treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / md / dm-thin.c
blobfa8d5464c1fb51f438846f7929098bc00921a1e8
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
28 * Tunable constants
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
113 * Key building.
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
132 build_key(td, PHYSICAL, b, b + 1llu, key);
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
138 build_key(td, VIRTUAL, b, b + 1llu, key);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
151 static void throttle_init(struct throttle *t)
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
157 static void throttle_work_start(struct throttle *t)
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
162 static void throttle_work_update(struct throttle *t)
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
170 static void throttle_work_complete(struct throttle *t)
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
178 static void throttle_lock(struct throttle *t)
180 down_read(&t->lock);
183 static void throttle_unlock(struct throttle *t)
185 up_read(&t->lock);
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
195 struct dm_thin_new_mapping;
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
210 PM_FAIL, /* all I/O fails */
213 struct pool_features {
214 enum pool_mode mode;
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
227 #define CELL_SORT_ARRAY_SIZE 8192
229 struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
244 bool suspended:1;
245 bool out_of_data_space:1;
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
256 unsigned long last_commit_jiffies;
257 unsigned ref_count;
259 spinlock_t lock;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
270 struct dm_thin_new_mapping *next_mapping;
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
282 struct dm_bio_prison_cell **cell_sort_array;
284 mempool_t mapping_pool;
286 struct bio flush_bio;
289 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291 static enum pool_mode get_pool_mode(struct pool *pool)
293 return pool->pf.mode;
296 static void notify_of_pool_mode_change(struct pool *pool)
298 const char *descs[] = {
299 "write",
300 "out-of-data-space",
301 "read-only",
302 "read-only",
303 "fail"
305 const char *extra_desc = NULL;
306 enum pool_mode mode = get_pool_mode(pool);
308 if (mode == PM_OUT_OF_DATA_SPACE) {
309 if (!pool->pf.error_if_no_space)
310 extra_desc = " (queue IO)";
311 else
312 extra_desc = " (error IO)";
315 dm_table_event(pool->ti->table);
316 DMINFO("%s: switching pool to %s%s mode",
317 dm_device_name(pool->pool_md),
318 descs[(int)mode], extra_desc ? : "");
322 * Target context for a pool.
324 struct pool_c {
325 struct dm_target *ti;
326 struct pool *pool;
327 struct dm_dev *data_dev;
328 struct dm_dev *metadata_dev;
329 struct dm_target_callbacks callbacks;
331 dm_block_t low_water_blocks;
332 struct pool_features requested_pf; /* Features requested during table load */
333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
337 * Target context for a thin.
339 struct thin_c {
340 struct list_head list;
341 struct dm_dev *pool_dev;
342 struct dm_dev *origin_dev;
343 sector_t origin_size;
344 dm_thin_id dev_id;
346 struct pool *pool;
347 struct dm_thin_device *td;
348 struct mapped_device *thin_md;
350 bool requeue_mode:1;
351 spinlock_t lock;
352 struct list_head deferred_cells;
353 struct bio_list deferred_bio_list;
354 struct bio_list retry_on_resume_list;
355 struct rb_root sort_bio_list; /* sorted list of deferred bios */
358 * Ensures the thin is not destroyed until the worker has finished
359 * iterating the active_thins list.
361 refcount_t refcount;
362 struct completion can_destroy;
365 /*----------------------------------------------------------------*/
367 static bool block_size_is_power_of_two(struct pool *pool)
369 return pool->sectors_per_block_shift >= 0;
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
374 return block_size_is_power_of_two(pool) ?
375 (b << pool->sectors_per_block_shift) :
376 (b * pool->sectors_per_block);
379 /*----------------------------------------------------------------*/
381 struct discard_op {
382 struct thin_c *tc;
383 struct blk_plug plug;
384 struct bio *parent_bio;
385 struct bio *bio;
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
390 BUG_ON(!parent);
392 op->tc = tc;
393 blk_start_plug(&op->plug);
394 op->parent_bio = parent;
395 op->bio = NULL;
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
400 struct thin_c *tc = op->tc;
401 sector_t s = block_to_sectors(tc->pool, data_b);
402 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
405 GFP_NOWAIT, 0, &op->bio);
408 static void end_discard(struct discard_op *op, int r)
410 if (op->bio) {
412 * Even if one of the calls to issue_discard failed, we
413 * need to wait for the chain to complete.
415 bio_chain(op->bio, op->parent_bio);
416 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
417 submit_bio(op->bio);
420 blk_finish_plug(&op->plug);
423 * Even if r is set, there could be sub discards in flight that we
424 * need to wait for.
426 if (r && !op->parent_bio->bi_status)
427 op->parent_bio->bi_status = errno_to_blk_status(r);
428 bio_endio(op->parent_bio);
431 /*----------------------------------------------------------------*/
434 * wake_worker() is used when new work is queued and when pool_resume is
435 * ready to continue deferred IO processing.
437 static void wake_worker(struct pool *pool)
439 queue_work(pool->wq, &pool->worker);
442 /*----------------------------------------------------------------*/
444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
445 struct dm_bio_prison_cell **cell_result)
447 int r;
448 struct dm_bio_prison_cell *cell_prealloc;
451 * Allocate a cell from the prison's mempool.
452 * This might block but it can't fail.
454 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
456 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
457 if (r)
459 * We reused an old cell; we can get rid of
460 * the new one.
462 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
464 return r;
467 static void cell_release(struct pool *pool,
468 struct dm_bio_prison_cell *cell,
469 struct bio_list *bios)
471 dm_cell_release(pool->prison, cell, bios);
472 dm_bio_prison_free_cell(pool->prison, cell);
475 static void cell_visit_release(struct pool *pool,
476 void (*fn)(void *, struct dm_bio_prison_cell *),
477 void *context,
478 struct dm_bio_prison_cell *cell)
480 dm_cell_visit_release(pool->prison, fn, context, cell);
481 dm_bio_prison_free_cell(pool->prison, cell);
484 static void cell_release_no_holder(struct pool *pool,
485 struct dm_bio_prison_cell *cell,
486 struct bio_list *bios)
488 dm_cell_release_no_holder(pool->prison, cell, bios);
489 dm_bio_prison_free_cell(pool->prison, cell);
492 static void cell_error_with_code(struct pool *pool,
493 struct dm_bio_prison_cell *cell, blk_status_t error_code)
495 dm_cell_error(pool->prison, cell, error_code);
496 dm_bio_prison_free_cell(pool->prison, cell);
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
506 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
511 cell_error_with_code(pool, cell, 0);
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
519 /*----------------------------------------------------------------*/
522 * A global list of pools that uses a struct mapped_device as a key.
524 static struct dm_thin_pool_table {
525 struct mutex mutex;
526 struct list_head pools;
527 } dm_thin_pool_table;
529 static void pool_table_init(void)
531 mutex_init(&dm_thin_pool_table.mutex);
532 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
535 static void pool_table_exit(void)
537 mutex_destroy(&dm_thin_pool_table.mutex);
540 static void __pool_table_insert(struct pool *pool)
542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 list_add(&pool->list, &dm_thin_pool_table.pools);
546 static void __pool_table_remove(struct pool *pool)
548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 list_del(&pool->list);
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
554 struct pool *pool = NULL, *tmp;
556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 if (tmp->pool_md == md) {
560 pool = tmp;
561 break;
565 return pool;
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
570 struct pool *pool = NULL, *tmp;
572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 if (tmp->md_dev == md_dev) {
576 pool = tmp;
577 break;
581 return pool;
584 /*----------------------------------------------------------------*/
586 struct dm_thin_endio_hook {
587 struct thin_c *tc;
588 struct dm_deferred_entry *shared_read_entry;
589 struct dm_deferred_entry *all_io_entry;
590 struct dm_thin_new_mapping *overwrite_mapping;
591 struct rb_node rb_node;
592 struct dm_bio_prison_cell *cell;
595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
597 bio_list_merge(bios, master);
598 bio_list_init(master);
601 static void error_bio_list(struct bio_list *bios, blk_status_t error)
603 struct bio *bio;
605 while ((bio = bio_list_pop(bios))) {
606 bio->bi_status = error;
607 bio_endio(bio);
611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612 blk_status_t error)
614 struct bio_list bios;
616 bio_list_init(&bios);
618 spin_lock_irq(&tc->lock);
619 __merge_bio_list(&bios, master);
620 spin_unlock_irq(&tc->lock);
622 error_bio_list(&bios, error);
625 static void requeue_deferred_cells(struct thin_c *tc)
627 struct pool *pool = tc->pool;
628 struct list_head cells;
629 struct dm_bio_prison_cell *cell, *tmp;
631 INIT_LIST_HEAD(&cells);
633 spin_lock_irq(&tc->lock);
634 list_splice_init(&tc->deferred_cells, &cells);
635 spin_unlock_irq(&tc->lock);
637 list_for_each_entry_safe(cell, tmp, &cells, user_list)
638 cell_requeue(pool, cell);
641 static void requeue_io(struct thin_c *tc)
643 struct bio_list bios;
645 bio_list_init(&bios);
647 spin_lock_irq(&tc->lock);
648 __merge_bio_list(&bios, &tc->deferred_bio_list);
649 __merge_bio_list(&bios, &tc->retry_on_resume_list);
650 spin_unlock_irq(&tc->lock);
652 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653 requeue_deferred_cells(tc);
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
658 struct thin_c *tc;
660 rcu_read_lock();
661 list_for_each_entry_rcu(tc, &pool->active_thins, list)
662 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663 rcu_read_unlock();
666 static void error_retry_list(struct pool *pool)
668 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
672 * This section of code contains the logic for processing a thin device's IO.
673 * Much of the code depends on pool object resources (lists, workqueues, etc)
674 * but most is exclusively called from the thin target rather than the thin-pool
675 * target.
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
680 struct pool *pool = tc->pool;
681 sector_t block_nr = bio->bi_iter.bi_sector;
683 if (block_size_is_power_of_two(pool))
684 block_nr >>= pool->sectors_per_block_shift;
685 else
686 (void) sector_div(block_nr, pool->sectors_per_block);
688 return block_nr;
692 * Returns the _complete_ blocks that this bio covers.
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695 dm_block_t *begin, dm_block_t *end)
697 struct pool *pool = tc->pool;
698 sector_t b = bio->bi_iter.bi_sector;
699 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
701 b += pool->sectors_per_block - 1ull; /* so we round up */
703 if (block_size_is_power_of_two(pool)) {
704 b >>= pool->sectors_per_block_shift;
705 e >>= pool->sectors_per_block_shift;
706 } else {
707 (void) sector_div(b, pool->sectors_per_block);
708 (void) sector_div(e, pool->sectors_per_block);
711 if (e < b)
712 /* Can happen if the bio is within a single block. */
713 e = b;
715 *begin = b;
716 *end = e;
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
721 struct pool *pool = tc->pool;
722 sector_t bi_sector = bio->bi_iter.bi_sector;
724 bio_set_dev(bio, tc->pool_dev->bdev);
725 if (block_size_is_power_of_two(pool))
726 bio->bi_iter.bi_sector =
727 (block << pool->sectors_per_block_shift) |
728 (bi_sector & (pool->sectors_per_block - 1));
729 else
730 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731 sector_div(bi_sector, pool->sectors_per_block);
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
736 bio_set_dev(bio, tc->origin_dev->bdev);
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
741 return op_is_flush(bio->bi_opf) &&
742 dm_thin_changed_this_transaction(tc->td);
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
747 struct dm_thin_endio_hook *h;
749 if (bio_op(bio) == REQ_OP_DISCARD)
750 return;
752 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
756 static void issue(struct thin_c *tc, struct bio *bio)
758 struct pool *pool = tc->pool;
760 if (!bio_triggers_commit(tc, bio)) {
761 generic_make_request(bio);
762 return;
766 * Complete bio with an error if earlier I/O caused changes to
767 * the metadata that can't be committed e.g, due to I/O errors
768 * on the metadata device.
770 if (dm_thin_aborted_changes(tc->td)) {
771 bio_io_error(bio);
772 return;
776 * Batch together any bios that trigger commits and then issue a
777 * single commit for them in process_deferred_bios().
