2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
39 #include <linux/device-mapper.h>
41 #define DM_MSG_PREFIX "crypt"
44 * context holding the current state of a multi-part conversion
46 struct convert_context
{
47 struct completion restart
;
50 struct bvec_iter iter_in
;
51 struct bvec_iter iter_out
;
55 struct skcipher_request
*req
;
56 struct aead_request
*req_aead
;
62 * per bio private data
65 struct crypt_config
*cc
;
67 u8
*integrity_metadata
;
68 bool integrity_metadata_from_pool
;
69 struct work_struct work
;
71 struct convert_context ctx
;
77 struct rb_node rb_node
;
78 } CRYPTO_MINALIGN_ATTR
;
80 struct dm_crypt_request
{
81 struct convert_context
*ctx
;
82 struct scatterlist sg_in
[4];
83 struct scatterlist sg_out
[4];
89 struct crypt_iv_operations
{
90 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
92 void (*dtr
)(struct crypt_config
*cc
);
93 int (*init
)(struct crypt_config
*cc
);
94 int (*wipe
)(struct crypt_config
*cc
);
95 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
96 struct dm_crypt_request
*dmreq
);
97 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
98 struct dm_crypt_request
*dmreq
);
101 struct iv_benbi_private
{
105 #define LMK_SEED_SIZE 64 /* hash + 0 */
106 struct iv_lmk_private
{
107 struct crypto_shash
*hash_tfm
;
111 #define TCW_WHITENING_SIZE 16
112 struct iv_tcw_private
{
113 struct crypto_shash
*crc32_tfm
;
118 #define ELEPHANT_MAX_KEY_SIZE 32
119 struct iv_elephant_private
{
120 struct crypto_skcipher
*tfm
;
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
127 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
128 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
};
131 CRYPT_MODE_INTEGRITY_AEAD
, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS
, /* Calculate IV from sector_size, not 512B sectors */
133 CRYPT_ENCRYPT_PREPROCESS
, /* Must preprocess data for encryption (elephant) */
137 * The fields in here must be read only after initialization.
139 struct crypt_config
{
143 struct percpu_counter n_allocated_pages
;
145 struct workqueue_struct
*io_queue
;
146 struct workqueue_struct
*crypt_queue
;
148 spinlock_t write_thread_lock
;
149 struct task_struct
*write_thread
;
150 struct rb_root write_tree
;
156 const struct crypt_iv_operations
*iv_gen_ops
;
158 struct iv_benbi_private benbi
;
159 struct iv_lmk_private lmk
;
160 struct iv_tcw_private tcw
;
161 struct iv_elephant_private elephant
;
164 unsigned int iv_size
;
165 unsigned short int sector_size
;
166 unsigned char sector_shift
;
169 struct crypto_skcipher
**tfms
;
170 struct crypto_aead
**tfms_aead
;
173 unsigned long cipher_flags
;
176 * Layout of each crypto request:
178 * struct skcipher_request
181 * struct dm_crypt_request
185 * The padding is added so that dm_crypt_request and the IV are
188 unsigned int dmreq_start
;
190 unsigned int per_bio_data_size
;
193 unsigned int key_size
;
194 unsigned int key_parts
; /* independent parts in key buffer */
195 unsigned int key_extra_size
; /* additional keys length */
196 unsigned int key_mac_size
; /* MAC key size for authenc(...) */
198 unsigned int integrity_tag_size
;
199 unsigned int integrity_iv_size
;
200 unsigned int on_disk_tag_size
;
203 * pool for per bio private data, crypto requests,
204 * encryption requeusts/buffer pages and integrity tags
206 unsigned tag_pool_max_sectors
;
212 struct mutex bio_alloc_lock
;
214 u8
*authenc_key
; /* space for keys in authenc() format (if used) */
219 #define MAX_TAG_SIZE 480
220 #define POOL_ENTRY_SIZE 512
222 static DEFINE_SPINLOCK(dm_crypt_clients_lock
);
223 static unsigned dm_crypt_clients_n
= 0;
224 static volatile unsigned long dm_crypt_pages_per_client
;
225 #define DM_CRYPT_MEMORY_PERCENT 2
226 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
228 static void clone_init(struct dm_crypt_io
*, struct bio
*);
229 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
230 static struct scatterlist
*crypt_get_sg_data(struct crypt_config
*cc
,
231 struct scatterlist
*sg
);
234 * Use this to access cipher attributes that are independent of the key.
236 static struct crypto_skcipher
*any_tfm(struct crypt_config
*cc
)
238 return cc
->cipher_tfm
.tfms
[0];
241 static struct crypto_aead
*any_tfm_aead(struct crypt_config
*cc
)
243 return cc
->cipher_tfm
.tfms_aead
[0];
247 * Different IV generation algorithms:
249 * plain: the initial vector is the 32-bit little-endian version of the sector
250 * number, padded with zeros if necessary.
252 * plain64: the initial vector is the 64-bit little-endian version of the sector
253 * number, padded with zeros if necessary.
255 * plain64be: the initial vector is the 64-bit big-endian version of the sector
256 * number, padded with zeros if necessary.
258 * essiv: "encrypted sector|salt initial vector", the sector number is
259 * encrypted with the bulk cipher using a salt as key. The salt
260 * should be derived from the bulk cipher's key via hashing.
262 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
263 * (needed for LRW-32-AES and possible other narrow block modes)
265 * null: the initial vector is always zero. Provides compatibility with
266 * obsolete loop_fish2 devices. Do not use for new devices.
268 * lmk: Compatible implementation of the block chaining mode used
269 * by the Loop-AES block device encryption system
270 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
271 * It operates on full 512 byte sectors and uses CBC
272 * with an IV derived from the sector number, the data and
273 * optionally extra IV seed.
274 * This means that after decryption the first block
275 * of sector must be tweaked according to decrypted data.
276 * Loop-AES can use three encryption schemes:
277 * version 1: is plain aes-cbc mode
278 * version 2: uses 64 multikey scheme with lmk IV generator
279 * version 3: the same as version 2 with additional IV seed
280 * (it uses 65 keys, last key is used as IV seed)
282 * tcw: Compatible implementation of the block chaining mode used
283 * by the TrueCrypt device encryption system (prior to version 4.1).
284 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
285 * It operates on full 512 byte sectors and uses CBC
286 * with an IV derived from initial key and the sector number.
287 * In addition, whitening value is applied on every sector, whitening
288 * is calculated from initial key, sector number and mixed using CRC32.
289 * Note that this encryption scheme is vulnerable to watermarking attacks
290 * and should be used for old compatible containers access only.
292 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
293 * The IV is encrypted little-endian byte-offset (with the same key
294 * and cipher as the volume).
296 * elephant: The extended version of eboiv with additional Elephant diffuser
297 * used with Bitlocker CBC mode.
298 * This mode was used in older Windows systems
299 * http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
302 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
303 struct dm_crypt_request
*dmreq
)
305 memset(iv
, 0, cc
->iv_size
);
306 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
311 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
312 struct dm_crypt_request
*dmreq
)
314 memset(iv
, 0, cc
->iv_size
);
315 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
320 static int crypt_iv_plain64be_gen(struct crypt_config
*cc
, u8
*iv
,
321 struct dm_crypt_request
*dmreq
)
323 memset(iv
, 0, cc
->iv_size
);
324 /* iv_size is at least of size u64; usually it is 16 bytes */
325 *(__be64
*)&iv
[cc
->iv_size
- sizeof(u64
)] = cpu_to_be64(dmreq
->iv_sector
);
330 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
331 struct dm_crypt_request
*dmreq
)
334 * ESSIV encryption of the IV is now handled by the crypto API,
335 * so just pass the plain sector number here.
337 memset(iv
, 0, cc
->iv_size
);
338 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
343 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
349 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
))
350 bs
= crypto_aead_blocksize(any_tfm_aead(cc
));
352 bs
= crypto_skcipher_blocksize(any_tfm(cc
));
355 /* we need to calculate how far we must shift the sector count
356 * to get the cipher block count, we use this shift in _gen */
358 if (1 << log
!= bs
) {
359 ti
->error
= "cypher blocksize is not a power of 2";
364 ti
->error
= "cypher blocksize is > 512";
368 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
373 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
377 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
378 struct dm_crypt_request
*dmreq
)
382 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
384 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
385 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
390 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
391 struct dm_crypt_request
*dmreq
)
393 memset(iv
, 0, cc
->iv_size
);
398 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
400 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
402 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
403 crypto_free_shash(lmk
->hash_tfm
);
404 lmk
->hash_tfm
= NULL
;
410 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
413 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
415 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
)) {
416 ti
->error
= "Unsupported sector size for LMK";
420 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
421 if (IS_ERR(lmk
->hash_tfm
)) {
422 ti
->error
= "Error initializing LMK hash";
423 return PTR_ERR(lmk
->hash_tfm
);
426 /* No seed in LMK version 2 */
427 if (cc
->key_parts
== cc
->tfms_count
) {
432 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
434 crypt_iv_lmk_dtr(cc
);
435 ti
->error
= "Error kmallocing seed storage in LMK";
442 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
444 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
445 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
447 /* LMK seed is on the position of LMK_KEYS + 1 key */
449 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
450 crypto_shash_digestsize(lmk
->hash_tfm
));
455 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
457 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
460 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
465 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
466 struct dm_crypt_request
*dmreq
,
469 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
470 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
471 struct md5_state md5state
;
475 desc
->tfm
= lmk
