treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / md / bcache / btree.c
blobfa872df4e7703fb65b229c2ddcac9dbadad6593c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
45 * Writeback: don't undirty key until after a cache flush
47 * Create an iterator for key pointers
49 * On btree write error, mark bucket such that it won't be freed from the cache
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
68 * Add a tracepoint or somesuch to watch for writeback starvation
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
74 * Plugging?
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
122 #define btree(fn, key, b, op, ...) \
123 ({ \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
127 _w, b); \
128 if (!IS_ERR(_child)) { \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
131 } else \
132 _r = PTR_ERR(_child); \
133 _r; \
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
139 * @c: cache set
140 * @op: pointer to struct btree_op
142 #define btree_root(fn, c, op, ...) \
143 ({ \
144 int _r = -EINTR; \
145 do { \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
153 rw_unlock(_w, _b); \
154 bch_cannibalize_unlock(c); \
155 if (_r == -EINTR) \
156 schedule(); \
157 } while (_r == -EINTR); \
159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
160 _r; \
163 static inline struct bset *write_block(struct btree *b)
165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
168 static void bch_btree_init_next(struct btree *b)
170 /* If not a leaf node, always sort */
171 if (b->level && b->keys.nsets)
172 bch_btree_sort(&b->keys, &b->c->sort);
173 else
174 bch_btree_sort_lazy(&b->keys, &b->c->sort);
176 if (b->written < btree_blocks(b))
177 bch_bset_init_next(&b->keys, write_block(b),
178 bset_magic(&b->c->sb));
182 /* Btree key manipulation */
184 void bkey_put(struct cache_set *c, struct bkey *k)
186 unsigned int i;
188 for (i = 0; i < KEY_PTRS(k); i++)
189 if (ptr_available(c, k, i))
190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
193 /* Btree IO */
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
197 uint64_t crc = b->key.ptr[0];
198 void *data = (void *) i + 8, *end = bset_bkey_last(i);
200 crc = bch_crc64_update(crc, data, end - data);
201 return crc ^ 0xffffffffffffffffULL;
204 void bch_btree_node_read_done(struct btree *b)
206 const char *err = "bad btree header";
207 struct bset *i = btree_bset_first(b);
208 struct btree_iter *iter;
211 * c->fill_iter can allocate an iterator with more memory space
212 * than static MAX_BSETS.
213 * See the comment arount cache_set->fill_iter.
215 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
216 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
217 iter->used = 0;
219 #ifdef CONFIG_BCACHE_DEBUG
220 iter->b = &b->keys;
221 #endif
223 if (!i->seq)
224 goto err;
226 for (;
227 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
228 i = write_block(b)) {
229 err = "unsupported bset version";
230 if (i->version > BCACHE_BSET_VERSION)
231 goto err;
233 err = "bad btree header";
234 if (b->written + set_blocks(i, block_bytes(b->c)) >
235 btree_blocks(b))
236 goto err;
238 err = "bad magic";
239 if (i->magic != bset_magic(&b->c->sb))
240 goto err;
242 err = "bad checksum";
243 switch (i->version) {
244 case 0:
245 if (i->csum != csum_set(i))
246 goto err;
247 break;
248 case BCACHE_BSET_VERSION:
249 if (i->csum != btree_csum_set(b, i))
250 goto err;
251 break;
254 err = "empty set";
255 if (i != b->keys.set[0].data && !i->keys)
256 goto err;
258 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
260 b->written += set_blocks(i, block_bytes(b->c));
263 err = "corrupted btree";
264 for (i = write_block(b);
265 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
266 i = ((void *) i) + block_bytes(b->c))
267 if (i->seq == b->keys.set[0].data->seq)
268 goto err;
270 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
272 i = b->keys.set[0].data;
273 err = "short btree key";
274 if (b->keys.set[0].size &&
275 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
276 goto err;
278 if (b->written < btree_blocks(b))
279 bch_bset_init_next(&b->keys, write_block(b),
280 bset_magic(&b->c->sb));
281 out:
282 mempool_free(iter, &b->c->fill_iter);
283 return;
284 err:
285 set_btree_node_io_error(b);
286 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
287 err, PTR_BUCKET_NR(b->c, &b->key, 0),
288 bset_block_offset(b, i), i->keys);
289 goto out;
292 static void btree_node_read_endio(struct bio *bio)
294 struct closure *cl = bio->bi_private;
296 closure_put(cl);
299 static void bch_btree_node_read(struct btree *b)
301 uint64_t start_time = local_clock();
302 struct closure cl;
303 struct bio *bio;
305 trace_bcache_btree_read(b);
307 closure_init_stack(&cl);
309 bio = bch_bbio_alloc(b->c);
310 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
311 bio->bi_end_io = btree_node_read_endio;
312 bio->bi_private = &cl;
313 bio->bi_opf = REQ_OP_READ | REQ_META;
315 bch_bio_map(bio, b->keys.set[0].data);
317 bch_submit_bbio(bio, b->c, &b->key, 0);
318 closure_sync(&cl);
320 if (bio->bi_status)
321 set_btree_node_io_error(b);
323 bch_bbio_free(bio, b->c);
325 if (btree_node_io_error(b))
326 goto err;
328 bch_btree_node_read_done(b);
329 bch_time_stats_update(&b->c->btree_read_time, start_time);
331 return;
332 err:
333 bch_cache_set_error(b->c, "io error reading bucket %zu",
334 PTR_BUCKET_NR(b->c, &b->key, 0));
337 static void btree_complete_write(struct btree *b, struct btree_write *w)
339 if (w->prio_blocked &&
340 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
341 wake_up_allocators(b->c);
343 if (w->journal) {
344 atomic_dec_bug(w->journal);
345 __closure_wake_up(&b->c->journal.wait);
348 w->prio_blocked = 0;
349 w->journal = NULL;
352 static void btree_node_write_unlock(struct closure *cl)
354 struct btree *b = container_of(cl, struct btree, io);
356 up(&b->io_mutex);
359 static void __btree_node_write_done(struct closure *cl)
361 struct btree *b = container_of(cl, struct btree, io);
362 struct btree_write *w = btree_prev_write(b);
364 bch_bbio_free(b->bio, b->c);
365 b->bio = NULL;
366 btree_complete_write(b, w);
368 if (btree_node_dirty(b))
369 schedule_delayed_work(&b->work, 30 * HZ);
371 closure_return_with_destructor(cl, btree_node_write_unlock);
374 static void btree_node_write_done(struct closure *cl)
376 struct btree *b = container_of(cl, struct btree, io);
378 bio_free_pages(b->bio);
379 __btree_node_write_done(cl);
382 static void btree_node_write_endio(struct bio *bio)
384 struct closure *cl = bio->bi_private;
385 struct btree *b = container_of(cl, struct btree, io);
387 if (bio->bi_status)
388 set_btree_node_io_error(b);
390 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
391 closure_put(cl);
394 static void do_btree_node_write(struct btree *b)
396 struct closure *cl = &b->io;
397 struct bset *i = btree_bset_last(b);
398 BKEY_PADDED(key) k;
400 i->version = BCACHE_BSET_VERSION;
401 i->csum = btree_csum_set(b, i);
403 BUG_ON(b->bio);
404 b->bio = bch_bbio_alloc(b->c);
406 b->bio->bi_end_io = btree_node_write_endio;
407 b->bio->bi_private = cl;
408 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
409 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
410 bch_bio_map(b->bio, i);
413 * If we're appending to a leaf node, we don't technically need FUA -
414 * this write just needs to be persisted before the next journal write,
415 * which will be marked FLUSH|FUA.
417 * Similarly if we're writing a new btree root - the pointer is going to
418 * be in the next journal entry.
420 * But if we're writing a new btree node (that isn't a root) or
421 * appending to a non leaf btree node, we need either FUA or a flush
422 * when we write the parent with the new pointer. FUA is cheaper than a
423 * flush, and writes appending to leaf nodes aren't blocking anything so
424 * just make all btree node writes FUA to keep things sane.