779 spin_lock_irq(&pool->lock);
780 bio_list_add(&pool->deferred_flush_bios, bio);
781 spin_unlock_irq(&pool->lock);
784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
786 remap_to_origin(tc, bio);
787 issue(tc, bio);
790 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
791 dm_block_t block)
793 remap(tc, bio, block);
794 issue(tc, bio);
797 /*----------------------------------------------------------------*/
800 * Bio endio functions.
802 struct dm_thin_new_mapping {
803 struct list_head list;
805 bool pass_discard:1;
806 bool maybe_shared:1;
809 * Track quiescing, copying and zeroing preparation actions. When this
810 * counter hits zero the block is prepared and can be inserted into the
811 * btree.
813 atomic_t prepare_actions;
815 blk_status_t status;
816 struct thin_c *tc;
817 dm_block_t virt_begin, virt_end;
818 dm_block_t data_block;
819 struct dm_bio_prison_cell *cell;
822 * If the bio covers the whole area of a block then we can avoid
823 * zeroing or copying. Instead this bio is hooked. The bio will
824 * still be in the cell, so care has to be taken to avoid issuing
825 * the bio twice.
827 struct bio *bio;
828 bio_end_io_t *saved_bi_end_io;
831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
833 struct pool *pool = m->tc->pool;
835 if (atomic_dec_and_test(&m->prepare_actions)) {
836 list_add_tail(&m->list, &pool->prepared_mappings);
837 wake_worker(pool);
841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
843 unsigned long flags;
844 struct pool *pool = m->tc->pool;
846 spin_lock_irqsave(&pool->lock, flags);
847 __complete_mapping_preparation(m);
848 spin_unlock_irqrestore(&pool->lock, flags);
851 static void copy_complete(int read_err, unsigned long write_err, void *context)
853 struct dm_thin_new_mapping *m = context;
855 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
856 complete_mapping_preparation(m);
859 static void overwrite_endio(struct bio *bio)
861 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
862 struct dm_thin_new_mapping *m = h->overwrite_mapping;
864 bio->bi_end_io = m->saved_bi_end_io;
866 m->status = bio->bi_status;
867 complete_mapping_preparation(m);
870 /*----------------------------------------------------------------*/
873 * Workqueue.
877 * Prepared mapping jobs.
881 * This sends the bios in the cell, except the original holder, back
882 * to the deferred_bios list.
884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
886 struct pool *pool = tc->pool;
887 unsigned long flags;
888 int has_work;
890 spin_lock_irqsave(&tc->lock, flags);
891 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
892 has_work = !bio_list_empty(&tc->deferred_bio_list);
893 spin_unlock_irqrestore(&tc->lock, flags);
895 if (has_work)
896 wake_worker(pool);
899 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
901 struct remap_info {
902 struct thin_c *tc;
903 struct bio_list defer_bios;
904 struct bio_list issue_bios;
907 static void __inc_remap_and_issue_cell(void *context,
908 struct dm_bio_prison_cell *cell)
910 struct remap_info *info = context;
911 struct bio *bio;
913 while ((bio = bio_list_pop(&cell->bios))) {
914 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
915 bio_list_add(&info->defer_bios, bio);
916 else {
917 inc_all_io_entry(info->tc->pool, bio);
920 * We can't issue the bios with the bio prison lock
921 * held, so we add them to a list to issue on
922 * return from this function.
924 bio_list_add(&info->issue_bios, bio);
929 static void inc_remap_and_issue_cell(struct thin_c *tc,
930 struct dm_bio_prison_cell *cell,
931 dm_block_t block)
933 struct bio *bio;
934 struct remap_info info;
936 info.tc = tc;
937 bio_list_init(&info.defer_bios);
938 bio_list_init(&info.issue_bios);
941 * We have to be careful to inc any bios we're about to issue
942 * before the cell is released, and avoid a race with new bios
943 * being added to the cell.
945 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
946 &info, cell);
948 while ((bio = bio_list_pop(&info.defer_bios)))
949 thin_defer_bio(tc, bio);
951 while ((bio = bio_list_pop(&info.issue_bios)))
952 remap_and_issue(info.tc, bio, block);
955 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
957 cell_error(m->tc->pool, m->cell);
958 list_del(&m->list);
959 mempool_free(m, &m->tc->pool->mapping_pool);
962 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
964 struct pool *pool = tc->pool;
967 * If the bio has the REQ_FUA flag set we must commit the metadata
968 * before signaling its completion.
970 if (!bio_triggers_commit(tc, bio)) {
971 bio_endio(bio);
972 return;
976 * Complete bio with an error if earlier I/O caused changes to the
977 * metadata that can't be committed, e.g, due to I/O errors on the
978 * metadata device.
980 if (dm_thin_aborted_changes(tc->td)) {
981 bio_io_error(bio);
982 return;
986 * Batch together any bios that trigger commits and then issue a
987 * single commit for them in process_deferred_bios().
989 spin_lock_irq(&pool->lock);
990 bio_list_add(&pool->deferred_flush_completions, bio);
991 spin_unlock_irq(&pool->lock);
994 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
996 struct thin_c *tc = m->tc;
997 struct pool *pool = tc->pool;
998 struct bio *bio = m->bio;
999 int r;
1001 if (m->status) {
1002 cell_error(pool, m->cell);
1003 goto out;
1007 * Commit the prepared block into the mapping btree.
1008 * Any I/O for this block arriving after this point will get
1009 * remapped to it directly.
1011 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1012 if (r) {
1013 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1014 cell_error(pool, m->cell);
1015 goto out;
1019 * Release any bios held while the block was being provisioned.
1020 * If we are processing a write bio that completely covers the block,
1021 * we already processed it so can ignore it now when processing
1022 * the bios in the cell.
1024 if (bio) {
1025 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1026 complete_overwrite_bio(tc, bio);
1027 } else {
1028 inc_all_io_entry(tc->pool, m->cell->holder);
1029 remap_and_issue(tc, m->cell->holder, m->data_block);
1030 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1033 out:
1034 list_del(&m->list);
1035 mempool_free(m, &pool->mapping_pool);
1038 /*----------------------------------------------------------------*/
1040 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1042 struct thin_c *tc = m->tc;
1043 if (m->cell)
1044 cell_defer_no_holder(tc, m->cell);
1045 mempool_free(m, &tc->pool->mapping_pool);
1048 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1050 bio_io_error(m->bio);
1051 free_discard_mapping(m);
1054 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1056 bio_endio(m->bio);
1057 free_discard_mapping(m);
1060 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1062 int r;
1063 struct thin_c *tc = m->tc;
1065 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1066 if (r) {
1067 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1068 bio_io_error(m->bio);
1069 } else
1070 bio_endio(m->bio);
1072 cell_defer_no_holder(tc, m->cell);
1073 mempool_free(m, &tc->pool->mapping_pool);
1076 /*----------------------------------------------------------------*/
1078 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1079 struct bio *discard_parent)
1082 * We've already unmapped this range of blocks, but before we
1083 * passdown we have to check that these blocks are now unused.
1085 int r = 0;
1086 bool shared = true;
1087 struct thin_c *tc = m->tc;
1088 struct pool *pool = tc->pool;
1089 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1090 struct discard_op op;
1092 begin_discard(&op, tc, discard_parent);
1093 while (b != end) {
1094 /* find start of unmapped run */
1095 for (; b < end; b++) {
1096 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1097 if (r)
1098 goto out;
1100 if (!shared)
1101 break;
1104 if (b == end)
1105 break;
1107 /* find end of run */
1108 for (e = b + 1; e != end; e++) {
1109 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1110 if (r)
1111 goto out;
1113 if (shared)
1114 break;
1117 r = issue_discard(&op, b, e);
1118 if (r)
1119 goto out;
1121 b = e;
1123 out:
1124 end_discard(&op, r);
1127 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1129 unsigned long flags;
1130 struct pool *pool = m->tc->pool;
1132 spin_lock_irqsave(&pool->lock, flags);
1133 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1134 spin_unlock_irqrestore(&pool->lock, flags);
1135 wake_worker(pool);
1138 static void passdown_endio(struct bio *bio)
1141 * It doesn't matter if the passdown discard failed, we still want
1142 * to unmap (we ignore err).
1144 queue_passdown_pt2(bio->bi_private);
1145 bio_put(bio);
1148 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1150 int r;
1151 struct thin_c *tc = m->tc;
1152 struct pool *pool = tc->pool;
1153 struct bio *discard_parent;
1154 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1157 * Only this thread allocates blocks, so we can be sure that the
1158 * newly unmapped blocks will not be allocated before the end of
1159 * the function.
1161 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1162 if (r) {
1163 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1164 bio_io_error(m->bio);
1165 cell_defer_no_holder(tc, m->cell);
1166 mempool_free(m, &pool->mapping_pool);
1167 return;
1171 * Increment the unmapped blocks. This prevents a race between the
1172 * passdown io and reallocation of freed blocks.
1174 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1175 if (r) {
1176 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1177 bio_io_error(m->bio);
1178 cell_defer_no_holder(tc, m->cell);
1179 mempool_free(m, &pool->mapping_pool);
1180 return;
1183 discard_parent = bio_alloc(GFP_NOIO, 1);
1184 if (!discard_parent) {
1185 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1186 dm_device_name(tc->pool->pool_md));
1187 queue_passdown_pt2(m);
1189 } else {
1190 discard_parent->bi_end_io = passdown_endio;
1191 discard_parent->bi_private = m;
1193 if (m->maybe_shared)
1194 passdown_double_checking_shared_status(m, discard_parent);
1195 else {
1196 struct discard_op op;
1198 begin_discard(&op, tc, discard_parent);
1199 r = issue_discard(&op, m->data_block, data_end);
1200 end_discard(&op, r);
1205 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1207 int r;
1208 struct thin_c *tc = m->tc;
1209 struct pool *pool = tc->pool;
1212 * The passdown has completed, so now we can decrement all those
1213 * unmapped blocks.
1215 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1216 m->data_block + (m->virt_end - m->virt_begin));
1217 if (r) {
1218 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1219 bio_io_error(m->bio);
1220 } else
1221 bio_endio(m->bio);
1223 cell_defer_no_holder(tc, m->cell);
1224 mempool_free(m, &pool->mapping_pool);
1227 static void process_prepared(struct pool *pool, struct list_head *head,
1228 process_mapping_fn *fn)
1230 struct list_head maps;
1231 struct dm_thin_new_mapping *m, *tmp;
1233 INIT_LIST_HEAD(&maps);
1234 spin_lock_irq(&pool->lock);
1235 list_splice_init(head, &maps);
1236 spin_unlock_irq(&pool->lock);
1238 list_for_each_entry_safe(m, tmp, &maps, list)
1239 (*fn)(m);
1243 * Deferred bio jobs.
1245 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1247 return bio->bi_iter.bi_size ==
1248 (pool->sectors_per_block << SECTOR_SHIFT);
1251 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1253 return (bio_data_dir(bio) == WRITE) &&
1254 io_overlaps_block(pool, bio);
1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258 bio_end_io_t *fn)
1260 *save = bio->bi_end_io;
1261 bio->bi_end_io = fn;
1264 static int ensure_next_mapping(struct pool *pool)
1266 if (pool->next_mapping)
1267 return 0;
1269 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1271 return pool->next_mapping ? 0 : -ENOMEM;
1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1276 struct dm_thin_new_mapping *m = pool->next_mapping;
1278 BUG_ON(!pool->next_mapping);
1280 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281 INIT_LIST_HEAD(&m->list);
1282 m->bio = NULL;
1284 pool->next_mapping = NULL;
1286 return m;
1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290 sector_t begin, sector_t end)
1292 struct dm_io_region to;
1294 to.bdev = tc->pool_dev->bdev;
1295 to.sector = begin;
1296 to.count = end - begin;
1298 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302 dm_block_t data_begin,
1303 struct dm_thin_new_mapping *m)
1305 struct pool *pool = tc->pool;
1306 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1308 h->overwrite_mapping = m;
1309 m->bio = bio;
1310 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311 inc_all_io_entry(pool, bio);
1312 remap_and_issue(tc, bio, data_begin);
1316 * A partial copy also needs to zero the uncopied region.
