treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / md / bcache / journal.c
blob33ddc5269e8dc702f10817687fcdcc9c1a224953
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache journalling code, for btree insertions
5 * Copyright 2012 Google, Inc.
6 */
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
13 #include <trace/events/bcache.h>
16 * Journal replay/recovery:
18 * This code is all driven from run_cache_set(); we first read the journal
19 * entries, do some other stuff, then we mark all the keys in the journal
20 * entries (same as garbage collection would), then we replay them - reinserting
21 * them into the cache in precisely the same order as they appear in the
22 * journal.
24 * We only journal keys that go in leaf nodes, which simplifies things quite a
25 * bit.
28 static void journal_read_endio(struct bio *bio)
30 struct closure *cl = bio->bi_private;
32 closure_put(cl);
35 static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 unsigned int bucket_index)
38 struct journal_device *ja = &ca->journal;
39 struct bio *bio = &ja->bio;
41 struct journal_replay *i;
42 struct jset *j, *data = ca->set->journal.w[0].data;
43 struct closure cl;
44 unsigned int len, left, offset = 0;
45 int ret = 0;
46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
48 closure_init_stack(&cl);
50 pr_debug("reading %u", bucket_index);
52 while (offset < ca->sb.bucket_size) {
53 reread: left = ca->sb.bucket_size - offset;
54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
56 bio_reset(bio);
57 bio->bi_iter.bi_sector = bucket + offset;
58 bio_set_dev(bio, ca->bdev);
59 bio->bi_iter.bi_size = len << 9;
61 bio->bi_end_io = journal_read_endio;
62 bio->bi_private = &cl;
63 bio_set_op_attrs(bio, REQ_OP_READ, 0);
64 bch_bio_map(bio, data);
66 closure_bio_submit(ca->set, bio, &cl);
67 closure_sync(&cl);
69 /* This function could be simpler now since we no longer write
70 * journal entries that overlap bucket boundaries; this means
71 * the start of a bucket will always have a valid journal entry
72 * if it has any journal entries at all.
75 j = data;
76 while (len) {
77 struct list_head *where;
78 size_t blocks, bytes = set_bytes(j);
80 if (j->magic != jset_magic(&ca->sb)) {
81 pr_debug("%u: bad magic", bucket_index);
82 return ret;
85 if (bytes > left << 9 ||
86 bytes > PAGE_SIZE << JSET_BITS) {
87 pr_info("%u: too big, %zu bytes, offset %u",
88 bucket_index, bytes, offset);
89 return ret;
92 if (bytes > len << 9)
93 goto reread;
95 if (j->csum != csum_set(j)) {
96 pr_info("%u: bad csum, %zu bytes, offset %u",
97 bucket_index, bytes, offset);
98 return ret;
101 blocks = set_blocks(j, block_bytes(ca->set));
104 * Nodes in 'list' are in linear increasing order of
105 * i->j.seq, the node on head has the smallest (oldest)
106 * journal seq, the node on tail has the biggest
107 * (latest) journal seq.
111 * Check from the oldest jset for last_seq. If
112 * i->j.seq < j->last_seq, it means the oldest jset
113 * in list is expired and useless, remove it from
114 * this list. Otherwise, j is a condidate jset for
115 * further following checks.
117 while (!list_empty(list)) {
118 i = list_first_entry(list,
119 struct journal_replay, list);
120 if (i->j.seq >= j->last_seq)
121 break;
122 list_del(&i->list);
123 kfree(i);
126 /* iterate list in reverse order (from latest jset) */
127 list_for_each_entry_reverse(i, list, list) {
128 if (j->seq == i->j.seq)
129 goto next_set;
132 * if j->seq is less than any i->j.last_seq
133 * in list, j is an expired and useless jset.
135 if (j->seq < i->j.last_seq)
136 goto next_set;
139 * 'where' points to first jset in list which
140 * is elder then j.