427 bkey_copy(&k.key, &b->key);
428 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
429 bset_sector_offset(&b->keys, i));
431 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
432 struct bio_vec *bv;
433 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
434 struct bvec_iter_all iter_all;
436 bio_for_each_segment_all(bv, b->bio, iter_all) {
437 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
438 addr += PAGE_SIZE;
441 bch_submit_bbio(b->bio, b->c, &k.key, 0);
443 continue_at(cl, btree_node_write_done, NULL);
444 } else {
446 * No problem for multipage bvec since the bio is
447 * just allocated
449 b->bio->bi_vcnt = 0;
450 bch_bio_map(b->bio, i);
452 bch_submit_bbio(b->bio, b->c, &k.key, 0);
454 closure_sync(cl);
455 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
459 void __bch_btree_node_write(struct btree *b, struct closure *parent)
461 struct bset *i = btree_bset_last(b);
463 lockdep_assert_held(&b->write_lock);
465 trace_bcache_btree_write(b);
467 BUG_ON(current->bio_list);
468 BUG_ON(b->written >= btree_blocks(b));
469 BUG_ON(b->written && !i->keys);
470 BUG_ON(btree_bset_first(b)->seq != i->seq);
471 bch_check_keys(&b->keys, "writing");
473 cancel_delayed_work(&b->work);
475 /* If caller isn't waiting for write, parent refcount is cache set */
476 down(&b->io_mutex);
477 closure_init(&b->io, parent ?: &b->c->cl);
479 clear_bit(BTREE_NODE_dirty, &b->flags);
480 change_bit(BTREE_NODE_write_idx, &b->flags);
482 do_btree_node_write(b);
484 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
485 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
487 b->written += set_blocks(i, block_bytes(b->c));
490 void bch_btree_node_write(struct btree *b, struct closure *parent)
492 unsigned int nsets = b->keys.nsets;
494 lockdep_assert_held(&b->lock);
496 __bch_btree_node_write(b, parent);
499 * do verify if there was more than one set initially (i.e. we did a
500 * sort) and we sorted down to a single set:
502 if (nsets && !b->keys.nsets)
503 bch_btree_verify(b);
505 bch_btree_init_next(b);
508 static void bch_btree_node_write_sync(struct btree *b)
510 struct closure cl;
512 closure_init_stack(&cl);
514 mutex_lock(&b->write_lock);
515 bch_btree_node_write(b, &cl);
516 mutex_unlock(&b->write_lock);
518 closure_sync(&cl);
521 static void btree_node_write_work(struct work_struct *w)
523 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
525 mutex_lock(&b->write_lock);
526 if (btree_node_dirty(b))
527 __bch_btree_node_write(b, NULL);
528 mutex_unlock(&b->write_lock);
531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
533 struct bset *i = btree_bset_last(b);
534 struct btree_write *w = btree_current_write(b);
536 lockdep_assert_held(&b->write_lock);
538 BUG_ON(!b->written);
539 BUG_ON(!i->keys);
541 if (!btree_node_dirty(b))
542 schedule_delayed_work(&b->work, 30 * HZ);
544 set_btree_node_dirty(b);
547 * w->journal is always the oldest journal pin of all bkeys
548 * in the leaf node, to make sure the oldest jset seq won't
549 * be increased before this btree node is flushed.
551 if (journal_ref) {
552 if (w->journal &&
553 journal_pin_cmp(b->c, w->journal, journal_ref)) {
554 atomic_dec_bug(w->journal);
555 w->journal = NULL;
558 if (!w->journal) {
559 w->journal = journal_ref;
560 atomic_inc(w->journal);
564 /* Force write if set is too big */
565 if (set_bytes(i) > PAGE_SIZE - 48 &&
566 !current->bio_list)
567 bch_btree_node_write(b, NULL);
571 * Btree in memory cache - allocation/freeing
572 * mca -> memory cache
575 #define mca_reserve(c) (((c->root && c->root->level) \
576 ? c->root->level : 1) * 8 + 16)
577 #define mca_can_free(c) \
578 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
580 static void mca_data_free(struct btree *b)
582 BUG_ON(b->io_mutex.count != 1);
584 bch_btree_keys_free(&b->keys);
586 b->c->btree_cache_used--;
587 list_move(&b->list, &b->c->btree_cache_freed);
590 static void mca_bucket_free(struct btree *b)
592 BUG_ON(btree_node_dirty(b));
594 b->key.ptr[0] = 0;
595 hlist_del_init_rcu(&b->hash);
596 list_move(&b->list, &b->c->btree_cache_freeable);
599 static unsigned int btree_order(struct bkey *k)
601 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
604 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
606 if (!bch_btree_keys_alloc(&b->keys,
607 max_t(unsigned int,
608 ilog2(b->c->btree_pages),
609 btree_order(k)),
610 gfp)) {
611 b->c->btree_cache_used++;
612 list_move(&b->list, &b->c->btree_cache);
613 } else {
614 list_move(&b->list, &b->c->btree_cache_freed);
618 static struct btree *mca_bucket_alloc(struct cache_set *c,
619 struct bkey *k, gfp_t gfp)
622 * kzalloc() is necessary here for initialization,
623 * see code comments in bch_btree_keys_init().
625 struct btree *b = kzalloc(sizeof(struct btree), gfp);
627 if (!b)
628 return NULL;
630 init_rwsem(&b->lock);
631 lockdep_set_novalidate_class(&b->lock);
632 mutex_init(&b->write_lock);
633 lockdep_set_novalidate_class(&b->write_lock);
634 INIT_LIST_HEAD(&b->list);
635 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
636 b->c = c;
637 sema_init(&b->io_mutex, 1);
639 mca_data_alloc(b, k, gfp);
640 return b;
643 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
645 struct closure cl;
647 closure_init_stack(&cl);
648 lockdep_assert_held(&b->c->bucket_lock);
650 if (!down_write_trylock(&b->lock))
651 return -ENOMEM;
653 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
655 if (b->keys.page_order < min_order)
656 goto out_unlock;
658 if (!flush) {
659 if (btree_node_dirty(b))
660 goto out_unlock;
662 if (down_trylock(&b->io_mutex))
663 goto out_unlock;
664 up(&b->io_mutex);
667 retry:
669 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
670 * __bch_btree_node_write(). To avoid an extra flush, acquire
671 * b->write_lock before checking BTREE_NODE_dirty bit.
673 mutex_lock(&b->write_lock);
675 * If this btree node is selected in btree_flush_write() by journal
676 * code, delay and retry until the node is flushed by journal code
677 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
679 if (btree_node_journal_flush(b)) {
680 pr_debug("bnode %p is flushing by journal, retry", b);
681 mutex_unlock(&b->write_lock);
682 udelay(1);
683 goto retry;
686 if (btree_node_dirty(b))
687 __bch_btree_node_write(b, &cl);
688 mutex_unlock(&b->write_lock);
690 closure_sync(&cl);
692 /* wait for any in flight btree write */
693 down(&b->io_mutex);
694 up(&b->io_mutex);
696 return 0;
697 out_unlock:
698 rw_unlock(true, b);
699 return -ENOMEM;
702 static unsigned long bch_mca_scan(struct shrinker *shrink,
703 struct shrink_control *sc)
705 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
706 struct btree *b, *t;
707 unsigned long i, nr = sc->nr_to_scan;
708 unsigned long freed = 0;
709 unsigned int btree_cache_used;
711 if (c->shrinker_disabled)
712 return SHRINK_STOP;
714 if (c->btree_cache_alloc_lock)
715 return SHRINK_STOP;
717 /* Return -1 if we can't do anything right now */
718 if (sc->gfp_mask & __GFP_IO)
719 mutex_lock(&c->bucket_lock);
720 else if (!mutex_trylock(&c->bucket_lock))
721 return -1;
724 * It's _really_ critical that we don't free too many btree nodes - we
725 * have to always leave ourselves a reserve. The reserve is how we
726 * guarantee that allocating memory for a new btree node can always
727 * succeed, so that inserting keys into the btree can always succeed and
728 * IO can always make forward progress:
730 nr /= c->btree_pages;
731 if (nr == 0)
732 nr = 1;
733 nr = min_t(unsigned long, nr, mca_can_free(c));
735 i = 0;
736 btree_cache_used = c->btree_cache_used;
737 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
738 if (nr <= 0)
739 goto out;
741 if (!mca_reap(b, 0, false)) {
742 mca_data_free(b);
743 rw_unlock(true, b);
744 freed++;
746 nr--;
747 i++;
750 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
751 if (nr <= 0 || i >= btree_cache_used)
752 goto out;
754 if (!mca_reap(b, 0, false)) {
755 mca_bucket_free(b);
756 mca_data_free(b);
757 rw_unlock(true, b);
758 freed++;
761 nr--;
762 i++;
764 out:
765 mutex_unlock(&c->bucket_lock);
766 return freed * c->btree_pages;
769 static unsigned long bch_mca_count(struct shrinker *shrink,
770 struct shrink_control *sc)
772 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
774 if (c->shrinker_disabled)
775 return 0;
777 if (c->btree_cache_alloc_lock)
778 return 0;
780 return mca_can_free(c) * c->btree_pages;
783 void bch_btree_cache_free(struct cache_set *c)
785 struct btree *b;
786 struct closure cl;
788 closure_init_stack(&cl);
790 if (c->shrink.list.next)
791 unregister_shrinker(&c->shrink);
793 mutex_lock(&c->bucket_lock);
795 #ifdef CONFIG_BCACHE_DEBUG
796 if (c->verify_data)
797 list_move(&c->verify_data->list, &c->btree_cache);
799 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
800 #endif
802 list_splice(&c->btree_cache_freeable,
803 &c->btree_cache);
805 while (!list_empty(&c->btree_cache)) {
806 b = list_first_entry(&c->btree_cache, struct btree, list);
809 * This function is called by cache_set_free(), no I/O
810 * request on cache now, it is unnecessary to acquire
811 * b->write_lock before clearing BTREE_NODE_dirty anymore.