1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319 struct dm_dev *origin, dm_block_t data_origin,
1320 dm_block_t data_dest,
1321 struct dm_bio_prison_cell *cell, struct bio *bio,
1322 sector_t len)
1324 struct pool *pool = tc->pool;
1325 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1327 m->tc = tc;
1328 m->virt_begin = virt_block;
1329 m->virt_end = virt_block + 1u;
1330 m->data_block = data_dest;
1331 m->cell = cell;
1334 * quiesce action + copy action + an extra reference held for the
1335 * duration of this function (we may need to inc later for a
1336 * partial zero).
1338 atomic_set(&m->prepare_actions, 3);
1340 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341 complete_mapping_preparation(m); /* already quiesced */
1344 * IO to pool_dev remaps to the pool target's data_dev.
1346 * If the whole block of data is being overwritten, we can issue the
1347 * bio immediately. Otherwise we use kcopyd to clone the data first.
1349 if (io_overwrites_block(pool, bio))
1350 remap_and_issue_overwrite(tc, bio, data_dest, m);
1351 else {
1352 struct dm_io_region from, to;
1354 from.bdev = origin->bdev;
1355 from.sector = data_origin * pool->sectors_per_block;
1356 from.count = len;
1358 to.bdev = tc->pool_dev->bdev;
1359 to.sector = data_dest * pool->sectors_per_block;
1360 to.count = len;
1362 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363 0, copy_complete, m);
1366 * Do we need to zero a tail region?
1368 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369 atomic_inc(&m->prepare_actions);
1370 ll_zero(tc, m,
1371 data_dest * pool->sectors_per_block + len,
1372 (data_dest + 1) * pool->sectors_per_block);
1376 complete_mapping_preparation(m); /* drop our ref */
1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380 dm_block_t data_origin, dm_block_t data_dest,
1381 struct dm_bio_prison_cell *cell, struct bio *bio)
1383 schedule_copy(tc, virt_block, tc->pool_dev,
1384 data_origin, data_dest, cell, bio,
1385 tc->pool->sectors_per_block);
1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390 struct bio *bio)
1392 struct pool *pool = tc->pool;
1393 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1395 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396 m->tc = tc;
1397 m->virt_begin = virt_block;
1398 m->virt_end = virt_block + 1u;
1399 m->data_block = data_block;
1400 m->cell = cell;
1403 * If the whole block of data is being overwritten or we are not
1404 * zeroing pre-existing data, we can issue the bio immediately.
1405 * Otherwise we use kcopyd to zero the data first.
1407 if (pool->pf.zero_new_blocks) {
1408 if (io_overwrites_block(pool, bio))
1409 remap_and_issue_overwrite(tc, bio, data_block, m);
1410 else
1411 ll_zero(tc, m, data_block * pool->sectors_per_block,
1412 (data_block + 1) * pool->sectors_per_block);
1413 } else
1414 process_prepared_mapping(m);
1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418 dm_block_t data_dest,
1419 struct dm_bio_prison_cell *cell, struct bio *bio)
1421 struct pool *pool = tc->pool;
1422 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1425 if (virt_block_end <= tc->origin_size)
1426 schedule_copy(tc, virt_block, tc->origin_dev,
1427 virt_block, data_dest, cell, bio,
1428 pool->sectors_per_block);
1430 else if (virt_block_begin < tc->origin_size)
1431 schedule_copy(tc, virt_block, tc->origin_dev,
1432 virt_block, data_dest, cell, bio,
1433 tc->origin_size - virt_block_begin);
1435 else
1436 schedule_zero(tc, virt_block, data_dest, cell, bio);
1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1441 static void requeue_bios(struct pool *pool);
1443 static bool is_read_only_pool_mode(enum pool_mode mode)
1445 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1448 static bool is_read_only(struct pool *pool)
1450 return is_read_only_pool_mode(get_pool_mode(pool));
1453 static void check_for_metadata_space(struct pool *pool)
1455 int r;
1456 const char *ooms_reason = NULL;
1457 dm_block_t nr_free;
1459 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460 if (r)
1461 ooms_reason = "Could not get free metadata blocks";
1462 else if (!nr_free)
1463 ooms_reason = "No free metadata blocks";
1465 if (ooms_reason && !is_read_only(pool)) {
1466 DMERR("%s", ooms_reason);
1467 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1471 static void check_for_data_space(struct pool *pool)
1473 int r;
1474 dm_block_t nr_free;
1476 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477 return;
1479 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480 if (r)
1481 return;
1483 if (nr_free) {
1484 set_pool_mode(pool, PM_WRITE);
1485 requeue_bios(pool);
1490 * A non-zero return indicates read_only or fail_io mode.
1491 * Many callers don't care about the return value.
1493 static int commit(struct pool *pool)
1495 int r;
1497 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498 return -EINVAL;
1500 r = dm_pool_commit_metadata(pool->pmd);
1501 if (r)
1502 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503 else {
1504 check_for_metadata_space(pool);
1505 check_for_data_space(pool);
1508 return r;
1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1513 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1514 DMWARN("%s: reached low water mark for data device: sending event.",
1515 dm_device_name(pool->pool_md));
1516 spin_lock_irq(&pool->lock);
1517 pool->low_water_triggered = true;
1518 spin_unlock_irq(&pool->lock);
1519 dm_table_event(pool->ti->table);
1523 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1525 int r;
1526 dm_block_t free_blocks;
1527 struct pool *pool = tc->pool;
1529 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1530 return -EINVAL;
1532 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1533 if (r) {
1534 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1535 return r;
1538 check_low_water_mark(pool, free_blocks);
1540 if (!free_blocks) {
1542 * Try to commit to see if that will free up some
1543 * more space.
1545 r = commit(pool);
1546 if (r)
1547 return r;
1549 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1550 if (r) {
1551 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1552 return r;
1555 if (!free_blocks) {
1556 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557 return -ENOSPC;
1561 r = dm_pool_alloc_data_block(pool->pmd, result);
1562 if (r) {
1563 if (r == -ENOSPC)
1564 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1565 else
1566 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1567 return r;
1570 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1571 if (r) {
1572 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1573 return r;
1576 if (!free_blocks) {
1577 /* Let's commit before we use up the metadata reserve. */
1578 r = commit(pool);
1579 if (r)
1580 return r;
1583 return 0;
1587 * If we have run out of space, queue bios until the device is
1588 * resumed, presumably after having been reloaded with more space.
1590 static void retry_on_resume(struct bio *bio)
1592 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1593 struct thin_c *tc = h->tc;
1595 spin_lock_irq(&tc->lock);
1596 bio_list_add(&tc->retry_on_resume_list, bio);
1597 spin_unlock_irq(&tc->lock);
1600 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1602 enum pool_mode m = get_pool_mode(pool);
1604 switch (m) {
1605 case PM_WRITE:
1606 /* Shouldn't get here */
1607 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1608 return BLK_STS_IOERR;
1610 case PM_OUT_OF_DATA_SPACE:
1611 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1613 case PM_OUT_OF_METADATA_SPACE:
1614 case PM_READ_ONLY:
1615 case PM_FAIL:
1616 return BLK_STS_IOERR;
1617 default:
1618 /* Shouldn't get here */
1619 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1620 return BLK_STS_IOERR;
1624 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1626 blk_status_t error = should_error_unserviceable_bio(pool);
1628 if (error) {
1629 bio->bi_status = error;
1630 bio_endio(bio);
1631 } else
1632 retry_on_resume(bio);
1635 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1637 struct bio *bio;
1638 struct bio_list bios;
1639 blk_status_t error;
1641 error = should_error_unserviceable_bio(pool);
1642 if (error) {
1643 cell_error_with_code(pool, cell, error);
1644 return;
1647 bio_list_init(&bios);
1648 cell_release(pool, cell, &bios);
1650 while ((bio = bio_list_pop(&bios)))
1651 retry_on_resume(bio);
1654 static void process_discard_cell_no_passdown(struct thin_c *tc,
1655 struct dm_bio_prison_cell *virt_cell)
1657 struct pool *pool = tc->pool;
1658 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1661 * We don't need to lock the data blocks, since there's no
1662 * passdown. We only lock data blocks for allocation and breaking sharing.
1664 m->tc = tc;
1665 m->virt_begin = virt_cell->key.block_begin;
1666 m->virt_end = virt_cell->key.block_end;
1667 m->cell = virt_cell;
1668 m->bio = virt_cell->holder;
1670 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1671 pool->process_prepared_discard(m);
1674 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1675 struct bio *bio)
1677 struct pool *pool = tc->pool;
1679 int r;
1680 bool maybe_shared;
1681 struct dm_cell_key data_key;
1682 struct dm_bio_prison_cell *data_cell;
1683 struct dm_thin_new_mapping *m;
1684 dm_block_t virt_begin, virt_end, data_begin;
1686 while (begin != end) {
1687 r = ensure_next_mapping(pool);
1688 if (r)
1689 /* we did our best */
1690 return;
1692 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1693 &data_begin, &maybe_shared);
1694 if (r)
1696 * Silently fail, letting any mappings we've
1697 * created complete.
1699 break;
1701 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1702 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1703 /* contention, we'll give up with this range */
1704 begin = virt_end;
1705 continue;
1709 * IO may still be going to the destination block. We must
1710 * quiesce before we can do the removal.
1712 m = get_next_mapping(pool);
1713 m->tc = tc;
1714 m->maybe_shared = maybe_shared;
1715 m->virt_begin = virt_begin;
1716 m->virt_end = virt_end;
1717 m->data_block = data_begin;
1718 m->cell = data_cell;
1719 m->bio = bio;
1722 * The parent bio must not complete before sub discard bios are
1723 * chained to it (see end_discard's bio_chain)!
1725 * This per-mapping bi_remaining increment is paired with
1726 * the implicit decrement that occurs via bio_endio() in
1727 * end_discard().
1729 bio_inc_remaining(bio);
1730 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1731 pool->process_prepared_discard(m);
1733 begin = virt_end;
1737 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1739 struct bio *bio = virt_cell->holder;
1740 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1743 * The virt_cell will only get freed once the origin bio completes.
1744 * This means it will remain locked while all the individual
1745 * passdown bios are in flight.
1747 h->cell = virt_cell;
1748 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1751 * We complete the bio now, knowing that the bi_remaining field
1752 * will prevent completion until the sub range discards have
1753 * completed.
1755 bio_endio(bio);
1758 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1760 dm_block_t begin, end;
1761 struct dm_cell_key virt_key;
1762 struct dm_bio_prison_cell *virt_cell;
1764 get_bio_block_range(tc, bio, &begin, &end);
1765 if (begin == end) {
1767 * The discard covers less than a block.
1769 bio_endio(bio);
1770 return;
1773 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1774 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1776 * Potential starvation issue: We're relying on the
1777 * fs/application being well behaved, and not trying to
1778 * send IO to a region at the same time as discarding it.
1779 * If they do this persistently then it's possible this
1780 * cell will never be granted.
