2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
25 #define DM_MSG_PREFIX "table"
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 struct mapped_device
*md
;
34 enum dm_queue_mode type
;
38 unsigned int counts
[MAX_DEPTH
]; /* in nodes */
39 sector_t
*index
[MAX_DEPTH
];
41 unsigned int num_targets
;
42 unsigned int num_allocated
;
44 struct dm_target
*targets
;
46 struct target_type
*immutable_target_type
;
48 bool integrity_supported
:1;
50 unsigned integrity_added
:1;
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
59 /* a list of devices used by this table */
60 struct list_head devices
;
62 /* events get handed up using this callback */
63 void (*event_fn
)(void *);
66 struct dm_md_mempools
*mempools
;
68 struct list_head target_callbacks
;
72 * Similar to ceiling(log_size(n))
74 static unsigned int int_log(unsigned int n
, unsigned int base
)
79 n
= dm_div_up(n
, base
);
87 * Calculate the index of the child node of the n'th node k'th key.
89 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
91 return (n
* CHILDREN_PER_NODE
) + k
;
95 * Return the n'th node of level l from table t.
97 static inline sector_t
*get_node(struct dm_table
*t
,
98 unsigned int l
, unsigned int n
)
100 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
104 * Return the highest key that you could lookup from the n'th
105 * node on level l of the btree.
107 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
109 for (; l
< t
->depth
- 1; l
++)
110 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
112 if (n
>= t
->counts
[l
])
113 return (sector_t
) - 1;
115 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
119 * Fills in a level of the btree based on the highs of the level
122 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
127 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
128 node
= get_node(t
, l
, n
);
130 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
131 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
137 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
143 * Check that we're not going to overflow.
145 if (nmemb
> (ULONG_MAX
/ elem_size
))
148 size
= nmemb
* elem_size
;
149 addr
= vzalloc(size
);
153 EXPORT_SYMBOL(dm_vcalloc
);
156 * highs, and targets are managed as dynamic arrays during a
159 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
162 struct dm_target
*n_targets
;
165 * Allocate both the target array and offset array at once.
167 n_highs
= (sector_t
*) dm_vcalloc(num
, sizeof(struct dm_target
) +
172 n_targets
= (struct dm_target
*) (n_highs
+ num
);
174 memset(n_highs
, -1, sizeof(*n_highs
) * num
);
177 t
->num_allocated
= num
;
179 t
->targets
= n_targets
;
184 int dm_table_create(struct dm_table
**result
, fmode_t mode
,
185 unsigned num_targets
, struct mapped_device
*md
)
187 struct dm_table
*t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
192 INIT_LIST_HEAD(&t
->devices
);
193 INIT_LIST_HEAD(&t
->target_callbacks
);
196 num_targets
= KEYS_PER_NODE
;
198 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
205 if (alloc_targets(t
, num_targets
)) {
210 t
->type
= DM_TYPE_NONE
;
217 static void free_devices(struct list_head
*devices
, struct mapped_device
*md
)
219 struct list_head
*tmp
, *next
;
221 list_for_each_safe(tmp
, next
, devices
) {
222 struct dm_dev_internal
*dd
=
223 list_entry(tmp
, struct dm_dev_internal
, list
);
224 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
225 dm_device_name(md
), dd
->dm_dev
->name
);
226 dm_put_table_device(md
, dd
->dm_dev
);
231 void dm_table_destroy(struct dm_table
*t
)
238 /* free the indexes */
240 vfree(t
->index
[t
->depth
- 2]);
242 /* free the targets */
243 for (i
= 0; i
< t
->num_targets
; i
++) {
244 struct dm_target
*tgt
= t
->targets
+ i
;
249 dm_put_target_type(tgt
->type
);
254 /* free the device list */
255 free_devices(&t
->devices
, t
->md
);
257 dm_free_md_mempools(t
->mempools
);
263 * See if we've already got a device in the list.
265 static struct dm_dev_internal
*find_device(struct list_head
*l
, dev_t dev
)
267 struct dm_dev_internal
*dd
;
269 list_for_each_entry (dd
, l
, list
)
270 if (dd
->dm_dev
->bdev
->bd_dev
== dev
)
277 * If possible, this checks an area of a destination device is invalid.
279 static int device_area_is_invalid(struct dm_target
*ti
, struct dm_dev
*dev
,
280 sector_t start
, sector_t len
, void *data
)
282 struct request_queue
*q
;
283 struct queue_limits
*limits
= data
;
284 struct block_device
*bdev
= dev
->bdev
;
286 i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
287 unsigned short logical_block_size_sectors
=
288 limits
->logical_block_size
>> SECTOR_SHIFT
;
289 char b
[BDEVNAME_SIZE
];
292 * Some devices exist without request functions,
293 * such as loop devices not yet bound to backing files.
294 * Forbid the use of such devices.
296 q
= bdev_get_queue(bdev
);
297 if (!q
|| !q
->make_request_fn
) {
298 DMWARN("%s: %s is not yet initialised: "
299 "start=%llu, len=%llu, dev_size=%llu",
300 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
301 (unsigned long long)start
,
302 (unsigned long long)len
,
303 (unsigned long long)dev_size
);
310 if ((start
>= dev_size
) || (start
+ len
> dev_size
)) {
311 DMWARN("%s: %s too small for target: "
312 "start=%llu, len=%llu, dev_size=%llu",
313 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
314 (unsigned long long)start
,
315 (unsigned long long)len
,
316 (unsigned long long)dev_size
);
321 * If the target is mapped to zoned block device(s), check
322 * that the zones are not partially mapped.
324 if (bdev_zoned_model(bdev
) != BLK_ZONED_NONE
) {
325 unsigned int zone_sectors
= bdev_zone_sectors(bdev
);
327 if (start
& (zone_sectors
- 1)) {
328 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
329 dm_device_name(ti
->table
->md
),
330 (unsigned long long)start
,
331 zone_sectors
, bdevname(bdev
, b
));
336 * Note: The last zone of a zoned block device may be smaller
337 * than other zones. So for a target mapping the end of a
338 * zoned block device with such a zone, len would not be zone
339 * aligned. We do not allow such last smaller zone to be part
340 * of the mapping here to ensure that mappings with multiple
341 * devices do not end up with a smaller zone in the middle of
344 if (len
& (zone_sectors
- 1)) {
345 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
346 dm_device_name(ti
->table
->md
),
347 (unsigned long long)len
,
348 zone_sectors
, bdevname(bdev
, b
));
353 if (logical_block_size_sectors
<= 1)
356 if (start
& (logical_block_size_sectors
- 1)) {
357 DMWARN("%s: start=%llu not aligned to h/w "
358 "logical block size %u of %s",
359 dm_device_name(ti
->table
->md
),
360 (unsigned long long)start
,
361 limits
->logical_block_size
, bdevname(bdev
, b
));
365 if (len
& (logical_block_size_sectors
- 1)) {
366 DMWARN("%s: len=%llu not aligned to h/w "
367 "logical block size %u of %s",
368 dm_device_name(ti
->table
->md
),
369 (unsigned long long)len
,
370 limits
->logical_block_size
, bdevname(bdev
, b
));
378 * This upgrades the mode on an already open dm_dev, being
379 * careful to leave things as they were if we fail to reopen the
380 * device and not to touch the existing bdev field in case
381 * it is accessed concurrently inside dm_table_any_congested().