813 if (btree_node_dirty(b)) {
814 btree_complete_write(b, btree_current_write(b));
815 clear_bit(BTREE_NODE_dirty, &b->flags);
817 mca_data_free(b);
820 while (!list_empty(&c->btree_cache_freed)) {
821 b = list_first_entry(&c->btree_cache_freed,
822 struct btree, list);
823 list_del(&b->list);
824 cancel_delayed_work_sync(&b->work);
825 kfree(b);
828 mutex_unlock(&c->bucket_lock);
831 int bch_btree_cache_alloc(struct cache_set *c)
833 unsigned int i;
835 for (i = 0; i < mca_reserve(c); i++)
836 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
837 return -ENOMEM;
839 list_splice_init(&c->btree_cache,
840 &c->btree_cache_freeable);
842 #ifdef CONFIG_BCACHE_DEBUG
843 mutex_init(&c->verify_lock);
845 c->verify_ondisk = (void *)
846 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
848 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
850 if (c->verify_data &&
851 c->verify_data->keys.set->data)
852 list_del_init(&c->verify_data->list);
853 else
854 c->verify_data = NULL;
855 #endif
857 c->shrink.count_objects = bch_mca_count;
858 c->shrink.scan_objects = bch_mca_scan;
859 c->shrink.seeks = 4;
860 c->shrink.batch = c->btree_pages * 2;
862 if (register_shrinker(&c->shrink))
863 pr_warn("bcache: %s: could not register shrinker",
864 __func__);
866 return 0;
869 /* Btree in memory cache - hash table */
871 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
873 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
876 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
878 struct btree *b;
880 rcu_read_lock();
881 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
882 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
883 goto out;
884 b = NULL;
885 out:
886 rcu_read_unlock();
887 return b;
890 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
892 spin_lock(&c->btree_cannibalize_lock);
893 if (likely(c->btree_cache_alloc_lock == NULL)) {
894 c->btree_cache_alloc_lock = current;
895 } else if (c->btree_cache_alloc_lock != current) {
896 if (op)
897 prepare_to_wait(&c->btree_cache_wait, &op->wait,
898 TASK_UNINTERRUPTIBLE);
899 spin_unlock(&c->btree_cannibalize_lock);
900 return -EINTR;
902 spin_unlock(&c->btree_cannibalize_lock);
904 return 0;
907 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
908 struct bkey *k)
910 struct btree *b;
912 trace_bcache_btree_cache_cannibalize(c);
914 if (mca_cannibalize_lock(c, op))
915 return ERR_PTR(-EINTR);
917 list_for_each_entry_reverse(b, &c->btree_cache, list)
918 if (!mca_reap(b, btree_order(k), false))
919 return b;
921 list_for_each_entry_reverse(b, &c->btree_cache, list)
922 if (!mca_reap(b, btree_order(k), true))
923 return b;
925 WARN(1, "btree cache cannibalize failed\n");
926 return ERR_PTR(-ENOMEM);
930 * We can only have one thread cannibalizing other cached btree nodes at a time,
931 * or we'll deadlock. We use an open coded mutex to ensure that, which a
932 * cannibalize_bucket() will take. This means every time we unlock the root of
933 * the btree, we need to release this lock if we have it held.
935 static void bch_cannibalize_unlock(struct cache_set *c)
937 spin_lock(&c->btree_cannibalize_lock);
938 if (c->btree_cache_alloc_lock == current) {
939 c->btree_cache_alloc_lock = NULL;
940 wake_up(&c->btree_cache_wait);
942 spin_unlock(&c->btree_cannibalize_lock);
945 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
946 struct bkey *k, int level)
948 struct btree *b;
950 BUG_ON(current->bio_list);
952 lockdep_assert_held(&c->bucket_lock);
954 if (mca_find(c, k))
955 return NULL;
957 /* btree_free() doesn't free memory; it sticks the node on the end of
958 * the list. Check if there's any freed nodes there:
960 list_for_each_entry(b, &c->btree_cache_freeable, list)
961 if (!mca_reap(b, btree_order(k), false))
962 goto out;
964 /* We never free struct btree itself, just the memory that holds the on
965 * disk node. Check the freed list before allocating a new one:
967 list_for_each_entry(b, &c->btree_cache_freed, list)
968 if (!mca_reap(b, 0, false)) {
969 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
970 if (!b->keys.set[0].data)
971 goto err;
972 else
973 goto out;
976 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
977 if (!b)
978 goto err;
980 BUG_ON(!down_write_trylock(&b->lock));
981 if (!b->keys.set->data)
982 goto err;
983 out:
984 BUG_ON(b->io_mutex.count != 1);
986 bkey_copy(&b->key, k);
987 list_move(&b->list, &c->btree_cache);
988 hlist_del_init_rcu(&b->hash);
989 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
991 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
992 b->parent = (void *) ~0UL;
993 b->flags = 0;
994 b->written = 0;
995 b->level = level;
997 if (!b->level)
998 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
999 &b->c->expensive_debug_checks);
1000 else
1001 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
1002 &b->c->expensive_debug_checks);
1004 return b;
1005 err:
1006 if (b)
1007 rw_unlock(true, b);
1009 b = mca_cannibalize(c, op, k);
1010 if (!IS_ERR(b))
1011 goto out;
1013 return b;
1017 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1018 * in from disk if necessary.
1020 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1022 * The btree node will have either a read or a write lock held, depending on
1023 * level and op->lock.