142 if (j->seq > i->j.seq) {
143 where = &i->list;
144 goto add;
148 where = list;
149 add:
150 i = kmalloc(offsetof(struct journal_replay, j) +
151 bytes, GFP_KERNEL);
152 if (!i)
153 return -ENOMEM;
154 memcpy(&i->j, j, bytes);
155 /* Add to the location after 'where' points to */
156 list_add(&i->list, where);
157 ret = 1;
159 if (j->seq > ja->seq[bucket_index])
160 ja->seq[bucket_index] = j->seq;
161 next_set:
162 offset += blocks * ca->sb.block_size;
163 len -= blocks * ca->sb.block_size;
164 j = ((void *) j) + blocks * block_bytes(ca);
168 return ret;
171 int bch_journal_read(struct cache_set *c, struct list_head *list)
173 #define read_bucket(b) \
174 ({ \
175 ret = journal_read_bucket(ca, list, b); \
176 __set_bit(b, bitmap); \
177 if (ret < 0) \
178 return ret; \
179 ret; \
182 struct cache *ca;
183 unsigned int iter;
184 int ret = 0;
186 for_each_cache(ca, c, iter) {
187 struct journal_device *ja = &ca->journal;
188 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
189 unsigned int i, l, r, m;
190 uint64_t seq;
192 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
193 pr_debug("%u journal buckets", ca->sb.njournal_buckets);
196 * Read journal buckets ordered by golden ratio hash to quickly
197 * find a sequence of buckets with valid journal entries
199 for (i = 0; i < ca->sb.njournal_buckets; i++) {
201 * We must try the index l with ZERO first for
202 * correctness due to the scenario that the journal
203 * bucket is circular buffer which might have wrapped
205 l = (i * 2654435769U) % ca->sb.njournal_buckets;
207 if (test_bit(l, bitmap))
208 break;
210 if (read_bucket(l))
211 goto bsearch;
215 * If that fails, check all the buckets we haven't checked
216 * already
218 pr_debug("falling back to linear search");
220 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
221 l < ca->sb.njournal_buckets;
222 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets,
223 l + 1))
224 if (read_bucket(l))
225 goto bsearch;
227 /* no journal entries on this device? */
228 if (l == ca->sb.njournal_buckets)
229 continue;
230 bsearch:
231 BUG_ON(list_empty(list));
233 /* Binary search */
234 m = l;
235 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
236 pr_debug("starting binary search, l %u r %u", l, r);
238 while (l + 1 < r) {
239 seq = list_entry(list->prev, struct journal_replay,
240 list)->j.seq;
242 m = (l + r) >> 1;
243 read_bucket(m);
245 if (seq != list_entry(list->prev, struct journal_replay,
246 list)->j.seq)
247 l = m;
248 else
249 r = m;
253 * Read buckets in reverse order until we stop finding more
254 * journal entries
256 pr_debug("finishing up: m %u njournal_buckets %u",
257 m, ca->sb.njournal_buckets);
258 l = m;
260 while (1) {
261 if (!l--)
262 l = ca->sb.njournal_buckets - 1;
264 if (l == m)
265 break;
267 if (test_bit(l, bitmap))
268 continue;
270 if (!read_bucket(l))
271 break;
274 seq = 0;
276 for (i = 0; i < ca->sb.njournal_buckets; i++)
277 if (ja->seq[i] > seq) {
278 seq = ja->seq[i];
280 * When journal_reclaim() goes to allocate for
281 * the first time, it'll use the bucket after
282 * ja->cur_idx
284 ja->cur_idx = i;
285 ja->last_idx = ja->discard_idx = (i + 1) %
286 ca->sb.njournal_buckets;
291 if (!list_empty(list))
292 c->journal.seq = list_entry(list->prev,
293 struct journal_replay,
294 list)->j.seq;
296 return 0;
297 #undef read_bucket
300 void bch_journal_mark(struct cache_set *c, struct list_head *list)
302 atomic_t p = { 0 };
303 struct bkey *k;
304 struct journal_replay *i;
305 struct journal *j = &c->journal;
306 uint64_t last = j->seq;
309 * journal.pin should never fill up - we never write a journal
310 * entry when it would fill up. But if for some reason it does, we
311 * iterate over the list in reverse order so that we can just skip that
312 * refcount instead of bugging.