1782 return;
1784 tc->pool->process_discard_cell(tc, virt_cell);
1787 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1788 struct dm_cell_key *key,
1789 struct dm_thin_lookup_result *lookup_result,
1790 struct dm_bio_prison_cell *cell)
1792 int r;
1793 dm_block_t data_block;
1794 struct pool *pool = tc->pool;
1796 r = alloc_data_block(tc, &data_block);
1797 switch (r) {
1798 case 0:
1799 schedule_internal_copy(tc, block, lookup_result->block,
1800 data_block, cell, bio);
1801 break;
1803 case -ENOSPC:
1804 retry_bios_on_resume(pool, cell);
1805 break;
1807 default:
1808 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1809 __func__, r);
1810 cell_error(pool, cell);
1811 break;
1815 static void __remap_and_issue_shared_cell(void *context,
1816 struct dm_bio_prison_cell *cell)
1818 struct remap_info *info = context;
1819 struct bio *bio;
1821 while ((bio = bio_list_pop(&cell->bios))) {
1822 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1823 bio_op(bio) == REQ_OP_DISCARD)
1824 bio_list_add(&info->defer_bios, bio);
1825 else {
1826 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1828 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1829 inc_all_io_entry(info->tc->pool, bio);
1830 bio_list_add(&info->issue_bios, bio);
1835 static void remap_and_issue_shared_cell(struct thin_c *tc,
1836 struct dm_bio_prison_cell *cell,
1837 dm_block_t block)
1839 struct bio *bio;
1840 struct remap_info info;
1842 info.tc = tc;
1843 bio_list_init(&info.defer_bios);
1844 bio_list_init(&info.issue_bios);
1846 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1847 &info, cell);
1849 while ((bio = bio_list_pop(&info.defer_bios)))
1850 thin_defer_bio(tc, bio);
1852 while ((bio = bio_list_pop(&info.issue_bios)))
1853 remap_and_issue(tc, bio, block);
1856 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1857 dm_block_t block,
1858 struct dm_thin_lookup_result *lookup_result,
1859 struct dm_bio_prison_cell *virt_cell)
1861 struct dm_bio_prison_cell *data_cell;
1862 struct pool *pool = tc->pool;
1863 struct dm_cell_key key;
1866 * If cell is already occupied, then sharing is already in the process
1867 * of being broken so we have nothing further to do here.
1869 build_data_key(tc->td, lookup_result->block, &key);
1870 if (bio_detain(pool, &key, bio, &data_cell)) {
1871 cell_defer_no_holder(tc, virt_cell);
1872 return;
1875 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1876 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1877 cell_defer_no_holder(tc, virt_cell);
1878 } else {
1879 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1881 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1882 inc_all_io_entry(pool, bio);
1883 remap_and_issue(tc, bio, lookup_result->block);
1885 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1886 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1890 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1891 struct dm_bio_prison_cell *cell)
1893 int r;
1894 dm_block_t data_block;
1895 struct pool *pool = tc->pool;
1898 * Remap empty bios (flushes) immediately, without provisioning.
1900 if (!bio->bi_iter.bi_size) {
1901 inc_all_io_entry(pool, bio);
1902 cell_defer_no_holder(tc, cell);
1904 remap_and_issue(tc, bio, 0);
1905 return;
1909 * Fill read bios with zeroes and complete them immediately.
1911 if (bio_data_dir(bio) == READ) {
1912 zero_fill_bio(bio);
1913 cell_defer_no_holder(tc, cell);
1914 bio_endio(bio);
1915 return;
1918 r = alloc_data_block(tc, &data_block);
1919 switch (r) {
1920 case 0:
1921 if (tc->origin_dev)
1922 schedule_external_copy(tc, block, data_block, cell, bio);
1923 else
1924 schedule_zero(tc, block, data_block, cell, bio);
1925 break;
1927 case -ENOSPC:
1928 retry_bios_on_resume(pool, cell);
1929 break;
1931 default:
1932 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1933 __func__, r);
1934 cell_error(pool, cell);
1935 break;
1939 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1941 int r;
1942 struct pool *pool = tc->pool;
1943 struct bio *bio = cell->holder;
1944 dm_block_t block = get_bio_block(tc, bio);
1945 struct dm_thin_lookup_result lookup_result;
1947 if (tc->requeue_mode) {
1948 cell_requeue(pool, cell);
1949 return;
1952 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1953 switch (r) {
1954 case 0:
1955 if (lookup_result.shared)
1956 process_shared_bio(tc, bio, block, &lookup_result, cell);
1957 else {
1958 inc_all_io_entry(pool, bio);
1959 remap_and_issue(tc, bio, lookup_result.block);
1960 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1962 break;
1964 case -ENODATA:
1965 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1966 inc_all_io_entry(pool, bio);
1967 cell_defer_no_holder(tc, cell);
1969 if (bio_end_sector(bio) <= tc->origin_size)
1970 remap_to_origin_and_issue(tc, bio);
1972 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1973 zero_fill_bio(bio);
1974 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1975 remap_to_origin_and_issue(tc, bio);
1977 } else {
1978 zero_fill_bio(bio);
1979 bio_endio(bio);
1981 } else
1982 provision_block(tc, bio, block, cell);
1983 break;
1985 default:
1986 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1987 __func__, r);
1988 cell_defer_no_holder(tc, cell);
1989 bio_io_error(bio);
1990 break;
1994 static void process_bio(struct thin_c *tc, struct bio *bio)
1996 struct pool *pool = tc->pool;
1997 dm_block_t block = get_bio_block(tc, bio);
1998 struct dm_bio_prison_cell *cell;
1999 struct dm_cell_key key;
2002 * If cell is already occupied, then the block is already
2003 * being provisioned so we have nothing further to do here.
2005 build_virtual_key(tc->td, block, &key);
2006 if (bio_detain(pool, &key, bio, &cell))
2007 return;
2009 process_cell(tc, cell);
2012 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2013 struct dm_bio_prison_cell *cell)
2015 int r;
2016 int rw = bio_data_dir(bio);
2017 dm_block_t block = get_bio_block(tc, bio);
2018 struct dm_thin_lookup_result lookup_result;
2020 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2021 switch (r) {
2022 case 0:
2023 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2024 handle_unserviceable_bio(tc->pool, bio);
2025 if (cell)
2026 cell_defer_no_holder(tc, cell);
2027 } else {
2028 inc_all_io_entry(tc->pool, bio);
2029 remap_and_issue(tc, bio, lookup_result.block);
2030 if (cell)
2031 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2033 break;
2035 case -ENODATA:
2036 if (cell)
2037 cell_defer_no_holder(tc, cell);
2038 if (rw != READ) {
2039 handle_unserviceable_bio(tc->pool, bio);
2040 break;
2043 if (tc->origin_dev) {
2044 inc_all_io_entry(tc->pool, bio);
2045 remap_to_origin_and_issue(tc, bio);
2046 break;
2049 zero_fill_bio(bio);
2050 bio_endio(bio);
2051 break;
2053 default:
2054 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2055 __func__, r);
2056 if (cell)
2057 cell_defer_no_holder(tc, cell);
2058 bio_io_error(bio);
2059 break;
2063 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2065 __process_bio_read_only(tc, bio, NULL);
2068 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2070 __process_bio_read_only(tc, cell->holder, cell);
2073 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2075 bio_endio(bio);
2078 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2080 bio_io_error(bio);
2083 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2085 cell_success(tc->pool, cell);
2088 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2090 cell_error(tc->pool, cell);
2094 * FIXME: should we also commit due to size of transaction, measured in
2095 * metadata blocks?
2097 static int need_commit_due_to_time(struct pool *pool)
2099 return !time_in_range(jiffies, pool->last_commit_jiffies,
2100 pool->last_commit_jiffies + COMMIT_PERIOD);
2103 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2104 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2106 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2108 struct rb_node **rbp, *parent;
2109 struct dm_thin_endio_hook *pbd;
2110 sector_t bi_sector = bio->bi_iter.bi_sector;
2112 rbp = &tc->sort_bio_list.rb_node;
2113 parent = NULL;
2114 while (*rbp) {
2115 parent = *rbp;
2116 pbd = thin_pbd(parent);
2118 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2119 rbp = &(*rbp)->rb_left;
2120 else
2121 rbp = &(*rbp)->rb_right;
2124 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2125 rb_link_node(&pbd->rb_node, parent, rbp);
2126 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2129 static void __extract_sorted_bios(struct thin_c *tc)
2131 struct rb_node *node;
2132 struct dm_thin_endio_hook *pbd;
2133 struct bio *bio;
2135 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2136 pbd = thin_pbd(node);
2137 bio = thin_bio(pbd);
2139 bio_list_add(&tc->deferred_bio_list, bio);
2140 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2143 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2146 static void __sort_thin_deferred_bios(struct thin_c *tc)
2148 struct bio *bio;
2149 struct bio_list bios;
2151 bio_list_init(&bios);
2152 bio_list_merge(&bios, &tc->deferred_bio_list);
2153 bio_list_init(&tc->deferred_bio_list);
2155 /* Sort deferred_bio_list using rb-tree */
2156 while ((bio = bio_list_pop(&bios)))
2157 __thin_bio_rb_add(tc, bio);
2160 * Transfer the sorted bios in sort_bio_list back to
2161 * deferred_bio_list to allow lockless submission of
2162 * all bios.
2164 __extract_sorted_bios(tc);
2167 static void process_thin_deferred_bios(struct thin_c *tc)
2169 struct pool *pool = tc->pool;
2170 struct bio *bio;
2171 struct bio_list bios;
2172 struct blk_plug plug;
2173 unsigned count = 0;
2175 if (tc->requeue_mode) {
2176 error_thin_bio_list(tc, &tc->deferred_bio_list,
2177 BLK_STS_DM_REQUEUE);
2178 return;
2181 bio_list_init(&bios);
2183 spin_lock_irq(&tc->lock);
2185 if (bio_list_empty(&tc->deferred_bio_list)) {
2186 spin_unlock_irq(&tc->lock);
2187 return;
2190 __sort_thin_deferred_bios(tc);
2192 bio_list_merge(&bios, &tc->deferred_bio_list);
2193 bio_list_init(&tc->deferred_bio_list);
2195 spin_unlock_irq(&tc->lock);
2197 blk_start_plug(&plug);
2198 while ((bio = bio_list_pop(&bios))) {
2200 * If we've got no free new_mapping structs, and processing
2201 * this bio might require one, we pause until there are some
2202 * prepared mappings to process.
2204 if (ensure_next_mapping(pool)) {
2205 spin_lock_irq(&tc->lock);
2206 bio_list_add(&tc->deferred_bio_list, bio);
2207 bio_list_merge(&tc->deferred_bio_list, &bios);
2208 spin_unlock_irq(&tc->lock);
2209 break;
2212 if (bio_op(bio) == REQ_OP_DISCARD)
2213 pool->process_discard(tc, bio);
2214 else
2215 pool->process_bio(tc, bio);
2217 if ((count++ & 127) == 0) {
2218 throttle_work_update(&pool->throttle);
2219 dm_pool_issue_prefetches(pool->pmd);
2222 blk_finish_plug(&plug);
2225 static int cmp_cells(const void *lhs, const void *rhs)
2227 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2228 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2230 BUG_ON(!lhs_cell->holder);
2231 BUG_ON(!rhs_cell->holder);
2233 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2234 return -1;
2236 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2237 return 1;
2239 return 0;
2242 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2244 unsigned count = 0;
2245 struct dm_bio_prison_cell *cell, *tmp;
2247 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2248 if (count >= CELL_SORT_ARRAY_SIZE)
2249 break;
2251 pool->cell_sort_array[count++] = cell;
2252 list_del(&cell->user_list);
2255 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2257 return count;
2260 static void process_thin_deferred_cells(struct thin_c *tc)
2262 struct pool *pool = tc->pool;
2263 struct list_head cells;
2264 struct dm_bio_prison_cell *cell;
2265 unsigned i, j, count;
2267 INIT_LIST_HEAD(&cells);
2269 spin_lock_irq(&tc->lock);
2270 list_splice_init(&tc->deferred_cells, &cells);
2271 spin_unlock_irq(&tc->lock);
2273 if (list_empty(&cells))
2274 return;
2276 do {
2277 count = sort_cells(tc->pool, &cells);
2279 for (i = 0; i < count; i++) {
2280 cell = pool->cell_sort_array[i];
2281 BUG_ON(!cell->holder);
2284 * If we've got no free new_mapping structs, and processing
2285 * this bio might require one, we pause until there are some
2286 * prepared mappings to process.
2288 if (ensure_next_mapping(pool)) {
2289 for (j = i; j < count; j++)
2290 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2292 spin_lock_irq(&tc->lock);
2293 list_splice(&cells, &tc->deferred_cells);
2294 spin_unlock_irq(&tc->lock);
2295 return;
2298 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2299 pool->process_discard_cell(tc, cell);
2300 else
2301 pool->process_cell(tc, cell);
2303 } while (!list_empty(&cells));
2306 static void thin_get(struct thin_c *tc);
2307 static void thin_put(struct thin_c *tc);
2310 * We can't hold rcu_read_lock() around code that can block. So we
2311 * find a thin with the rcu lock held; bump a refcount; then drop
2312 * the lock.
