btree node here. Otherwise this btree
1111 * node will be in race condition.
1113 if (btree_node_journal_flush(b
)) {
1114 mutex_unlock(&b
->write_lock
);
1115 pr_debug("bnode %p journal_flush set, retry", b
);
1120 if (btree_node_dirty(b
)) {
1121 btree_complete_write(b
, btree_current_write(b
));
1122 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
1125 mutex_unlock(&b
->write_lock
);
1127 cancel_delayed_work(&b
->work
);
1129 mutex_lock(&b
->c
->bucket_lock
);
1130 bch_bucket_free(b
->c
, &b
->key
);
1132 mutex_unlock(&b
->c
->bucket_lock
);
1135 struct btree
*__bch_btree_node_alloc(struct cache_set
*c
, struct btree_op
*op
,
1136 int level
, bool wait
,
1137 struct btree
*parent
)
1140 struct btree
*b
= ERR_PTR(-EAGAIN
);
1142 mutex_lock(&c
->bucket_lock
);
1144 if (__bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, 1, wait
))
1147 bkey_put(c
, &k
.key
);
1148 SET_KEY_SIZE(&k
.key
, c
->btree_pages
* PAGE_SECTORS
);
1150 b
= mca_alloc(c
, op
, &k
.key
, level
);
1156 "Tried to allocate bucket that was in btree cache");
1161 bch_bset_init_next(&b
->keys
, b
->keys
.set
->data
, bset_magic(&b
->c
->sb
));
1163 mutex_unlock(&c
->bucket_lock
);
1165 trace_bcache_btree_node_alloc(b
);
1168 bch_bucket_free(c
, &k
.key
);
1170 mutex_unlock(&c
->bucket_lock
);
1172 trace_bcache_btree_node_alloc_fail(c
);
1176 static struct btree
*bch_btree_node_alloc(struct cache_set
*c
,
1177 struct btree_op
*op
, int level
,
1178 struct btree
*parent
)
1180 return __bch_btree_node_alloc(c
, op
, level
, op
!= NULL
, parent
);
1183 static struct btree
*btree_node_alloc_replacement(struct btree
*b
,
1184 struct btree_op
*op
)
1186 struct btree
*n
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
1188 if (!IS_ERR_OR_NULL(n
)) {
1189 mutex_lock(&n
->write_lock
);
1190 bch_btree_sort_into(&b
->keys
, &n
->keys
, &b
->c
->sort
);
1191 bkey_copy_key(&n
->key
, &b
->key
);
1192 mutex_unlock(&n
->write_lock
);
1198 static void make_btree_freeing_key(struct btree
*b
, struct bkey
*k
)
1202 mutex_lock(&b
->c
->bucket_lock
);
1204 atomic_inc(&b
->c
->prio_blocked
);
1206 bkey_copy(k
, &b
->key
);
1207 bkey_copy_key(k
, &ZERO_KEY
);
1209 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1211 bch_inc_gen(PTR_CACHE(b
->c
, &b
->key
, i
),
1212 PTR_BUCKET(b
->c
, &b
->key
, i
)));
1214 mutex_unlock(&b
->c
->bucket_lock
);
1217 static int btree_check_reserve(struct btree
*b
, struct btree_op
*op
)
1219 struct cache_set
*c
= b
->c
;
1221 unsigned int i
, reserve
= (c
->root
->level
- b
->level
) * 2 + 1;
1223 mutex_lock(&c
->bucket_lock
);
1225 for_each_cache(ca
, c
, i
)
1226 if (fifo_used(&ca
->free
[RESERVE_BTREE
]) < reserve
) {
1228 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
1229 TASK_UNINTERRUPTIBLE
);
1230 mutex_unlock(&c
->bucket_lock
);
1234 mutex_unlock(&c
->bucket_lock
);
1236 return mca_cannibalize_lock(b
->c
, op
);
1239 /* Garbage collection */
1241 static uint8_t __bch_btree_mark_key(struct cache_set
*c
, int level
,
1249 * ptr_invalid() can't return true for the keys that mark btree nodes as
1250 * freed, but since ptr_bad() returns true we'll never actually use them
1251 * for anything and thus we don't want mark their pointers here
1253 if (!bkey_cmp(k
, &ZERO_KEY
))
1256 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
1257 if (!ptr_available(c
, k
, i
))
1260 g
= PTR_BUCKET(c
, k
, i
);
1262 if (gen_after(g
->last_gc
, PTR_GEN(k
, i
)))
1263 g
->last_gc
= PTR_GEN(k
, i
);
1265 if (ptr_stale(c
, k
, i
)) {
1266 stale
= max(stale
, ptr_stale(c
, k
, i
));
1270 cache_bug_on(GC_MARK(g
) &&
1271 (GC_MARK(g
) == GC_MARK_METADATA
) != (level
!= 0),