->hash_tfm
;
477 r
= crypto_shash_init(desc
);
482 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
487 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
488 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
492 /* Sector is cropped to 56 bits here */
493 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
494 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
495 buf
[2] = cpu_to_le32(4024);
497 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
501 /* No MD5 padding here */
502 r
= crypto_shash_export(desc
, &md5state
);
506 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
507 __cpu_to_le32s(&md5state
.hash
[i
]);
508 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
513 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
514 struct dm_crypt_request
*dmreq
)
516 struct scatterlist
*sg
;
520 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
521 sg
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
522 src
= kmap_atomic(sg_page(sg
));
523 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ sg
->offset
);
526 memset(iv
, 0, cc
->iv_size
);
531 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
532 struct dm_crypt_request
*dmreq
)
534 struct scatterlist
*sg
;
538 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
541 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
542 dst
= kmap_atomic(sg_page(sg
));
543 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ sg
->offset
);
545 /* Tweak the first block of plaintext sector */
547 crypto_xor(dst
+ sg
->offset
, iv
, cc
->iv_size
);
553 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
555 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
557 kzfree(tcw
->iv_seed
);
559 kzfree(tcw
->whitening
);
560 tcw
->whitening
= NULL
;
562 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
563 crypto_free_shash(tcw
->crc32_tfm
);
564 tcw
->crc32_tfm
= NULL
;
567 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
570 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
572 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
)) {
573 ti
->error
= "Unsupported sector size for TCW";
577 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
578 ti
->error
= "Wrong key size for TCW";
582 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
583 if (IS_ERR(tcw
->crc32_tfm
)) {
584 ti
->error
= "Error initializing CRC32 in TCW";
585 return PTR_ERR(tcw
->crc32_tfm
);
588 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
589 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
590 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
591 crypt_iv_tcw_dtr(cc
);
592 ti
->error
= "Error allocating seed storage in TCW";
599 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
601 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
602 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
604 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
605 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
611 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
613 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
615 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
616 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
621 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
622 struct dm_crypt_request
*dmreq
,
625 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
626 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
627 u8 buf
[TCW_WHITENING_SIZE
];
628 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
631 /* xor whitening with sector number */
632 crypto_xor_cpy(buf
, tcw
->whitening
, (u8
*)§or
, 8);
633 crypto_xor_cpy(&buf
[8], tcw
->whitening
+ 8, (u8
*)§or
, 8);
635 /* calculate crc32 for every 32bit part and xor it */
636 desc
->tfm
= tcw
->crc32_tfm
;
637 for (i
= 0; i
< 4; i
++) {
638 r
= crypto_shash_init(desc
);
641 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
644 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
648 crypto_xor(&buf
[0], &buf
[12], 4);
649 crypto_xor(&buf
[4], &buf
[8], 4);
651 /* apply whitening (8 bytes) to whole sector */
652 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
653 crypto_xor(data
+ i
* 8, buf
, 8);
655 memzero_explicit(buf
, sizeof(buf
));
659 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
660 struct dm_crypt_request
*dmreq
)
662 struct scatterlist
*sg
;
663 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
664 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
668 /* Remove whitening from ciphertext */
669 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
670 sg
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
671 src
= kmap_atomic(sg_page(sg
));
672 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ sg
->offset
);
677 crypto_xor_cpy(iv
, tcw
->iv_seed
, (u8
*)§or
, 8);
679 crypto_xor_cpy(&iv
[8], tcw
->iv_seed
+ 8, (u8
*)§or
,
685 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
686 struct dm_crypt_request
*dmreq
)
688 struct scatterlist
*sg
;
692 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
695 /* Apply whitening on ciphertext */
696 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
697 dst
= kmap_atomic(sg_page(sg
));
698 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ sg
->offset
);
704 static int crypt_iv_random_gen(struct crypt_config
*cc
, u8
*iv
,
705 struct dm_crypt_request
*dmreq
)
707 /* Used only for writes, there must be an additional space to store IV */
708 get_random_bytes(iv
, cc
->iv_size
);
712 static int crypt_iv_eboiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
715 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
)) {
716 ti
->error
= "AEAD transforms not supported for EBOIV";
720 if (crypto_skcipher_blocksize(any_tfm(cc
)) != cc
->iv_size
) {
721 ti
->error
= "Block size of EBOIV cipher does "
722 "not match IV size of block cipher";
729 static int crypt_iv_eboiv_gen(struct crypt_config
*cc
, u8
*iv
,
730 struct dm_crypt_request
*dmreq
)
732 u8 buf
[MAX_CIPHER_BLOCKSIZE
] __aligned(__alignof__(__le64
));
733 struct skcipher_request
*req
;
734 struct scatterlist src
, dst
;
735 struct crypto_wait wait
;
738 req
= skcipher_request_alloc(any_tfm(cc
), GFP_NOIO
);
742 memset(buf
, 0, cc
->iv_size
);
743 *(__le64
*)buf
= cpu_to_le64(dmreq
->iv_sector
* cc
->sector_size
);
745 sg_init_one(&src
, page_address(ZERO_PAGE(0)), cc
->iv_size
);
746 sg_init_one(&dst
, iv
, cc
->iv_size
);
747 skcipher_request_set_crypt(req
, &src
, &dst
, cc
->iv_size
, buf
);
748 skcipher_request_set_callback(req
, 0, crypto_req_done
, &wait
);
749 err
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
750 skcipher_request_free(req
);
755 static void crypt_iv_elephant_dtr(struct crypt_config
*cc
)
757 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
759 crypto_free_skcipher(elephant
->tfm
);
760 elephant
->tfm
= NULL
;
763 static int crypt_iv_elephant_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
766 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
769 elephant
->tfm
= crypto_alloc_skcipher("ecb(aes)", 0, 0);
770 if (IS_ERR(elephant
->tfm
)) {
771 r
= PTR_ERR(elephant
->tfm
);
772 elephant
->tfm
= NULL
;
776 r
= crypt_iv_eboiv_ctr(cc
, ti
, NULL
);
778 crypt_iv_elephant_dtr(cc
);
782 static void diffuser_disk_to_cpu(u32
*d
, size_t n
)
784 #ifndef __LITTLE_ENDIAN
787 for (i
= 0; i
< n
; i
++)
788 d
[i
] = le32_to_cpu((__le32
)d
[i
]);
792 static void diffuser_cpu_to_disk(__le32
*d
, size_t n
)
794 #ifndef __LITTLE_ENDIAN
797 for (i
= 0; i
< n
; i
++)
798 d
[i
] = cpu_to_le32((u32
)d
[i
]);
802 static void diffuser_a_decrypt(u32
*d
, size_t n
)
806 for (i
= 0; i
< 5; i
++) {
811 while (i1
< (n
- 1)) {
812 d
[i1
] += d
[i2
] ^ (d
[i3
] << 9 | d
[i3
] >> 23);
818 d
[i1
] += d
[i2
] ^ d
[i3
];
824 d
[i1
] += d
[i2
] ^ (d
[i3
] << 13 | d
[i3
] >> 19);
827 d
[i1
] += d
[i2
] ^ d
[i3
];
833 static void diffuser_a_encrypt(u32
*d
, size_t n
)
837 for (i
= 0; i
< 5; i
++) {
843 d
[i1
] -= d
[i2
] ^ d
[i3
];
846 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 13 | d
[i3
] >> 19);
852 d
[i1
] -= d
[i2
] ^ d
[i3
];
858 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 9 | d
[i3
] >> 23);
864 static void diffuser_b_decrypt(u32
*d
, size_t n
)
868 for (i
= 0; i
< 3; i
++) {
873 while (i1
< (n
- 1)) {
874 d
[i1
] += d
[i2
] ^ d
[i3
];
877 d
[i1
] += d
[i2
] ^ (d
[i3
] << 10 | d
[i3
] >> 22);
883 d
[i1
] += d
[i2
] ^ d
[i3
];
889 d
[i1
] += d
[i2
] ^ (d
[i3
] << 25 | d
[i3
] >> 7);
895 static void diffuser_b_encrypt(u32
*d
, size_t n
)
899 for (i
= 0; i
< 3; i
++) {
905 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 25 | d
[i3
] >> 7);
911 d
[i1
] -= d
[i2
] ^ d
[i3
];
917 d
[i1
] -= d
[i2
] ^ (d
[i3
] << 10 | d
[i3
] >> 22);
920 d
[i1
] -= d
[i2
] ^ d
[i3
];
926 static int crypt_iv_elephant(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
)
928 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
929 u8
*es
, *ks
, *data
, *data2
, *data_offset
;
930 struct skcipher_request
*req
;
931 struct scatterlist
*sg
, *sg2
, src
, dst
;
932 struct crypto_wait wait
;
935 req
= skcipher_request_alloc(elephant
->tfm
, GFP_NOIO
);
936 es
= kzalloc(16, GFP_NOIO
); /* Key for AES */
937 ks
= kzalloc(32, GFP_NOIO
); /* Elephant sector key */
939 if (!req
|| !es
|| !ks
) {
944 *(__le64
*)es
= cpu_to_le64(dmreq
->iv_sector
* cc
->sector_size
);
947 sg_init_one(&src
, es
, 16);
948 sg_init_one(&dst
, ks
, 16);
949 skcipher_request_set_crypt(req
, &src
, &dst
, 16, NULL
);
950 skcipher_request_set_callback(req
, 0, crypto_req_done
, &wait
);
951 r
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
957 sg_init_one(&dst
, &ks
[16], 16);
958 r
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
962 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
963 data
= kmap_atomic(sg_page(sg
));
964 data_offset
= data
+ sg
->offset
;
966 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
967 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
968 sg2
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
969 data2
= kmap_atomic(sg_page(sg2
));
970 memcpy(data_offset
, data2
+ sg2
->offset
, cc
->sector_size
);
971 kunmap_atomic(data2
);
974 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
975 diffuser_disk_to_cpu((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
976 diffuser_b_decrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
977 diffuser_a_decrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
978 diffuser_cpu_to_disk((__le32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
981 for (i
= 0; i
< (cc
->sector_size
/ 32); i
++)
982 crypto_xor(data_offset