1025 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1026 struct bkey *k, int level, bool write,
1027 struct btree *parent)
1029 int i = 0;
1030 struct btree *b;
1032 BUG_ON(level < 0);
1033 retry:
1034 b = mca_find(c, k);
1036 if (!b) {
1037 if (current->bio_list)
1038 return ERR_PTR(-EAGAIN);
1040 mutex_lock(&c->bucket_lock);
1041 b = mca_alloc(c, op, k, level);
1042 mutex_unlock(&c->bucket_lock);
1044 if (!b)
1045 goto retry;
1046 if (IS_ERR(b))
1047 return b;
1049 bch_btree_node_read(b);
1051 if (!write)
1052 downgrade_write(&b->lock);
1053 } else {
1054 rw_lock(write, b, level);
1055 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1056 rw_unlock(write, b);
1057 goto retry;
1059 BUG_ON(b->level != level);
1062 if (btree_node_io_error(b)) {
1063 rw_unlock(write, b);
1064 return ERR_PTR(-EIO);
1067 BUG_ON(!b->written);
1069 b->parent = parent;
1071 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1072 prefetch(b->keys.set[i].tree);
1073 prefetch(b->keys.set[i].data);
1076 for (; i <= b->keys.nsets; i++)
1077 prefetch(b->keys.set[i].data);
1079 return b;
1082 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1084 struct btree *b;
1086 mutex_lock(&parent->c->bucket_lock);
1087 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1088 mutex_unlock(&parent->c->bucket_lock);
1090 if (!IS_ERR_OR_NULL(b)) {
1091 b->parent = parent;
1092 bch_btree_node_read(b);
1093 rw_unlock(true, b);
1097 /* Btree alloc */
1099 static void btree_node_free(struct btree *b)
1101 trace_bcache_btree_node_free(b);
1103 BUG_ON(b == b->c->root);
1105 retry:
1106 mutex_lock(&b->write_lock);
1108 * If the btree node is selected and flushing in btree_flush_write(),
1109 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1110 * then it is safe to free the btree node here. Otherwise this btree
1111 * node will be in race condition.
1113 if (btree_node_journal_flush(b)) {
1114 mutex_unlock(&b->write_lock);
1115 pr_debug("bnode %p journal_flush set, retry", b);
1116 udelay(1);
1117 goto retry;
1120 if (btree_node_dirty(b)) {
1121 btree_complete_write(b, btree_current_write(b));
1122 clear_bit(BTREE_NODE_dirty, &b->flags);
1125 mutex_unlock(&b->write_lock);
1127 cancel_delayed_work(&b->work);
1129 mutex_lock(&b->c->bucket_lock);
1130 bch_bucket_free(b->c, &b->key);
1131 mca_bucket_free(b);
1132 mutex_unlock(&b->c->bucket_lock);
1135 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1136 int level, bool wait,
1137 struct btree *parent)
1139 BKEY_PADDED(key) k;
1140 struct btree *b = ERR_PTR(-EAGAIN);
1142 mutex_lock(&c->bucket_lock);
1143 retry:
1144 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1145 goto err;
1147 bkey_put(c, &k.key);
1148 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1150 b = mca_alloc(c, op, &k.key, level);
1151 if (IS_ERR(b))
1152 goto err_free;
1154 if (!b) {
1155 cache_bug(c,
1156 "Tried to allocate bucket that was in btree cache");
1157 goto retry;
1160 b->parent = parent;
1161 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1163 mutex_unlock(&c->bucket_lock);
1165 trace_bcache_btree_node_alloc(b);
1166 return b;
1167 err_free:
1168 bch_bucket_free(c, &k.key);
1169 err:
1170 mutex_unlock(&c->bucket_lock);
1172 trace_bcache_btree_node_alloc_fail(c);
1173 return b;
1176 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1177 struct btree_op *op, int level,
1178 struct btree *parent)
1180 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1183 static struct btree *btree_node_alloc_replacement(struct btree *b,
1184 struct btree_op *op)
1186 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1188 if (!IS_ERR_OR_NULL(n)) {
1189 mutex_lock(&n->write_lock);
1190 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1191 bkey_copy_key(&n->key, &b->key);
1192 mutex_unlock(&n->write_lock);
1195 return n;
1198 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1200 unsigned int i;
1202 mutex_lock(&b->c->bucket_lock);
1204 atomic_inc(&b->c->prio_blocked);
1206 bkey_copy(k, &b->key);
1207 bkey_copy_key(k, &ZERO_KEY);
1209 for (i = 0; i < KEY_PTRS(k); i++)
1210 SET_PTR_GEN(k, i,
1211 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1212 PTR_BUCKET(b->c, &b->key, i)));
1214 mutex_unlock(&b->c->bucket_lock);
1217 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1219 struct cache_set *c = b->c;
1220 struct cache *ca;
1221 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1223 mutex_lock(&c->bucket_lock);
1225 for_each_cache(ca, c, i)
1226 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1227 if (op)
1228 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1229 TASK_UNINTERRUPTIBLE);
1230 mutex_unlock(&c->bucket_lock);
1231 return -EINTR;
1234 mutex_unlock(&c->bucket_lock);
1236 return mca_cannibalize_lock(b->c, op);
1239 /* Garbage collection */
1241 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1242 struct bkey *k)
1244 uint8_t stale = 0;
1245 unsigned int i;
1246 struct bucket *g;
1249 * ptr_invalid() can't return true for the keys that mark btree nodes as
1250 * freed, but since ptr_bad() returns true we'll never actually use them
1251 * for anything and thus we don't want mark their pointers here
1253 if (!bkey_cmp(k, &ZERO_KEY))
1254 return stale;
1256 for (i = 0; i < KEY_PTRS(k); i++) {
1257 if (!ptr_available(c, k, i))
1258 continue;
1260 g = PTR_BUCKET(c, k, i);
1262 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1263 g->last_gc = PTR_GEN(k, i);
1265 if (ptr_stale(c, k, i)) {
1266 stale = max(stale, ptr_stale(c, k, i));
1267 continue;
1270 cache_bug_on(GC_MARK(g) &&
1271 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1272 c, "inconsistent ptrs: mark = %llu, level = %i",
1273 GC_MARK(g), level);
1275 if (level)
1276 SET_GC_MARK(g, GC_MARK_METADATA);
1277 else if (KEY_DIRTY(k))
1278 SET_GC_MARK(g, GC_MARK_DIRTY);
1279 else if (!GC_MARK(g))
1280 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1282 /* guard against overflow */
1283 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1284 GC_SECTORS_USED(g) + KEY_SIZE(k),
1285 MAX_GC_SECTORS_USED));
1287 BUG_ON(!GC_SECTORS_USED(g));
1290 return stale;
1293 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1295 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1297 unsigned int i;
1299 for (i = 0; i < KEY_PTRS(k); i++)
1300 if (ptr_available(c, k, i) &&
1301 !ptr_stale(c, k, i)) {
1302 struct bucket *b = PTR_BUCKET(c, k, i);
1304 b->gen = PTR_GEN(k, i);
1306 if (level && bkey_cmp(k, &ZERO_KEY))
1307 b->prio = BTREE_PRIO;
1308 else if (!level && b->prio == BTREE_PRIO)
1309 b->prio = INITIAL_PRIO;
1312 __bch_btree_mark_key(c, level, k);
1315 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1317 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1320 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1322 uint8_t stale = 0;