383 static int upgrade_mode(struct dm_dev_internal
*dd
, fmode_t new_mode
,
384 struct mapped_device
*md
)
387 struct dm_dev
*old_dev
, *new_dev
;
389 old_dev
= dd
->dm_dev
;
391 r
= dm_get_table_device(md
, dd
->dm_dev
->bdev
->bd_dev
,
392 dd
->dm_dev
->mode
| new_mode
, &new_dev
);
396 dd
->dm_dev
= new_dev
;
397 dm_put_table_device(md
, old_dev
);
403 * Convert the path to a device
405 dev_t
dm_get_dev_t(const char *path
)
408 struct block_device
*bdev
;
410 bdev
= lookup_bdev(path
);
412 dev
= name_to_dev_t(path
);
420 EXPORT_SYMBOL_GPL(dm_get_dev_t
);
423 * Add a device to the list, or just increment the usage count if
424 * it's already present.
426 int dm_get_device(struct dm_target
*ti
, const char *path
, fmode_t mode
,
427 struct dm_dev
**result
)
431 struct dm_dev_internal
*dd
;
432 struct dm_table
*t
= ti
->table
;
436 dev
= dm_get_dev_t(path
);
440 dd
= find_device(&t
->devices
, dev
);
442 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
446 if ((r
= dm_get_table_device(t
->md
, dev
, mode
, &dd
->dm_dev
))) {
451 refcount_set(&dd
->count
, 1);
452 list_add(&dd
->list
, &t
->devices
);
455 } else if (dd
->dm_dev
->mode
!= (mode
| dd
->dm_dev
->mode
)) {
456 r
= upgrade_mode(dd
, mode
, t
->md
);
460 refcount_inc(&dd
->count
);
462 *result
= dd
->dm_dev
;
465 EXPORT_SYMBOL(dm_get_device
);
467 static int dm_set_device_limits(struct dm_target
*ti
, struct dm_dev
*dev
,
468 sector_t start
, sector_t len
, void *data
)
470 struct queue_limits
*limits
= data
;
471 struct block_device
*bdev
= dev
->bdev
;
472 struct request_queue
*q
= bdev_get_queue(bdev
);
473 char b
[BDEVNAME_SIZE
];
476 DMWARN("%s: Cannot set limits for nonexistent device %s",
477 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
));
481 if (bdev_stack_limits(limits
, bdev
, start
) < 0)
482 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
483 "physical_block_size=%u, logical_block_size=%u, "
484 "alignment_offset=%u, start=%llu",
485 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
486 q
->limits
.physical_block_size
,
487 q
->limits
.logical_block_size
,
488 q
->limits
.alignment_offset
,
489 (unsigned long long) start
<< SECTOR_SHIFT
);
491 limits
->zoned
= blk_queue_zoned_model(q
);
497 * Decrement a device's use count and remove it if necessary.
499 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*d
)
502 struct list_head
*devices
= &ti
->table
->devices
;
503 struct dm_dev_internal
*dd
;
505 list_for_each_entry(dd
, devices
, list
) {
506 if (dd
->dm_dev
== d
) {
512 DMWARN("%s: device %s not in table devices list",
513 dm_device_name(ti
->table
->md
), d
->name
);
516 if (refcount_dec_and_test(&dd
->count
)) {
517 dm_put_table_device(ti
->table
->md
, d
);
522 EXPORT_SYMBOL(dm_put_device
);
525 * Checks to see if the target joins onto the end of the table.
527 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
529 struct dm_target
*prev
;
531 if (!table
->num_targets
)
534 prev
= &table
->targets
[table
->num_targets
- 1];
535 return (ti
->begin
== (prev
->begin
+ prev
->len
));
539 * Used to dynamically allocate the arg array.
541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
542 * process messages even if some device is suspended. These messages have a
543 * small fixed number of arguments.
545 * On the other hand, dm-switch needs to process bulk data using messages and
546 * excessive use of GFP_NOIO could cause trouble.
548 static char **realloc_argv(unsigned *size
, char **old_argv
)
555 new_size
= *size
* 2;
561 argv
= kmalloc_array(new_size
, sizeof(*argv
), gfp
);
562 if (argv
&& old_argv
) {
563 memcpy(argv
, old_argv
, *size
* sizeof(*argv
));
572 * Destructively splits up the argument list to pass to ctr.
574 int dm_split_args(int *argc
, char ***argvp
, char *input
)
576 char *start
, *end
= input
, *out
, **argv
= NULL
;
577 unsigned array_size
= 0;
586 argv
= realloc_argv(&array_size
, argv
);
591 /* Skip whitespace */
592 start
= skip_spaces(end
);
595 break; /* success, we hit the end */
597 /* 'out' is used to remove any back-quotes */
600 /* Everything apart from '\0' can be quoted */
601 if (*end
== '\\' && *(end
+ 1)) {
608 break; /* end of token */
613 /* have we already filled the array ? */
614 if ((*argc
+ 1) > array_size
) {
615 argv
= realloc_argv(&array_size
, argv
);
620 /* we know this is whitespace */
624 /* terminate the string and put it in the array */
635 * Impose necessary and sufficient conditions on a devices's table such
636 * that any incoming bio which respects its logical_block_size can be
637 * processed successfully. If it falls across the boundary between
638 * two or more targets, the size of each piece it gets split into must
639 * be compatible with the logical_block_size of the target processing it.
641 static int validate_hardware_logical_block_alignment(struct dm_table
*table
,
642 struct queue_limits
*limits
)
645 * This function uses arithmetic modulo the logical_block_size
646 * (in units of 512-byte sectors).