1272 c
, "inconsistent ptrs: mark = %llu, level = %i",
1276 SET_GC_MARK(g
, GC_MARK_METADATA
);
1277 else if (KEY_DIRTY(k
))
1278 SET_GC_MARK(g
, GC_MARK_DIRTY
);
1279 else if (!GC_MARK(g
))
1280 SET_GC_MARK(g
, GC_MARK_RECLAIMABLE
);
1282 /* guard against overflow */
1283 SET_GC_SECTORS_USED(g
, min_t(unsigned int,
1284 GC_SECTORS_USED(g
) + KEY_SIZE(k
),
1285 MAX_GC_SECTORS_USED
));
1287 BUG_ON(!GC_SECTORS_USED(g
));
1293 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1295 void bch_initial_mark_key(struct cache_set
*c
, int level
, struct bkey
*k
)
1299 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1300 if (ptr_available(c
, k
, i
) &&
1301 !ptr_stale(c
, k
, i
)) {
1302 struct bucket
*b
= PTR_BUCKET(c
, k
, i
);
1304 b
->gen
= PTR_GEN(k
, i
);
1306 if (level
&& bkey_cmp(k
, &ZERO_KEY
))
1307 b
->prio
= BTREE_PRIO
;
1308 else if (!level
&& b
->prio
== BTREE_PRIO
)
1309 b
->prio
= INITIAL_PRIO
;
1312 __bch_btree_mark_key(c
, level
, k
);
1315 void bch_update_bucket_in_use(struct cache_set
*c
, struct gc_stat
*stats
)
1317 stats
->in_use
= (c
->nbuckets
- c
->avail_nbuckets
) * 100 / c
->nbuckets
;
1320 static bool btree_gc_mark_node(struct btree
*b
, struct gc_stat
*gc
)
1323 unsigned int keys
= 0, good_keys
= 0;
1325 struct btree_iter iter
;
1326 struct bset_tree
*t
;
1330 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
) {
1331 stale
= max(stale
, btree_mark_key(b
, k
));
1334 if (bch_ptr_bad(&b
->keys
, k
))
1337 gc
->key_bytes
+= bkey_u64s(k
);
1341 gc
->data
+= KEY_SIZE(k
);
1344 for (t
= b
->keys
.set
; t
<= &b
->keys
.set
[b
->keys
.nsets
]; t
++)
1345 btree_bug_on(t
->size
&&
1346 bset_written(&b
->keys
, t
) &&
1347 bkey_cmp(&b
->key
, &t
->end
) < 0,
1348 b
, "found short btree key in gc");
1350 if (b
->c
->gc_always_rewrite
)
1356 if ((keys
- good_keys
) * 2 > keys
)
1362 #define GC_MERGE_NODES 4U
1364 struct gc_merge_info
{
1369 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
1370 struct keylist
*insert_keys
,
1371 atomic_t
*journal_ref
,
1372 struct bkey
*replace_key
);
1374 static int btree_gc_coalesce(struct btree
*b
, struct btree_op
*op
,
1375 struct gc_stat
*gc
, struct gc_merge_info
*r
)
1377 unsigned int i
, nodes
= 0, keys
= 0, blocks
;
1378 struct btree
*new_nodes
[GC_MERGE_NODES
];
1379 struct keylist keylist
;
1383 bch_keylist_init(&keylist
);
1385 if (btree_check_reserve(b
, NULL
))
1388 memset(new_nodes
, 0, sizeof(new_nodes
));
1389 closure_init_stack(&cl
);
1391 while (nodes
< GC_MERGE_NODES
&& !IS_ERR_OR_NULL(r
[nodes
].b
))
1392 keys
+= r
[nodes
++].keys
;
1394 blocks
= btree_default_blocks(b
->c
) * 2 / 3;
1397 __set_blocks(b
->keys
.set
[0].data
, keys
,
1398 block_bytes(b
->c
)) > blocks
* (nodes
- 1))
1401 for (i
= 0; i
< nodes
; i
++) {
1402 new_nodes
[i
] = btree_node_alloc_replacement(r
[i
].b
, NULL
);
1403 if (IS_ERR_OR_NULL(new_nodes
[i
]))
1404 goto out_nocoalesce
;
1408 * We have to check the reserve here, after we've allocated our new
1409 * nodes, to make sure the insert below will succeed - we also check
1410 * before as an optimization to potentially avoid a bunch of expensive
1413 if (btree_check_reserve(b
, NULL
))
1414 goto out_nocoalesce
;
1416 for (i
= 0; i
< nodes
; i
++)
1417 mutex_lock(&new_nodes
[i
]->write_lock
);
1419 for (i
= nodes
- 1; i
> 0; --i
) {
1420 struct bset
*n1
= btree_bset_first(new_nodes
[i
]);
1421 struct bset
*n2
= btree_bset_first(new_nodes
[i
- 1]);
1422 struct bkey
*k
, *last
= NULL
;
1428 k
< bset_bkey_last(n2
);
1430 if (__set_blocks(n1
, n1
->keys
+ keys
+
1432 block_bytes(b
->c
)) > blocks
)
1436 keys
+= bkey_u64s(k
);
1440 * Last node we're not getting rid of - we're getting