+ i
* 32, ks
, 32);
984 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
985 diffuser_disk_to_cpu((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
986 diffuser_a_encrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
987 diffuser_b_encrypt((u32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
988 diffuser_cpu_to_disk((__le32
*)data_offset
, cc
->sector_size
/ sizeof(u32
));
995 skcipher_request_free(req
);
999 static int crypt_iv_elephant_gen(struct crypt_config
*cc
, u8
*iv
,
1000 struct dm_crypt_request
*dmreq
)
1004 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
1005 r
= crypt_iv_elephant(cc
, dmreq
);
1010 return crypt_iv_eboiv_gen(cc
, iv
, dmreq
);
1013 static int crypt_iv_elephant_post(struct crypt_config
*cc
, u8
*iv
,
1014 struct dm_crypt_request
*dmreq
)
1016 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
1017 return crypt_iv_elephant(cc
, dmreq
);
1022 static int crypt_iv_elephant_init(struct crypt_config
*cc
)
1024 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
1025 int key_offset
= cc
->key_size
- cc
->key_extra_size
;
1027 return crypto_skcipher_setkey(elephant
->tfm
, &cc
->key
[key_offset
], cc
->key_extra_size
);
1030 static int crypt_iv_elephant_wipe(struct crypt_config
*cc
)
1032 struct iv_elephant_private
*elephant
= &cc
->iv_gen_private
.elephant
;
1033 u8 key
[ELEPHANT_MAX_KEY_SIZE
];
1035 memset(key
, 0, cc
->key_extra_size
);
1036 return crypto_skcipher_setkey(elephant
->tfm
, key
, cc
->key_extra_size
);
1039 static const struct crypt_iv_operations crypt_iv_plain_ops
= {
1040 .generator
= crypt_iv_plain_gen
1043 static const struct crypt_iv_operations crypt_iv_plain64_ops
= {
1044 .generator
= crypt_iv_plain64_gen
1047 static const struct crypt_iv_operations crypt_iv_plain64be_ops
= {
1048 .generator
= crypt_iv_plain64be_gen
1051 static const struct crypt_iv_operations crypt_iv_essiv_ops
= {
1052 .generator
= crypt_iv_essiv_gen
1055 static const struct crypt_iv_operations crypt_iv_benbi_ops
= {
1056 .ctr
= crypt_iv_benbi_ctr
,
1057 .dtr
= crypt_iv_benbi_dtr
,
1058 .generator
= crypt_iv_benbi_gen
1061 static const struct crypt_iv_operations crypt_iv_null_ops
= {
1062 .generator
= crypt_iv_null_gen
1065 static const struct crypt_iv_operations crypt_iv_lmk_ops
= {
1066 .ctr
= crypt_iv_lmk_ctr
,
1067 .dtr
= crypt_iv_lmk_dtr
,
1068 .init
= crypt_iv_lmk_init
,
1069 .wipe
= crypt_iv_lmk_wipe
,
1070 .generator
= crypt_iv_lmk_gen
,
1071 .post
= crypt_iv_lmk_post
1074 static const struct crypt_iv_operations crypt_iv_tcw_ops
= {
1075 .ctr
= crypt_iv_tcw_ctr
,
1076 .dtr
= crypt_iv_tcw_dtr
,
1077 .init
= crypt_iv_tcw_init
,
1078 .wipe
= crypt_iv_tcw_wipe
,
1079 .generator
= crypt_iv_tcw_gen
,
1080 .post
= crypt_iv_tcw_post
1083 static struct crypt_iv_operations crypt_iv_random_ops
= {
1084 .generator
= crypt_iv_random_gen
1087 static struct crypt_iv_operations crypt_iv_eboiv_ops
= {
1088 .ctr
= crypt_iv_eboiv_ctr
,
1089 .generator
= crypt_iv_eboiv_gen
1092 static struct crypt_iv_operations crypt_iv_elephant_ops
= {
1093 .ctr
= crypt_iv_elephant_ctr
,
1094 .dtr
= crypt_iv_elephant_dtr
,
1095 .init
= crypt_iv_elephant_init
,
1096 .wipe
= crypt_iv_elephant_wipe
,
1097 .generator
= crypt_iv_elephant_gen
,
1098 .post
= crypt_iv_elephant_post
1102 * Integrity extensions
1104 static bool crypt_integrity_aead(struct crypt_config
*cc
)
1106 return test_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
);
1109 static bool crypt_integrity_hmac(struct crypt_config
*cc
)
1111 return crypt_integrity_aead(cc
) && cc
->key_mac_size
;
1114 /* Get sg containing data */
1115 static struct scatterlist
*crypt_get_sg_data(struct crypt_config
*cc
,
1116 struct scatterlist
*sg
)
1118 if (unlikely(crypt_integrity_aead(cc
)))
1124 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io
*io
, struct bio
*bio
)
1126 struct bio_integrity_payload
*bip
;
1127 unsigned int tag_len
;
1130 if (!bio_sectors(bio
) || !io
->cc
->on_disk_tag_size
)
1133 bip
= bio_integrity_alloc(bio
, GFP_NOIO
, 1);
1135 return PTR_ERR(bip
);
1137 tag_len
= io
->cc
->on_disk_tag_size
* (bio_sectors(bio
) >> io
->cc
->sector_shift
);
1139 bip
->bip_iter
.bi_size
= tag_len
;
1140 bip
->bip_iter
.bi_sector
= io
->cc
->start
+ io
->sector
;
1142 ret
= bio_integrity_add_page(bio
, virt_to_page(io
->integrity_metadata
),
1143 tag_len
, offset_in_page(io
->integrity_metadata
));
1144 if (unlikely(ret
!= tag_len
))
1150 static int crypt_integrity_ctr(struct crypt_config
*cc
, struct dm_target
*ti
)
1152 #ifdef CONFIG_BLK_DEV_INTEGRITY
1153 struct blk_integrity
*bi
= blk_get_integrity(cc
->dev
->bdev
->bd_disk
);
1154 struct mapped_device
*md
= dm_table_get_md(ti
->table
);
1156 /* From now we require underlying device with our integrity profile */
1157 if (!bi
|| strcasecmp(bi
->profile
->name
, "DM-DIF-EXT-TAG")) {
1158 ti
->error
= "Integrity profile not supported.";
1162 if (bi
->tag_size
!= cc
->on_disk_tag_size
||
1163 bi
->tuple_size
!= cc
->on_disk_tag_size
) {
1164 ti
->error
= "Integrity profile tag size mismatch.";
1167 if (1 << bi
->interval_exp
!= cc
->sector_size
) {
1168 ti
->error
= "Integrity profile sector size mismatch.";
1172 if (crypt_integrity_aead(cc
)) {
1173 cc
->integrity_tag_size
= cc
->on_disk_tag_size
- cc
->integrity_iv_size
;
1174 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md
),
1175 cc
->integrity_tag_size
, cc
->integrity_iv_size
);
1177 if (crypto_aead_setauthsize(any_tfm_aead(cc
), cc
->integrity_tag_size
)) {
1178 ti
->error
= "Integrity AEAD auth tag size is not supported.";
1181 } else if (cc
->integrity_iv_size
)
1182 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md
),
1183 cc
->integrity_iv_size
);
1185 if ((cc
->integrity_tag_size
+ cc
->integrity_iv_size
) != bi
->tag_size
) {
1186 ti
->error
= "Not enough space for integrity tag in the profile.";
1192 ti
->error
= "Integrity profile not supported.";
1197 static void crypt_convert_init(struct crypt_config
*cc
,
1198 struct convert_context
*ctx
,
1199 struct bio
*bio_out
, struct bio
*bio_in
,
1202 ctx
->bio_in
= bio_in
;
1203 ctx
->bio_out
= bio_out
;
1205 ctx
->iter_in
= bio_in
->bi_iter
;
1207 ctx
->iter_out
= bio_out
->bi_iter
;
1208 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
1209 init_completion(&ctx
->restart
);
1212 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
1215 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
1218 static void *req_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
)
1220 return (void *)((char *)dmreq
- cc
->dmreq_start
);
1223 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
1224 struct dm_crypt_request
*dmreq
)
1226 if (crypt_integrity_aead(cc
))
1227 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
1228 crypto_aead_alignmask(any_tfm_aead(cc
)) + 1);
1230 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
1231 crypto_skcipher_alignmask(any_tfm(cc
)) + 1);
1234 static u8
*org_iv_of_dmreq(struct crypt_config
*cc
,
1235 struct dm_crypt_request
*dmreq
)
1237 return iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
;
1240 static __le64
*org_sector_of_dmreq(struct crypt_config
*cc
,
1241 struct dm_crypt_request
*dmreq
)
1243 u8
*ptr
= iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
+ cc
->iv_size
;
1244 return (__le64
*) ptr
;
1247 static unsigned int *org_tag_of_dmreq(struct crypt_config
*cc
,
1248 struct dm_crypt_request
*dmreq
)
1250 u8
*ptr
= iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
+
1251 cc
->iv_size
+ sizeof(uint64_t);
1252 return (unsigned int*)ptr
;
1255 static void *tag_from_dmreq(struct crypt_config
*cc
,
1256 struct dm_crypt_request
*dmreq
)
1258 struct convert_context
*ctx
= dmreq
->ctx
;
1259 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1261 return &io
->integrity_metadata
[*org_tag_of_dmreq(cc
, dmreq
) *
1262 cc
->on_disk_tag_size
];
1265 static void *iv_tag_from_dmreq(struct crypt_config
*cc
,
1266 struct dm_crypt_request
*dmreq
)
1268 return tag_from_dmreq(cc
, dmreq
) + cc
->integrity_tag_size
;
1271 static int crypt_convert_block_aead(struct crypt_config
*cc
,
1272 struct convert_context
*ctx
,
1273 struct aead_request
*req
,
1274 unsigned int tag_offset
)
1276 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
1277 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
1278 struct dm_crypt_request
*dmreq
;
1279 u8
*iv
, *org_iv
, *tag_iv
, *tag
;
1283 BUG_ON(cc
->integrity_iv_size
&& cc
->integrity_iv_size
!= cc
->iv_size
);
1285 /* Reject unexpected unaligned bio. */
1286 if (unlikely(bv_in
.bv_len
& (cc
->sector_size
- 1)))
1289 dmreq
= dmreq_of_req(cc
, req
);
1290 dmreq
->iv_sector
= ctx
->cc_sector
;
1291 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
1292 dmreq
->iv_sector
>>= cc
->sector_shift
;
1295 *org_tag_of_dmreq(cc
, dmreq
) = tag_offset
;
1297 sector
= org_sector_of_dmreq(cc
, dmreq
);
1298 *sector
= cpu_to_le64(ctx
->cc_sector
- cc
->iv_offset
);
1300 iv
= iv_of_dmreq(cc
, dmreq
);
1301 org_iv
= org_iv_of_dmreq(cc
, dmreq
);
1302 tag
= tag_from_dmreq(cc
, dmreq
);
1303 tag_iv
= iv_tag_from_dmreq(cc
, dmreq
);
1306 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1307 * | (authenticated) | (auth+encryption) | |
1308 * | sector_LE | IV | sector in/out | tag in/out |
1310 sg_init_table(dmreq
->sg_in
, 4);
1311 sg_set_buf(&dmreq
->sg_in
[0], sector
, sizeof(uint64_t));
1312 sg_set_buf(&dmreq
->sg_in
[1], org_iv
, cc
->iv_size
);
1313 sg_set_page(&dmreq
->sg_in
[2], bv_in
.bv_page
, cc
->sector_size
, bv_in
.bv_offset
);
1314 sg_set_buf(&dmreq
->sg_in
[3], tag
, cc
->integrity_tag_size
);
1316 sg_init_table(dmreq
->sg_out
, 4);
1317 sg_set_buf(&dmreq
->sg_out
[0], sector
, sizeof(uint64_t));
1318 sg_set_buf(&dmreq
->sg_out
[1], org_iv
, cc
->iv_size
);
1319 sg_set_page(&dmreq
->sg_out
[2], bv_out
.bv_page
, cc
->sector_size
, bv_out
.bv_offset
);
1320 sg_set_buf(&dmreq
->sg_out
[3], tag
, cc
->integrity_tag_size
);
1322 if (cc
->iv_gen_ops
) {
1323 /* For READs use IV stored in integrity metadata */
1324 if (cc
->integrity_iv_size
&& bio_data_dir(ctx
->bio_in
) != WRITE
) {
1325 memcpy(org_iv
, tag_iv
, cc
->iv_size
);
1327 r
= cc
->iv_gen_ops
->generator(cc
, org_iv
, dmreq
);
1330 /* Store generated IV in integrity metadata */
1331 if (cc
->integrity_iv_size
)
1332 memcpy(tag_iv
, org_iv
, cc
->iv_size
);
1334 /* Working copy of IV, to be modified in crypto API */
1335 memcpy(iv
, org_iv
, cc
->iv_size
);
1338 aead_request_set_ad(req
, sizeof(uint64_t) + cc
->iv_size
);
1339 if (bio_data_dir(ctx
->bio_in
) == WRITE
) {
1340 aead_request_set_crypt(req
, dmreq
->sg_in
, dmreq