648 unsigned short device_logical_block_size_sects
=
649 limits
->logical_block_size
>> SECTOR_SHIFT
;
652 * Offset of the start of the next table entry, mod logical_block_size.
654 unsigned short next_target_start
= 0;
657 * Given an aligned bio that extends beyond the end of a
658 * target, how many sectors must the next target handle?
660 unsigned short remaining
= 0;
662 struct dm_target
*uninitialized_var(ti
);
663 struct queue_limits ti_limits
;
667 * Check each entry in the table in turn.
669 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
670 ti
= dm_table_get_target(table
, i
);
672 blk_set_stacking_limits(&ti_limits
);
674 /* combine all target devices' limits */
675 if (ti
->type
->iterate_devices
)
676 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
680 * If the remaining sectors fall entirely within this
681 * table entry are they compatible with its logical_block_size?
683 if (remaining
< ti
->len
&&
684 remaining
& ((ti_limits
.logical_block_size
>>
689 (unsigned short) ((next_target_start
+ ti
->len
) &
690 (device_logical_block_size_sects
- 1));
691 remaining
= next_target_start
?
692 device_logical_block_size_sects
- next_target_start
: 0;
696 DMWARN("%s: table line %u (start sect %llu len %llu) "
697 "not aligned to h/w logical block size %u",
698 dm_device_name(table
->md
), i
,
699 (unsigned long long) ti
->begin
,
700 (unsigned long long) ti
->len
,
701 limits
->logical_block_size
);
708 int dm_table_add_target(struct dm_table
*t
, const char *type
,
709 sector_t start
, sector_t len
, char *params
)
711 int r
= -EINVAL
, argc
;
713 struct dm_target
*tgt
;
716 DMERR("%s: target type %s must appear alone in table",
717 dm_device_name(t
->md
), t
->targets
->type
->name
);
721 BUG_ON(t
->num_targets
>= t
->num_allocated
);
723 tgt
= t
->targets
+ t
->num_targets
;
724 memset(tgt
, 0, sizeof(*tgt
));
727 DMERR("%s: zero-length target", dm_device_name(t
->md
));
731 tgt
->type
= dm_get_target_type(type
);
733 DMERR("%s: %s: unknown target type", dm_device_name(t
->md
), type
);
737 if (dm_target_needs_singleton(tgt
->type
)) {
738 if (t
->num_targets
) {
739 tgt
->error
= "singleton target type must appear alone in table";
745 if (dm_target_always_writeable(tgt
->type
) && !(t
->mode
& FMODE_WRITE
)) {
746 tgt
->error
= "target type may not be included in a read-only table";
750 if (t
->immutable_target_type
) {
751 if (t
->immutable_target_type
!= tgt
->type
) {
752 tgt
->error
= "immutable target type cannot be mixed with other target types";
755 } else if (dm_target_is_immutable(tgt
->type
)) {
756 if (t
->num_targets
) {
757 tgt
->error
= "immutable target type cannot be mixed with other target types";
760 t
->immutable_target_type
= tgt
->type
;
763 if (dm_target_has_integrity(tgt
->type
))
764 t
->integrity_added
= 1;
769 tgt
->error
= "Unknown error";
772 * Does this target adjoin the previous one ?
774 if (!adjoin(t
, tgt
)) {
775 tgt
->error
= "Gap in table";
779 r
= dm_split_args(&argc
, &argv
, params
);
781 tgt
->error
= "couldn't split parameters (insufficient memory)";
785 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
790 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
792 if (!tgt
->num_discard_bios
&& tgt
->discards_supported
)
793 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
794 dm_device_name(t
->md
), type
);
799 DMERR("%s: %s: %s", dm_device_name(t
->md
), type
, tgt
->error
);
800 dm_put_target_type(tgt
->type
);
805 * Target argument parsing helpers.
807 static int validate_next_arg(const struct dm_arg
*arg
,
808 struct dm_arg_set
*arg_set
,
809 unsigned *value
, char **error
, unsigned grouped
)
811 const char *arg_str
= dm_shift_arg(arg_set
);
815 (sscanf(arg_str
, "%u%c", value
, &dummy
) != 1) ||
816 (*value
< arg
->min
) ||
817 (*value
> arg
->max
) ||
818 (grouped
&& arg_set
->argc
< *value
)) {
826 int dm_read_arg(const struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
827 unsigned *value
, char **error
)
829 return validate_next_arg(arg
, arg_set
, value
, error
, 0);
831 EXPORT_SYMBOL(dm_read_arg
);
833 int dm_read_arg_group(const struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
834 unsigned *value
, char **error
)
836 return validate_next_arg(arg
, arg_set
, value
, error
, 1);
838 EXPORT_SYMBOL(dm_read_arg_group
);
840 const char *dm_shift_arg(struct dm_arg_set
*as
)
853 EXPORT_SYMBOL(dm_shift_arg
);
855 void dm_consume_args(struct dm_arg_set
*as
, unsigned num_args
)
857 BUG_ON(as
->argc
< num_args
);
858 as
->argc
-= num_args
;
859 as
->argv
+= num_args
;
861 EXPORT_SYMBOL(dm_consume_args
);
863 static bool __table_type_bio_based(enum dm_queue_mode table_type
)
865 return (table_type
== DM_TYPE_BIO_BASED
||
866 table_type
== DM_TYPE_DAX_BIO_BASED
||
867 table_type
== DM_TYPE_NVME_BIO_BASED
);
870 static bool __table_type_request_based(enum dm_queue_mode table_type
)
872 return table_type
== DM_TYPE_REQUEST_BASED
;
875 void dm_table_set_type(struct dm_table
*t
, enum dm_queue_mode type
)
879 EXPORT_SYMBOL_GPL(dm_table_set_type
);
881 /* validate the dax capability of the target device span */
882 int device_supports_dax(struct dm_target
*ti
, struct dm_dev
*dev
,
883 sector_t start
, sector_t len
, void *data
)
885 int blocksize
= *(int *) data
;
887 return generic_fsdax_supported(dev
->dax_dev
, dev
->bdev
, blocksize
,
891 /* Check devices support synchronous DAX */
892 static int device_dax_synchronous(struct dm_target
*ti
, struct dm_dev
*dev
,
893 sector_t start
, sector_t len
, void *data
)
895 return dev
->dax_dev
&& dax_synchronous(dev
->dax_dev
);
898 bool dm_table_supports_dax(struct dm_table
*t
,
899 iterate_devices_callout_fn iterate_fn
, int *blocksize
)
901 struct dm_target
*ti
;
904 /* Ensure that all targets support DAX. */
905 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
906 ti
= dm_table_get_target(t
, i
);