1441 * rid of the node at r[0]. Have to try and fit all of
1442 * the remaining keys into this node; we can't ensure
1443 * they will always fit due to rounding and variable
1444 * length keys (shouldn't be possible in practice,
1447 if (__set_blocks(n1
, n1
->keys
+ n2
->keys
,
1448 block_bytes(b
->c
)) >
1449 btree_blocks(new_nodes
[i
]))
1450 goto out_nocoalesce
;
1453 /* Take the key of the node we're getting rid of */
1457 BUG_ON(__set_blocks(n1
, n1
->keys
+ keys
, block_bytes(b
->c
)) >
1458 btree_blocks(new_nodes
[i
]));
1461 bkey_copy_key(&new_nodes
[i
]->key
, last
);
1463 memcpy(bset_bkey_last(n1
),
1465 (void *) bset_bkey_idx(n2
, keys
) - (void *) n2
->start
);
1468 r
[i
].keys
= n1
->keys
;
1471 bset_bkey_idx(n2
, keys
),
1472 (void *) bset_bkey_last(n2
) -
1473 (void *) bset_bkey_idx(n2
, keys
));
1477 if (__bch_keylist_realloc(&keylist
,
1478 bkey_u64s(&new_nodes
[i
]->key
)))
1479 goto out_nocoalesce
;
1481 bch_btree_node_write(new_nodes
[i
], &cl
);
1482 bch_keylist_add(&keylist
, &new_nodes
[i
]->key
);
1485 for (i
= 0; i
< nodes
; i
++)
1486 mutex_unlock(&new_nodes
[i
]->write_lock
);
1490 /* We emptied out this node */
1491 BUG_ON(btree_bset_first(new_nodes
[0])->keys
);
1492 btree_node_free(new_nodes
[0]);
1493 rw_unlock(true, new_nodes
[0]);
1494 new_nodes
[0] = NULL
;
1496 for (i
= 0; i
< nodes
; i
++) {
1497 if (__bch_keylist_realloc(&keylist
, bkey_u64s(&r
[i
].b
->key
)))
1498 goto out_nocoalesce
;
1500 make_btree_freeing_key(r
[i
].b
, keylist
.top
);
1501 bch_keylist_push(&keylist
);
1504 bch_btree_insert_node(b
, op
, &keylist
, NULL
, NULL
);
1505 BUG_ON(!bch_keylist_empty(&keylist
));
1507 for (i
= 0; i
< nodes
; i
++) {
1508 btree_node_free(r
[i
].b
);
1509 rw_unlock(true, r
[i
].b
);
1511 r
[i
].b
= new_nodes
[i
];
1514 memmove(r
, r
+ 1, sizeof(r
[0]) * (nodes
- 1));
1515 r
[nodes
- 1].b
= ERR_PTR(-EINTR
);
1517 trace_bcache_btree_gc_coalesce(nodes
);
1520 bch_keylist_free(&keylist
);
1522 /* Invalidated our iterator */
1528 while ((k
= bch_keylist_pop(&keylist
)))
1529 if (!bkey_cmp(k
, &ZERO_KEY
))
1530 atomic_dec(&b
->c
->prio_blocked
);
1531 bch_keylist_free(&keylist
);
1533 for (i
= 0; i
< nodes
; i
++)
1534 if (!IS_ERR_OR_NULL(new_nodes
[i
])) {
1535 btree_node_free(new_nodes
[i
]);
1536 rw_unlock(true, new_nodes
[i
]);
1541 static int btree_gc_rewrite_node(struct btree
*b
, struct btree_op
*op
,
1542 struct btree
*replace
)
1544 struct keylist keys
;
1547 if (btree_check_reserve(b
, NULL
))
1550 n
= btree_node_alloc_replacement(replace
, NULL
);
1552 /* recheck reserve after allocating replacement node */
1553 if (btree_check_reserve(b
, NULL
)) {
1559 bch_btree_node_write_sync(n
);
1561 bch_keylist_init(&keys
);
1562 bch_keylist_add(&keys
, &n
->key
);
1564 make_btree_freeing_key(replace
, keys
.top
);
1565 bch_keylist_push(&keys
);
1567 bch_btree_insert_node(b
, op
, &keys
, NULL
, NULL
);
1568 BUG_ON(!bch_keylist_empty(&keys
));
1570 btree_node_free(replace
);
1573 /* Invalidated our iterator */
1577 static unsigned int btree_gc_count_keys(struct btree
*b
)
1580 struct btree_iter iter
;
1581 unsigned int ret
= 0;
1583 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_bad
)
1584 ret
+= bkey_u64s(k
);
1589 static size_t btree_gc_min_nodes(struct cache_set
*c
)
1594 * Since incremental GC would stop 100ms when front
1595 * side I/O comes, so when there are many btree nodes,
1596 * if GC only processes constant (100) nodes each time,
1597 * GC would last a long time, and the front side I/Os
1598 * would run out of the buckets (since no new bucket
1599 * can be allocated during GC), and be blocked again.