->sg_out
,
1341 cc
->sector_size
, iv
);
1342 r
= crypto_aead_encrypt(req
);
1343 if (cc
->integrity_tag_size
+ cc
->integrity_iv_size
!= cc
->on_disk_tag_size
)
1344 memset(tag
+ cc
->integrity_tag_size
+ cc
->integrity_iv_size
, 0,
1345 cc
->on_disk_tag_size
- (cc
->integrity_tag_size
+ cc
->integrity_iv_size
));
1347 aead_request_set_crypt(req
, dmreq
->sg_in
, dmreq
->sg_out
,
1348 cc
->sector_size
+ cc
->integrity_tag_size
, iv
);
1349 r
= crypto_aead_decrypt(req
);
1352 if (r
== -EBADMSG
) {
1353 char b
[BDEVNAME_SIZE
];
1354 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx
->bio_in
, b
),
1355 (unsigned long long)le64_to_cpu(*sector
));
1358 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1359 r
= cc
->iv_gen_ops
->post(cc
, org_iv
, dmreq
);
1361 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, cc
->sector_size
);
1362 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, cc
->sector_size
);
1367 static int crypt_convert_block_skcipher(struct crypt_config
*cc
,
1368 struct convert_context
*ctx
,
1369 struct skcipher_request
*req
,
1370 unsigned int tag_offset
)
1372 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
1373 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
1374 struct scatterlist
*sg_in
, *sg_out
;
1375 struct dm_crypt_request
*dmreq
;
1376 u8
*iv
, *org_iv
, *tag_iv
;
1380 /* Reject unexpected unaligned bio. */
1381 if (unlikely(bv_in
.bv_len
& (cc
->sector_size
- 1)))
1384 dmreq
= dmreq_of_req(cc
, req
);
1385 dmreq
->iv_sector
= ctx
->cc_sector
;
1386 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
1387 dmreq
->iv_sector
>>= cc
->sector_shift
;
1390 *org_tag_of_dmreq(cc
, dmreq
) = tag_offset
;
1392 iv
= iv_of_dmreq(cc
, dmreq
);
1393 org_iv
= org_iv_of_dmreq(cc
, dmreq
);
1394 tag_iv
= iv_tag_from_dmreq(cc
, dmreq
);
1396 sector
= org_sector_of_dmreq(cc
, dmreq
);
1397 *sector
= cpu_to_le64(ctx
->cc_sector
- cc
->iv_offset
);
1399 /* For skcipher we use only the first sg item */
1400 sg_in
= &dmreq
->sg_in
[0];
1401 sg_out
= &dmreq
->sg_out
[0];
1403 sg_init_table(sg_in
, 1);
1404 sg_set_page(sg_in
, bv_in
.bv_page
, cc
->sector_size
, bv_in
.bv_offset
);
1406 sg_init_table(sg_out
, 1);
1407 sg_set_page(sg_out
, bv_out
.bv_page
, cc
->sector_size
, bv_out
.bv_offset
);
1409 if (cc
->iv_gen_ops
) {
1410 /* For READs use IV stored in integrity metadata */
1411 if (cc
->integrity_iv_size
&& bio_data_dir(ctx
->bio_in
) != WRITE
) {
1412 memcpy(org_iv
, tag_iv
, cc
->integrity_iv_size
);
1414 r
= cc
->iv_gen_ops
->generator(cc
, org_iv
, dmreq
);
1417 /* Data can be already preprocessed in generator */
1418 if (test_bit(CRYPT_ENCRYPT_PREPROCESS
, &cc
->cipher_flags
))
1420 /* Store generated IV in integrity metadata */
1421 if (cc
->integrity_iv_size
)
1422 memcpy(tag_iv
, org_iv
, cc
->integrity_iv_size
);
1424 /* Working copy of IV, to be modified in crypto API */
1425 memcpy(iv
, org_iv
, cc
->iv_size
);
1428 skcipher_request_set_crypt(req
, sg_in
, sg_out
, cc
->sector_size
, iv
);
1430 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
1431 r
= crypto_skcipher_encrypt(req
);
1433 r
= crypto_skcipher_decrypt(req
);
1435 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1436 r
= cc
->iv_gen_ops
->post(cc
, org_iv
, dmreq
);
1438 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, cc
->sector_size
);
1439 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, cc
->sector_size
);
1444 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1447 static void crypt_alloc_req_skcipher(struct crypt_config
*cc
,
1448 struct convert_context
*ctx
)
1450 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
1453 ctx
->r
.req
= mempool_alloc(&cc
->req_pool
, GFP_NOIO
);
1455 skcipher_request_set_tfm(ctx
->r
.req
, cc
->cipher_tfm
.tfms
[key_index
]);
1458 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1459 * requests if driver request queue is full.
1461 skcipher_request_set_callback(ctx
->r
.req
,
1462 CRYPTO_TFM_REQ_MAY_BACKLOG
,
1463 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->r
.req
));
1466 static void crypt_alloc_req_aead(struct crypt_config
*cc
,
1467 struct convert_context
*ctx
)
1469 if (!ctx
->r
.req_aead
)
1470 ctx
->r
.req_aead
= mempool_alloc(&cc
->req_pool
, GFP_NOIO
);
1472 aead_request_set_tfm(ctx
->r
.req_aead
, cc
->cipher_tfm
.tfms_aead
[0]);
1475 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1476 * requests if driver request queue is full.
1478 aead_request_set_callback(ctx
->r
.req_aead
,
1479 CRYPTO_TFM_REQ_MAY_BACKLOG
,
1480 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->r
.req_aead
));
1483 static void crypt_alloc_req(struct crypt_config
*cc
,
1484 struct convert_context
*ctx
)
1486 if (crypt_integrity_aead(cc
))
1487 crypt_alloc_req_aead(cc
, ctx
);
1489 crypt_alloc_req_skcipher(cc
, ctx
);
1492 static void crypt_free_req_skcipher(struct crypt_config
*cc
,
1493 struct skcipher_request
*req
, struct bio
*base_bio
)
1495 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
1497 if ((struct skcipher_request
*)(io
+ 1) != req
)
1498 mempool_free(req
, &cc
->req_pool
);
1501 static void crypt_free_req_aead(struct crypt_config
*cc
,
1502 struct aead_request
*req
, struct bio
*base_bio
)
1504 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
1506 if ((struct aead_request
*)(io
+ 1) != req
)
1507 mempool_free(req
, &cc
->req_pool
);
1510 static void crypt_free_req(struct crypt_config
*cc
, void *req
, struct bio
*base_bio
)
1512 if (crypt_integrity_aead(cc
))
1513 crypt_free_req_aead(cc
, req
, base_bio
);
1515 crypt_free_req_skcipher(cc
, req
, base_bio
);
1519 * Encrypt / decrypt data from one bio to another one (can be the same one)
1521 static blk_status_t
crypt_convert(struct crypt_config
*cc
,
1522 struct convert_context
*ctx
)
1524 unsigned int tag_offset
= 0;
1525 unsigned int sector_step
= cc
->sector_size
>> SECTOR_SHIFT
;
1528 atomic_set(&ctx
->cc_pending
, 1);
1530 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
1532 crypt_alloc_req(cc
, ctx
);
1533 atomic_inc(&ctx
->cc_pending
);
1535 if (crypt_integrity_aead(cc
))
1536 r
= crypt_convert_block_aead(cc
, ctx
, ctx
->r
.req_aead
, tag_offset
);
1538 r
= crypt_convert_block_skcipher(cc
, ctx
, ctx
->r
.req
, tag_offset
);
1542 * The request was queued by a crypto driver
1543 * but the driver request queue is full, let's wait.
1546 wait_for_completion(&ctx
->restart
);
1547 reinit_completion(&ctx
->restart
);
1550 * The request is queued and processed asynchronously,
1551 * completion function kcryptd_async_done() will be called.
1555 ctx
->cc_sector
+= sector_step
;
1559 * The request was already processed (synchronously).
1562 atomic_dec(&ctx
->cc_pending
);
1563 ctx
->cc_sector
+= sector_step
;
1568 * There was a data integrity error.
1571 atomic_dec(&ctx
->cc_pending
);
1572 return BLK_STS_PROTECTION
;
1574 * There was an error while processing the request.
1577 atomic_dec(&ctx
->cc_pending
);
1578 return BLK_STS_IOERR
;
1585 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
1588 * Generate a new unfragmented bio with the given size
1589 * This should never violate the device limitations (but only because
1590 * max_segment_size is being constrained to PAGE_SIZE).
1592 * This function may be called concurrently. If we allocate from the mempool
1593 * concurrently, there is a possibility of deadlock. For example, if we have
1594 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1595 * the mempool concurrently, it may deadlock in a situation where both processes
1596 * have allocated 128 pages and the mempool is exhausted.
1598 * In order to avoid this scenario we allocate the pages under a mutex.
1600 * In order to not degrade performance with excessive locking, we try
1601 * non-blocking allocations without a mutex first but on failure we fallback
1602 * to blocking allocations with a mutex.
1604 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
1606 struct crypt_config
*cc
= io
->cc
;
1608 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1609 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
1610 unsigned i
, len
, remaining_size
;
1614 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1615 mutex_lock(&cc
->bio_alloc_lock
);
1617 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, &cc
->bs
);
1621 clone_init(io
, clone
);
1623 remaining_size
= size
;
1625 for (i
= 0; i
< nr_iovecs
; i
++) {
1626 page
= mempool_alloc(&cc
->page_pool
, gfp_mask
);
1628 crypt_free_buffer_pages(cc
, clone
);
1630 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1634 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1636 bio_add_page(clone
, page
, len
, 0);
1638 remaining_size
-= len
;
1641 /* Allocate space for integrity tags */
1642 if (dm_crypt_integrity_io_alloc(io
, clone
)) {
1643 crypt_free_buffer_pages(cc
, clone
);
1648 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1649 mutex_unlock(&cc
->bio_alloc_lock
);
1654 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1657 struct bvec_iter_all iter_all
;
1659 bio_for_each_segment_all(bv
, clone
, iter_all
) {
1660 BUG_ON(!bv
->bv_page
);
1661 mempool_free(bv
->bv_page
, &cc
->page_pool
);
1665 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1666 struct bio
*bio
, sector_t sector
)
1670 io
->sector
= sector
;
1672 io
->ctx
.r
.req
= NULL
;
1673 io
->integrity_metadata
= NULL
;
1674 io
->integrity_metadata_from_pool
= false;
1675 atomic_set(&io
->io_pending
, 0);
1678 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1680 atomic_inc(&io
->io_pending
);
1684 * One of the bios was finished. Check for completion of
1685 * the whole request and correctly clean up the buffer.
1687 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1689 struct crypt_config
*cc
= io
->cc
;
1690 struct bio
*base_bio
= io
->base_bio
;
1691 blk_status_t error
= io
->error
;
1693 if (!atomic_dec_and_test(&io
->io_pending
))
1697 crypt_free_req(cc
, io
->ctx
.r
.req
, base_bio
);
1699 if (unlikely(io
->integrity_metadata_from_pool
))
1700 mempool_free(io
->integrity_metadata
, &io
->cc
->tag_pool
);
1702 kfree(io
->integrity_metadata
);
1704 base_bio
->bi_status
= error
;
1705 bio_endio(base_bio
);
1709 * kcryptd/kcryptd_io:
1711 * Needed because it would be very unwise to do decryption in an
1712 * interrupt context.
1714 * kcryptd performs the actual encryption or decryption.
1716 * kcryptd_io performs the IO submission.
1718 * They must be separated as otherwise the final stages could be
1719 * starved by new requests which can block in the first stages due
1720 * to memory allocation.