908 if (!ti
->type
->direct_access
)
911 if (!ti
->type
->iterate_devices
||
912 !ti
->type
->iterate_devices(ti
, iterate_fn
, blocksize
))
919 static bool dm_table_does_not_support_partial_completion(struct dm_table
*t
);
921 static int device_is_rq_stackable(struct dm_target
*ti
, struct dm_dev
*dev
,
922 sector_t start
, sector_t len
, void *data
)
924 struct block_device
*bdev
= dev
->bdev
;
925 struct request_queue
*q
= bdev_get_queue(bdev
);
927 /* request-based cannot stack on partitions! */
928 if (bdev
!= bdev
->bd_contains
)
931 return queue_is_mq(q
);
934 static int dm_table_determine_type(struct dm_table
*t
)
937 unsigned bio_based
= 0, request_based
= 0, hybrid
= 0;
938 struct dm_target
*tgt
;
939 struct list_head
*devices
= dm_table_get_devices(t
);
940 enum dm_queue_mode live_md_type
= dm_get_md_type(t
->md
);
941 int page_size
= PAGE_SIZE
;
943 if (t
->type
!= DM_TYPE_NONE
) {
944 /* target already set the table's type */
945 if (t
->type
== DM_TYPE_BIO_BASED
) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based
;
949 BUG_ON(t
->type
== DM_TYPE_DAX_BIO_BASED
);
950 BUG_ON(t
->type
== DM_TYPE_NVME_BIO_BASED
);
951 goto verify_rq_based
;
954 for (i
= 0; i
< t
->num_targets
; i
++) {
955 tgt
= t
->targets
+ i
;
956 if (dm_target_hybrid(tgt
))
958 else if (dm_target_request_based(tgt
))
963 if (bio_based
&& request_based
) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
970 if (hybrid
&& !bio_based
&& !request_based
) {
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
976 if (__table_type_request_based(live_md_type
))
984 /* We must use this table as bio-based */
985 t
->type
= DM_TYPE_BIO_BASED
;
986 if (dm_table_supports_dax(t
, device_supports_dax
, &page_size
) ||
987 (list_empty(devices
) && live_md_type
== DM_TYPE_DAX_BIO_BASED
)) {
988 t
->type
= DM_TYPE_DAX_BIO_BASED
;
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt
= dm_table_get_immutable_target(t
);
992 if (tgt
&& !tgt
->max_io_len
&& dm_table_does_not_support_partial_completion(t
)) {
993 t
->type
= DM_TYPE_NVME_BIO_BASED
;
994 goto verify_rq_based
; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices
) && live_md_type
== DM_TYPE_NVME_BIO_BASED
) {
996 t
->type
= DM_TYPE_NVME_BIO_BASED
;
1002 BUG_ON(!request_based
); /* No targets in this table */
1004 t
->type
= DM_TYPE_REQUEST_BASED
;
1008 * Request-based dm supports only tables that have a single target now.
1009 * To support multiple targets, request splitting support is needed,
1010 * and that needs lots of changes in the block-layer.
1011 * (e.g. request completion process for partial completion.)
1013 if (t
->num_targets
> 1) {
1014 DMERR("%s DM doesn't support multiple targets",
1015 t
->type
== DM_TYPE_NVME_BIO_BASED
? "nvme bio-based" : "request-based");
1019 if (list_empty(devices
)) {
1021 struct dm_table
*live_table
= dm_get_live_table(t
->md
, &srcu_idx
);
1023 /* inherit live table's type */
1025 t
->type
= live_table
->type
;
1026 dm_put_live_table(t
->md
, srcu_idx
);
1030 tgt
= dm_table_get_immutable_target(t
);
1032 DMERR("table load rejected: immutable target is required");
1034 } else if (tgt
->max_io_len
) {
1035 DMERR("table load rejected: immutable target that splits IO is not supported");
1039 /* Non-request-stackable devices can't be used for request-based dm */
1040 if (!tgt
->type
->iterate_devices
||
1041 !tgt
->type
->iterate_devices(tgt
, device_is_rq_stackable
, NULL
)) {
1042 DMERR("table load rejected: including non-request-stackable devices");
1049 enum dm_queue_mode
dm_table_get_type(struct dm_table
*t
)
1054 struct target_type
*dm_table_get_immutable_target_type(struct dm_table
*t
)
1056 return t
->immutable_target_type
;
1059 struct dm_target
*dm_table_get_immutable_target(struct dm_table
*t
)
1061 /* Immutable target is implicitly a singleton */
1062 if (t
->num_targets
> 1 ||
1063 !dm_target_is_immutable(t
->targets
[0].type
))
1069 struct dm_target
*dm_table_get_wildcard_target(struct dm_table
*t
)
1071 struct dm_target
*ti
;
1074 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1075 ti
= dm_table_get_target(t
, i
);
1076 if (dm_target_is_wildcard(ti
->type
))
1083 bool dm_table_bio_based(struct dm_table
*t
)
1085 return __table_type_bio_based(dm_table_get_type(t
));
1088 bool dm_table_request_based(struct dm_table
*t
)
1090 return __table_type_request_based(dm_table_get_type(t
));
1093 static int dm_table_alloc_md_mempools(struct dm_table
*t
, struct mapped_device
*md
)
1095 enum dm_queue_mode type
= dm_table_get_type(t
);
1096 unsigned per_io_data_size
= 0;
1097 unsigned min_pool_size
= 0;
1098 struct dm_target
*ti
;
1101 if (unlikely(type
== DM_TYPE_NONE
)) {
1102 DMWARN("no table type is set, can't allocate mempools");
1106 if (__table_type_bio_based(type
))
1107 for (i
= 0; i
< t
->num_targets
; i
++) {
1108 ti
= t
->targets
+ i
;
1109 per_io_data_size
= max(per_io_data_size
, ti
->per_io_data_size
);
1110 min_pool_size
= max(min_pool_size
, ti
->num_flush_bios
);
1113 t
->mempools
= dm_alloc_md_mempools(md
, type
, t
->integrity_supported
,
1114 per_io_data_size
, min_pool_size
);
1121 void dm_table_free_md_mempools(struct dm_table
*t
)
1123 dm_free_md_mempools(t
->mempools
);
1127 struct dm_md_mempools
*dm_table_get_md_mempools(struct dm_table
*t
)
1132 static int setup_indexes(struct dm_table
*t
)
1135 unsigned int total
= 0;
1138 /* allocate the space for *all* the indexes */
1139 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1140 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
1141 total
+= t
->counts
[i
];
1144 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
1148 /* set up internal nodes, bottom-up */
1149 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1150 t
->index
[i
] = indexes
;
1151 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
1152 setup_btree_index(i
, t
);
1159 * Builds the btree to index the map.