2314 static struct thin_c *get_first_thin(struct pool *pool)
2316 struct thin_c *tc = NULL;
2318 rcu_read_lock();
2319 if (!list_empty(&pool->active_thins)) {
2320 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2321 thin_get(tc);
2323 rcu_read_unlock();
2325 return tc;
2328 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2330 struct thin_c *old_tc = tc;
2332 rcu_read_lock();
2333 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2334 thin_get(tc);
2335 thin_put(old_tc);
2336 rcu_read_unlock();
2337 return tc;
2339 thin_put(old_tc);
2340 rcu_read_unlock();
2342 return NULL;
2345 static void process_deferred_bios(struct pool *pool)
2347 struct bio *bio;
2348 struct bio_list bios, bio_completions;
2349 struct thin_c *tc;
2351 tc = get_first_thin(pool);
2352 while (tc) {
2353 process_thin_deferred_cells(tc);
2354 process_thin_deferred_bios(tc);
2355 tc = get_next_thin(pool, tc);
2359 * If there are any deferred flush bios, we must commit the metadata
2360 * before issuing them or signaling their completion.
2362 bio_list_init(&bios);
2363 bio_list_init(&bio_completions);
2365 spin_lock_irq(&pool->lock);
2366 bio_list_merge(&bios, &pool->deferred_flush_bios);
2367 bio_list_init(&pool->deferred_flush_bios);
2369 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2370 bio_list_init(&pool->deferred_flush_completions);
2371 spin_unlock_irq(&pool->lock);
2373 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2374 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2375 return;
2377 if (commit(pool)) {
2378 bio_list_merge(&bios, &bio_completions);
2380 while ((bio = bio_list_pop(&bios)))
2381 bio_io_error(bio);
2382 return;
2384 pool->last_commit_jiffies = jiffies;
2386 while ((bio = bio_list_pop(&bio_completions)))
2387 bio_endio(bio);
2389 while ((bio = bio_list_pop(&bios))) {
2391 * The data device was flushed as part of metadata commit,
2392 * so complete redundant flushes immediately.
2394 if (bio->bi_opf & REQ_PREFLUSH)
2395 bio_endio(bio);
2396 else
2397 generic_make_request(bio);
2401 static void do_worker(struct work_struct *ws)
2403 struct pool *pool = container_of(ws, struct pool, worker);
2405 throttle_work_start(&pool->throttle);
2406 dm_pool_issue_prefetches(pool->pmd);
2407 throttle_work_update(&pool->throttle);
2408 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2409 throttle_work_update(&pool->throttle);
2410 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2411 throttle_work_update(&pool->throttle);
2412 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2413 throttle_work_update(&pool->throttle);
2414 process_deferred_bios(pool);
2415 throttle_work_complete(&pool->throttle);
2419 * We want to commit periodically so that not too much
2420 * unwritten data builds up.
2422 static void do_waker(struct work_struct *ws)
2424 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2425 wake_worker(pool);
2426 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2430 * We're holding onto IO to allow userland time to react. After the
2431 * timeout either the pool will have been resized (and thus back in
2432 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2434 static void do_no_space_timeout(struct work_struct *ws)
2436 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2437 no_space_timeout);
2439 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2440 pool->pf.error_if_no_space = true;
2441 notify_of_pool_mode_change(pool);
2442 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2446 /*----------------------------------------------------------------*/
2448 struct pool_work {
2449 struct work_struct worker;
2450 struct completion complete;
2453 static struct pool_work *to_pool_work(struct work_struct *ws)
2455 return container_of(ws, struct pool_work, worker);
2458 static void pool_work_complete(struct pool_work *pw)
2460 complete(&pw->complete);
2463 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2464 void (*fn)(struct work_struct *))
2466 INIT_WORK_ONSTACK(&pw->worker, fn);
2467 init_completion(&pw->complete);
2468 queue_work(pool->wq, &pw->worker);
2469 wait_for_completion(&pw->complete);
2472 /*----------------------------------------------------------------*/
2474 struct noflush_work {
2475 struct pool_work pw;
2476 struct thin_c *tc;
2479 static struct noflush_work *to_noflush(struct work_struct *ws)
2481 return container_of(to_pool_work(ws), struct noflush_work, pw);
2484 static void do_noflush_start(struct work_struct *ws)
2486 struct noflush_work *w = to_noflush(ws);
2487 w->tc->requeue_mode = true;
2488 requeue_io(w->tc);
2489 pool_work_complete(&w->pw);
2492 static void do_noflush_stop(struct work_struct *ws)
2494 struct noflush_work *w = to_noflush(ws);
2495 w->tc->requeue_mode = false;
2496 pool_work_complete(&w->pw);
2499 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2501 struct noflush_work w;
2503 w.tc = tc;
2504 pool_work_wait(&w.pw, tc->pool, fn);
2507 /*----------------------------------------------------------------*/
2509 static bool passdown_enabled(struct pool_c *pt)
2511 return pt->adjusted_pf.discard_passdown;
2514 static void set_discard_callbacks(struct pool *pool)
2516 struct pool_c *pt = pool->ti->private;
2518 if (passdown_enabled(pt)) {
2519 pool->process_discard_cell = process_discard_cell_passdown;
2520 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2521 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2522 } else {
2523 pool->process_discard_cell = process_discard_cell_no_passdown;
2524 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2528 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2530 struct pool_c *pt = pool->ti->private;
2531 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2532 enum pool_mode old_mode = get_pool_mode(pool);
2533 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2536 * Never allow the pool to transition to PM_WRITE mode if user
2537 * intervention is required to verify metadata and data consistency.
2539 if (new_mode == PM_WRITE && needs_check) {
2540 DMERR("%s: unable to switch pool to write mode until repaired.",
2541 dm_device_name(pool->pool_md));
2542 if (old_mode != new_mode)
2543 new_mode = old_mode;
2544 else
2545 new_mode = PM_READ_ONLY;
2548 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2549 * not going to recover without a thin_repair. So we never let the
2550 * pool move out of the old mode.
2552 if (old_mode == PM_FAIL)
2553 new_mode = old_mode;
2555 switch (new_mode) {
2556 case PM_FAIL:
2557 dm_pool_metadata_read_only(pool->pmd);
2558 pool->process_bio = process_bio_fail;
2559 pool->process_discard = process_bio_fail;
2560 pool->process_cell = process_cell_fail;
2561 pool->process_discard_cell = process_cell_fail;
2562 pool->process_prepared_mapping = process_prepared_mapping_fail;
2563 pool->process_prepared_discard = process_prepared_discard_fail;
2565 error_retry_list(pool);
2566 break;
2568 case PM_OUT_OF_METADATA_SPACE:
2569 case PM_READ_ONLY:
2570 dm_pool_metadata_read_only(pool->pmd);
2571 pool->process_bio = process_bio_read_only;
2572 pool->process_discard = process_bio_success;
2573 pool->process_cell = process_cell_read_only;
2574 pool->process_discard_cell = process_cell_success;
2575 pool->process_prepared_mapping = process_prepared_mapping_fail;
2576 pool->process_prepared_discard = process_prepared_discard_success;
2578 error_retry_list(pool);
2579 break;
2581 case PM_OUT_OF_DATA_SPACE:
2583 * Ideally we'd never hit this state; the low water mark
2584 * would trigger userland to extend the pool before we
2585 * completely run out of data space. However, many small
2586 * IOs to unprovisioned space can consume data space at an
2587 * alarming rate. Adjust your low water mark if you're
2588 * frequently seeing this mode.
2590 pool->out_of_data_space = true;
2591 pool->process_bio = process_bio_read_only;
2592 pool->process_discard = process_discard_bio;
2593 pool->process_cell = process_cell_read_only;
2594 pool->process_prepared_mapping = process_prepared_mapping;
2595 set_discard_callbacks(pool);
2597 if (!pool->pf.error_if_no_space && no_space_timeout)
2598 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2599 break;
2601 case PM_WRITE:
2602 if (old_mode == PM_OUT_OF_DATA_SPACE)
2603 cancel_delayed_work_sync(&pool->no_space_timeout);
2604 pool->out_of_data_space = false;
2605 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2606 dm_pool_metadata_read_write(pool->pmd);
2607 pool->process_bio = process_bio;
2608 pool->process_discard = process_discard_bio;
2609 pool->process_cell = process_cell;
2610 pool->process_prepared_mapping = process_prepared_mapping;
2611 set_discard_callbacks(pool);
2612 break;
2615 pool->pf.mode = new_mode;
2617 * The pool mode may have changed, sync it so bind_control_target()
2618 * doesn't cause an unexpected mode transition on resume.
2620 pt->adjusted_pf.mode = new_mode;
2622 if (old_mode != new_mode)
2623 notify_of_pool_mode_change(pool);
2626 static void abort_transaction(struct pool *pool)
2628 const char *dev_name = dm_device_name(pool->pool_md);
2630 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2631 if (dm_pool_abort_metadata(pool->pmd)) {
2632 DMERR("%s: failed to abort metadata transaction", dev_name);
2633 set_pool_mode(pool, PM_FAIL);
2636 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2637 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2638 set_pool_mode(pool, PM_FAIL);
2642 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2644 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2645 dm_device_name(pool->pool_md), op, r);
2647 abort_transaction(pool);
2648 set_pool_mode(pool, PM_READ_ONLY);
2651 /*----------------------------------------------------------------*/
2654 * Mapping functions.
2658 * Called only while mapping a thin bio to hand it over to the workqueue.
2660 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2662 struct pool *pool = tc->pool;
2664 spin_lock_irq(&tc->lock);
2665 bio_list_add(&tc->deferred_bio_list, bio);
2666 spin_unlock_irq(&tc->lock);
2668 wake_worker(pool);
2671 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2673 struct pool *pool = tc->pool;
2675 throttle_lock(&pool->throttle);
2676 thin_defer_bio(tc, bio);
2677 throttle_unlock(&pool->throttle);
2680 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2682 struct pool *pool = tc->pool;
2684 throttle_lock(&pool->throttle);
2685 spin_lock_irq(&tc->lock);
2686 list_add_tail(&cell->user_list, &tc->deferred_cells);
2687 spin_unlock_irq(&tc->lock);
2688 throttle_unlock(&pool->throttle);
2690 wake_worker(pool);
2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2695 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2697 h->tc = tc;
2698 h->shared_read_entry = NULL;
2699 h->all_io_entry = NULL;
2700 h->overwrite_mapping = NULL;
2701 h->cell = NULL;
2705 * Non-blocking function called from the thin target's map function.
2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2709 int r;
2710 struct thin_c *tc = ti->private;
2711 dm_block_t block = get_bio_block(tc, bio);
2712 struct dm_thin_device *td = tc->td;
2713 struct dm_thin_lookup_result result;
2714 struct dm_bio_prison_cell *virt_cell, *data_cell;
2715 struct dm_cell_key key;
2717 thin_hook_bio(tc, bio);
2719 if (tc->requeue_mode) {
2720 bio->bi_status = BLK_STS_DM_REQUEUE;
2721 bio_endio(bio);
2722 return DM_MAPIO_SUBMITTED;
2725 if (get_pool_mode(tc->pool) == PM_FAIL) {
2726 bio_io_error(bio);
2727 return DM_MAPIO_SUBMITTED;
2730 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2731 thin_defer_bio_with_throttle(tc, bio);
2732 return DM_MAPIO_SUBMITTED;
2736 * We must hold the virtual cell before doing the lookup, otherwise
2737 * there's a race with discard.
2739 build_virtual_key(tc->td, block, &key);
2740 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2741 return DM_MAPIO_SUBMITTED;
2743 r = dm_thin_find_block(td, block, 0, &result);
2746 * Note that we defer readahead too.
2748 switch (r) {
2749 case 0:
2750 if (unlikely(result.shared)) {
2752 * We have a race condition here between the
2753 * result.shared value returned by the lookup and
2754 * snapshot creation, which may cause new
2755 * sharing.