1323 unsigned int keys = 0, good_keys = 0;
1324 struct bkey *k;
1325 struct btree_iter iter;
1326 struct bset_tree *t;
1328 gc->nodes++;
1330 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1331 stale = max(stale, btree_mark_key(b, k));
1332 keys++;
1334 if (bch_ptr_bad(&b->keys, k))
1335 continue;
1337 gc->key_bytes += bkey_u64s(k);
1338 gc->nkeys++;
1339 good_keys++;
1341 gc->data += KEY_SIZE(k);
1344 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1345 btree_bug_on(t->size &&
1346 bset_written(&b->keys, t) &&
1347 bkey_cmp(&b->key, &t->end) < 0,
1348 b, "found short btree key in gc");
1350 if (b->c->gc_always_rewrite)
1351 return true;
1353 if (stale > 10)
1354 return true;
1356 if ((keys - good_keys) * 2 > keys)
1357 return true;
1359 return false;
1362 #define GC_MERGE_NODES 4U
1364 struct gc_merge_info {
1365 struct btree *b;
1366 unsigned int keys;
1369 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1370 struct keylist *insert_keys,
1371 atomic_t *journal_ref,
1372 struct bkey *replace_key);
1374 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1375 struct gc_stat *gc, struct gc_merge_info *r)
1377 unsigned int i, nodes = 0, keys = 0, blocks;
1378 struct btree *new_nodes[GC_MERGE_NODES];
1379 struct keylist keylist;
1380 struct closure cl;
1381 struct bkey *k;
1383 bch_keylist_init(&keylist);
1385 if (btree_check_reserve(b, NULL))
1386 return 0;
1388 memset(new_nodes, 0, sizeof(new_nodes));
1389 closure_init_stack(&cl);
1391 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1392 keys += r[nodes++].keys;
1394 blocks = btree_default_blocks(b->c) * 2 / 3;
1396 if (nodes < 2 ||
1397 __set_blocks(b->keys.set[0].data, keys,
1398 block_bytes(b->c)) > blocks * (nodes - 1))
1399 return 0;
1401 for (i = 0; i < nodes; i++) {
1402 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1403 if (IS_ERR_OR_NULL(new_nodes[i]))
1404 goto out_nocoalesce;
1408 * We have to check the reserve here, after we've allocated our new
1409 * nodes, to make sure the insert below will succeed - we also check
1410 * before as an optimization to potentially avoid a bunch of expensive
1411 * allocs/sorts
1413 if (btree_check_reserve(b, NULL))
1414 goto out_nocoalesce;
1416 for (i = 0; i < nodes; i++)
1417 mutex_lock(&new_nodes[i]->write_lock);
1419 for (i = nodes - 1; i > 0; --i) {
1420 struct bset *n1 = btree_bset_first(new_nodes[i]);
1421 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1422 struct bkey *k, *last = NULL;
1424 keys = 0;
1426 if (i > 1) {
1427 for (k = n2->start;
1428 k < bset_bkey_last(n2);
1429 k = bkey_next(k)) {
1430 if (__set_blocks(n1, n1->keys + keys +
1431 bkey_u64s(k),
1432 block_bytes(b->c)) > blocks)
1433 break;
1435 last = k;
1436 keys += bkey_u64s(k);
1438 } else {
1440 * Last node we're not getting rid of - we're getting
1441 * rid of the node at r[0]. Have to try and fit all of
1442 * the remaining keys into this node; we can't ensure
1443 * they will always fit due to rounding and variable
1444 * length keys (shouldn't be possible in practice,
1445 * though)
1447 if (__set_blocks(n1, n1->keys + n2->keys,
1448 block_bytes(b->c)) >
1449 btree_blocks(new_nodes[i]))
1450 goto out_nocoalesce;
1452 keys = n2->keys;
1453 /* Take the key of the node we're getting rid of */
1454 last = &r->b->key;
1457 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1458 btree_blocks(new_nodes[i]));
1460 if (last)
1461 bkey_copy_key(&new_nodes[i]->key, last);
1463 memcpy(bset_bkey_last(n1),
1464 n2->start,
1465 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1467 n1->keys += keys;
1468 r[i].keys = n1->keys;
1470 memmove(n2->start,
1471 bset_bkey_idx(n2, keys),
1472 (void *) bset_bkey_last(n2) -
1473 (void *) bset_bkey_idx(n2, keys));
1475 n2->keys -= keys;
1477 if (__bch_keylist_realloc(&keylist,
1478 bkey_u64s(&new_nodes[i]->key)))
1479 goto out_nocoalesce;
1481 bch_btree_node_write(new_nodes[i], &cl);
1482 bch_keylist_add(&keylist, &new_nodes[i]->key);
1485 for (i = 0; i < nodes; i++)
1486 mutex_unlock(&new_nodes[i]->write_lock);
1488 closure_sync(&cl);
1490 /* We emptied out this node */
1491 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1492 btree_node_free(new_nodes[0]);
1493 rw_unlock(true, new_nodes[0]);
1494 new_nodes[0] = NULL;
1496 for (i = 0; i < nodes; i++) {
1497 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1498 goto out_nocoalesce;
1500 make_btree_freeing_key(r[i].b, keylist.top);
1501 bch_keylist_push(&keylist);
1504 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1505 BUG_ON(!bch_keylist_empty(&keylist));
1507 for (i = 0; i < nodes; i++) {
1508 btree_node_free(r[i].b);
1509 rw_unlock(true, r[i].b);
1511 r[i].b = new_nodes[i];
1514 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1515 r[nodes - 1].b = ERR_PTR(-EINTR);
1517 trace_bcache_btree_gc_coalesce(nodes);
1518 gc->nodes--;
1520 bch_keylist_free(&keylist);
1522 /* Invalidated our iterator */
1523 return -EINTR;
1525 out_nocoalesce:
1526 closure_sync(&cl);
1528 while ((k = bch_keylist_pop(&keylist)))
1529 if (!bkey_cmp(k, &ZERO_KEY))
1530 atomic_dec(&b->c->prio_blocked);
1531 bch_keylist_free(&keylist);
1533 for (i = 0; i < nodes; i++)
1534 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1535 btree_node_free(new_nodes[i]);
1536 rw_unlock(true, new_nodes[i]);
1538 return 0;
1541 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1542 struct btree *replace)
1544 struct keylist keys;
1545 struct btree *n;
1547 if (btree_check_reserve(b, NULL))
1548 return 0;
1550 n = btree_node_alloc_replacement(replace, NULL);
1552 /* recheck reserve after allocating replacement node */
1553 if (btree_check_reserve(b, NULL)) {
1554 btree_node_free(n);
1555 rw_unlock(true, n);
1556 return 0;
1559 bch_btree_node_write_sync(n);
1561 bch_keylist_init(&keys);
1562 bch_keylist_add(&keys, &n->key);
1564 make_btree_freeing_key(replace, keys.top);
1565 bch_keylist_push(&keys);
1567 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1568 BUG_ON(!bch_keylist_empty(&keys));
1570 btree_node_free(replace);
1571 rw_unlock(true, n);
1573 /* Invalidated our iterator */
1574 return -EINTR;
1577 static unsigned int btree_gc_count_keys(struct btree *b)
1579 struct bkey *k;
1580 struct btree_iter iter;
1581 unsigned int ret = 0;
1583 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1584 ret += bkey_u64s(k);
1586 return ret;
1589 static size_t btree_gc_min_nodes(struct cache_set *c)
1591 size_t min_nodes;
1594 * Since incremental GC would stop 100ms when front
1595 * side I/O comes, so when there are many btree nodes,
1596 * if GC only processes constant (100) nodes each time,
1597 * GC would last a long time, and the front side I/Os
1598 * would run out of the buckets (since no new bucket
1599 * can be allocated during GC), and be blocked again.