1161 static int dm_table_build_index(struct dm_table
*t
)
1164 unsigned int leaf_nodes
;
1166 /* how many indexes will the btree have ? */
1167 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
1168 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
1170 /* leaf layer has already been set up */
1171 t
->counts
[t
->depth
- 1] = leaf_nodes
;
1172 t
->index
[t
->depth
- 1] = t
->highs
;
1175 r
= setup_indexes(t
);
1180 static bool integrity_profile_exists(struct gendisk
*disk
)
1182 return !!blk_get_integrity(disk
);
1186 * Get a disk whose integrity profile reflects the table's profile.
1187 * Returns NULL if integrity support was inconsistent or unavailable.
1189 static struct gendisk
* dm_table_get_integrity_disk(struct dm_table
*t
)
1191 struct list_head
*devices
= dm_table_get_devices(t
);
1192 struct dm_dev_internal
*dd
= NULL
;
1193 struct gendisk
*prev_disk
= NULL
, *template_disk
= NULL
;
1196 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1197 struct dm_target
*ti
= dm_table_get_target(t
, i
);
1198 if (!dm_target_passes_integrity(ti
->type
))
1202 list_for_each_entry(dd
, devices
, list
) {
1203 template_disk
= dd
->dm_dev
->bdev
->bd_disk
;
1204 if (!integrity_profile_exists(template_disk
))
1206 else if (prev_disk
&&
1207 blk_integrity_compare(prev_disk
, template_disk
) < 0)
1209 prev_disk
= template_disk
;
1212 return template_disk
;
1216 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1217 dm_device_name(t
->md
),
1218 prev_disk
->disk_name
,
1219 template_disk
->disk_name
);
1224 * Register the mapped device for blk_integrity support if the
1225 * underlying devices have an integrity profile. But all devices may
1226 * not have matching profiles (checking all devices isn't reliable
1227 * during table load because this table may use other DM device(s) which
1228 * must be resumed before they will have an initialized integity
1229 * profile). Consequently, stacked DM devices force a 2 stage integrity
1230 * profile validation: First pass during table load, final pass during
1233 static int dm_table_register_integrity(struct dm_table
*t
)
1235 struct mapped_device
*md
= t
->md
;
1236 struct gendisk
*template_disk
= NULL
;
1238 /* If target handles integrity itself do not register it here. */
1239 if (t
->integrity_added
)
1242 template_disk
= dm_table_get_integrity_disk(t
);
1246 if (!integrity_profile_exists(dm_disk(md
))) {
1247 t
->integrity_supported
= true;
1249 * Register integrity profile during table load; we can do
1250 * this because the final profile must match during resume.
1252 blk_integrity_register(dm_disk(md
),
1253 blk_get_integrity(template_disk
));
1258 * If DM device already has an initialized integrity
1259 * profile the new profile should not conflict.
1261 if (blk_integrity_compare(dm_disk(md
), template_disk
) < 0) {
1262 DMWARN("%s: conflict with existing integrity profile: "
1263 "%s profile mismatch",
1264 dm_device_name(t
->md
),
1265 template_disk
->disk_name
);
1269 /* Preserve existing integrity profile */
1270 t
->integrity_supported
= true;
1275 * Prepares the table for use by building the indices,
1276 * setting the type, and allocating mempools.
1278 int dm_table_complete(struct dm_table
*t
)
1282 r
= dm_table_determine_type(t
);
1284 DMERR("unable to determine table type");
1288 r
= dm_table_build_index(t
);
1290 DMERR("unable to build btrees");
1294 r
= dm_table_register_integrity(t
);
1296 DMERR("could not register integrity profile.");
1300 r
= dm_table_alloc_md_mempools(t
, t
->md
);
1302 DMERR("unable to allocate mempools");
1307 static DEFINE_MUTEX(_event_lock
);
1308 void dm_table_event_callback(struct dm_table
*t
,
1309 void (*fn
)(void *), void *context
)
1311 mutex_lock(&_event_lock
);
1313 t
->event_context
= context
;
1314 mutex_unlock(&_event_lock
);
1317 void dm_table_event(struct dm_table
*t
)
1320 * You can no longer call dm_table_event() from interrupt
1321 * context, use a bottom half instead.
1323 BUG_ON(in_interrupt());
1325 mutex_lock(&_event_lock
);
1327 t
->event_fn(t
->event_context
);
1328 mutex_unlock(&_event_lock
);
1330 EXPORT_SYMBOL(dm_table_event
);
1332 inline sector_t
dm_table_get_size(struct dm_table
*t
)
1334 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
1336 EXPORT_SYMBOL(dm_table_get_size
);
1338 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
1340 if (index
>= t
->num_targets
)
1343 return t
->targets
+ index
;
1347 * Search the btree for the correct target.
1349 * Caller should check returned pointer for NULL
1350 * to trap I/O beyond end of device.
1352 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
1354 unsigned int l
, n
= 0, k
= 0;
1357 if (unlikely(sector
>= dm_table_get_size(t
)))
1360 for (l
= 0; l
< t
->depth
; l
++) {
1361 n
= get_child(n
, k
);
1362 node
= get_node(t
, l
, n
);
1364 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
1365 if (node
[k
] >= sector
)
1369 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
1372 static int count_device(struct dm_target
*ti
, struct dm_dev
*dev
,
1373 sector_t start
, sector_t len
, void *data
)
1375 unsigned *num_devices
= data
;
1383 * Check whether a table has no data devices attached using each
1384 * target's iterate_devices method.
1385 * Returns false if the result is unknown because a target doesn't
1386 * support iterate_devices.