1600 * So GC should not process constant nodes, but varied
1601 * nodes according to the number of btree nodes, which
1602 * realized by dividing GC into constant(100) times,
1603 * so when there are many btree nodes, GC can process
1604 * more nodes each time, otherwise, GC will process less
1605 * nodes each time (but no less than MIN_GC_NODES)
1607 min_nodes
= c
->gc_stats
.nodes
/ MAX_GC_TIMES
;
1608 if (min_nodes
< MIN_GC_NODES
)
1609 min_nodes
= MIN_GC_NODES
;
1615 static int btree_gc_recurse(struct btree
*b
, struct btree_op
*op
,
1616 struct closure
*writes
, struct gc_stat
*gc
)
1619 bool should_rewrite
;
1621 struct btree_iter iter
;
1622 struct gc_merge_info r
[GC_MERGE_NODES
];
1623 struct gc_merge_info
*i
, *last
= r
+ ARRAY_SIZE(r
) - 1;
1625 bch_btree_iter_init(&b
->keys
, &iter
, &b
->c
->gc_done
);
1627 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1628 i
->b
= ERR_PTR(-EINTR
);
1631 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
);
1633 r
->b
= bch_btree_node_get(b
->c
, op
, k
, b
->level
- 1,
1636 ret
= PTR_ERR(r
->b
);
1640 r
->keys
= btree_gc_count_keys(r
->b
);
1642 ret
= btree_gc_coalesce(b
, op
, gc
, r
);
1650 if (!IS_ERR(last
->b
)) {
1651 should_rewrite
= btree_gc_mark_node(last
->b
, gc
);
1652 if (should_rewrite
) {
1653 ret
= btree_gc_rewrite_node(b
, op
, last
->b
);
1658 if (last
->b
->level
) {
1659 ret
= btree_gc_recurse(last
->b
, op
, writes
, gc
);
1664 bkey_copy_key(&b
->c
->gc_done
, &last
->b
->key
);
1667 * Must flush leaf nodes before gc ends, since replace
1668 * operations aren't journalled
1670 mutex_lock(&last
->b
->write_lock
);
1671 if (btree_node_dirty(last
->b
))
1672 bch_btree_node_write(last
->b
, writes
);
1673 mutex_unlock(&last
->b
->write_lock
);
1674 rw_unlock(true, last
->b
);
1677 memmove(r
+ 1, r
, sizeof(r
[0]) * (GC_MERGE_NODES
- 1));
1680 if (atomic_read(&b
->c
->search_inflight
) &&
1681 gc
->nodes
>= gc
->nodes_pre
+ btree_gc_min_nodes(b
->c
)) {
1682 gc
->nodes_pre
= gc
->nodes
;
1687 if (need_resched()) {
1693 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1694 if (!IS_ERR_OR_NULL(i
->b
)) {
1695 mutex_lock(&i
->b
->write_lock
);
1696 if (btree_node_dirty(i
->b
))
1697 bch_btree_node_write(i
->b
, writes
);
1698 mutex_unlock(&i
->b
->write_lock
);
1699 rw_unlock(true, i
->b
);
1705 static int bch_btree_gc_root(struct btree
*b
, struct btree_op
*op
,
1706 struct closure
*writes
, struct gc_stat
*gc
)
1708 struct btree
*n
= NULL
;
1710 bool should_rewrite
;
1712 should_rewrite
= btree_gc_mark_node(b
, gc
);
1713 if (should_rewrite
) {
1714 n
= btree_node_alloc_replacement(b
, NULL
);
1716 if (!IS_ERR_OR_NULL(n
)) {
1717 bch_btree_node_write_sync(n
);
1719 bch_btree_set_root(n
);
1727 __bch_btree_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1730 ret
= btree_gc_recurse(b
, op
, writes
, gc
);
1735 bkey_copy_key(&b
->c
->gc_done
, &b
->key
);
1740 static void btree_gc_start(struct cache_set
*c
)
1746 if (!c
->gc_mark_valid
)
1749 mutex_lock(&c
->bucket_lock
);
1751 c
->gc_mark_valid
= 0;
1752 c
->gc_done
= ZERO_KEY
;
1754 for_each_cache(ca
, c
, i
)
1755 for_each_bucket(b
, ca
) {
1756 b
->last_gc
= b
->gen
;
1757 if (!atomic_read(&b
->pin
)) {
1759 SET_GC_SECTORS_USED(b
, 0);
1763 mutex_unlock(&c
->bucket_lock
);
1766 static void bch_btree_gc_finish(struct cache_set
*c
)
1772 mutex_lock(&c
->bucket_lock
);
1775 c
->gc_mark_valid
= 1;
1778 for (i
= 0; i
< KEY_PTRS(&c
->uuid_bucket
); i
++)
1779 SET_GC_MARK(PTR_BUCKET(c
, &c
->uuid_bucket
, i
),
1782 /* don't reclaim buckets to which writeback keys point */
1784 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1785 struct bcache_device
*d
= c
->devices
[i
];
1786 struct cached_dev
*dc
;
1787 struct keybuf_key
*w
, *n
;
1790 if (!d
|| UUID_FLASH_ONLY(&c
->uuids
[i
]))
1792 dc
= container_of(d
, struct cached_dev
, disk
);
1794 spin_lock(&dc
->writeback_keys
.lock
);
1795 rbtree_postorder_for_each_entry_safe(w
, n
,
1796 &dc
->writeback_keys
.keys
, node
)
1797 for (j
= 0; j
< KEY_PTRS(&w
->key
); j
++)
1798 SET_GC_MARK(PTR_BUCKET(c
, &w
->key
, j
),
1800 spin_unlock(&dc
->writeback_keys
.lock
);
1804 c
->avail_nbuckets
= 0;
1805 for_each_cache(ca
, c
, i
) {
1808 ca
->invalidate_needs_gc
= 0;
1810 for (i
= ca
->sb
.d
; i
< ca
->sb
.d
+ ca