1600 * So GC should not process constant nodes, but varied
1601 * nodes according to the number of btree nodes, which
1602 * realized by dividing GC into constant(100) times,
1603 * so when there are many btree nodes, GC can process
1604 * more nodes each time, otherwise, GC will process less
1605 * nodes each time (but no less than MIN_GC_NODES)
1607 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1608 if (min_nodes < MIN_GC_NODES)
1609 min_nodes = MIN_GC_NODES;
1611 return min_nodes;
1615 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1616 struct closure *writes, struct gc_stat *gc)
1618 int ret = 0;
1619 bool should_rewrite;
1620 struct bkey *k;
1621 struct btree_iter iter;
1622 struct gc_merge_info r[GC_MERGE_NODES];
1623 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1625 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1627 for (i = r; i < r + ARRAY_SIZE(r); i++)
1628 i->b = ERR_PTR(-EINTR);
1630 while (1) {
1631 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1632 if (k) {
1633 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1634 true, b);
1635 if (IS_ERR(r->b)) {
1636 ret = PTR_ERR(r->b);
1637 break;
1640 r->keys = btree_gc_count_keys(r->b);
1642 ret = btree_gc_coalesce(b, op, gc, r);
1643 if (ret)
1644 break;
1647 if (!last->b)
1648 break;
1650 if (!IS_ERR(last->b)) {
1651 should_rewrite = btree_gc_mark_node(last->b, gc);
1652 if (should_rewrite) {
1653 ret = btree_gc_rewrite_node(b, op, last->b);
1654 if (ret)
1655 break;
1658 if (last->b->level) {
1659 ret = btree_gc_recurse(last->b, op, writes, gc);
1660 if (ret)
1661 break;
1664 bkey_copy_key(&b->c->gc_done, &last->b->key);
1667 * Must flush leaf nodes before gc ends, since replace
1668 * operations aren't journalled
1670 mutex_lock(&last->b->write_lock);
1671 if (btree_node_dirty(last->b))
1672 bch_btree_node_write(last->b, writes);
1673 mutex_unlock(&last->b->write_lock);
1674 rw_unlock(true, last->b);
1677 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1678 r->b = NULL;
1680 if (atomic_read(&b->c->search_inflight) &&
1681 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1682 gc->nodes_pre = gc->nodes;
1683 ret = -EAGAIN;
1684 break;
1687 if (need_resched()) {
1688 ret = -EAGAIN;
1689 break;
1693 for (i = r; i < r + ARRAY_SIZE(r); i++)
1694 if (!IS_ERR_OR_NULL(i->b)) {
1695 mutex_lock(&i->b->write_lock);
1696 if (btree_node_dirty(i->b))
1697 bch_btree_node_write(i->b, writes);
1698 mutex_unlock(&i->b->write_lock);
1699 rw_unlock(true, i->b);
1702 return ret;
1705 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1706 struct closure *writes, struct gc_stat *gc)
1708 struct btree *n = NULL;
1709 int ret = 0;
1710 bool should_rewrite;
1712 should_rewrite = btree_gc_mark_node(b, gc);
1713 if (should_rewrite) {
1714 n = btree_node_alloc_replacement(b, NULL);
1716 if (!IS_ERR_OR_NULL(n)) {
1717 bch_btree_node_write_sync(n);
1719 bch_btree_set_root(n);
1720 btree_node_free(b);
1721 rw_unlock(true, n);
1723 return -EINTR;
1727 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1729 if (b->level) {
1730 ret = btree_gc_recurse(b, op, writes, gc);
1731 if (ret)
1732 return ret;
1735 bkey_copy_key(&b->c->gc_done, &b->key);
1737 return ret;
1740 static void btree_gc_start(struct cache_set *c)
1742 struct cache *ca;
1743 struct bucket *b;
1744 unsigned int i;
1746 if (!c->gc_mark_valid)
1747 return;
1749 mutex_lock(&c->bucket_lock);
1751 c->gc_mark_valid = 0;
1752 c->gc_done = ZERO_KEY;
1754 for_each_cache(ca, c, i)
1755 for_each_bucket(b, ca) {
1756 b->last_gc = b->gen;
1757 if (!atomic_read(&b->pin)) {
1758 SET_GC_MARK(b, 0);
1759 SET_GC_SECTORS_USED(b, 0);
1763 mutex_unlock(&c->bucket_lock);
1766 static void bch_btree_gc_finish(struct cache_set *c)
1768 struct bucket *b;
1769 struct cache *ca;
1770 unsigned int i;
1772 mutex_lock(&c->bucket_lock);
1774 set_gc_sectors(c);
1775 c->gc_mark_valid = 1;
1776 c->need_gc = 0;
1778 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1779 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1780 GC_MARK_METADATA);
1782 /* don't reclaim buckets to which writeback keys point */
1783 rcu_read_lock();
1784 for (i = 0; i < c->devices_max_used; i++) {
1785 struct bcache_device *d = c->devices[i];
1786 struct cached_dev *dc;
1787 struct keybuf_key *w, *n;
1788 unsigned int j;
1790 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1791 continue;
1792 dc = container_of(d, struct cached_dev, disk);
1794 spin_lock(&dc->writeback_keys.lock);
1795 rbtree_postorder_for_each_entry_safe(w, n,
1796 &dc->writeback_keys.keys, node)
1797 for (j = 0; j < KEY_PTRS(&w->key); j++)
1798 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1799 GC_MARK_DIRTY);
1800 spin_unlock(&dc->writeback_keys.lock);
1802 rcu_read_unlock();
1804 c->avail_nbuckets = 0;
1805 for_each_cache(ca, c, i) {
1806 uint64_t *i;
1808 ca->invalidate_needs_gc = 0;
1810 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1811 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1813 for (i = ca->prio_buckets;
1814 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1815 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1817 for_each_bucket(b, ca) {
1818 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1820 if (atomic_read(&b->pin))
1821 continue;
1823 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1825 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1826 c->avail_nbuckets++;
1830 mutex_unlock(&c->bucket_lock);
1833 static void bch_btree_gc(struct cache_set *c)
1835 int ret;
1836 struct gc_stat stats;
1837 struct closure writes;
1838 struct btree_op op;
1839 uint64_t start_time = local_clock();
1841 trace_bcache_gc_start(c);
1843 memset(&stats, 0, sizeof(struct gc_stat));
1844 closure_init_stack(&writes);
1845 bch_btree_op_init(&op, SHRT_MAX);
1847 btree_gc_start(c);
1849 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1850 do {
1851 ret = btree_root(gc_root, c, &op, &writes, &stats);
1852 closure_sync(&writes);
1853 cond_resched();
1855 if (ret == -EAGAIN)
1856 schedule_timeout_interruptible(msecs_to_jiffies
1857 (GC_SLEEP_MS));
1858 else if (ret)
1859 pr_warn("gc failed!");
1860 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1862 bch_btree_gc_finish(c);
1863 wake_up_allocators(c);
1865 bch_time_stats_update(&c->btree_gc_time, start_time);
1867 stats.key_bytes *= sizeof(uint64_t);
1868 stats.data <<= 9;
1869 bch_update_bucket_in_use(c, &stats);
1870 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1872 trace_bcache_gc_end(c);
1874 bch_moving_gc(c);
1877 static bool gc_should_run(struct cache_set *c)
1879 struct cache *ca;
1880 unsigned int i;
1882 for_each_cache(ca, c, i)
1883 if (ca->invalidate_needs_gc)
1884 return true;
1886 if (atomic_read(&c->sectors_to_gc) < 0)
1887 return true;
1889 return false;
1892 static int bch_gc_thread(void *arg)
1894 struct cache_set *c = arg;
1896 while (1) {
1897 wait_event_interruptible(c->gc_wait,
1898 kthread_should_stop() ||
1899 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1900 gc_should_run(c));
1902 if (kthread_should_stop() ||
1903 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1904 break;
1906 set_gc_sectors(c);
1907 bch_btree_gc(c);
1910 wait_for_kthread_stop();
1911 return 0;
1914 int bch_gc_thread_start(struct cache_set *c)
1916 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1917 return PTR_ERR_OR_ZERO(c->gc_thread);
1920 /* Initial partial gc */
1922 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1924 int ret = 0;
1925 struct bkey *k, *p = NULL;
1926 struct btree_iter iter;
1928 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1929 bch_initial_mark_key(b->c, b->level, k);
1931 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1933 if (b->level) {
1934 bch_btree_iter_init(&b->keys, &iter, NULL);
1936 do {
1937 k = bch_btree_iter_next_filter(&iter, &b->keys,
1938 bch_ptr_bad);
1939 if (k) {
1940 btree_node_prefetch(b, k);
1942 * initiallize c->gc_stats.nodes
1943 * for incremental GC
1945 b->c->gc_stats.nodes++;
1948 if (p)
1949 ret = btree(check_recurse, p, b, op);
1951 p = k;
1952 } while (p && !ret);
1955 return ret;
1958 int bch_btree_check(struct cache_set *c)
1960 struct btree_op op;
1962 bch_btree_op_init(&op, SHRT_MAX);
1964 return btree_root(check_recurse, c, &op);
1967 void bch_initial_gc_finish(struct cache_set *c)
1969 struct cache *ca;
1970 struct bucket *b;
1971 unsigned int i;
1973 bch_btree_gc_finish(c);
1975 mutex_lock(&c->bucket_lock);
1978 * We need to put some unused buckets directly on the prio freelist in
1979 * order to get the allocator thread started - it needs freed buckets in
1980 * order to rewrite the prios and gens, and it needs to rewrite prios
1981 * and gens in order to free buckets.
1983 * This is only safe for buckets that have no live data in them, which
1984 * there should always be some of.