1388 bool dm_table_has_no_data_devices(struct dm_table
*table
)
1390 struct dm_target
*ti
;
1391 unsigned i
, num_devices
;
1393 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
1394 ti
= dm_table_get_target(table
, i
);
1396 if (!ti
->type
->iterate_devices
)
1400 ti
->type
->iterate_devices(ti
, count_device
, &num_devices
);
1408 static int device_is_zoned_model(struct dm_target
*ti
, struct dm_dev
*dev
,
1409 sector_t start
, sector_t len
, void *data
)
1411 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1412 enum blk_zoned_model
*zoned_model
= data
;
1414 return q
&& blk_queue_zoned_model(q
) == *zoned_model
;
1417 static bool dm_table_supports_zoned_model(struct dm_table
*t
,
1418 enum blk_zoned_model zoned_model
)
1420 struct dm_target
*ti
;
1423 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1424 ti
= dm_table_get_target(t
, i
);
1426 if (zoned_model
== BLK_ZONED_HM
&&
1427 !dm_target_supports_zoned_hm(ti
->type
))
1430 if (!ti
->type
->iterate_devices
||
1431 !ti
->type
->iterate_devices(ti
, device_is_zoned_model
, &zoned_model
))
1438 static int device_matches_zone_sectors(struct dm_target
*ti
, struct dm_dev
*dev
,
1439 sector_t start
, sector_t len
, void *data
)
1441 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1442 unsigned int *zone_sectors
= data
;
1444 return q
&& blk_queue_zone_sectors(q
) == *zone_sectors
;
1447 static bool dm_table_matches_zone_sectors(struct dm_table
*t
,
1448 unsigned int zone_sectors
)
1450 struct dm_target
*ti
;
1453 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1454 ti
= dm_table_get_target(t
, i
);
1456 if (!ti
->type
->iterate_devices
||
1457 !ti
->type
->iterate_devices(ti
, device_matches_zone_sectors
, &zone_sectors
))
1464 static int validate_hardware_zoned_model(struct dm_table
*table
,
1465 enum blk_zoned_model zoned_model
,
1466 unsigned int zone_sectors
)
1468 if (zoned_model
== BLK_ZONED_NONE
)
1471 if (!dm_table_supports_zoned_model(table
, zoned_model
)) {
1472 DMERR("%s: zoned model is not consistent across all devices",
1473 dm_device_name(table
->md
));
1477 /* Check zone size validity and compatibility */
1478 if (!zone_sectors
|| !is_power_of_2(zone_sectors
))
1481 if (!dm_table_matches_zone_sectors(table
, zone_sectors
)) {
1482 DMERR("%s: zone sectors is not consistent across all devices",
1483 dm_device_name(table
->md
));
1491 * Establish the new table's queue_limits and validate them.
1493 int dm_calculate_queue_limits(struct dm_table
*table
,
1494 struct queue_limits
*limits
)
1496 struct dm_target
*ti
;
1497 struct queue_limits ti_limits
;
1499 enum blk_zoned_model zoned_model
= BLK_ZONED_NONE
;
1500 unsigned int zone_sectors
= 0;
1502 blk_set_stacking_limits(limits
);
1504 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
1505 blk_set_stacking_limits(&ti_limits
);
1507 ti
= dm_table_get_target(table
, i
);
1509 if (!ti
->type
->iterate_devices
)
1510 goto combine_limits
;
1513 * Combine queue limits of all the devices this target uses.
1515 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
1518 if (zoned_model
== BLK_ZONED_NONE
&& ti_limits
.zoned
!= BLK_ZONED_NONE
) {
1520 * After stacking all limits, validate all devices
1521 * in table support this zoned model and zone sectors.
1523 zoned_model
= ti_limits
.zoned
;
1524 zone_sectors
= ti_limits
.chunk_sectors
;
1527 /* Set I/O hints portion of queue limits */
1528 if (ti
->type
->io_hints
)
1529 ti
->type
->io_hints(ti
, &ti_limits
);
1532 * Check each device area is consistent with the target's
1533 * overall queue limits.
1535 if (ti
->type
->iterate_devices(ti
, device_area_is_invalid
,
1541 * Merge this target's queue limits into the overall limits
1544 if (blk_stack_limits(limits
, &ti_limits
, 0) < 0)
1545 DMWARN("%s: adding target device "
1546 "(start sect %llu len %llu) "
1547 "caused an alignment inconsistency",
1548 dm_device_name(table
->md
),
1549 (unsigned long long) ti
->begin
,
1550 (unsigned long long) ti
->len
);
1553 * FIXME: this should likely be moved to blk_stack_limits(), would
1554 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1556 if (limits
->zoned
== BLK_ZONED_NONE
&& ti_limits
.zoned
!= BLK_ZONED_NONE
) {
1558 * By default, the stacked limits zoned model is set to
1559 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1560 * this model using the first target model reported
1561 * that is not BLK_ZONED_NONE. This will be either the
1562 * first target device zoned model or the model reported
1563 * by the target .io_hints.
1565 limits
->zoned
= ti_limits
.zoned
;
1570 * Verify that the zoned model and zone sectors, as determined before
1571 * any .io_hints override, are the same across all devices in the table.
1572 * - this is especially relevant if .io_hints is emulating a disk-managed
1573 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1576 if (limits
->zoned
!= BLK_ZONED_NONE
) {
1578 * ...IF the above limits stacking determined a zoned model
1579 * validate that all of the table's devices conform to it.
1581 zoned_model
= limits
->zoned
;
1582 zone_sectors
= limits
->chunk_sectors
;
1584 if (validate_hardware_zoned_model(table
, zoned_model
, zone_sectors
))
1587 return validate_hardware_logical_block_alignment(table
, limits
);
1591 * Verify that all devices have an integrity profile that matches the
1592 * DM device's registered integrity profile. If the profiles don't
1593 * match then unregister the DM device's integrity profile.
1595 static void dm_table_verify_integrity(struct dm_table
*t
)
1597 struct gendisk
*template_disk
= NULL
;
1599 if (t
->integrity_added
)
1602 if (t
->integrity_supported
) {
1604 * Verify that the original integrity profile
1605 * matches all the devices in this table.
1607 template_disk
= dm_table_get_integrity_disk(t
);
1608 if (template_disk
&&
1609 blk_integrity_compare(dm_disk(t
->md
), template_disk
) >= 0)
1613 if (integrity_profile_exists(dm_disk(t
->md
))) {
1614 DMWARN("%s: unable to establish an integrity profile",
1615 dm_device_name(t
->md
));
1616 blk_integrity_unregister(dm_disk(t
->md
));
1620 static int device_flush_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1621 sector_t start
, sector_t len
, void *data
)
1623 unsigned long flush
= (unsigned long) data
;
1624 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1626 return q
&& (q
->queue_flags
& flush
);
1629 static bool dm_table_supports_flush(struct dm_table
*t
, unsigned long flush
)
1631 struct dm_target
*ti
;
1635 * Require at least one underlying device to support flushes.