2757 * To avoid this always quiesce the origin before
2758 * taking the snap. You want to do this anyway to
2759 * ensure a consistent application view
2760 * (i.e. lockfs).
2762 * More distant ancestors are irrelevant. The
2763 * shared flag will be set in their case.
2765 thin_defer_cell(tc, virt_cell);
2766 return DM_MAPIO_SUBMITTED;
2769 build_data_key(tc->td, result.block, &key);
2770 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2771 cell_defer_no_holder(tc, virt_cell);
2772 return DM_MAPIO_SUBMITTED;
2775 inc_all_io_entry(tc->pool, bio);
2776 cell_defer_no_holder(tc, data_cell);
2777 cell_defer_no_holder(tc, virt_cell);
2779 remap(tc, bio, result.block);
2780 return DM_MAPIO_REMAPPED;
2782 case -ENODATA:
2783 case -EWOULDBLOCK:
2784 thin_defer_cell(tc, virt_cell);
2785 return DM_MAPIO_SUBMITTED;
2787 default:
2789 * Must always call bio_io_error on failure.
2790 * dm_thin_find_block can fail with -EINVAL if the
2791 * pool is switched to fail-io mode.
2793 bio_io_error(bio);
2794 cell_defer_no_holder(tc, virt_cell);
2795 return DM_MAPIO_SUBMITTED;
2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2801 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2802 struct request_queue *q;
2804 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2805 return 1;
2807 q = bdev_get_queue(pt->data_dev->bdev);
2808 return bdi_congested(q->backing_dev_info, bdi_bits);
2811 static void requeue_bios(struct pool *pool)
2813 struct thin_c *tc;
2815 rcu_read_lock();
2816 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2817 spin_lock_irq(&tc->lock);
2818 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2819 bio_list_init(&tc->retry_on_resume_list);
2820 spin_unlock_irq(&tc->lock);
2822 rcu_read_unlock();
2825 /*----------------------------------------------------------------
2826 * Binding of control targets to a pool object
2827 *--------------------------------------------------------------*/
2828 static bool data_dev_supports_discard(struct pool_c *pt)
2830 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2832 return q && blk_queue_discard(q);
2835 static bool is_factor(sector_t block_size, uint32_t n)
2837 return !sector_div(block_size, n);
2841 * If discard_passdown was enabled verify that the data device
2842 * supports discards. Disable discard_passdown if not.
2844 static void disable_passdown_if_not_supported(struct pool_c *pt)
2846 struct pool *pool = pt->pool;
2847 struct block_device *data_bdev = pt->data_dev->bdev;
2848 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2849 const char *reason = NULL;
2850 char buf[BDEVNAME_SIZE];
2852 if (!pt->adjusted_pf.discard_passdown)
2853 return;
2855 if (!data_dev_supports_discard(pt))
2856 reason = "discard unsupported";
2858 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2859 reason = "max discard sectors smaller than a block";
2861 if (reason) {
2862 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2863 pt->adjusted_pf.discard_passdown = false;
2867 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2869 struct pool_c *pt = ti->private;
2872 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2874 enum pool_mode old_mode = get_pool_mode(pool);
2875 enum pool_mode new_mode = pt->adjusted_pf.mode;
2878 * Don't change the pool's mode until set_pool_mode() below.
2879 * Otherwise the pool's process_* function pointers may
2880 * not match the desired pool mode.
2882 pt->adjusted_pf.mode = old_mode;
2884 pool->ti = ti;
2885 pool->pf = pt->adjusted_pf;
2886 pool->low_water_blocks = pt->low_water_blocks;
2888 set_pool_mode(pool, new_mode);
2890 return 0;
2893 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2895 if (pool->ti == ti)
2896 pool->ti = NULL;
2899 /*----------------------------------------------------------------
2900 * Pool creation
2901 *--------------------------------------------------------------*/
2902 /* Initialize pool features. */
2903 static void pool_features_init(struct pool_features *pf)
2905 pf->mode = PM_WRITE;
2906 pf->zero_new_blocks = true;
2907 pf->discard_enabled = true;
2908 pf->discard_passdown = true;
2909 pf->error_if_no_space = false;
2912 static void __pool_destroy(struct pool *pool)
2914 __pool_table_remove(pool);
2916 vfree(pool->cell_sort_array);
2917 if (dm_pool_metadata_close(pool->pmd) < 0)
2918 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2920 dm_bio_prison_destroy(pool->prison);
2921 dm_kcopyd_client_destroy(pool->copier);
2923 if (pool->wq)
2924 destroy_workqueue(pool->wq);
2926 if (pool->next_mapping)
2927 mempool_free(pool->next_mapping, &pool->mapping_pool);
2928 mempool_exit(&pool->mapping_pool);
2929 bio_uninit(&pool->flush_bio);
2930 dm_deferred_set_destroy(pool->shared_read_ds);
2931 dm_deferred_set_destroy(pool->all_io_ds);
2932 kfree(pool);
2935 static struct kmem_cache *_new_mapping_cache;
2937 static struct pool *pool_create(struct mapped_device *pool_md,
2938 struct block_device *metadata_dev,
2939 struct block_device *data_dev,
2940 unsigned long block_size,
2941 int read_only, char **error)
2943 int r;
2944 void *err_p;
2945 struct pool *pool;
2946 struct dm_pool_metadata *pmd;
2947 bool format_device = read_only ? false : true;
2949 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2950 if (IS_ERR(pmd)) {
2951 *error = "Error creating metadata object";
2952 return (struct pool *)pmd;
2955 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2956 if (!pool) {
2957 *error = "Error allocating memory for pool";
2958 err_p = ERR_PTR(-ENOMEM);
2959 goto bad_pool;
2962 pool->pmd = pmd;
2963 pool->sectors_per_block = block_size;
2964 if (block_size & (block_size - 1))
2965 pool->sectors_per_block_shift = -1;
2966 else
2967 pool->sectors_per_block_shift = __ffs(block_size);
2968 pool->low_water_blocks = 0;
2969 pool_features_init(&pool->pf);
2970 pool->prison = dm_bio_prison_create();
2971 if (!pool->prison) {
2972 *error = "Error creating pool's bio prison";
2973 err_p = ERR_PTR(-ENOMEM);
2974 goto bad_prison;
2977 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2978 if (IS_ERR(pool->copier)) {
2979 r = PTR_ERR(pool->copier);
2980 *error = "Error creating pool's kcopyd client";
2981 err_p = ERR_PTR(r);
2982 goto bad_kcopyd_client;
2986 * Create singlethreaded workqueue that will service all devices
2987 * that use this metadata.
2989 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2990 if (!pool->wq) {
2991 *error = "Error creating pool's workqueue";
2992 err_p = ERR_PTR(-ENOMEM);
2993 goto bad_wq;
2996 throttle_init(&pool->throttle);
2997 INIT_WORK(&pool->worker, do_worker);
2998 INIT_DELAYED_WORK(&pool->waker, do_waker);
2999 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3000 spin_lock_init(&pool->lock);
3001 bio_list_init(&pool->deferred_flush_bios);
3002 bio_list_init(&pool->deferred_flush_completions);
3003 INIT_LIST_HEAD(&pool->prepared_mappings);
3004 INIT_LIST_HEAD(&pool->prepared_discards);
3005 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3006 INIT_LIST_HEAD(&pool->active_thins);
3007 pool->low_water_triggered = false;
3008 pool->suspended = true;
3009 pool->out_of_data_space = false;
3010 bio_init(&pool->flush_bio, NULL, 0);
3012 pool->shared_read_ds = dm_deferred_set_create();
3013 if (!pool->shared_read_ds) {
3014 *error = "Error creating pool's shared read deferred set";
3015 err_p = ERR_PTR(-ENOMEM);
3016 goto bad_shared_read_ds;
3019 pool->all_io_ds = dm_deferred_set_create();
3020 if (!pool->all_io_ds) {
3021 *error = "Error creating pool's all io deferred set";
3022 err_p = ERR_PTR(-ENOMEM);
3023 goto bad_all_io_ds;
3026 pool->next_mapping = NULL;
3027 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3028 _new_mapping_cache);
3029 if (r) {
3030 *error = "Error creating pool's mapping mempool";
3031 err_p = ERR_PTR(r);
3032 goto bad_mapping_pool;
3035 pool->cell_sort_array =
3036 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3037 sizeof(*pool->cell_sort_array)));
3038 if (!pool->cell_sort_array) {
3039 *error = "Error allocating cell sort array";
3040 err_p = ERR_PTR(-ENOMEM);
3041 goto bad_sort_array;
3044 pool->ref_count = 1;
3045 pool->last_commit_jiffies = jiffies;
3046 pool->pool_md = pool_md;
3047 pool->md_dev = metadata_dev;
3048 pool->data_dev = data_dev;
3049 __pool_table_insert(pool);
3051 return pool;
3053 bad_sort_array:
3054 mempool_exit(&pool->mapping_pool);
3055 bad_mapping_pool:
3056 dm_deferred_set_destroy(pool->all_io_ds);
3057 bad_all_io_ds:
3058 dm_deferred_set_destroy(pool->shared_read_ds);
3059 bad_shared_read_ds:
3060 destroy_workqueue(pool->wq);
3061 bad_wq:
3062 dm_kcopyd_client_destroy(pool->copier);
3063 bad_kcopyd_client:
3064 dm_bio_prison_destroy(pool->prison);
3065 bad_prison:
3066 kfree(pool);
3067 bad_pool:
3068 if (dm_pool_metadata_close(pmd))
3069 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3071 return err_p;
3074 static void __pool_inc(struct pool *pool)
3076 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3077 pool->ref_count++;
3080 static void __pool_dec(struct pool *pool)
3082 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3083 BUG_ON(!pool->ref_count);
3084 if (!--pool->ref_count)
3085 __pool_destroy(pool);
3088 static struct pool *__pool_find(struct mapped_device *pool_md,
3089 struct block_device *metadata_dev,
3090 struct block_device *data_dev,
3091 unsigned long block_size, int read_only,
3092 char **error, int *created)
3094 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3096 if (pool) {
3097 if (pool->pool_md != pool_md) {
3098 *error = "metadata device already in use by a pool";
3099 return ERR_PTR(-EBUSY);
3101 if (pool->data_dev != data_dev) {
3102 *error = "data device already in use by a pool";
3103 return ERR_PTR(-EBUSY);
3105 __pool_inc(pool);
3107 } else {
3108 pool = __pool_table_lookup(pool_md);
3109 if (pool) {
3110 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3111 *error = "different pool cannot replace a pool";
3112 return ERR_PTR(-EINVAL);
3114 __pool_inc(pool);
3116 } else {
3117 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3118 *created = 1;
3122 return pool;
3125 /*----------------------------------------------------------------
3126 * Pool target methods
3127 *--------------------------------------------------------------*/
3128 static void pool_dtr(struct dm_target *ti)
3130 struct pool_c *pt = ti->private;
3132 mutex_lock(&dm_thin_pool_table.mutex);
3134 unbind_control_target(pt->pool, ti);
3135 __pool_dec(pt->pool);
3136 dm_put_device(ti, pt->metadata_dev);
3137 dm_put_device(ti, pt->data_dev);
3138 kfree(pt);
3140 mutex_unlock(&dm_thin_pool_table.mutex);
3143 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144 struct dm_target *ti)
3146 int r;
3147 unsigned argc;
3148 const char *arg_name;
3150 static const struct dm_arg _args[] = {
3151 {0, 4, "Invalid number of pool feature arguments"},
3155 * No feature arguments supplied.