315 list_for_each_entry_reverse(i, list, list) {
316 BUG_ON(last < i->j.seq);
317 i->pin = NULL;
319 while (last-- != i->j.seq)
320 if (fifo_free(&j->pin) > 1) {
321 fifo_push_front(&j->pin, p);
322 atomic_set(&fifo_front(&j->pin), 0);
325 if (fifo_free(&j->pin) > 1) {
326 fifo_push_front(&j->pin, p);
327 i->pin = &fifo_front(&j->pin);
328 atomic_set(i->pin, 1);
331 for (k = i->j.start;
332 k < bset_bkey_last(&i->j);
333 k = bkey_next(k))
334 if (!__bch_extent_invalid(c, k)) {
335 unsigned int j;
337 for (j = 0; j < KEY_PTRS(k); j++)
338 if (ptr_available(c, k, j))
339 atomic_inc(&PTR_BUCKET(c, k, j)->pin);
341 bch_initial_mark_key(c, 0, k);
346 static bool is_discard_enabled(struct cache_set *s)
348 struct cache *ca;
349 unsigned int i;
351 for_each_cache(ca, s, i)
352 if (ca->discard)
353 return true;
355 return false;
358 int bch_journal_replay(struct cache_set *s, struct list_head *list)
360 int ret = 0, keys = 0, entries = 0;
361 struct bkey *k;
362 struct journal_replay *i =
363 list_entry(list->prev, struct journal_replay, list);
365 uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
366 struct keylist keylist;
368 list_for_each_entry(i, list, list) {
369 BUG_ON(i->pin && atomic_read(i->pin) != 1);
371 if (n != i->j.seq) {
372 if (n == start && is_discard_enabled(s))
373 pr_info("bcache: journal entries %llu-%llu may be discarded! (replaying %llu-%llu)",
374 n, i->j.seq - 1, start, end);
375 else {
376 pr_err("bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
377 n, i->j.seq - 1, start, end);
378 ret = -EIO;
379 goto err;
383 for (k = i->j.start;
384 k < bset_bkey_last(&i->j);
385 k = bkey_next(k)) {
386 trace_bcache_journal_replay_key(k);
388 bch_keylist_init_single(&keylist, k);
390 ret = bch_btree_insert(s, &keylist, i->pin, NULL);
391 if (ret)
392 goto err;
394 BUG_ON(!bch_keylist_empty(&keylist));
395 keys++;
397 cond_resched();
400 if (i->pin)
401 atomic_dec(i->pin);
402 n = i->j.seq + 1;
403 entries++;
406 pr_info("journal replay done, %i keys in %i entries, seq %llu",
407 keys, entries, end);
408 err:
409 while (!list_empty(list)) {
410 i = list_first_entry(list, struct journal_replay, list);
411 list_del(&i->list);
412 kfree(i);
415 return ret;
418 /* Journalling */
420 #define nr_to_fifo_front(p, front_p, mask) (((p) - (front_p)) & (mask))
422 static void btree_flush_write(struct cache_set *c)
424 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
425 unsigned int i, nr, ref_nr;
426 atomic_t *fifo_front_p, *now_fifo_front_p;
427 size_t mask;
429 if (c->journal.btree_flushing)
430 return;
432 spin_lock(&c->journal.flush_write_lock);
433 if (c->journal.btree_flushing) {
434 spin_unlock(&c->journal.flush_write_lock);
435 return;
437 c->journal.btree_flushing = true;
438 spin_unlock(&c->journal.flush_write_lock);
440 /* get the oldest journal entry and check its refcount */
441 spin_lock(&c->journal.lock);
442 fifo_front_p = &fifo_front(&c->journal.pin);
443 ref_nr = atomic_read(fifo_front_p);
444 if (ref_nr <= 0) {
446 * do nothing if no btree node references
447 * the oldest journal entry
449 spin_unlock(&c->journal.lock);
450 goto out;
452 spin_unlock(&c->journal.lock);
454 mask = c->journal.pin.mask;
455 nr = 0;
456 atomic_long_inc(&c->flush_write);
457 memset(btree_nodes, 0, sizeof(btree_nodes));
459 mutex_lock(&c->bucket_lock);
460 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
462 * It is safe to get now_fifo_front_p without holding
463 * c->journal.lock here, because we don't need to know
464 * the exactly accurate value, just check whether the
465 * front pointer of c->journal.pin is changed.