->sb
.keys
; i
++)
1811 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1813 for (i
= ca
->prio_buckets
;
1814 i
< ca
->prio_buckets
+ prio_buckets(ca
) * 2; i
++)
1815 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1817 for_each_bucket(b
, ca
) {
1818 c
->need_gc
= max(c
->need_gc
, bucket_gc_gen(b
));
1820 if (atomic_read(&b
->pin
))
1823 BUG_ON(!GC_MARK(b
) && GC_SECTORS_USED(b
));
1825 if (!GC_MARK(b
) || GC_MARK(b
) == GC_MARK_RECLAIMABLE
)
1826 c
->avail_nbuckets
++;
1830 mutex_unlock(&c
->bucket_lock
);
1833 static void bch_btree_gc(struct cache_set
*c
)
1836 struct gc_stat stats
;
1837 struct closure writes
;
1839 uint64_t start_time
= local_clock();
1841 trace_bcache_gc_start(c
);
1843 memset(&stats
, 0, sizeof(struct gc_stat
));
1844 closure_init_stack(&writes
);
1845 bch_btree_op_init(&op
, SHRT_MAX
);
1849 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1851 ret
= btree_root(gc_root
, c
, &op
, &writes
, &stats
);
1852 closure_sync(&writes
);
1856 schedule_timeout_interruptible(msecs_to_jiffies
1859 pr_warn("gc failed!");
1860 } while (ret
&& !test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
));
1862 bch_btree_gc_finish(c
);
1863 wake_up_allocators(c
);
1865 bch_time_stats_update(&c
->btree_gc_time
, start_time
);
1867 stats
.key_bytes
*= sizeof(uint64_t);
1869 bch_update_bucket_in_use(c
, &stats
);
1870 memcpy(&c
->gc_stats
, &stats
, sizeof(struct gc_stat
));
1872 trace_bcache_gc_end(c
);
1877 static bool gc_should_run(struct cache_set
*c
)
1882 for_each_cache(ca
, c
, i
)
1883 if (ca
->invalidate_needs_gc
)
1886 if (atomic_read(&c
->sectors_to_gc
) < 0)
1892 static int bch_gc_thread(void *arg
)
1894 struct cache_set
*c
= arg
;
1897 wait_event_interruptible(c
->gc_wait
,
1898 kthread_should_stop() ||
1899 test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
) ||
1902 if (kthread_should_stop() ||
1903 test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1910 wait_for_kthread_stop();
1914 int bch_gc_thread_start(struct cache_set
*c
)
1916 c
->gc_thread
= kthread_run(bch_gc_thread
, c
, "bcache_gc");
1917 return PTR_ERR_OR_ZERO(c
->gc_thread
);
1920 /* Initial partial gc */
1922 static int bch_btree_check_recurse(struct btree
*b
, struct btree_op
*op
)
1925 struct bkey
*k
, *p
= NULL
;
1926 struct btree_iter iter
;
1928 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
)
1929 bch_initial_mark_key(b
->c
, b
->level
, k
);
1931 bch_initial_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1934 bch_btree_iter_init(&b
->keys
, &iter
, NULL
);
1937 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
1940 btree_node_prefetch(b
, k
);
1942 * initiallize c->gc_stats.nodes
1943 * for incremental GC
1945 b
->c
->gc_stats
.nodes
++;
1949 ret
= btree(check_recurse
, p
, b
, op
);
1952 } while (p
&& !ret
);
1958 int bch_btree_check(struct cache_set
*c
)
1962 bch_btree_op_init(&op
, SHRT_MAX
);
1964 return btree_root(check_recurse
, c
, &op
);
1967 void bch_initial_gc_finish(struct cache_set
*c
)
1973 bch_btree_gc_finish(c
);
1975 mutex_lock(&c
->bucket_lock
);
1978 * We need to put some unused buckets directly on the prio freelist in
1979 * order to get the allocator thread started - it needs freed buckets in
1980 * order to rewrite the prios and gens, and it needs to rewrite prios
1981 * and gens in order to free buckets.
1983 * This is only safe for buckets that have no live data in them, which
1984 * there should always be some of.
1986 for_each_cache(ca
, c
, i
) {
1987 for_each_bucket(b
, ca
) {
1988 if (fifo_full(&ca
->free
[RESERVE_PRIO
]) &&
1989 fifo_full(&ca
->free
[RESERVE_BTREE
]))
1992 if (bch_can_invalidate_bucket(ca
, b
) &&
1994 __bch_invalidate_one_bucket(ca
, b
);
1995 if (!fifo_push(&ca
->free
[RESERVE_PRIO
],
1997 fifo_push(&ca
->free
[RESERVE_BTREE
],
2003 mutex_unlock(&c
->bucket_lock
);
2006 /* Btree insertion */
2008 static bool btree_insert_key(struct btree
*b
, struct bkey
*k
,
2009 struct bkey
*replace_key
)
2011 unsigned int status
;
2013 BUG_ON(bkey_cmp(k
, &b
->key
) > 0);
2015 status
= bch_btree_insert_key(&b
->keys
, k
, replace_key
);
2016 if (status
!= BTREE_INSERT_STATUS_NO_INSERT
) {
2017 bch_check_keys(&b
->keys
, "%u for %s", status
,
2018 replace_key
? "replace" : "insert");
2020 trace_bcache_btree_insert_key(b