3157 if (!as->argc)
3158 return 0;
3160 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161 if (r)
3162 return -EINVAL;
3164 while (argc && !r) {
3165 arg_name = dm_shift_arg(as);
3166 argc--;
3168 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169 pf->zero_new_blocks = false;
3171 else if (!strcasecmp(arg_name, "ignore_discard"))
3172 pf->discard_enabled = false;
3174 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175 pf->discard_passdown = false;
3177 else if (!strcasecmp(arg_name, "read_only"))
3178 pf->mode = PM_READ_ONLY;
3180 else if (!strcasecmp(arg_name, "error_if_no_space"))
3181 pf->error_if_no_space = true;
3183 else {
3184 ti->error = "Unrecognised pool feature requested";
3185 r = -EINVAL;
3186 break;
3190 return r;
3193 static void metadata_low_callback(void *context)
3195 struct pool *pool = context;
3197 DMWARN("%s: reached low water mark for metadata device: sending event.",
3198 dm_device_name(pool->pool_md));
3200 dm_table_event(pool->ti->table);
3204 * We need to flush the data device **before** committing the metadata.
3206 * This ensures that the data blocks of any newly inserted mappings are
3207 * properly written to non-volatile storage and won't be lost in case of a
3208 * crash.
3210 * Failure to do so can result in data corruption in the case of internal or
3211 * external snapshots and in the case of newly provisioned blocks, when block
3212 * zeroing is enabled.
3214 static int metadata_pre_commit_callback(void *context)
3216 struct pool *pool = context;
3217 struct bio *flush_bio = &pool->flush_bio;
3219 bio_reset(flush_bio);
3220 bio_set_dev(flush_bio, pool->data_dev);
3221 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3223 return submit_bio_wait(flush_bio);
3226 static sector_t get_dev_size(struct block_device *bdev)
3228 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3231 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3233 sector_t metadata_dev_size = get_dev_size(bdev);
3234 char buffer[BDEVNAME_SIZE];
3236 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3237 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3238 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3241 static sector_t get_metadata_dev_size(struct block_device *bdev)
3243 sector_t metadata_dev_size = get_dev_size(bdev);
3245 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3246 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3248 return metadata_dev_size;
3251 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3253 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3255 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3257 return metadata_dev_size;
3261 * When a metadata threshold is crossed a dm event is triggered, and
3262 * userland should respond by growing the metadata device. We could let
3263 * userland set the threshold, like we do with the data threshold, but I'm
3264 * not sure they know enough to do this well.
3266 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3269 * 4M is ample for all ops with the possible exception of thin
3270 * device deletion which is harmless if it fails (just retry the
3271 * delete after you've grown the device).
3273 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3274 return min((dm_block_t)1024ULL /* 4M */, quarter);
3278 * thin-pool <metadata dev> <data dev>
3279 * <data block size (sectors)>
3280 * <low water mark (blocks)>
3281 * [<#feature args> [<arg>]*]
3283 * Optional feature arguments are:
3284 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3285 * ignore_discard: disable discard
3286 * no_discard_passdown: don't pass discards down to the data device
3287 * read_only: Don't allow any changes to be made to the pool metadata.
3288 * error_if_no_space: error IOs, instead of queueing, if no space.
3290 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3292 int r, pool_created = 0;
3293 struct pool_c *pt;
3294 struct pool *pool;
3295 struct pool_features pf;
3296 struct dm_arg_set as;
3297 struct dm_dev *data_dev;
3298 unsigned long block_size;
3299 dm_block_t low_water_blocks;
3300 struct dm_dev *metadata_dev;
3301 fmode_t metadata_mode;
3304 * FIXME Remove validation from scope of lock.
3306 mutex_lock(&dm_thin_pool_table.mutex);
3308 if (argc < 4) {
3309 ti->error = "Invalid argument count";
3310 r = -EINVAL;
3311 goto out_unlock;
3314 as.argc = argc;
3315 as.argv = argv;
3317 /* make sure metadata and data are different devices */
3318 if (!strcmp(argv[0], argv[1])) {
3319 ti->error = "Error setting metadata or data device";
3320 r = -EINVAL;
3321 goto out_unlock;
3325 * Set default pool features.
3327 pool_features_init(&pf);
3329 dm_consume_args(&as, 4);
3330 r = parse_pool_features(&as, &pf, ti);
3331 if (r)
3332 goto out_unlock;
3334 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3335 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3336 if (r) {
3337 ti->error = "Error opening metadata block device";
3338 goto out_unlock;
3340 warn_if_metadata_device_too_big(metadata_dev->bdev);
3342 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3343 if (r) {
3344 ti->error = "Error getting data device";
3345 goto out_metadata;
3348 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3349 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3350 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3351 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3352 ti->error = "Invalid block size";
3353 r = -EINVAL;
3354 goto out;
3357 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3358 ti->error = "Invalid low water mark";
3359 r = -EINVAL;
3360 goto out;
3363 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3364 if (!pt) {
3365 r = -ENOMEM;
3366 goto out;
3369 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3370 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3371 if (IS_ERR(pool)) {
3372 r = PTR_ERR(pool);
3373 goto out_free_pt;
3377 * 'pool_created' reflects whether this is the first table load.
3378 * Top level discard support is not allowed to be changed after
3379 * initial load. This would require a pool reload to trigger thin
3380 * device changes.
3382 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3383 ti->error = "Discard support cannot be disabled once enabled";
3384 r = -EINVAL;
3385 goto out_flags_changed;
3388 pt->pool = pool;
3389 pt->ti = ti;
3390 pt->metadata_dev = metadata_dev;
3391 pt->data_dev = data_dev;
3392 pt->low_water_blocks = low_water_blocks;
3393 pt->adjusted_pf = pt->requested_pf = pf;
3394 ti->num_flush_bios = 1;
3397 * Only need to enable discards if the pool should pass
3398 * them down to the data device. The thin device's discard
3399 * processing will cause mappings to be removed from the btree.
3401 if (pf.discard_enabled && pf.discard_passdown) {
3402 ti->num_discard_bios = 1;
3405 * Setting 'discards_supported' circumvents the normal
3406 * stacking of discard limits (this keeps the pool and
3407 * thin devices' discard limits consistent).
3409 ti->discards_supported = true;
3411 ti->private = pt;
3413 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3414 calc_metadata_threshold(pt),
3415 metadata_low_callback,
3416 pool);
3417 if (r)
3418 goto out_flags_changed;
3420 dm_pool_register_pre_commit_callback(pool->pmd,
3421 metadata_pre_commit_callback, pool);
3423 pt->callbacks.congested_fn = pool_is_congested;
3424 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3426 mutex_unlock(&dm_thin_pool_table.mutex);
3428 return 0;
3430 out_flags_changed:
3431 __pool_dec(pool);
3432 out_free_pt:
3433 kfree(pt);
3434 out:
3435 dm_put_device(ti, data_dev);
3436 out_metadata:
3437 dm_put_device(ti, metadata_dev);
3438 out_unlock:
3439 mutex_unlock(&dm_thin_pool_table.mutex);
3441 return r;
3444 static int pool_map(struct dm_target *ti, struct bio *bio)
3446 int r;
3447 struct pool_c *pt = ti->private;
3448 struct pool *pool = pt->pool;
3451 * As this is a singleton target, ti->begin is always zero.
3453 spin_lock_irq(&pool->lock);
3454 bio_set_dev(bio, pt->data_dev->bdev);
3455 r = DM_MAPIO_REMAPPED;
3456 spin_unlock_irq(&pool->lock);
3458 return r;
3461 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3463 int r;
3464 struct pool_c *pt = ti->private;
3465 struct pool *pool = pt->pool;
3466 sector_t data_size = ti->len;
3467 dm_block_t sb_data_size;
3469 *need_commit = false;
3471 (void) sector_div(data_size, pool->sectors_per_block);
3473 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3474 if (r) {
3475 DMERR("%s: failed to retrieve data device size",
3476 dm_device_name(pool->pool_md));
3477 return r;
3480 if (data_size < sb_data_size) {
3481 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3482 dm_device_name(pool->pool_md),
3483 (unsigned long long)data_size, sb_data_size);
3484 return -EINVAL;
3486 } else if (data_size > sb_data_size) {
3487 if (dm_pool_metadata_needs_check(pool->pmd)) {
3488 DMERR("%s: unable to grow the data device until repaired.",
3489 dm_device_name(pool->pool_md));
3490 return 0;
3493 if (sb_data_size)
3494 DMINFO("%s: growing the data device from %llu to %llu blocks",
3495 dm_device_name(pool->pool_md),
3496 sb_data_size, (unsigned long long)data_size);
3497 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3498 if (r) {
3499 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3500 return r;
3503 *need_commit = true;
3506 return 0;
3509 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3511 int r;
3512 struct pool_c *pt = ti->private;
3513 struct pool *pool = pt->pool;
3514 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3516 *need_commit = false;
3518 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3520 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3521 if (r) {
3522 DMERR("%s: failed to retrieve metadata device size",
3523 dm_device_name(pool->pool_md));
3524 return r;
3527 if (metadata_dev_size < sb_metadata_dev_size) {
3528 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3529 dm_device_name(pool->pool_md),
3530 metadata_dev_size, sb_metadata_dev_size);
3531 return -EINVAL;
3533 } else if (metadata_dev_size > sb_metadata_dev_size) {
3534 if (dm_pool_metadata_needs_check(pool->pmd)) {
3535 DMERR("%s: unable to grow the metadata device until repaired.",
3536 dm_device_name(pool->pool_md));
3537 return 0;
3540 warn_if_metadata_device_too_big(pool->md_dev);
3541 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3542 dm_device_name(pool->pool_md),
3543 sb_metadata_dev_size, metadata_dev_size);
3545 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3546 set_pool_mode(pool, PM_WRITE);
3548 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3549 if (r) {
3550 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3551 return r;
3554 *need_commit = true;
3557 return 0;
3561 * Retrieves the number of blocks of the data device from
3562 * the superblock and compares it to the actual device size,
3563 * thus resizing the data device in case it has grown.
3565 * This both copes with opening preallocated data devices in the ctr
3566 * being followed by a resume
3567 * -and-
3568 * calling the resume method individually after userspace has
3569 * grown the data device in reaction to a table event.
3571 static int pool_preresume(struct dm_target *ti)
3573 int r;
3574 bool need_commit1, need_commit2;
3575 struct pool_c *pt = ti->private;
3576 struct pool *pool = pt->pool;
3579 * Take control of the pool object.
3581 r = bind_control_target(pool, ti);
3582 if (r)
3583 return r;
3585 r = maybe_resize_data_dev(ti, &need_commit1);
3586 if (r)
3587 return r;
3589 r = maybe_resize_metadata_dev(ti, &need_commit2);
3590 if (r)
3591 return r;
3593 if (need_commit1 || need_commit2)
3594 (void) commit(pool);
3596 return 0;
3599 static void pool_suspend_active_thins(struct pool *pool)
3601 struct thin_c *tc;
3603 /* Suspend all active thin devices */
3604 tc = get_first_thin(pool);
3605 while (tc) {
3606 dm_internal_suspend_noflush(tc->thin_md);
3607 tc = get_next_thin(pool, tc);
3611 static void pool_resume_active_thins(struct pool *pool)
3613 struct thin_c *tc;
3615 /* Resume all active thin devices */
3616 tc = get_first_thin(pool);
3617 while (tc) {
3618 dm_internal_resume(tc->thin_md);
3619 tc = get_next_thin(pool, tc);
3623 static void pool_resume(struct dm_target *ti)
3625 struct pool_c *pt = ti->private;
3626 struct pool *pool = pt->pool;
3629 * Must requeue active_thins' bios and then resume
3630 * active_thins _before_ clearing 'suspend' flag.