1722 * The work is done per CPU global for all dm-crypt instances.
1723 * They should not depend on each other and do not block.
1725 static void crypt_endio(struct bio
*clone
)
1727 struct dm_crypt_io
*io
= clone
->bi_private
;
1728 struct crypt_config
*cc
= io
->cc
;
1729 unsigned rw
= bio_data_dir(clone
);
1733 * free the processed pages
1736 crypt_free_buffer_pages(cc
, clone
);
1738 error
= clone
->bi_status
;
1741 if (rw
== READ
&& !error
) {
1742 kcryptd_queue_crypt(io
);
1746 if (unlikely(error
))
1749 crypt_dec_pending(io
);
1752 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1754 struct crypt_config
*cc
= io
->cc
;
1756 clone
->bi_private
= io
;
1757 clone
->bi_end_io
= crypt_endio
;
1758 bio_set_dev(clone
, cc
->dev
->bdev
);
1759 clone
->bi_opf
= io
->base_bio
->bi_opf
;
1762 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1764 struct crypt_config
*cc
= io
->cc
;
1768 * We need the original biovec array in order to decrypt
1769 * the whole bio data *afterwards* -- thanks to immutable
1770 * biovecs we don't need to worry about the block layer
1771 * modifying the biovec array; so leverage bio_clone_fast().
1773 clone
= bio_clone_fast(io
->base_bio
, gfp
, &cc
->bs
);
1777 crypt_inc_pending(io
);
1779 clone_init(io
, clone
);
1780 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1782 if (dm_crypt_integrity_io_alloc(io
, clone
)) {
1783 crypt_dec_pending(io
);
1788 generic_make_request(clone
);
1792 static void kcryptd_io_read_work(struct work_struct
*work
)
1794 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1796 crypt_inc_pending(io
);
1797 if (kcryptd_io_read(io
, GFP_NOIO
))
1798 io
->error
= BLK_STS_RESOURCE
;
1799 crypt_dec_pending(io
);
1802 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1804 struct crypt_config
*cc
= io
->cc
;
1806 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1807 queue_work(cc
->io_queue
, &io
->work
);
1810 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1812 struct bio
*clone
= io
->ctx
.bio_out
;
1814 generic_make_request(clone
);
1817 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1819 static int dmcrypt_write(void *data
)
1821 struct crypt_config
*cc
= data
;
1822 struct dm_crypt_io
*io
;
1825 struct rb_root write_tree
;
1826 struct blk_plug plug
;
1828 spin_lock_irq(&cc
->write_thread_lock
);
1831 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1834 set_current_state(TASK_INTERRUPTIBLE
);
1836 spin_unlock_irq(&cc
->write_thread_lock
);
1838 if (unlikely(kthread_should_stop())) {
1839 set_current_state(TASK_RUNNING
);
1845 set_current_state(TASK_RUNNING
);
1846 spin_lock_irq(&cc
->write_thread_lock
);
1847 goto continue_locked
;
1850 write_tree
= cc
->write_tree
;
1851 cc
->write_tree
= RB_ROOT
;
1852 spin_unlock_irq(&cc
->write_thread_lock
);
1854 BUG_ON(rb_parent(write_tree
.rb_node
));
1857 * Note: we cannot walk the tree here with rb_next because
1858 * the structures may be freed when kcryptd_io_write is called.
1860 blk_start_plug(&plug
);
1862 io
= crypt_io_from_node(rb_first(&write_tree
));
1863 rb_erase(&io
->rb_node
, &write_tree
);
1864 kcryptd_io_write(io
);
1865 } while (!RB_EMPTY_ROOT(&write_tree
));
1866 blk_finish_plug(&plug
);
1871 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1873 struct bio
*clone
= io
->ctx
.bio_out
;
1874 struct crypt_config
*cc
= io
->cc
;
1875 unsigned long flags
;
1877 struct rb_node
**rbp
, *parent
;
1879 if (unlikely(io
->error
)) {
1880 crypt_free_buffer_pages(cc
, clone
);
1882 crypt_dec_pending(io
);
1886 /* crypt_convert should have filled the clone bio */
1887 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1889 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1891 if (likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) {
1892 generic_make_request(clone
);
1896 spin_lock_irqsave(&cc
->write_thread_lock
, flags
);
1897 if (RB_EMPTY_ROOT(&cc
->write_tree
))
1898 wake_up_process(cc
->write_thread
);
1899 rbp
= &cc
->write_tree
.rb_node
;
1901 sector
= io
->sector
;
1904 if (sector
< crypt_io_from_node(parent
)->sector
)
1905 rbp
= &(*rbp
)->rb_left
;
1907 rbp
= &(*rbp
)->rb_right
;
1909 rb_link_node(&io
->rb_node
, parent
, rbp
);
1910 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1911 spin_unlock_irqrestore(&cc
->write_thread_lock
, flags
);
1914 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1916 struct crypt_config
*cc
= io
->cc
;
1919 sector_t sector
= io
->sector
;
1923 * Prevent io from disappearing until this function completes.
1925 crypt_inc_pending(io
);
1926 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1928 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1929 if (unlikely(!clone
)) {
1930 io
->error
= BLK_STS_IOERR
;
1934 io
->ctx
.bio_out
= clone
;
1935 io
->ctx
.iter_out
= clone
->bi_iter
;
1937 sector
+= bio_sectors(clone
);
1939 crypt_inc_pending(io
);
1940 r
= crypt_convert(cc
, &io
->ctx
);
1943 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1945 /* Encryption was already finished, submit io now */
1946 if (crypt_finished
) {
1947 kcryptd_crypt_write_io_submit(io
, 0);
1948 io
->sector
= sector
;
1952 crypt_dec_pending(io
);
1955 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1957 crypt_dec_pending(io
);
1960 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1962 struct crypt_config
*cc
= io
->cc
;
1965 crypt_inc_pending(io
);
1967 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1970 r
= crypt_convert(cc
, &io
->ctx
);
1974 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1975 kcryptd_crypt_read_done(io
);
1977 crypt_dec_pending(io
);
1980 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1983 struct dm_crypt_request
*dmreq
= async_req
->data
;
1984 struct convert_context
*ctx
= dmreq
->ctx
;
1985 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1986 struct crypt_config
*cc
= io
->cc
;
1989 * A request from crypto driver backlog is going to be processed now,
1990 * finish the completion and continue in crypt_convert().
1991 * (Callback will be called for the second time for this request.)
1993 if (error
== -EINPROGRESS
) {
1994 complete(&ctx
->restart
);
1998 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1999 error
= cc
->iv_gen_ops
->post(cc
, org_iv_of_dmreq(cc
, dmreq
), dmreq
);
2001 if (error
== -EBADMSG
) {
2002 char b
[BDEVNAME_SIZE
];
2003 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx
->bio_in
, b
),
2004 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc
, dmreq
)));
2005 io
->error
= BLK_STS_PROTECTION
;
2006 } else if (error
< 0)
2007 io
->error
= BLK_STS_IOERR
;
2009 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
2011 if (!atomic_dec_and_test(&ctx
->cc_pending
))
2014 if (bio_data_dir(io
->base_bio
) == READ
)
2015 kcryptd_crypt_read_done(io
);
2017 kcryptd_crypt_write_io_submit(io
, 1);
2020 static void kcryptd_crypt(struct work_struct
*work
)
2022 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
2024 if (bio_data_dir(io
->base_bio
) == READ
)
2025 kcryptd_crypt_read_convert(io
);
2027 kcryptd_crypt_write_convert(io
);
2030 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
2032 struct crypt_config
*cc
= io
->cc
;
2034 INIT_WORK(&io
->work
, kcryptd_crypt
);
2035 queue_work(cc
->crypt_queue
, &io
->work
);
2038 static void crypt_free_tfms_aead(struct crypt_config
*cc
)
2040 if (!cc
->cipher_tfm
.tfms_aead
)
2043 if (cc
->cipher_tfm
.tfms_aead
[0] && !IS_ERR(cc
->cipher_tfm
.tfms_aead
[0])) {
2044 crypto_free_aead(cc
->cipher_tfm
.tfms_aead
[0]);
2045 cc
->cipher_tfm
.tfms_aead
[0] = NULL
;
2048 kfree(cc
->cipher_tfm
.tfms_aead
);
2049 cc
->cipher_tfm
.tfms_aead
= NULL
;
2052 static void crypt_free_tfms_skcipher(struct crypt_config
*cc
)
2056 if (!cc
->cipher_tfm
.tfms
)
2059 for (i
= 0; i
< cc
->tfms_count
; i
++)
2060 if (cc
->cipher_tfm
.tfms
[i
] && !IS_ERR(cc
->cipher_tfm
.tfms
[i
])) {
2061 crypto_free_skcipher(cc
->cipher_tfm
.tfms
[i
]);
2062 cc
->cipher_tfm
.tfms
[i
] = NULL
;
2065 kfree(cc
->cipher_tfm
.tfms
);
2066 cc
->cipher_tfm
.tfms
= NULL
;
2069 static void crypt_free_tfms(struct crypt_config
*cc
)
2071 if (crypt_integrity_aead(cc
))
2072 crypt_free_tfms_aead(cc
);
2074 crypt_free_tfms_skcipher(cc
);
2077 static int crypt_alloc_tfms_skcipher(struct crypt_config
*cc
, char *ciphermode
)
2082 cc
->cipher_tfm
.tfms
= kcalloc(cc
->tfms_count
,
2083 sizeof(struct crypto_skcipher
*),
2085 if (!cc
->cipher_tfm
.tfms
)
2088 for (i
= 0; i
< cc
->tfms_count
; i
++) {
2089 cc
->cipher_tfm
.tfms
[i
] = crypto_alloc_skcipher(ciphermode
, 0, 0);
2090 if (IS_ERR(cc
->cipher_tfm
.tfms
[i
])) {
2091 err
= PTR_ERR(cc
->cipher_tfm
.tfms
[i
]);
2092 crypt_free_tfms(cc
);
2098 * dm-crypt performance can vary greatly depending on which crypto
2099 * algorithm implementation is used. Help people debug performance
2100 * problems by logging the ->cra_driver_name.
2102 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode
,
2103 crypto_skcipher_alg(any_tfm(cc
))->base
.cra_driver_name
);
2107 static int crypt_alloc_tfms_aead(struct crypt_config
*cc
, char *ciphermode
)
2111 cc
->cipher_tfm
.tfms
= kmalloc(sizeof(struct crypto_aead
*), GFP_KERNEL
);
2112 if (!cc
->cipher_tfm
.tfms
)
2115 cc
->cipher_tfm
.tfms_aead
[0] = crypto_alloc_aead(ciphermode
, 0, 0);
2116 if (IS_ERR(cc
->cipher_tfm
.tfms_aead
[0])) {
2117 err
= PTR_ERR(cc
->cipher_tfm
.tfms_aead
[0]);
2118 crypt_free_tfms(cc
);
2122 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode
,
2123 crypto_aead_alg(any_tfm_aead(cc
))->base
.cra_driver_name
);
2127 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
2129 if (crypt_integrity_aead(cc
))
2130 return crypt_alloc_tfms_aead(cc
, ciphermode
);
2132 return crypt_alloc_tfms_skcipher(cc
, ciphermode
);
2135 static unsigned crypt_subkey_size(struct crypt_config
*cc
)
2137 return (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
2140 static unsigned crypt_authenckey_size(struct crypt_config
*cc
)
2142 return crypt_subkey_size(cc
) + RTA_SPACE(sizeof(struct crypto_authenc_key_param
));
2146 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2147 * the key must be for some reason in special format.