, k
, replace_key
!= NULL
,
2027 static size_t insert_u64s_remaining(struct btree
*b
)
2029 long ret
= bch_btree_keys_u64s_remaining(&b
->keys
);
2032 * Might land in the middle of an existing extent and have to split it
2034 if (b
->keys
.ops
->is_extents
)
2035 ret
-= KEY_MAX_U64S
;
2037 return max(ret
, 0L);
2040 static bool bch_btree_insert_keys(struct btree
*b
, struct btree_op
*op
,
2041 struct keylist
*insert_keys
,
2042 struct bkey
*replace_key
)
2045 int oldsize
= bch_count_data(&b
->keys
);
2047 while (!bch_keylist_empty(insert_keys
)) {
2048 struct bkey
*k
= insert_keys
->keys
;
2050 if (bkey_u64s(k
) > insert_u64s_remaining(b
))
2053 if (bkey_cmp(k
, &b
->key
) <= 0) {
2057 ret
|= btree_insert_key(b
, k
, replace_key
);
2058 bch_keylist_pop_front(insert_keys
);
2059 } else if (bkey_cmp(&START_KEY(k
), &b
->key
) < 0) {
2060 BKEY_PADDED(key
) temp
;
2061 bkey_copy(&temp
.key
, insert_keys
->keys
);
2063 bch_cut_back(&b
->key
, &temp
.key
);
2064 bch_cut_front(&b
->key
, insert_keys
->keys
);
2066 ret
|= btree_insert_key(b
, &temp
.key
, replace_key
);
2074 op
->insert_collision
= true;
2076 BUG_ON(!bch_keylist_empty(insert_keys
) && b
->level
);
2078 BUG_ON(bch_count_data(&b
->keys
) < oldsize
);
2082 static int btree_split(struct btree
*b
, struct btree_op
*op
,
2083 struct keylist
*insert_keys
,
2084 struct bkey
*replace_key
)
2087 struct btree
*n1
, *n2
= NULL
, *n3
= NULL
;
2088 uint64_t start_time
= local_clock();
2090 struct keylist parent_keys
;
2092 closure_init_stack(&cl
);
2093 bch_keylist_init(&parent_keys
);
2095 if (btree_check_reserve(b
, op
)) {
2099 WARN(1, "insufficient reserve for split\n");
2102 n1
= btree_node_alloc_replacement(b
, op
);
2106 split
= set_blocks(btree_bset_first(n1
),
2107 block_bytes(n1
->c
)) > (btree_blocks(b
) * 4) / 5;
2110 unsigned int keys
= 0;
2112 trace_bcache_btree_node_split(b
, btree_bset_first(n1
)->keys
);
2114 n2
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
2119 n3
= bch_btree_node_alloc(b
->c
, op
, b
->level
+ 1, NULL
);
2124 mutex_lock(&n1
->write_lock
);
2125 mutex_lock(&n2
->write_lock
);
2127 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2130 * Has to be a linear search because we don't have an auxiliary
2134 while (keys
< (btree_bset_first(n1
)->keys
* 3) / 5)
2135 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
),
2138 bkey_copy_key(&n1
->key
,
2139 bset_bkey_idx(btree_bset_first(n1
), keys
));
2140 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
), keys
));
2142 btree_bset_first(n2
)->keys
= btree_bset_first(n1
)->keys
- keys
;
2143 btree_bset_first(n1
)->keys
= keys
;
2145 memcpy(btree_bset_first(n2
)->start
,
2146 bset_bkey_last(btree_bset_first(n1
)),
2147 btree_bset_first(n2
)->keys
* sizeof(uint64_t));
2149 bkey_copy_key(&n2
->key
, &b
->key
);
2151 bch_keylist_add(&parent_keys
, &n2
->key
);
2152 bch_btree_node_write(n2
, &cl
);
2153 mutex_unlock(&n2
->write_lock
);
2154 rw_unlock(true, n2
);
2156 trace_bcache_btree_node_compact(b
, btree_bset_first(n1
)->keys
);
2158 mutex_lock(&n1
->write_lock
);
2159 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2162 bch_keylist_add(&parent_keys
, &n1
->key
);
2163 bch_btree_node_write(n1
, &cl
);
2164 mutex_unlock(&n1
->write_lock
);
2167 /* Depth increases, make a new root */
2168 mutex_lock(&n3
->write_lock
);
2169 bkey_copy_key(&n3
->key
, &MAX_KEY
);
2170 bch_btree_insert_keys(n3
, op
, &parent_keys
, NULL
);
2171 bch_btree_node_write(n3
, &cl
);
2172 mutex_unlock(&n3
->write_lock
);
2175 bch_btree_set_root(n3
);
2176 rw_unlock(true, n3
);
2177 } else if (!b
->parent
) {
2178 /* Root filled up but didn't need to be split */
2180 bch_btree_set_root(n1
);
2182 /* Split a non root node */
2184 make_btree_freeing_key(b
, parent_keys
.top
);
2185 bch_keylist_push(&parent_keys
);
2187 bch_btree_insert_node(b
->parent
, op
, &parent_keys
, NULL
, NULL
);
2188 BUG_ON(!bch_keylist_empty(&parent_keys
));
2192 rw_unlock(true, n1
);
2194 bch_time_stats_update(&b
->c
->btree_split_time
, start_time
);
2198 bkey_put(b
->c
, &n2
->key
);
2199 btree_node_free(n2
);
2200 rw_unlock(true, n2
);
2202 bkey_put(b
->c
, &n1
->key
);
2203 btree_node_free(n1
);
2204 rw_unlock(true, n1
);
2206 WARN(1, "bcache: btree split failed (level %u)", b