1636 * t->devices includes internal dm devices such as mirror logs
1637 * so we need to use iterate_devices here, which targets
1638 * supporting flushes must provide.
1640 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1641 ti
= dm_table_get_target(t
, i
);
1643 if (!ti
->num_flush_bios
)
1646 if (ti
->flush_supported
)
1649 if (ti
->type
->iterate_devices
&&
1650 ti
->type
->iterate_devices(ti
, device_flush_capable
, (void *) flush
))
1657 static int device_dax_write_cache_enabled(struct dm_target
*ti
,
1658 struct dm_dev
*dev
, sector_t start
,
1659 sector_t len
, void *data
)
1661 struct dax_device
*dax_dev
= dev
->dax_dev
;
1666 if (dax_write_cache_enabled(dax_dev
))
1671 static int dm_table_supports_dax_write_cache(struct dm_table
*t
)
1673 struct dm_target
*ti
;
1676 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1677 ti
= dm_table_get_target(t
, i
);
1679 if (ti
->type
->iterate_devices
&&
1680 ti
->type
->iterate_devices(ti
,
1681 device_dax_write_cache_enabled
, NULL
))
1688 static int device_is_nonrot(struct dm_target
*ti
, struct dm_dev
*dev
,
1689 sector_t start
, sector_t len
, void *data
)
1691 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1693 return q
&& blk_queue_nonrot(q
);
1696 static int device_is_not_random(struct dm_target
*ti
, struct dm_dev
*dev
,
1697 sector_t start
, sector_t len
, void *data
)
1699 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1701 return q
&& !blk_queue_add_random(q
);
1704 static bool dm_table_all_devices_attribute(struct dm_table
*t
,
1705 iterate_devices_callout_fn func
)
1707 struct dm_target
*ti
;
1710 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1711 ti
= dm_table_get_target(t
, i
);
1713 if (!ti
->type
->iterate_devices
||
1714 !ti
->type
->iterate_devices(ti
, func
, NULL
))
1721 static int device_no_partial_completion(struct dm_target
*ti
, struct dm_dev
*dev
,
1722 sector_t start
, sector_t len
, void *data
)
1724 char b
[BDEVNAME_SIZE
];
1726 /* For now, NVMe devices are the only devices of this class */
1727 return (strncmp(bdevname(dev
->bdev
, b
), "nvme", 4) == 0);
1730 static bool dm_table_does_not_support_partial_completion(struct dm_table
*t
)
1732 return dm_table_all_devices_attribute(t
, device_no_partial_completion
);
1735 static int device_not_write_same_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1736 sector_t start
, sector_t len
, void *data
)
1738 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1740 return q
&& !q
->limits
.max_write_same_sectors
;
1743 static bool dm_table_supports_write_same(struct dm_table
*t
)
1745 struct dm_target
*ti
;
1748 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1749 ti
= dm_table_get_target(t
, i
);
1751 if (!ti
->num_write_same_bios
)
1754 if (!ti
->type
->iterate_devices
||
1755 ti
->type
->iterate_devices(ti
, device_not_write_same_capable
, NULL
))
1762 static int device_not_write_zeroes_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1763 sector_t start
, sector_t len
, void *data
)
1765 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1767 return q
&& !q
->limits
.max_write_zeroes_sectors
;
1770 static bool dm_table_supports_write_zeroes(struct dm_table
*t
)
1772 struct dm_target
*ti
;
1775 while (i
< dm_table_get_num_targets(t
)) {
1776 ti
= dm_table_get_target(t
, i
++);
1778 if (!ti
->num_write_zeroes_bios
)
1781 if (!ti
->type
->iterate_devices
||
1782 ti
->type
->iterate_devices(ti
, device_not_write_zeroes_capable
, NULL
))
1789 static int device_not_discard_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1790 sector_t start
, sector_t len
, void *data
)
1792 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1794 return q
&& !blk_queue_discard(q
);
1797 static bool dm_table_supports_discards(struct dm_table
*t
)
1799 struct dm_target
*ti
;
1802 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1803 ti
= dm_table_get_target(t
, i
);
1805 if (!ti
->num_discard_bios
)
1809 * Either the target provides discard support (as implied by setting
1810 * 'discards_supported') or it relies on _all_ data devices having
1813 if (!ti
->discards_supported
&&
1814 (!ti
->type
->iterate_devices
||
1815 ti
->type
->iterate_devices(ti
, device_not_discard_capable
, NULL
)))
1822 static int device_not_secure_erase_capable(struct dm_target
*ti
,
1823 struct dm_dev
*dev
, sector_t start
,
1824 sector_t len
, void *data
)
1826 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1828 return q
&& !blk_queue_secure_erase(q
);
1831 static bool dm_table_supports_secure_erase(struct dm_table
*t
)
1833 struct dm_target
*ti
;
1836 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1837 ti
= dm_table_get_target(t
, i
);
1839 if (!ti
->num_secure_erase_bios
)
1842 if (!ti
->type
->iterate_devices
||
1843 ti
->type
->iterate_devices(ti
, device_not_secure_erase_capable
, NULL
))
1850 static int device_requires_stable_pages(struct dm_target
*ti
,
1851 struct dm_dev
*dev
, sector_t start
,
1852 sector_t len
, void *data
)
1854 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1856 return q
&& bdi_cap_stable_pages_required(q
->backing_dev_info
);
1860 * If any underlying device requires stable pages, a table must require
1861 * them as well. Only targets that support iterate_devices are considered:
1862 * don't want error, zero, etc to require stable pages.