467 now_fifo_front_p = &fifo_front(&c->journal.pin);
469 * If the oldest journal entry is reclaimed and front
470 * pointer of c->journal.pin changes, it is unnecessary
471 * to scan c->btree_cache anymore, just quit the loop and
472 * flush out what we have already.
474 if (now_fifo_front_p != fifo_front_p)
475 break;
477 * quit this loop if all matching btree nodes are
478 * scanned and record in btree_nodes[] already.
480 ref_nr = atomic_read(fifo_front_p);
481 if (nr >= ref_nr)
482 break;
484 if (btree_node_journal_flush(b))
485 pr_err("BUG: flush_write bit should not be set here!");
487 mutex_lock(&b->write_lock);
489 if (!btree_node_dirty(b)) {
490 mutex_unlock(&b->write_lock);
491 continue;
494 if (!btree_current_write(b)->journal) {
495 mutex_unlock(&b->write_lock);
496 continue;
500 * Only select the btree node which exactly references
501 * the oldest journal entry.
503 * If the journal entry pointed by fifo_front_p is
504 * reclaimed in parallel, don't worry:
505 * - the list_for_each_xxx loop will quit when checking
506 * next now_fifo_front_p.
507 * - If there are matched nodes recorded in btree_nodes[],
508 * they are clean now (this is why and how the oldest
509 * journal entry can be reclaimed). These selected nodes
510 * will be ignored and skipped in the folowing for-loop.
512 if (nr_to_fifo_front(btree_current_write(b)->journal,
513 fifo_front_p,
514 mask) != 0) {
515 mutex_unlock(&b->write_lock);
516 continue;
519 set_btree_node_journal_flush(b);
521 mutex_unlock(&b->write_lock);
523 btree_nodes[nr++] = b;
525 * To avoid holding c->bucket_lock too long time,
526 * only scan for BTREE_FLUSH_NR matched btree nodes
527 * at most. If there are more btree nodes reference
528 * the oldest journal entry, try to flush them next
529 * time when btree_flush_write() is called.
531 if (nr == BTREE_FLUSH_NR)
532 break;
534 mutex_unlock(&c->bucket_lock);
536 for (i = 0; i < nr; i++) {
537 b = btree_nodes[i];
538 if (!b) {
539 pr_err("BUG: btree_nodes[%d] is NULL", i);
540 continue;
543 /* safe to check without holding b->write_lock */
544 if (!btree_node_journal_flush(b)) {
545 pr_err("BUG: bnode %p: journal_flush bit cleaned", b);
546 continue;
549 mutex_lock(&b->write_lock);
550 if (!btree_current_write(b)->journal) {
551 clear_bit(BTREE_NODE_journal_flush, &b->flags);
552 mutex_unlock(&b->write_lock);
553 pr_debug("bnode %p: written by others", b);
554 continue;
557 if (!btree_node_dirty(b)) {
558 clear_bit(BTREE_NODE_journal_flush, &b->flags);
559 mutex_unlock(&b->write_lock);
560 pr_debug("bnode %p: dirty bit cleaned by others", b);
561 continue;
564 __bch_btree_node_write(b, NULL);
565 clear_bit(BTREE_NODE_journal_flush, &b->flags);
566 mutex_unlock(&b->write_lock);
569 out:
570 spin_lock(&c->journal.flush_write_lock);
571 c->journal.btree_flushing = false;
572 spin_unlock(&c->journal.flush_write_lock);
575 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
577 static void journal_discard_endio(struct bio *bio)
579 struct journal_device *ja =
580 container_of(bio, struct journal_device, discard_bio);
581 struct cache *ca = container_of(ja, struct cache, journal);
583 atomic_set(&ja->discard_in_flight, DISCARD_DONE);
585 closure_wake_up(&ca->set->journal.wait);
586 closure_put(&ca->set->cl);
589 static void journal_discard_work(struct work_struct *work)
591 struct journal_device *ja =