1986 for_each_cache(ca, c, i) {
1987 for_each_bucket(b, ca) {
1988 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1989 fifo_full(&ca->free[RESERVE_BTREE]))
1990 break;
1992 if (bch_can_invalidate_bucket(ca, b) &&
1993 !GC_MARK(b)) {
1994 __bch_invalidate_one_bucket(ca, b);
1995 if (!fifo_push(&ca->free[RESERVE_PRIO],
1996 b - ca->buckets))
1997 fifo_push(&ca->free[RESERVE_BTREE],
1998 b - ca->buckets);
2003 mutex_unlock(&c->bucket_lock);
2006 /* Btree insertion */
2008 static bool btree_insert_key(struct btree *b, struct bkey *k,
2009 struct bkey *replace_key)
2011 unsigned int status;
2013 BUG_ON(bkey_cmp(k, &b->key) > 0);
2015 status = bch_btree_insert_key(&b->keys, k, replace_key);
2016 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2017 bch_check_keys(&b->keys, "%u for %s", status,
2018 replace_key ? "replace" : "insert");
2020 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2021 status);
2022 return true;
2023 } else
2024 return false;
2027 static size_t insert_u64s_remaining(struct btree *b)
2029 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2032 * Might land in the middle of an existing extent and have to split it
2034 if (b->keys.ops->is_extents)
2035 ret -= KEY_MAX_U64S;
2037 return max(ret, 0L);
2040 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2041 struct keylist *insert_keys,
2042 struct bkey *replace_key)
2044 bool ret = false;
2045 int oldsize = bch_count_data(&b->keys);
2047 while (!bch_keylist_empty(insert_keys)) {
2048 struct bkey *k = insert_keys->keys;
2050 if (bkey_u64s(k) > insert_u64s_remaining(b))
2051 break;
2053 if (bkey_cmp(k, &b->key) <= 0) {
2054 if (!b->level)
2055 bkey_put(b->c, k);
2057 ret |= btree_insert_key(b, k, replace_key);
2058 bch_keylist_pop_front(insert_keys);
2059 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2060 BKEY_PADDED(key) temp;
2061 bkey_copy(&temp.key, insert_keys->keys);
2063 bch_cut_back(&b->key, &temp.key);
2064 bch_cut_front(&b->key, insert_keys->keys);
2066 ret |= btree_insert_key(b, &temp.key, replace_key);
2067 break;
2068 } else {
2069 break;
2073 if (!ret)
2074 op->insert_collision = true;
2076 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2078 BUG_ON(bch_count_data(&b->keys) < oldsize);
2079 return ret;
2082 static int btree_split(struct btree *b, struct btree_op *op,
2083 struct keylist *insert_keys,
2084 struct bkey *replace_key)
2086 bool split;
2087 struct btree *n1, *n2 = NULL, *n3 = NULL;
2088 uint64_t start_time = local_clock();
2089 struct closure cl;
2090 struct keylist parent_keys;
2092 closure_init_stack(&cl);
2093 bch_keylist_init(&parent_keys);
2095 if (btree_check_reserve(b, op)) {
2096 if (!b->level)
2097 return -EINTR;
2098 else
2099 WARN(1, "insufficient reserve for split\n");
2102 n1 = btree_node_alloc_replacement(b, op);
2103 if (IS_ERR(n1))
2104 goto err;
2106 split = set_blocks(btree_bset_first(n1),
2107 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2109 if (split) {
2110 unsigned int keys = 0;
2112 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2114 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2115 if (IS_ERR(n2))
2116 goto err_free1;
2118 if (!b->parent) {
2119 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2120 if (IS_ERR(n3))
2121 goto err_free2;
2124 mutex_lock(&n1->write_lock);
2125 mutex_lock(&n2->write_lock);
2127 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2130 * Has to be a linear search because we don't have an auxiliary
2131 * search tree yet
2134 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2135 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2136 keys));
2138 bkey_copy_key(&n1->key,
2139 bset_bkey_idx(btree_bset_first(n1), keys));
2140 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2142 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2143 btree_bset_first(n1)->keys = keys;
2145 memcpy(btree_bset_first(n2)->start,
2146 bset_bkey_last(btree_bset_first(n1)),
2147 btree_bset_first(n2)->keys * sizeof(uint64_t));
2149 bkey_copy_key(&n2->key, &b->key);
2151 bch_keylist_add(&parent_keys, &n2->key);
2152 bch_btree_node_write(n2, &cl);
2153 mutex_unlock(&n2->write_lock);
2154 rw_unlock(true, n2);
2155 } else {
2156 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2158 mutex_lock(&n1->write_lock);
2159 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2162 bch_keylist_add(&parent_keys, &n1->key);
2163 bch_btree_node_write(n1, &cl);
2164 mutex_unlock(&n1->write_lock);
2166 if (n3) {
2167 /* Depth increases, make a new root */
2168 mutex_lock(&n3->write_lock);
2169 bkey_copy_key(&n3->key, &MAX_KEY);
2170 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2171 bch_btree_node_write(n3, &cl);
2172 mutex_unlock(&n3->write_lock);
2174 closure_sync(&cl);
2175 bch_btree_set_root(n3);
2176 rw_unlock(true, n3);
2177 } else if (!b->parent) {
2178 /* Root filled up but didn't need to be split */
2179 closure_sync(&cl);
2180 bch_btree_set_root(n1);
2181 } else {
2182 /* Split a non root node */
2183 closure_sync(&cl);
2184 make_btree_freeing_key(b, parent_keys.top);
2185 bch_keylist_push(&parent_keys);
2187 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2188 BUG_ON(!bch_keylist_empty(&parent_keys));
2191 btree_node_free(b);
2192 rw_unlock(true, n1);
2194 bch_time_stats_update(&b->c->btree_split_time, start_time);
2196 return 0;
2197 err_free2:
2198 bkey_put(b->c, &n2->key);
2199 btree_node_free(n2);
2200 rw_unlock(true, n2);
2201 err_free1:
2202 bkey_put(b->c, &n1->key);
2203 btree_node_free(n1);
2204 rw_unlock(true, n1);
2205 err:
2206 WARN(1, "bcache: btree split failed (level %u)", b->level);
2208 if (n3 == ERR_PTR(-EAGAIN) ||
2209 n2 == ERR_PTR(-EAGAIN) ||
2210 n1 == ERR_PTR(-EAGAIN))
2211 return -EAGAIN;
2213 return -ENOMEM;
2216 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2217 struct keylist *insert_keys,
2218 atomic_t *journal_ref,
2219 struct bkey *replace_key)
2221 struct closure cl;
2223 BUG_ON(b->level && replace_key);
2225 closure_init_stack(&cl);
2227 mutex_lock(&b->write_lock);
2229 if (write_block(b) != btree_bset_last(b) &&
2230 b->keys.last_set_unwritten)
2231 bch_btree_init_next(b); /* just wrote a set */
2233 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2234 mutex_unlock(&b->write_lock);
2235 goto split;
2238 BUG_ON(write_block(b) != btree_bset_last(b));
2240 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2241 if (!b->level)
2242 bch_btree_leaf_dirty(b, journal_ref);
2243 else
2244 bch_btree_node_write(b, &cl);
2247 mutex_unlock(&b->write_lock);
2249 /* wait for btree node write if necessary, after unlock */
2250 closure_sync(&cl);
2252 return 0;
2253 split:
2254 if (current->bio_list) {
2255 op->lock = b->c->root->level + 1;
2256 return -EAGAIN;
2257 } else if (op->lock <= b->c->root->level) {
2258 op->lock = b->c->root->level + 1;
2259 return -EINTR;
2260 } else {
2261 /* Invalidated all iterators */
2262 int ret = btree_split(b, op, insert_keys, replace_key);
2264 if (bch_keylist_empty(insert_keys))
2265 return 0;
2266 else if (!ret)
2267 return -EINTR;
2268 return ret;
2272 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2273 struct bkey *check_key)
2275 int ret = -EINTR;
2276 uint64_t btree_ptr = b->key.ptr[0];
2277 unsigned long seq = b->seq;
2278 struct keylist insert;
2279 bool upgrade = op->lock == -1;
2281 bch_keylist_init(&insert);
2283 if (upgrade) {
2284 rw_unlock(false, b);
2285 rw_lock(true, b, b->level);
2287 if (b->key.ptr[0] != btree_ptr ||
2288 b->seq != seq + 1) {
2289 op->lock = b->level;
2290 goto out;
2294 SET_KEY_PTRS(check_key, 1);
2295 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2297 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2299 bch_keylist_add(&insert, check_key);