1864 static bool dm_table_requires_stable_pages(struct dm_table
*t
)
1866 struct dm_target
*ti
;
1869 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1870 ti
= dm_table_get_target(t
, i
);
1872 if (ti
->type
->iterate_devices
&&
1873 ti
->type
->iterate_devices(ti
, device_requires_stable_pages
, NULL
))
1880 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
,
1881 struct queue_limits
*limits
)
1883 bool wc
= false, fua
= false;
1884 int page_size
= PAGE_SIZE
;
1887 * Copy table's limits to the DM device's request_queue
1889 q
->limits
= *limits
;
1891 if (!dm_table_supports_discards(t
)) {
1892 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
1893 /* Must also clear discard limits... */
1894 q
->limits
.max_discard_sectors
= 0;
1895 q
->limits
.max_hw_discard_sectors
= 0;
1896 q
->limits
.discard_granularity
= 0;
1897 q
->limits
.discard_alignment
= 0;
1898 q
->limits
.discard_misaligned
= 0;
1900 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
1902 if (dm_table_supports_secure_erase(t
))
1903 blk_queue_flag_set(QUEUE_FLAG_SECERASE
, q
);
1905 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_WC
))) {
1907 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_FUA
)))
1910 blk_queue_write_cache(q
, wc
, fua
);
1912 if (dm_table_supports_dax(t
, device_supports_dax
, &page_size
)) {
1913 blk_queue_flag_set(QUEUE_FLAG_DAX
, q
);
1914 if (dm_table_supports_dax(t
, device_dax_synchronous
, NULL
))
1915 set_dax_synchronous(t
->md
->dax_dev
);
1918 blk_queue_flag_clear(QUEUE_FLAG_DAX
, q
);
1920 if (dm_table_supports_dax_write_cache(t
))
1921 dax_write_cache(t
->md
->dax_dev
, true);
1923 /* Ensure that all underlying devices are non-rotational. */
1924 if (dm_table_all_devices_attribute(t
, device_is_nonrot
))
1925 blk_queue_flag_set(QUEUE_FLAG_NONROT
, q
);
1927 blk_queue_flag_clear(QUEUE_FLAG_NONROT
, q
);
1929 if (!dm_table_supports_write_same(t
))
1930 q
->limits
.max_write_same_sectors
= 0;
1931 if (!dm_table_supports_write_zeroes(t
))
1932 q
->limits
.max_write_zeroes_sectors
= 0;
1934 dm_table_verify_integrity(t
);
1937 * Some devices don't use blk_integrity but still want stable pages
1938 * because they do their own checksumming.
1940 if (dm_table_requires_stable_pages(t
))
1941 q
->backing_dev_info
->capabilities
|= BDI_CAP_STABLE_WRITES
;
1943 q
->backing_dev_info
->capabilities
&= ~BDI_CAP_STABLE_WRITES
;
1946 * Determine whether or not this queue's I/O timings contribute
1947 * to the entropy pool, Only request-based targets use this.
1948 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1951 if (blk_queue_add_random(q
) && dm_table_all_devices_attribute(t
, device_is_not_random
))
1952 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, q
);
1955 * For a zoned target, the number of zones should be updated for the
1956 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1957 * target, this is all that is needed.
1959 #ifdef CONFIG_BLK_DEV_ZONED
1960 if (blk_queue_is_zoned(q
)) {
1961 WARN_ON_ONCE(queue_is_mq(q
));
1962 q
->nr_zones
= blkdev_nr_zones(t
->md
->disk
);
1966 /* Allow reads to exceed readahead limits */
1967 q
->backing_dev_info
->io_pages
= limits
->max_sectors
>> (PAGE_SHIFT
- 9);
1970 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
1972 return t
->num_targets
;
1975 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
1980 fmode_t
dm_table_get_mode(struct dm_table
*t
)
1984 EXPORT_SYMBOL(dm_table_get_mode
);
1992 static void suspend_targets(struct dm_table
*t
, enum suspend_mode mode
)
1994 int i
= t
->num_targets
;
1995 struct dm_target
*ti
= t
->targets
;
1997 lockdep_assert_held(&t
->md
->suspend_lock
);
2002 if (ti
->type
->presuspend
)
2003 ti
->type
->presuspend(ti
);
2005 case PRESUSPEND_UNDO
:
2006 if (ti
->type
->presuspend_undo
)
2007 ti
->type
->presuspend_undo(ti
);
2010 if (ti
->type
->postsuspend
)
2011 ti
->type
->postsuspend(ti
);
2018 void dm_table_presuspend_targets(struct dm_table
*t
)
2023 suspend_targets(t
, PRESUSPEND
);
2026 void dm_table_presuspend_undo_targets(struct dm_table
*t
)
2031 suspend_targets(t
, PRESUSPEND_UNDO
);
2034 void dm_table_postsuspend_targets(struct dm_table
*t
)
2039 suspend_targets(t
, POSTSUSPEND
);
2042 int dm_table_resume_targets(struct dm_table
*t
)
2046 lockdep_assert_held(&t
->md
->suspend_lock
);
2048 for (i
= 0; i
< t
->num_targets
; i
++) {
2049 struct dm_target
*ti
= t
->targets
+ i
;
2051 if (!ti
->type
->preresume
)
2054 r
= ti
->type
->preresume(ti
);
2056 DMERR("%s: %s: preresume failed, error = %d",
2057 dm_device_name(t
->md
), ti
->type
->name
, r
);
2062 for (i
= 0; i
< t
->num_targets
; i
++) {
2063 struct dm_target
*ti
= t
->targets
+ i
;
2065 if (ti
->type
->resume
)
2066 ti
->type
->resume(ti
);
2072 void dm_table_add_target_callbacks(struct dm_table
*t
, struct dm_target_callbacks
*cb
)
2074 list_add(&cb
->list
, &t
->target_callbacks
);
2076 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks
);
2078 int dm_table_any_congested(struct dm_table
*t
, int bdi_bits
)
2080 struct dm_dev_internal
*dd
;
2081 struct list_head
*devices
= dm_table_get_devices(t
);
2082 struct dm_target_callbacks
*cb
;
2085 list_for_each_entry(dd
, devices
, list
) {
2086 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
->bdev
);
2087 char b
[BDEVNAME_SIZE
];
2090 r
|= bdi_congested(q
->backing_dev_info
, bdi_bits
);
2092 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2093 dm_device_name(t
->md
),
2094 bdevname(dd
->dm_dev
->bdev
, b
));
2097 list_for_each_entry(cb
, &t
->target_callbacks
, list
)
2098 if (cb
->congested_fn
)
2099 r
|= cb
->congested_fn(cb
, bdi_bits
);
2104 struct mapped_device
*dm_table_get_md(struct dm_table
*t
)
2108 EXPORT_SYMBOL(dm_table_get_md
);
2110 const char *dm_table_device_name(struct dm_table
*t
)
2112 return dm_device_name(t
->md
);
2114 EXPORT_SYMBOL_GPL(dm_table_device_name
);
2116 void dm_table_run_md_queue_async(struct dm_table
*t
)
2118 struct mapped_device
*md
;
2119 struct request_queue
*queue
;
2121 if (!dm_table_request_based(t
))
2124 md
= dm_table_get_md(t
);
2125 queue
= dm_get_md_queue(md
);
2127 blk_mq_run_hw_queues(queue
, true);
2129 EXPORT_SYMBOL(dm_table_run_md_queue_async
);