2148 * This funcion converts cc->key to this special format.
2150 static void crypt_copy_authenckey(char *p
, const void *key
,
2151 unsigned enckeylen
, unsigned authkeylen
)
2153 struct crypto_authenc_key_param
*param
;
2156 rta
= (struct rtattr
*)p
;
2157 param
= RTA_DATA(rta
);
2158 param
->enckeylen
= cpu_to_be32(enckeylen
);
2159 rta
->rta_len
= RTA_LENGTH(sizeof(*param
));
2160 rta
->rta_type
= CRYPTO_AUTHENC_KEYA_PARAM
;
2161 p
+= RTA_SPACE(sizeof(*param
));
2162 memcpy(p
, key
+ enckeylen
, authkeylen
);
2164 memcpy(p
, key
, enckeylen
);
2167 static int crypt_setkey(struct crypt_config
*cc
)
2169 unsigned subkey_size
;
2172 /* Ignore extra keys (which are used for IV etc) */
2173 subkey_size
= crypt_subkey_size(cc
);
2175 if (crypt_integrity_hmac(cc
)) {
2176 if (subkey_size
< cc
->key_mac_size
)
2179 crypt_copy_authenckey(cc
->authenc_key
, cc
->key
,
2180 subkey_size
- cc
->key_mac_size
,
2184 for (i
= 0; i
< cc
->tfms_count
; i
++) {
2185 if (crypt_integrity_hmac(cc
))
2186 r
= crypto_aead_setkey(cc
->cipher_tfm
.tfms_aead
[i
],
2187 cc
->authenc_key
, crypt_authenckey_size(cc
));
2188 else if (crypt_integrity_aead(cc
))
2189 r
= crypto_aead_setkey(cc
->cipher_tfm
.tfms_aead
[i
],
2190 cc
->key
+ (i
* subkey_size
),
2193 r
= crypto_skcipher_setkey(cc
->cipher_tfm
.tfms
[i
],
2194 cc
->key
+ (i
* subkey_size
),
2200 if (crypt_integrity_hmac(cc
))
2201 memzero_explicit(cc
->authenc_key
, crypt_authenckey_size(cc
));
2208 static bool contains_whitespace(const char *str
)
2211 if (isspace(*str
++))
2216 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
2218 char *new_key_string
, *key_desc
;
2221 const struct user_key_payload
*ukp
;
2224 * Reject key_string with whitespace. dm core currently lacks code for
2225 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2227 if (contains_whitespace(key_string
)) {
2228 DMERR("whitespace chars not allowed in key string");
2232 /* look for next ':' separating key_type from key_description */
2233 key_desc
= strpbrk(key_string
, ":");
2234 if (!key_desc
|| key_desc
== key_string
|| !strlen(key_desc
+ 1))
2237 if (strncmp(key_string
, "logon:", key_desc
- key_string
+ 1) &&
2238 strncmp(key_string
, "user:", key_desc
- key_string
+ 1))
2241 new_key_string
= kstrdup(key_string
, GFP_KERNEL
);
2242 if (!new_key_string
)
2245 key
= request_key(key_string
[0] == 'l' ? &key_type_logon
: &key_type_user
,
2246 key_desc
+ 1, NULL
);
2248 kzfree(new_key_string
);
2249 return PTR_ERR(key
);
2252 down_read(&key
->sem
);
2254 ukp
= user_key_payload_locked(key
);
2258 kzfree(new_key_string
);
2259 return -EKEYREVOKED
;
2262 if (cc
->key_size
!= ukp
->datalen
) {
2265 kzfree(new_key_string
);
2269 memcpy(cc
->key
, ukp
->data
, cc
->key_size
);
2274 /* clear the flag since following operations may invalidate previously valid key */
2275 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2277 ret
= crypt_setkey(cc
);
2280 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2281 kzfree(cc
->key_string
);
2282 cc
->key_string
= new_key_string
;
2284 kzfree(new_key_string
);
2289 static int get_key_size(char **key_string
)
2294 if (*key_string
[0] != ':')
2295 return strlen(*key_string
) >> 1;
2297 /* look for next ':' in key string */
2298 colon
= strpbrk(*key_string
+ 1, ":");
2302 if (sscanf(*key_string
+ 1, "%u%c", &ret
, &dummy
) != 2 || dummy
!= ':')
2305 *key_string
= colon
;
2307 /* remaining key string should be :<logon|user>:<key_desc> */
2314 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
2319 static int get_key_size(char **key_string
)
2321 return (*key_string
[0] == ':') ? -EINVAL
: strlen(*key_string
) >> 1;
2326 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
2329 int key_string_len
= strlen(key
);
2331 /* Hyphen (which gives a key_size of zero) means there is no key. */
2332 if (!cc
->key_size
&& strcmp(key
, "-"))
2335 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2336 if (key
[0] == ':') {
2337 r
= crypt_set_keyring_key(cc
, key
+ 1);
2341 /* clear the flag since following operations may invalidate previously valid key */
2342 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2344 /* wipe references to any kernel keyring key */
2345 kzfree(cc
->key_string
);
2346 cc
->key_string
= NULL
;
2348 /* Decode key from its hex representation. */
2349 if (cc
->key_size
&& hex2bin(cc
->key
, key
, cc
->key_size
) < 0)
2352 r
= crypt_setkey(cc
);
2354 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2357 /* Hex key string not needed after here, so wipe it. */
2358 memset(key
, '0', key_string_len
);
2363 static int crypt_wipe_key(struct crypt_config
*cc
)
2367 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2368 get_random_bytes(&cc
->key
, cc
->key_size
);
2370 /* Wipe IV private keys */
2371 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
2372 r
= cc
->iv_gen_ops
->wipe(cc
);
2377 kzfree(cc
->key_string
);
2378 cc
->key_string
= NULL
;
2379 r
= crypt_setkey(cc
);
2380 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
2385 static void crypt_calculate_pages_per_client(void)
2387 unsigned long pages
= (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT
/ 100;
2389 if (!dm_crypt_clients_n
)
2392 pages
/= dm_crypt_clients_n
;
2393 if (pages
< DM_CRYPT_MIN_PAGES_PER_CLIENT
)
2394 pages
= DM_CRYPT_MIN_PAGES_PER_CLIENT
;
2395 dm_crypt_pages_per_client
= pages
;
2398 static void *crypt_page_alloc(gfp_t gfp_mask
, void *pool_data
)
2400 struct crypt_config
*cc
= pool_data
;
2403 if (unlikely(percpu_counter_compare(&cc
->n_allocated_pages
, dm_crypt_pages_per_client
) >= 0) &&
2404 likely(gfp_mask
& __GFP_NORETRY
))
2407 page
= alloc_page(gfp_mask
);
2408 if (likely(page
!= NULL
))
2409 percpu_counter_add(&cc
->n_allocated_pages
, 1);
2414 static void crypt_page_free(void *page
, void *pool_data
)
2416 struct crypt_config
*cc
= pool_data
;
2419 percpu_counter_sub(&cc
->n_allocated_pages
, 1);
2422 static void crypt_dtr(struct dm_target
*ti
)
2424 struct crypt_config
*cc
= ti
->private;
2431 if (cc
->write_thread
)
2432 kthread_stop(cc
->write_thread
);
2435 destroy_workqueue(cc
->io_queue
);
2436 if (cc
->crypt_queue
)
2437 destroy_workqueue(cc
->crypt_queue
);
2439 crypt_free_tfms(cc
);
2441 bioset_exit(&cc
->bs
);
2443 mempool_exit(&cc
->page_pool
);
2444 mempool_exit(&cc
->req_pool
);
2445 mempool_exit(&cc
->tag_pool
);
2447 WARN_ON(percpu_counter_sum(&cc
->n_allocated_pages
) != 0);
2448 percpu_counter_destroy(&cc
->n_allocated_pages
);
2450 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
2451 cc
->iv_gen_ops
->dtr(cc
);
2454 dm_put_device(ti
, cc
->dev
);
2456 kzfree(cc
->cipher_string
);
2457 kzfree(cc
->key_string
);
2458 kzfree(cc
->cipher_auth
);
2459 kzfree(cc
->authenc_key
);
2461 mutex_destroy(&cc
->bio_alloc_lock
);
2463 /* Must zero key material before freeing */
2466 spin_lock(&dm_crypt_clients_lock
);
2467 WARN_ON(!dm_crypt_clients_n
);
2468 dm_crypt_clients_n
--;
2469 crypt_calculate_pages_per_client();
2470 spin_unlock(&dm_crypt_clients_lock
);
2473 static int crypt_ctr_ivmode(struct dm_target
*ti
, const char *ivmode
)
2475 struct crypt_config
*cc
= ti
->private;
2477 if (crypt_integrity_aead(cc
))
2478 cc
->iv_size
= crypto_aead_ivsize(any_tfm_aead(cc
));
2480 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
2483 /* at least a 64 bit sector number should fit in our buffer */
2484 cc
->iv_size
= max(cc
->iv_size
,
2485 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
2487 DMWARN("Selected cipher does not support IVs");
2491 /* Choose ivmode, see comments at iv code. */
2493 cc
->iv_gen_ops
= NULL
;
2494 else if (strcmp(ivmode
, "plain") == 0)
2495 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
2496 else if (strcmp(ivmode
, "plain64") == 0)
2497 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
2498 else if (strcmp(ivmode
, "plain64be") == 0)
2499 cc
->iv_gen_ops
= &crypt_iv_plain64be_ops
;
2500 else if (strcmp(ivmode
, "essiv") == 0)
2501 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
2502 else if (strcmp(ivmode
, "benbi") == 0)
2503 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
2504 else if (strcmp(ivmode
, "null") == 0)
2505 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
2506 else if (strcmp(ivmode
, "eboiv") == 0)
2507 cc
->iv_gen_ops
= &crypt_iv_eboiv_ops
;
2508 else if (strcmp(ivmode
, "elephant") == 0) {
2509 cc
->iv_gen_ops
= &crypt_iv_elephant_ops
;
2511 cc
->key_extra_size
= cc
->key_size
/ 2;
2512 if (cc
->key_extra_size
> ELEPHANT_MAX_KEY_SIZE
)
2514 set_bit(CRYPT_ENCRYPT_PREPROCESS
, &cc
->cipher_flags
);
2515 } else if (strcmp(ivmode
, "lmk") == 0) {
2516 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
2518 * Version 2 and 3 is recognised according
2519 * to length of provided multi-key string.
2520 * If present (version 3), last key is used as IV seed.
2521 * All keys (including IV seed) are always the same size.