->level
);
2208 if (n3
== ERR_PTR(-EAGAIN
) ||
2209 n2
== ERR_PTR(-EAGAIN
) ||
2210 n1
== ERR_PTR(-EAGAIN
))
2216 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
2217 struct keylist
*insert_keys
,
2218 atomic_t
*journal_ref
,
2219 struct bkey
*replace_key
)
2223 BUG_ON(b
->level
&& replace_key
);
2225 closure_init_stack(&cl
);
2227 mutex_lock(&b
->write_lock
);
2229 if (write_block(b
) != btree_bset_last(b
) &&
2230 b
->keys
.last_set_unwritten
)
2231 bch_btree_init_next(b
); /* just wrote a set */
2233 if (bch_keylist_nkeys(insert_keys
) > insert_u64s_remaining(b
)) {
2234 mutex_unlock(&b
->write_lock
);
2238 BUG_ON(write_block(b
) != btree_bset_last(b
));
2240 if (bch_btree_insert_keys(b
, op
, insert_keys
, replace_key
)) {
2242 bch_btree_leaf_dirty(b
, journal_ref
);
2244 bch_btree_node_write(b
, &cl
);
2247 mutex_unlock(&b
->write_lock
);
2249 /* wait for btree node write if necessary, after unlock */
2254 if (current
->bio_list
) {
2255 op
->lock
= b
->c
->root
->level
+ 1;
2257 } else if (op
->lock
<= b
->c
->root
->level
) {
2258 op
->lock
= b
->c
->root
->level
+ 1;
2261 /* Invalidated all iterators */
2262 int ret
= btree_split(b
, op
, insert_keys
, replace_key
);
2264 if (bch_keylist_empty(insert_keys
))
2272 int bch_btree_insert_check_key(struct btree
*b
, struct btree_op
*op
,
2273 struct bkey
*check_key
)
2276 uint64_t btree_ptr
= b
->key
.ptr
[0];
2277 unsigned long seq
= b
->seq
;
2278 struct keylist insert
;
2279 bool upgrade
= op
->lock
== -1;
2281 bch_keylist_init(&insert
);
2284 rw_unlock(false, b
);
2285 rw_lock(true, b
, b
->level
);
2287 if (b
->key
.ptr
[0] != btree_ptr
||
2288 b
->seq
!= seq
+ 1) {
2289 op
->lock
= b
->level
;
2294 SET_KEY_PTRS(check_key
, 1);
2295 get_random_bytes(&check_key
->ptr
[0], sizeof(uint64_t));
2297 SET_PTR_DEV(check_key
, 0, PTR_CHECK_DEV
);
2299 bch_keylist_add(&insert
, check_key
);
2301 ret
= bch_btree_insert_node(b
, op
, &insert
, NULL
, NULL
);
2303 BUG_ON(!ret
&& !bch_keylist_empty(&insert
));
2306 downgrade_write(&b
->lock
);
2310 struct btree_insert_op
{
2312 struct keylist
*keys
;
2313 atomic_t
*journal_ref
;
2314 struct bkey
*replace_key
;
2317 static int btree_insert_fn(struct btree_op
*b_op
, struct btree
*b
)
2319 struct btree_insert_op
*op
= container_of(b_op
,
2320 struct btree_insert_op
, op
);
2322 int ret
= bch_btree_insert_node(b
, &op
->op
, op
->keys
,
2323 op
->journal_ref
, op
->replace_key
);
2324 if (ret
&& !bch_keylist_empty(op
->keys
))
2330 int bch_btree_insert(struct cache_set
*c
, struct keylist
*keys
,
2331 atomic_t
*journal_ref
, struct bkey
*replace_key
)
2333 struct btree_insert_op op
;
2336 BUG_ON(current
->bio_list
);
2337 BUG_ON(bch_keylist_empty(keys
));
2339 bch_btree_op_init(&op
.op
, 0);
2341 op
.journal_ref
= journal_ref
;
2342 op
.replace_key
= replace_key
;
2344 while (!ret
&& !bch_keylist_empty(keys
)) {
2346 ret
= bch_btree_map_leaf_nodes(&op
.op
, c
,
2347 &START_KEY(keys
->keys
),
2354 pr_err("error %i", ret
);
2356 while ((k
= bch_keylist_pop(keys
)))
2358 } else if (op
.op
.insert_collision
)
2364 void bch_btree_set_root(struct btree
*b
)
2369 closure_init_stack(&cl
);
2371 trace_bcache_btree_set_root(b
);
2373 BUG_ON(!b
->written
);
2375 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
2376 BUG_ON(PTR_BUCKET(b
->c
, &b
->key
, i
)->prio
!= BTREE_PRIO
);
2378 mutex_lock(&b
->c
->bucket_lock
);
2379 list_del_init(&b
->list
);
2380 mutex_unlock(&b
->c
->bucket_lock
);
2384 bch_journal_meta(b
->c
, &cl
);
2388 /* Map across nodes or keys */
2390 static int bch_btree_map_nodes_recurse(struct btree
*b
, struct btree_op
*op
,
2392 btree_map_nodes_fn
*fn
, int flags
)
2394 int ret
= MAP_CONTINUE
;
2398 struct btree_iter iter
;
2400 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2402 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
2404 ret
= btree(map_nodes_recurse
, k
, b
,
2405 op
, from
, fn
, flags
);
2408 if (ret
!= MAP_CONTINUE
)
2413 if (!b
->level
|| flags
== MAP_ALL_NODES
)
2419 int __bch_btree_map_nodes(struct btree_op
*op
, struct cache_set
*c
,
2420 struct bkey
*from
, btree_map_nodes_fn
*fn
, int flags
)
2422 return btree_root(map_nodes_recurse
, c
, op
, from
, fn
, flags
);
2425 static int bch_btree_map_keys_recurse(struct btree
*b