2301 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2303 BUG_ON(!ret && !bch_keylist_empty(&insert));
2304 out:
2305 if (upgrade)
2306 downgrade_write(&b->lock);
2307 return ret;
2310 struct btree_insert_op {
2311 struct btree_op op;
2312 struct keylist *keys;
2313 atomic_t *journal_ref;
2314 struct bkey *replace_key;
2317 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2319 struct btree_insert_op *op = container_of(b_op,
2320 struct btree_insert_op, op);
2322 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2323 op->journal_ref, op->replace_key);
2324 if (ret && !bch_keylist_empty(op->keys))
2325 return ret;
2326 else
2327 return MAP_DONE;
2330 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2331 atomic_t *journal_ref, struct bkey *replace_key)
2333 struct btree_insert_op op;
2334 int ret = 0;
2336 BUG_ON(current->bio_list);
2337 BUG_ON(bch_keylist_empty(keys));
2339 bch_btree_op_init(&op.op, 0);
2340 op.keys = keys;
2341 op.journal_ref = journal_ref;
2342 op.replace_key = replace_key;
2344 while (!ret && !bch_keylist_empty(keys)) {
2345 op.op.lock = 0;
2346 ret = bch_btree_map_leaf_nodes(&op.op, c,
2347 &START_KEY(keys->keys),
2348 btree_insert_fn);
2351 if (ret) {
2352 struct bkey *k;
2354 pr_err("error %i", ret);
2356 while ((k = bch_keylist_pop(keys)))
2357 bkey_put(c, k);
2358 } else if (op.op.insert_collision)
2359 ret = -ESRCH;
2361 return ret;
2364 void bch_btree_set_root(struct btree *b)
2366 unsigned int i;
2367 struct closure cl;
2369 closure_init_stack(&cl);
2371 trace_bcache_btree_set_root(b);
2373 BUG_ON(!b->written);
2375 for (i = 0; i < KEY_PTRS(&b->key); i++)
2376 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2378 mutex_lock(&b->c->bucket_lock);
2379 list_del_init(&b->list);
2380 mutex_unlock(&b->c->bucket_lock);
2382 b->c->root = b;
2384 bch_journal_meta(b->c, &cl);
2385 closure_sync(&cl);
2388 /* Map across nodes or keys */
2390 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2391 struct bkey *from,
2392 btree_map_nodes_fn *fn, int flags)
2394 int ret = MAP_CONTINUE;
2396 if (b->level) {
2397 struct bkey *k;
2398 struct btree_iter iter;
2400 bch_btree_iter_init(&b->keys, &iter, from);
2402 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2403 bch_ptr_bad))) {
2404 ret = btree(map_nodes_recurse, k, b,
2405 op, from, fn, flags);
2406 from = NULL;
2408 if (ret != MAP_CONTINUE)
2409 return ret;
2413 if (!b->level || flags == MAP_ALL_NODES)
2414 ret = fn(op, b);
2416 return ret;
2419 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2420 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2422 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2425 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2426 struct bkey *from, btree_map_keys_fn *fn,
2427 int flags)
2429 int ret = MAP_CONTINUE;
2430 struct bkey *k;
2431 struct btree_iter iter;
2433 bch_btree_iter_init(&b->keys, &iter, from);
2435 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2436 ret = !b->level
2437 ? fn(op, b, k)
2438 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2439 from = NULL;
2441 if (ret != MAP_CONTINUE)
2442 return ret;
2445 if (!b->level && (flags & MAP_END_KEY))
2446 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2447 KEY_OFFSET(&b->key), 0));
2449 return ret;
2452 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2453 struct bkey *from, btree_map_keys_fn *fn, int flags)
2455 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2458 /* Keybuf code */
2460 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2462 /* Overlapping keys compare equal */
2463 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2464 return -1;
2465 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2466 return 1;
2467 return 0;
2470 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2471 struct keybuf_key *r)
2473 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2476 struct refill {
2477 struct btree_op op;
2478 unsigned int nr_found;
2479 struct keybuf *buf;
2480 struct bkey *end;
2481 keybuf_pred_fn *pred;
2484 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2485 struct bkey *k)
2487 struct refill *refill = container_of(op, struct refill, op);
2488 struct keybuf *buf = refill->buf;
2489 int ret = MAP_CONTINUE;
2491 if (bkey_cmp(k, refill->end) > 0) {
2492 ret = MAP_DONE;
2493 goto out;
2496 if (!KEY_SIZE(k)) /* end key */
2497 goto out;
2499 if (refill->pred(buf, k)) {
2500 struct keybuf_key *w;
2502 spin_lock(&buf->lock);
2504 w = array_alloc(&buf->freelist);
2505 if (!w) {
2506 spin_unlock(&buf->lock);
2507 return MAP_DONE;
2510 w->private = NULL;
2511 bkey_copy(&w->key, k);
2513 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2514 array_free(&buf->freelist, w);
2515 else
2516 refill->nr_found++;
2518 if (array_freelist_empty(&buf->freelist))
2519 ret = MAP_DONE;
2521 spin_unlock(&buf->lock);
2523 out:
2524 buf->last_scanned = *k;
2525 return ret;
2528 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2529 struct bkey *end, keybuf_pred_fn *pred)
2531 struct bkey start = buf->last_scanned;
2532 struct refill refill;
2534 cond_resched();
2536 bch_btree_op_init(&refill.op, -1);
2537 refill.nr_found = 0;
2538 refill.buf = buf;
2539 refill.end = end;
2540 refill.pred = pred;
2542 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2543 refill_keybuf_fn, MAP_END_KEY);
2545 trace_bcache_keyscan(refill.nr_found,
2546 KEY_INODE(&start), KEY_OFFSET(&start),
2547 KEY_INODE(&buf->last_scanned),
2548 KEY_OFFSET(&buf->last_scanned));
2550 spin_lock(&buf->lock);
2552 if (!RB_EMPTY_ROOT(&buf->keys)) {
2553 struct keybuf_key *w;
2555 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2556 buf->start = START_KEY(&w->key);
2558 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2559 buf->end = w->key;
2560 } else {
2561 buf->start = MAX_KEY;
2562 buf->end = MAX_KEY;
2565 spin_unlock(&buf->lock);
2568 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2570 rb_erase(&w->node, &buf->keys);
2571 array_free(&buf->freelist, w);
2574 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2576 spin_lock(&buf->lock);
2577 __bch_keybuf_del(buf, w);
2578 spin_unlock(&buf->lock);
2581 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2582 struct bkey *end)
2584 bool ret = false;
2585 struct keybuf_key *p, *w, s;
2587 s.key = *start;
2589 if (bkey_cmp(end, &buf->start) <= 0 ||
2590 bkey_cmp(start, &buf->end) >= 0)
2591 return false;
2593 spin_lock(&buf->lock);
2594 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2596 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2597 p = w;
2598 w = RB_NEXT(w, node);
2600 if (p->private)
2601 ret = true;
2602 else
2603 __bch_keybuf_del(buf, p);
2606 spin_unlock(&buf->lock);
2607 return ret;
2610 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2612 struct keybuf_key *w;
2614 spin_lock(&buf->lock);
2616 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2618 while (w && w->private)
2619 w = RB_NEXT(w, node);
2621 if (w)
2622 w->private = ERR_PTR(-EINTR);
2624 spin_unlock(&buf->lock);
2625 return w;
2628 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2629 struct keybuf *buf,
2630 struct bkey *end,
2631 keybuf_pred_fn *pred)
2633 struct keybuf_key *ret;
2635 while (1) {
2636 ret = bch_keybuf_next(buf);
2637 if (ret)
2638 break;
2640 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2641 pr_debug("scan finished");
2642 break;
2645 bch_refill_keybuf(c, buf, end, pred);
2648 return ret;
2651 void bch_keybuf_init(struct keybuf *buf)
2653 buf->last_scanned = MAX_KEY;
2654 buf->keys = RB_ROOT;
2656 spin_lock_init(&buf->lock);
2657 array_allocator_init(&buf->freelist);