2523 if (cc
->key_size
% cc
->key_parts
) {
2525 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
2527 } else if (strcmp(ivmode
, "tcw") == 0) {
2528 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
2529 cc
->key_parts
+= 2; /* IV + whitening */
2530 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
2531 } else if (strcmp(ivmode
, "random") == 0) {
2532 cc
->iv_gen_ops
= &crypt_iv_random_ops
;
2533 /* Need storage space in integrity fields. */
2534 cc
->integrity_iv_size
= cc
->iv_size
;
2536 ti
->error
= "Invalid IV mode";
2544 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2545 * The HMAC is needed to calculate tag size (HMAC digest size).
2546 * This should be probably done by crypto-api calls (once available...)
2548 static int crypt_ctr_auth_cipher(struct crypt_config
*cc
, char *cipher_api
)
2550 char *start
, *end
, *mac_alg
= NULL
;
2551 struct crypto_ahash
*mac
;
2553 if (!strstarts(cipher_api
, "authenc("))
2556 start
= strchr(cipher_api
, '(');
2557 end
= strchr(cipher_api
, ',');
2558 if (!start
|| !end
|| ++start
> end
)
2561 mac_alg
= kzalloc(end
- start
+ 1, GFP_KERNEL
);
2564 strncpy(mac_alg
, start
, end
- start
);
2566 mac
= crypto_alloc_ahash(mac_alg
, 0, 0);
2570 return PTR_ERR(mac
);
2572 cc
->key_mac_size
= crypto_ahash_digestsize(mac
);
2573 crypto_free_ahash(mac
);
2575 cc
->authenc_key
= kmalloc(crypt_authenckey_size(cc
), GFP_KERNEL
);
2576 if (!cc
->authenc_key
)
2582 static int crypt_ctr_cipher_new(struct dm_target
*ti
, char *cipher_in
, char *key
,
2583 char **ivmode
, char **ivopts
)
2585 struct crypt_config
*cc
= ti
->private;
2586 char *tmp
, *cipher_api
, buf
[CRYPTO_MAX_ALG_NAME
];
2592 * New format (capi: prefix)
2593 * capi:cipher_api_spec-iv:ivopts
2595 tmp
= &cipher_in
[strlen("capi:")];
2597 /* Separate IV options if present, it can contain another '-' in hash name */
2598 *ivopts
= strrchr(tmp
, ':');
2604 *ivmode
= strrchr(tmp
, '-');
2609 /* The rest is crypto API spec */
2612 /* Alloc AEAD, can be used only in new format. */
2613 if (crypt_integrity_aead(cc
)) {
2614 ret
= crypt_ctr_auth_cipher(cc
, cipher_api
);
2616 ti
->error
= "Invalid AEAD cipher spec";
2621 if (*ivmode
&& !strcmp(*ivmode
, "lmk"))
2622 cc
->tfms_count
= 64;
2624 if (*ivmode
&& !strcmp(*ivmode
, "essiv")) {
2626 ti
->error
= "Digest algorithm missing for ESSIV mode";
2629 ret
= snprintf(buf
, CRYPTO_MAX_ALG_NAME
, "essiv(%s,%s)",
2630 cipher_api
, *ivopts
);
2631 if (ret
< 0 || ret
>= CRYPTO_MAX_ALG_NAME
) {
2632 ti
->error
= "Cannot allocate cipher string";
2638 cc
->key_parts
= cc
->tfms_count
;
2640 /* Allocate cipher */
2641 ret
= crypt_alloc_tfms(cc
, cipher_api
);
2643 ti
->error
= "Error allocating crypto tfm";
2647 if (crypt_integrity_aead(cc
))
2648 cc
->iv_size
= crypto_aead_ivsize(any_tfm_aead(cc
));
2650 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
2655 static int crypt_ctr_cipher_old(struct dm_target
*ti
, char *cipher_in
, char *key
,
2656 char **ivmode
, char **ivopts
)
2658 struct crypt_config
*cc
= ti
->private;
2659 char *tmp
, *cipher
, *chainmode
, *keycount
;
2660 char *cipher_api
= NULL
;
2664 if (strchr(cipher_in
, '(') || crypt_integrity_aead(cc
)) {
2665 ti
->error
= "Bad cipher specification";
2670 * Legacy dm-crypt cipher specification
2671 * cipher[:keycount]-mode-iv:ivopts
2674 keycount
= strsep(&tmp
, "-");
2675 cipher
= strsep(&keycount
, ":");
2679 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
2680 !is_power_of_2(cc
->tfms_count
)) {
2681 ti
->error
= "Bad cipher key count specification";
2684 cc
->key_parts
= cc
->tfms_count
;
2686 chainmode
= strsep(&tmp
, "-");
2687 *ivmode
= strsep(&tmp
, ":");
2691 * For compatibility with the original dm-crypt mapping format, if
2692 * only the cipher name is supplied, use cbc-plain.
2694 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !*ivmode
)) {
2699 if (strcmp(chainmode
, "ecb") && !*ivmode
) {
2700 ti
->error
= "IV mechanism required";
2704 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
2708 if (*ivmode
&& !strcmp(*ivmode
, "essiv")) {
2710 ti
->error
= "Digest algorithm missing for ESSIV mode";
2714 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
2715 "essiv(%s(%s),%s)", chainmode
, cipher
, *ivopts
);
2717 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
2718 "%s(%s)", chainmode
, cipher
);
2720 if (ret
< 0 || ret
>= CRYPTO_MAX_ALG_NAME
) {
2725 /* Allocate cipher */
2726 ret
= crypt_alloc_tfms(cc
, cipher_api
);
2728 ti
->error
= "Error allocating crypto tfm";
2736 ti
->error
= "Cannot allocate cipher strings";
2740 static int crypt_ctr_cipher(struct dm_target
*ti
, char *cipher_in
, char *key
)
2742 struct crypt_config
*cc
= ti
->private;
2743 char *ivmode
= NULL
, *ivopts
= NULL
;
2746 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
2747 if (!cc
->cipher_string
) {
2748 ti
->error
= "Cannot allocate cipher strings";
2752 if (strstarts(cipher_in
, "capi:"))
2753 ret
= crypt_ctr_cipher_new(ti
, cipher_in
, key
, &ivmode
, &ivopts
);
2755 ret
= crypt_ctr_cipher_old(ti
, cipher_in
, key
, &ivmode
, &ivopts
);
2760 ret
= crypt_ctr_ivmode(ti
, ivmode
);
2764 /* Initialize and set key */
2765 ret
= crypt_set_key(cc
, key
);
2767 ti
->error
= "Error decoding and setting key";
2772 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
2773 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
2775 ti
->error
= "Error creating IV";
2780 /* Initialize IV (set keys for ESSIV etc) */
2781 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
2782 ret
= cc
->iv_gen_ops
->init(cc
);
2784 ti
->error
= "Error initialising IV";
2789 /* wipe the kernel key payload copy */
2791 memset(cc
->key
, 0, cc
->key_size
* sizeof(u8
));
2796 static int crypt_ctr_optional(struct dm_target
*ti
, unsigned int argc
, char **argv
)
2798 struct crypt_config
*cc
= ti
->private;
2799 struct dm_arg_set as
;
2800 static const struct dm_arg _args
[] = {
2801 {0, 6, "Invalid number of feature args"},
2803 unsigned int opt_params
, val
;
2804 const char *opt_string
, *sval
;
2808 /* Optional parameters */
2812 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
2816 while (opt_params
--) {
2817 opt_string
= dm_shift_arg(&as
);
2819 ti
->error
= "Not enough feature arguments";
2823 if (!strcasecmp(opt_string
, "allow_discards"))
2824 ti
->num_discard_bios
= 1;
2826 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
2827 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
2829 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
2830 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
2831 else if (sscanf(opt_string
, "integrity:%u:", &val
) == 1) {
2832 if (val
== 0 || val
> MAX_TAG_SIZE
) {
2833 ti
->error
= "Invalid integrity arguments";
2836 cc
->on_disk_tag_size
= val
;
2837 sval
= strchr(opt_string
+ strlen("integrity:"), ':') + 1;
2838 if (!strcasecmp(sval
, "aead")) {
2839 set_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
);
2840 } else if (strcasecmp(sval
, "none")) {
2841 ti
->error
= "Unknown integrity profile";
2845 cc
->cipher_auth
= kstrdup(sval
, GFP_KERNEL
);
2846 if (!cc
->cipher_auth
)
2848 } else if (sscanf(opt_string
, "sector_size:%hu%c", &cc
->sector_size
, &dummy
) == 1) {
2849 if (cc
->sector_size
< (1 << SECTOR_SHIFT
) ||
2850 cc
->sector_size
> 4096 ||
2851 (cc
->sector_size
& (cc
->sector_size
- 1))) {
2852 ti
->error
= "Invalid feature value for sector_size";
2855 if (ti
->len
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1)) {
2856 ti
->error
= "Device size is not multiple of sector_size feature";
2859 cc
->sector_shift
= __ffs(cc
->sector_size
) - SECTOR_SHIFT
;
2860 } else if (!strcasecmp(opt_string
, "iv_large_sectors"))
2861 set_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
);
2863 ti
->error
= "Invalid feature arguments";
2872 * Construct an encryption mapping:
2873 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2875 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
2877 struct crypt_config
*cc
;
2878 const char *devname
= dm_table_device_name(ti
->table
);
2880 unsigned int align_mask
;
2881 unsigned long long tmpll
;
2883 size_t iv_size_padding
, additional_req_size
;
2887 ti
->error
= "Not enough arguments";
2891 key_size
= get_key_size(&argv
[1]);
2893 ti
->error
= "Cannot parse key size";
2897 cc
= kzalloc(struct_size(cc
, key
, key_size
), GFP_KERNEL
);
2899 ti
->error
= "Cannot allocate encryption context";
2902 cc
->key_size
= key_size
;
2903 cc
->sector_size
= (1 << SECTOR_SHIFT
);
2904 cc
->sector_shift
= 0;
2908 spin_lock(&dm_crypt_clients_lock
);
2909 dm_crypt_clients_n
++;
2910 crypt_calculate_pages_per_client();
2911 spin_unlock(&dm_crypt_clients_lock
);
2913 ret
= percpu_counter_init(&cc
->n_allocated_pages
, 0, GFP_KERNEL
);
2917 /* Optional parameters need to be read before cipher constructor */
2919 ret
= crypt_ctr_optional(ti
, argc
- 5, &argv
[5]);
2924 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
2928 if (crypt_integrity_aead(cc
)) {
2929 cc
->dmreq_start
= sizeof(struct aead_request
);
2930 cc
->dmreq_start
+= crypto_aead_reqsize(any_tfm_aead(cc
));
2931 align_mask
= crypto_aead_alignmask(any_tfm_aead(cc
));
2933 cc
->dmreq_start
= sizeof(struct skcipher_request
);
2934 cc
->dmreq_start
+= crypto_skcipher_reqsize(any_tfm(cc
));
2935 align_mask
= crypto_skcipher_alignmask(any_tfm(cc
));
2937 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
2939 if (align_mask
< CRYPTO_MINALIGN
) {
2940 /* Allocate the padding exactly */
2941 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
2945 * If the cipher requires greater alignment than kmalloc
2946 * alignment, we don't know the exact position of the
2947 * initialization vector. We must assume worst case.