, struct btree_op
*op
,
2426 struct bkey
*from
, btree_map_keys_fn
*fn
,
2429 int ret
= MAP_CONTINUE
;
2431 struct btree_iter iter
;
2433 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2435 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
))) {
2438 : btree(map_keys_recurse
, k
, b
, op
, from
, fn
, flags
);
2441 if (ret
!= MAP_CONTINUE
)
2445 if (!b
->level
&& (flags
& MAP_END_KEY
))
2446 ret
= fn(op
, b
, &KEY(KEY_INODE(&b
->key
),
2447 KEY_OFFSET(&b
->key
), 0));
2452 int bch_btree_map_keys(struct btree_op
*op
, struct cache_set
*c
,
2453 struct bkey
*from
, btree_map_keys_fn
*fn
, int flags
)
2455 return btree_root(map_keys_recurse
, c
, op
, from
, fn
, flags
);
2460 static inline int keybuf_cmp(struct keybuf_key
*l
, struct keybuf_key
*r
)
2462 /* Overlapping keys compare equal */
2463 if (bkey_cmp(&l
->key
, &START_KEY(&r
->key
)) <= 0)
2465 if (bkey_cmp(&START_KEY(&l
->key
), &r
->key
) >= 0)
2470 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key
*l
,
2471 struct keybuf_key
*r
)
2473 return clamp_t(int64_t, bkey_cmp(&l
->key
, &r
->key
), -1, 1);
2478 unsigned int nr_found
;
2481 keybuf_pred_fn
*pred
;
2484 static int refill_keybuf_fn(struct btree_op
*op
, struct btree
*b
,
2487 struct refill
*refill
= container_of(op
, struct refill
, op
);
2488 struct keybuf
*buf
= refill
->buf
;
2489 int ret
= MAP_CONTINUE
;
2491 if (bkey_cmp(k
, refill
->end
) > 0) {
2496 if (!KEY_SIZE(k
)) /* end key */
2499 if (refill
->pred(buf
, k
)) {
2500 struct keybuf_key
*w
;
2502 spin_lock(&buf
->lock
);
2504 w
= array_alloc(&buf
->freelist
);
2506 spin_unlock(&buf
->lock
);
2511 bkey_copy(&w
->key
, k
);
2513 if (RB_INSERT(&buf
->keys
, w
, node
, keybuf_cmp
))
2514 array_free(&buf
->freelist
, w
);
2518 if (array_freelist_empty(&buf
->freelist
))
2521 spin_unlock(&buf
->lock
);
2524 buf
->last_scanned
= *k
;
2528 void bch_refill_keybuf(struct cache_set
*c
, struct keybuf
*buf
,
2529 struct bkey
*end
, keybuf_pred_fn
*pred
)
2531 struct bkey start
= buf
->last_scanned
;
2532 struct refill refill
;
2536 bch_btree_op_init(&refill
.op
, -1);
2537 refill
.nr_found
= 0;
2542 bch_btree_map_keys(&refill
.op
, c
, &buf
->last_scanned
,
2543 refill_keybuf_fn
, MAP_END_KEY
);
2545 trace_bcache_keyscan(refill
.nr_found
,
2546 KEY_INODE(&start
), KEY_OFFSET(&start
),
2547 KEY_INODE(&buf
->last_scanned
),
2548 KEY_OFFSET(&buf
->last_scanned
));
2550 spin_lock(&buf
->lock
);
2552 if (!RB_EMPTY_ROOT(&buf
->keys
)) {
2553 struct keybuf_key
*w
;
2555 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2556 buf
->start
= START_KEY(&w
->key
);
2558 w
= RB_LAST(&buf
->keys
, struct keybuf_key
, node
);
2561 buf
->start
= MAX_KEY
;
2565 spin_unlock(&buf
->lock
);
2568 static void __bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2570 rb_erase(&w
->node
, &buf
->keys
);
2571 array_free(&buf
->freelist
, w
);
2574 void bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2576 spin_lock(&buf
->lock
);
2577 __bch_keybuf_del(buf
, w
);
2578 spin_unlock(&buf
->lock
);
2581 bool bch_keybuf_check_overlapping(struct keybuf
*buf
, struct bkey
*start
,
2585 struct keybuf_key
*p
, *w
, s
;
2589 if (bkey_cmp(end
, &buf
->start
) <= 0 ||
2590 bkey_cmp(start
, &buf
->end
) >= 0)
2593 spin_lock(&buf
->lock
);
2594 w
= RB_GREATER(&buf
->keys
, s
, node
, keybuf_nonoverlapping_cmp
);
2596 while (w
&& bkey_cmp(&START_KEY(&w
->key
), end
) < 0) {
2598 w
= RB_NEXT(w
, node
);
2603 __bch_keybuf_del(buf
, p
);
2606 spin_unlock(&buf
->lock
);
2610 struct keybuf_key
*bch_keybuf_next(struct keybuf
*buf
)
2612 struct keybuf_key
*w
;
2614 spin_lock(&buf
->lock
);
2616 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2618 while (w
&& w
->private)
2619 w
= RB_NEXT(w
, node
);
2622 w
->private = ERR_PTR(-EINTR
);
2624 spin_unlock(&buf
->lock
);
2628 struct keybuf_key
*bch_keybuf_next_rescan(struct cache_set
*c
,
2631 keybuf_pred_fn
*pred
)
2633 struct keybuf_key
*ret
;
2636 ret
= bch_keybuf_next(buf
);
2640 if (bkey_cmp(&buf
->last_scanned
, end
) >= 0) {
2641 pr_debug("scan finished");
2645 bch_refill_keybuf(c
, buf
, end
, pred
);
2651 void bch_keybuf_init(struct keybuf
*buf
)
2653 buf
->last_scanned
= MAX_KEY
;
2654 buf
->keys
= RB_ROOT
;
2656 spin_lock_init(&buf
->lock
);
2657 array_allocator_init(&buf
->freelist
);