592 container_of(work, struct journal_device, discard_work);
594 submit_bio(&ja->discard_bio);
597 static void do_journal_discard(struct cache *ca)
599 struct journal_device *ja = &ca->journal;
600 struct bio *bio = &ja->discard_bio;
602 if (!ca->discard) {
603 ja->discard_idx = ja->last_idx;
604 return;
607 switch (atomic_read(&ja->discard_in_flight)) {
608 case DISCARD_IN_FLIGHT:
609 return;
611 case DISCARD_DONE:
612 ja->discard_idx = (ja->discard_idx + 1) %
613 ca->sb.njournal_buckets;
615 atomic_set(&ja->discard_in_flight, DISCARD_READY);
616 /* fallthrough */
618 case DISCARD_READY:
619 if (ja->discard_idx == ja->last_idx)
620 return;
622 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
624 bio_init(bio, bio->bi_inline_vecs, 1);
625 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
626 bio->bi_iter.bi_sector = bucket_to_sector(ca->set,
627 ca->sb.d[ja->discard_idx]);
628 bio_set_dev(bio, ca->bdev);
629 bio->bi_iter.bi_size = bucket_bytes(ca);
630 bio->bi_end_io = journal_discard_endio;
632 closure_get(&ca->set->cl);
633 INIT_WORK(&ja->discard_work, journal_discard_work);
634 queue_work(bch_journal_wq, &ja->discard_work);
638 static void journal_reclaim(struct cache_set *c)
640 struct bkey *k = &c->journal.key;
641 struct cache *ca;
642 uint64_t last_seq;
643 unsigned int iter, n = 0;
644 atomic_t p __maybe_unused;
646 atomic_long_inc(&c->reclaim);
648 while (!atomic_read(&fifo_front(&c->journal.pin)))
649 fifo_pop(&c->journal.pin, p);
651 last_seq = last_seq(&c->journal);
653 /* Update last_idx */
655 for_each_cache(ca, c, iter) {
656 struct journal_device *ja = &ca->journal;
658 while (ja->last_idx != ja->cur_idx &&
659 ja->seq[ja->last_idx] < last_seq)
660 ja->last_idx = (ja->last_idx + 1) %
661 ca->sb.njournal_buckets;
664 for_each_cache(ca, c, iter)
665 do_journal_discard(ca);
667 if (c->journal.blocks_free)
668 goto out;
671 * Allocate:
672 * XXX: Sort by free journal space
675 for_each_cache(ca, c, iter) {
676 struct journal_device *ja = &ca->journal;
677 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
679 /* No space available on this device */
680 if (next == ja->discard_idx)
681 continue;
683 ja->cur_idx = next;
684 k->ptr[n++] = MAKE_PTR(0,
685 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
686 ca->sb.nr_this_dev);
687 atomic_long_inc(&c->reclaimed_journal_buckets);
690 if (n) {
691 bkey_init(k);
692 SET_KEY_PTRS(k, n);
693 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
695 out:
696 if (!journal_full(&c->journal))
697 __closure_wake_up(&c->journal.wait);
700 void bch_journal_next(struct journal *j)
702 atomic_t p = { 1 };
704 j->cur = (j->cur == j->w)
705 ? &j->w[1]
706 : &j->w[0];
709 * The fifo_push() needs to happen at the same time as j->seq is
710 * incremented for last_seq() to be calculated correctly
712 BUG_ON(!fifo_push(&j->pin, p));
713 atomic_set(&fifo_back(&j->pin), 1);
715 j->cur->data->seq = ++j->seq;
716 j->cur->dirty = false;
717 j->cur->need_write = false;
718 j->cur->data->keys = 0;
720 if (fifo_full(&j->pin))
721 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
724 static void journal_write_endio(struct bio *bio)
726 struct journal_write *w = bio->bi_private;
728 cache_set_err_on(bio->bi_status, w->c, "journal io error");
729 closure_put(&w->c->journal.io);
732 static void journal_write(struct closure *cl);