2949 iv_size_padding
= align_mask
;
2952 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2953 additional_req_size
= sizeof(struct dm_crypt_request
) +
2954 iv_size_padding
+ cc
->iv_size
+
2957 sizeof(unsigned int);
2959 ret
= mempool_init_kmalloc_pool(&cc
->req_pool
, MIN_IOS
, cc
->dmreq_start
+ additional_req_size
);
2961 ti
->error
= "Cannot allocate crypt request mempool";
2965 cc
->per_bio_data_size
= ti
->per_io_data_size
=
2966 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+ additional_req_size
,
2967 ARCH_KMALLOC_MINALIGN
);
2969 ret
= mempool_init(&cc
->page_pool
, BIO_MAX_PAGES
, crypt_page_alloc
, crypt_page_free
, cc
);
2971 ti
->error
= "Cannot allocate page mempool";
2975 ret
= bioset_init(&cc
->bs
, MIN_IOS
, 0, BIOSET_NEED_BVECS
);
2977 ti
->error
= "Cannot allocate crypt bioset";
2981 mutex_init(&cc
->bio_alloc_lock
);
2984 if ((sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) ||
2985 (tmpll
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1))) {
2986 ti
->error
= "Invalid iv_offset sector";
2989 cc
->iv_offset
= tmpll
;
2991 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
2993 ti
->error
= "Device lookup failed";
2998 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1 || tmpll
!= (sector_t
)tmpll
) {
2999 ti
->error
= "Invalid device sector";
3004 if (crypt_integrity_aead(cc
) || cc
->integrity_iv_size
) {
3005 ret
= crypt_integrity_ctr(cc
, ti
);
3009 cc
->tag_pool_max_sectors
= POOL_ENTRY_SIZE
/ cc
->on_disk_tag_size
;
3010 if (!cc
->tag_pool_max_sectors
)
3011 cc
->tag_pool_max_sectors
= 1;
3013 ret
= mempool_init_kmalloc_pool(&cc
->tag_pool
, MIN_IOS
,
3014 cc
->tag_pool_max_sectors
* cc
->on_disk_tag_size
);
3016 ti
->error
= "Cannot allocate integrity tags mempool";
3020 cc
->tag_pool_max_sectors
<<= cc
->sector_shift
;
3024 cc
->io_queue
= alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM
, 1, devname
);
3025 if (!cc
->io_queue
) {
3026 ti
->error
= "Couldn't create kcryptd io queue";
3030 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
3031 cc
->crypt_queue
= alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
,
3034 cc
->crypt_queue
= alloc_workqueue("kcryptd/%s",
3035 WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
3036 num_online_cpus(), devname
);
3037 if (!cc
->crypt_queue
) {
3038 ti
->error
= "Couldn't create kcryptd queue";
3042 spin_lock_init(&cc
->write_thread_lock
);
3043 cc
->write_tree
= RB_ROOT
;
3045 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write/%s", devname
);
3046 if (IS_ERR(cc
->write_thread
)) {
3047 ret
= PTR_ERR(cc
->write_thread
);
3048 cc
->write_thread
= NULL
;
3049 ti
->error
= "Couldn't spawn write thread";
3052 wake_up_process(cc
->write_thread
);
3054 ti
->num_flush_bios
= 1;
3063 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
3065 struct dm_crypt_io
*io
;
3066 struct crypt_config
*cc
= ti
->private;
3069 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3070 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3071 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3073 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
||
3074 bio_op(bio
) == REQ_OP_DISCARD
)) {
3075 bio_set_dev(bio
, cc
->dev
->bdev
);
3076 if (bio_sectors(bio
))
3077 bio
->bi_iter
.bi_sector
= cc
->start
+
3078 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
3079 return DM_MAPIO_REMAPPED
;
3083 * Check if bio is too large, split as needed.
3085 if (unlikely(bio
->bi_iter
.bi_size
> (BIO_MAX_PAGES
<< PAGE_SHIFT
)) &&
3086 (bio_data_dir(bio
) == WRITE
|| cc
->on_disk_tag_size
))
3087 dm_accept_partial_bio(bio
, ((BIO_MAX_PAGES
<< PAGE_SHIFT
) >> SECTOR_SHIFT
));
3090 * Ensure that bio is a multiple of internal sector encryption size
3091 * and is aligned to this size as defined in IO hints.
3093 if (unlikely((bio
->bi_iter
.bi_sector
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1)) != 0))
3094 return DM_MAPIO_KILL
;
3096 if (unlikely(bio
->bi_iter
.bi_size
& (cc
->sector_size
- 1)))
3097 return DM_MAPIO_KILL
;
3099 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
3100 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
3102 if (cc
->on_disk_tag_size
) {
3103 unsigned tag_len
= cc
->on_disk_tag_size
* (bio_sectors(bio
) >> cc
->sector_shift
);
3105 if (unlikely(tag_len
> KMALLOC_MAX_SIZE
) ||
3106 unlikely(!(io
->integrity_metadata
= kmalloc(tag_len
,
3107 GFP_NOIO
| __GFP_NORETRY
| __GFP_NOMEMALLOC
| __GFP_NOWARN
)))) {
3108 if (bio_sectors(bio
) > cc
->tag_pool_max_sectors
)
3109 dm_accept_partial_bio(bio
, cc
->tag_pool_max_sectors
);
3110 io
->integrity_metadata
= mempool_alloc(&cc
->tag_pool
, GFP_NOIO
);
3111 io
->integrity_metadata_from_pool
= true;
3115 if (crypt_integrity_aead(cc
))
3116 io
->ctx
.r
.req_aead
= (struct aead_request
*)(io
+ 1);
3118 io
->ctx
.r
.req
= (struct skcipher_request
*)(io
+ 1);
3120 if (bio_data_dir(io
->base_bio
) == READ
) {
3121 if (kcryptd_io_read(io
, GFP_NOWAIT
))
3122 kcryptd_queue_read(io
);
3124 kcryptd_queue_crypt(io
);
3126 return DM_MAPIO_SUBMITTED
;
3129 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
3130 unsigned status_flags
, char *result
, unsigned maxlen
)
3132 struct crypt_config
*cc
= ti
->private;
3134 int num_feature_args
= 0;
3137 case STATUSTYPE_INFO
:
3141 case STATUSTYPE_TABLE
:
3142 DMEMIT("%s ", cc
->cipher_string
);
3144 if (cc
->key_size
> 0) {
3146 DMEMIT(":%u:%s", cc
->key_size
, cc
->key_string
);
3148 for (i
= 0; i
< cc
->key_size
; i
++)
3149 DMEMIT("%02x", cc
->key
[i
]);
3153 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
3154 cc
->dev
->name
, (unsigned long long)cc
->start
);
3156 num_feature_args
+= !!ti
->num_discard_bios
;
3157 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
3158 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
3159 num_feature_args
+= cc
->sector_size
!= (1 << SECTOR_SHIFT
);
3160 num_feature_args
+= test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
);
3161 if (cc
->on_disk_tag_size
)
3163 if (num_feature_args
) {
3164 DMEMIT(" %d", num_feature_args
);
3165 if (ti
->num_discard_bios
)
3166 DMEMIT(" allow_discards");
3167 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
3168 DMEMIT(" same_cpu_crypt");
3169 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
3170 DMEMIT(" submit_from_crypt_cpus");
3171 if (cc
->on_disk_tag_size
)
3172 DMEMIT(" integrity:%u:%s", cc
->on_disk_tag_size
, cc
->cipher_auth
);
3173 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
))
3174 DMEMIT(" sector_size:%d", cc
->sector_size
);
3175 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
3176 DMEMIT(" iv_large_sectors");
3183 static void crypt_postsuspend(struct dm_target
*ti
)
3185 struct crypt_config
*cc
= ti
->private;
3187 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
3190 static int crypt_preresume(struct dm_target
*ti
)
3192 struct crypt_config
*cc
= ti
->private;
3194 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
3195 DMERR("aborting resume - crypt key is not set.");
3202 static void crypt_resume(struct dm_target
*ti
)
3204 struct crypt_config
*cc
= ti
->private;
3206 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
3209 /* Message interface
3213 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3214 char *result
, unsigned maxlen
)
3216 struct crypt_config
*cc
= ti
->private;
3217 int key_size
, ret
= -EINVAL
;
3222 if (!strcasecmp(argv
[0], "key")) {
3223 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
3224 DMWARN("not suspended during key manipulation.");
3227 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
3228 /* The key size may not be changed. */
3229 key_size
= get_key_size(&argv
[2]);
3230 if (key_size
< 0 || cc
->key_size
!= key_size
) {
3231 memset(argv
[2], '0', strlen(argv
[2]));
3235 ret
= crypt_set_key(cc
, argv
[2]);
3238 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
3239 ret
= cc
->iv_gen_ops
->init(cc
);
3240 /* wipe the kernel key payload copy */
3242 memset(cc
->key
, 0, cc
->key_size
* sizeof(u8
));
3245 if (argc
== 2 && !strcasecmp(argv
[1], "wipe"))
3246 return crypt_wipe_key(cc
);
3250 DMWARN("unrecognised message received.");
3254 static int crypt_iterate_devices(struct dm_target
*ti
,
3255 iterate_devices_callout_fn fn
, void *data
)
3257 struct crypt_config
*cc
= ti
->private;
3259 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
3262 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3264 struct crypt_config
*cc
= ti
->private;
3267 * Unfortunate constraint that is required to avoid the potential
3268 * for exceeding underlying device's max_segments limits -- due to
3269 * crypt_alloc_buffer() possibly allocating pages for the encryption
3270 * bio that are not as physically contiguous as the original bio.
3272 limits
->max_segment_size
= PAGE_SIZE
;
3274 limits
->logical_block_size
=
3275 max_t(unsigned short, limits
->logical_block_size
, cc
->sector_size
);
3276 limits
->physical_block_size
=
3277 max_t(unsigned, limits
->physical_block_size
, cc
->sector_size
);
3278 limits
->io_min
= max_t(unsigned, limits
->io_min
, cc
->sector_size
);
3281 static struct target_type crypt_target
= {
3283 .version
= {1, 20, 0},
3284 .module
= THIS_MODULE
,
3288 .status
= crypt_status
,
3289 .postsuspend
= crypt_postsuspend
,
3290 .preresume
= crypt_preresume
,
3291 .resume
= crypt_resume
,
3292 .message
= crypt_message
,
3293 .iterate_devices
= crypt_iterate_devices
,
3294 .io_hints
= crypt_io_hints
,
3297 static int __init
dm_crypt_init(void)
3301 r
= dm_register_target(&crypt_target
);
3303 DMERR("register failed %d", r
);
3308 static void __exit
dm_crypt_exit(void)
3310 dm_unregister_target(&crypt_target
);
3313 module_init(dm_crypt_init
);
3314 module_exit(dm_crypt_exit
);
3316 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3317 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
3318 MODULE_LICENSE("GPL");