734 static void journal_write_done(struct closure *cl)
736 struct journal *j = container_of(cl, struct journal, io);
737 struct journal_write *w = (j->cur == j->w)
738 ? &j->w[1]
739 : &j->w[0];
741 __closure_wake_up(&w->wait);
742 continue_at_nobarrier(cl, journal_write, bch_journal_wq);
745 static void journal_write_unlock(struct closure *cl)
746 __releases(&c->journal.lock)
748 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
750 c->journal.io_in_flight = 0;
751 spin_unlock(&c->journal.lock);
754 static void journal_write_unlocked(struct closure *cl)
755 __releases(c->journal.lock)
757 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
758 struct cache *ca;
759 struct journal_write *w = c->journal.cur;
760 struct bkey *k = &c->journal.key;
761 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) *
762 c->sb.block_size;
764 struct bio *bio;
765 struct bio_list list;
767 bio_list_init(&list);
769 if (!w->need_write) {
770 closure_return_with_destructor(cl, journal_write_unlock);
771 return;
772 } else if (journal_full(&c->journal)) {
773 journal_reclaim(c);
774 spin_unlock(&c->journal.lock);
776 btree_flush_write(c);
777 continue_at(cl, journal_write, bch_journal_wq);
778 return;
781 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
783 w->data->btree_level = c->root->level;
785 bkey_copy(&w->data->btree_root, &c->root->key);
786 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
788 for_each_cache(ca, c, i)
789 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
791 w->data->magic = jset_magic(&c->sb);
792 w->data->version = BCACHE_JSET_VERSION;
793 w->data->last_seq = last_seq(&c->journal);
794 w->data->csum = csum_set(w->data);
796 for (i = 0; i < KEY_PTRS(k); i++) {
797 ca = PTR_CACHE(c, k, i);
798 bio = &ca->journal.bio;
800 atomic_long_add(sectors, &ca->meta_sectors_written);
802 bio_reset(bio);
803 bio->bi_iter.bi_sector = PTR_OFFSET(k, i);
804 bio_set_dev(bio, ca->bdev);
805 bio->bi_iter.bi_size = sectors << 9;
807 bio->bi_end_io = journal_write_endio;
808 bio->bi_private = w;
809 bio_set_op_attrs(bio, REQ_OP_WRITE,
810 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
811 bch_bio_map(bio, w->data);
813 trace_bcache_journal_write(bio, w->data->keys);
814 bio_list_add(&list, bio);
816 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
818 ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
821 /* If KEY_PTRS(k) == 0, this jset gets lost in air */
822 BUG_ON(i == 0);
824 atomic_dec_bug(&fifo_back(&c->journal.pin));
825 bch_journal_next(&c->journal);
826 journal_reclaim(c);
828 spin_unlock(&c->journal.lock);
830 while ((bio = bio_list_pop(&list)))
831 closure_bio_submit(c, bio, cl);
833 continue_at(cl, journal_write_done, NULL);
836 static void journal_write(struct closure *cl)
838 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
840 spin_lock(&c->journal.lock);
841 journal_write_unlocked(cl);
844 static void journal_try_write(struct cache_set *c)
845 __releases(c->journal.lock)
847 struct closure *cl = &c->journal.io;
848 struct journal_write *w = c->journal.cur;
850 w->need_write = true;
852 if (!c->journal.io_in_flight) {
853 c->journal.io_in_flight = 1;
854 closure_call(cl, journal_write_unlocked, NULL, &c->cl);
855 } else {
856 spin_unlock(&c->journal.lock);
860 static struct journal_write *journal_wait_for_write(struct cache_set *c,
861 unsigned int nkeys)
862 __acquires(&c->journal.lock)
864 size_t sectors;
865 struct closure cl;
866 bool wait = false;
868 closure_init_stack(&cl);
870 spin_lock(&c->journal.lock);
872 while (1) {
873 struct journal_write *w = c->journal.cur;
875 sectors = __set_blocks(w->data, w->data->keys + nkeys,
876 block_bytes(c)) * c->sb.block_size;
878 if (sectors <= min_t(size_t,
879 c->journal.blocks_free * c->sb.block_size,
880 PAGE_SECTORS << JSET_BITS))
881 return w;
883 if (wait)
884 closure_wait(&c->journal.wait, &cl);
886 if (!journal_full(&c->journal)) {
887 if (wait)
888 trace_bcache_journal_entry_full(c);
891 * XXX: If we were inserting so many keys that they
892 * won't fit in an _empty_ journal write, we'll
893 * deadlock. For now, handle this in
894 * bch_keylist_realloc() - but something to think about.
896 BUG_ON(!w->data->keys);
898 journal_try_write(c); /* unlocks */
899 } else {
900 if (wait)
901 trace_bcache_journal_full(c);
903 journal_reclaim(c);
904 spin_unlock(&c->journal.lock);
906 btree_flush_write(c);
909 closure_sync(&cl);
910 spin_lock(&c->journal.lock);
911 wait = true;
915 static void journal_write_work(struct work_struct *work)
917 struct cache_set *c = container_of(to_delayed_work(work),
918 struct cache_set,
919 journal.work);
920 spin_lock(&c->journal.lock);
921 if (c->journal.cur->dirty)
922 journal_try_write(c);
923 else
924 spin_unlock(&c->journal.lock);
928 * Entry point to the journalling code - bio_insert() and btree_invalidate()
929 * pass bch_journal() a list of keys to be journalled, and then
930 * bch_journal() hands those same keys off to btree_insert_async()
933 atomic_t *bch_journal(struct cache_set *c,
934 struct keylist *keys,
935 struct closure *parent)
937 struct journal_write *w;
938 atomic_t *ret;
940 /* No journaling if CACHE_SET_IO_DISABLE set already */
941 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
942 return NULL;
944 if (!CACHE_SYNC(&c->sb))
945 return NULL;
947 w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
949 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
950 w->data->keys += bch_keylist_nkeys(keys);
952 ret = &fifo_back(&c->journal.pin);
953 atomic_inc(ret);
955 if (parent) {
956 closure_wait(&w->wait, parent);
957 journal_try_write(c);
958 } else if (!w->dirty) {
959 w->dirty = true;
960 schedule_delayed_work(&c->journal.work,
961 msecs_to_jiffies(c->journal_delay_ms));
962 spin_unlock(&c->journal.lock);
963 } else {
964 spin_unlock(&c->journal.lock);
968 return ret;
971 void bch_journal_meta(struct cache_set *c, struct closure *cl)
973 struct keylist keys;
974 atomic_t *ref;
976 bch_keylist_init(&keys);
978 ref = bch_journal(c, &keys, cl);
979 if (ref)
980 atomic_dec_bug(ref);
983 void bch_journal_free(struct cache_set *c)
985 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
986 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
987 free_fifo(&c->journal.pin);
990 int bch_journal_alloc(struct cache_set *c)
992 struct journal *j = &c->journal;
994 spin_lock_init(&j->lock);
995 spin_lock_init(&j->flush_write_lock);
996 INIT_DELAYED_WORK(&j->work, journal_write_work);
998 c->journal_delay_ms = 100;
1000 j->w[0].c = c;
1001 j->w[1].c = c;
1003 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
1004 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
1005 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
1006 return -ENOMEM;
1008 return 0;