3632 requeue_bios(pool);
3633 pool_resume_active_thins(pool);
3635 spin_lock_irq(&pool->lock);
3636 pool->low_water_triggered = false;
3637 pool->suspended = false;
3638 spin_unlock_irq(&pool->lock);
3640 do_waker(&pool->waker.work);
3643 static void pool_presuspend(struct dm_target *ti)
3645 struct pool_c *pt = ti->private;
3646 struct pool *pool = pt->pool;
3648 spin_lock_irq(&pool->lock);
3649 pool->suspended = true;
3650 spin_unlock_irq(&pool->lock);
3652 pool_suspend_active_thins(pool);
3655 static void pool_presuspend_undo(struct dm_target *ti)
3657 struct pool_c *pt = ti->private;
3658 struct pool *pool = pt->pool;
3660 pool_resume_active_thins(pool);
3662 spin_lock_irq(&pool->lock);
3663 pool->suspended = false;
3664 spin_unlock_irq(&pool->lock);
3667 static void pool_postsuspend(struct dm_target *ti)
3669 struct pool_c *pt = ti->private;
3670 struct pool *pool = pt->pool;
3672 cancel_delayed_work_sync(&pool->waker);
3673 cancel_delayed_work_sync(&pool->no_space_timeout);
3674 flush_workqueue(pool->wq);
3675 (void) commit(pool);
3678 static int check_arg_count(unsigned argc, unsigned args_required)
3680 if (argc != args_required) {
3681 DMWARN("Message received with %u arguments instead of %u.",
3682 argc, args_required);
3683 return -EINVAL;
3686 return 0;
3689 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3691 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3692 *dev_id <= MAX_DEV_ID)
3693 return 0;
3695 if (warning)
3696 DMWARN("Message received with invalid device id: %s", arg);
3698 return -EINVAL;
3701 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3703 dm_thin_id dev_id;
3704 int r;
3706 r = check_arg_count(argc, 2);
3707 if (r)
3708 return r;
3710 r = read_dev_id(argv[1], &dev_id, 1);
3711 if (r)
3712 return r;
3714 r = dm_pool_create_thin(pool->pmd, dev_id);
3715 if (r) {
3716 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3717 argv[1]);
3718 return r;
3721 return 0;
3724 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3726 dm_thin_id dev_id;
3727 dm_thin_id origin_dev_id;
3728 int r;
3730 r = check_arg_count(argc, 3);
3731 if (r)
3732 return r;
3734 r = read_dev_id(argv[1], &dev_id, 1);
3735 if (r)
3736 return r;
3738 r = read_dev_id(argv[2], &origin_dev_id, 1);
3739 if (r)
3740 return r;
3742 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3743 if (r) {
3744 DMWARN("Creation of new snapshot %s of device %s failed.",
3745 argv[1], argv[2]);
3746 return r;
3749 return 0;
3752 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3754 dm_thin_id dev_id;
3755 int r;
3757 r = check_arg_count(argc, 2);
3758 if (r)
3759 return r;
3761 r = read_dev_id(argv[1], &dev_id, 1);
3762 if (r)
3763 return r;
3765 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3766 if (r)
3767 DMWARN("Deletion of thin device %s failed.", argv[1]);
3769 return r;
3772 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3774 dm_thin_id old_id, new_id;
3775 int r;
3777 r = check_arg_count(argc, 3);
3778 if (r)
3779 return r;
3781 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3782 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3783 return -EINVAL;
3786 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3787 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3788 return -EINVAL;
3791 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3792 if (r) {
3793 DMWARN("Failed to change transaction id from %s to %s.",
3794 argv[1], argv[2]);
3795 return r;
3798 return 0;
3801 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3803 int r;
3805 r = check_arg_count(argc, 1);
3806 if (r)
3807 return r;
3809 (void) commit(pool);
3811 r = dm_pool_reserve_metadata_snap(pool->pmd);
3812 if (r)
3813 DMWARN("reserve_metadata_snap message failed.");
3815 return r;
3818 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3820 int r;
3822 r = check_arg_count(argc, 1);
3823 if (r)
3824 return r;
3826 r = dm_pool_release_metadata_snap(pool->pmd);
3827 if (r)
3828 DMWARN("release_metadata_snap message failed.");
3830 return r;
3834 * Messages supported:
3835 * create_thin <dev_id>
3836 * create_snap <dev_id> <origin_id>
3837 * delete <dev_id>
3838 * set_transaction_id <current_trans_id> <new_trans_id>
3839 * reserve_metadata_snap
3840 * release_metadata_snap
3842 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3843 char *result, unsigned maxlen)
3845 int r = -EINVAL;
3846 struct pool_c *pt = ti->private;
3847 struct pool *pool = pt->pool;
3849 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3850 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3851 dm_device_name(pool->pool_md));
3852 return -EOPNOTSUPP;
3855 if (!strcasecmp(argv[0], "create_thin"))
3856 r = process_create_thin_mesg(argc, argv, pool);
3858 else if (!strcasecmp(argv[0], "create_snap"))
3859 r = process_create_snap_mesg(argc, argv, pool);
3861 else if (!strcasecmp(argv[0], "delete"))
3862 r = process_delete_mesg(argc, argv, pool);
3864 else if (!strcasecmp(argv[0], "set_transaction_id"))
3865 r = process_set_transaction_id_mesg(argc, argv, pool);
3867 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3868 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3870 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3871 r = process_release_metadata_snap_mesg(argc, argv, pool);
3873 else
3874 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3876 if (!r)
3877 (void) commit(pool);
3879 return r;
3882 static void emit_flags(struct pool_features *pf, char *result,
3883 unsigned sz, unsigned maxlen)
3885 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3886 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3887 pf->error_if_no_space;
3888 DMEMIT("%u ", count);
3890 if (!pf->zero_new_blocks)
3891 DMEMIT("skip_block_zeroing ");
3893 if (!pf->discard_enabled)
3894 DMEMIT("ignore_discard ");
3896 if (!pf->discard_passdown)
3897 DMEMIT("no_discard_passdown ");
3899 if (pf->mode == PM_READ_ONLY)
3900 DMEMIT("read_only ");
3902 if (pf->error_if_no_space)
3903 DMEMIT("error_if_no_space ");
3907 * Status line is:
3908 * <transaction id> <used metadata sectors>/<total metadata sectors>
3909 * <used data sectors>/<total data sectors> <held metadata root>
3910 * <pool mode> <discard config> <no space config> <needs_check>
3912 static void pool_status(struct dm_target *ti, status_type_t type,
3913 unsigned status_flags, char *result, unsigned maxlen)
3915 int r;
3916 unsigned sz = 0;
3917 uint64_t transaction_id;
3918 dm_block_t nr_free_blocks_data;
3919 dm_block_t nr_free_blocks_metadata;
3920 dm_block_t nr_blocks_data;
3921 dm_block_t nr_blocks_metadata;
3922 dm_block_t held_root;
3923 enum pool_mode mode;
3924 char buf[BDEVNAME_SIZE];
3925 char buf2[BDEVNAME_SIZE];
3926 struct pool_c *pt = ti->private;
3927 struct pool *pool = pt->pool;
3929 switch (type) {
3930 case STATUSTYPE_INFO:
3931 if (get_pool_mode(pool) == PM_FAIL) {
3932 DMEMIT("Fail");
3933 break;
3936 /* Commit to ensure statistics aren't out-of-date */
3937 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3938 (void) commit(pool);
3940 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3941 if (r) {
3942 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3943 dm_device_name(pool->pool_md), r);
3944 goto err;
3947 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3948 if (r) {
3949 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3950 dm_device_name(pool->pool_md), r);
3951 goto err;
3954 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3955 if (r) {
3956 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3957 dm_device_name(pool->pool_md), r);
3958 goto err;
3961 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3962 if (r) {
3963 DMERR("%s: dm_pool_get_free_block_count returned %d",
3964 dm_device_name(pool->pool_md), r);
3965 goto err;
3968 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3969 if (r) {
3970 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3971 dm_device_name(pool->pool_md), r);
3972 goto err;
3975 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3976 if (r) {
3977 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3978 dm_device_name(pool->pool_md), r);
3979 goto err;
3982 DMEMIT("%llu %llu/%llu %llu/%llu ",
3983 (unsigned long long)transaction_id,
3984 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3985 (unsigned long long)nr_blocks_metadata,
3986 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3987 (unsigned long long)nr_blocks_data);
3989 if (held_root)
3990 DMEMIT("%llu ", held_root);
3991 else
3992 DMEMIT("- ");
3994 mode = get_pool_mode(pool);
3995 if (mode == PM_OUT_OF_DATA_SPACE)
3996 DMEMIT("out_of_data_space ");
3997 else if (is_read_only_pool_mode(mode))
3998 DMEMIT("ro ");
3999 else
4000 DMEMIT("rw ");
4002 if (!pool->pf.discard_enabled)
4003 DMEMIT("ignore_discard ");
4004 else if (pool->pf.discard_passdown)
4005 DMEMIT("discard_passdown ");
4006 else
4007 DMEMIT("no_discard_passdown ");
4009 if (pool->pf.error_if_no_space)
4010 DMEMIT("error_if_no_space ");
4011 else
4012 DMEMIT("queue_if_no_space ");
4014 if (dm_pool_metadata_needs_check(pool->pmd))
4015 DMEMIT("needs_check ");
4016 else
4017 DMEMIT("- ");
4019 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4021 break;
4023 case STATUSTYPE_TABLE:
4024 DMEMIT("%s %s %lu %llu ",
4025 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4026 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4027 (unsigned long)pool->sectors_per_block,
4028 (unsigned long long)pt->low_water_blocks);
4029 emit_flags(&pt->requested_pf, result, sz, maxlen);
4030 break;
4032 return;
4034 err:
4035 DMEMIT("Error");
4038 static int pool_iterate_devices(struct dm_target *ti,
4039 iterate_devices_callout_fn fn, void *data)
4041 struct pool_c *pt = ti->private;
4043 return fn(ti, pt->data_dev, 0, ti->len, data);
4046 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4048 struct pool_c *pt = ti->private;
4049 struct pool *pool = pt->pool;
4050 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4053 * If max_sectors is smaller than pool->sectors_per_block adjust it
4054 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4055 * This is especially beneficial when the pool's data device is a RAID
4056 * device that has a full stripe width that matches pool->sectors_per_block
4057 * -- because even though partial RAID stripe-sized IOs will be issued to a
4058 * single RAID stripe; when aggregated they will end on a full RAID stripe
4059 * boundary.. which avoids additional partial RAID stripe writes cascading
4061 if (limits->max_sectors < pool->sectors_per_block) {
4062 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4063 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4064 limits->max_sectors--;
4065 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4070 * If the system-determined stacked limits are compatible with the
4071 * pool's blocksize (io_opt is a factor) do not override them.
4073 if (io_opt_sectors < pool->sectors_per_block ||
4074 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4075 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4076 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4077 else
4078 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4079 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4083 * pt->adjusted_pf is a staging area for the actual features to use.
4084 * They get transferred to the live pool in bind_control_target()
4085 * called from pool_preresume().
4087 if (!pt->adjusted_pf.discard_enabled) {
4089 * Must explicitly disallow stacking discard limits otherwise the
4090 * block layer will stack them if pool's data device has support.
4091 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4092 * user to see that, so make sure to set all discard limits to 0.
4094 limits->discard_granularity = 0;
4095 return;
4098 disable_passdown_if_not_supported(pt);
4101 * The pool uses the same discard limits as the underlying data
4102 * device. DM core has already set this up.
4106 static struct target_type pool_target = {
4107 .name = "thin-pool",
4108 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4109 DM_TARGET_IMMUTABLE,
4110 .version = {1, 22, 0},
4111 .module = THIS_MODULE,
4112 .ctr = pool_ctr,
4113 .dtr = pool_dtr,
4114 .map = pool_map,
4115 .presuspend = pool_presuspend,
4116 .presuspend_undo = pool_presuspend_undo,
4117 .postsuspend = pool_postsuspend,
4118 .preresume = pool_preresume,
4119 .resume = pool_resume,
4120 .message = pool_message,
4121 .status = pool_status,
4122 .iterate_devices = pool_iterate_devices,
4123 .io_hints = pool_io_hints,
4126 /*----------------------------------------------------------------
4127 * Thin target methods
4128 *--------------------------------------------------------------*/
4129 static void thin_get(struct thin_c *tc)
4131 refcount_inc(&tc->refcount);
4134 static void thin_put(struct thin_c *tc)
4136 if (refcount_dec_and_test(&tc->refcount))
4137 complete(&tc->can_destroy);
4140 static void thin_dtr(struct dm_target *ti)
4142 struct thin_c *tc = ti->private;
4144 spin_lock_irq(&tc->pool->lock);
4145 list_del_rcu(&tc->list);
4146 spin_unlock_irq(&tc->pool->lock);
4147 synchronize_rcu();
4149 thin_put(tc);
4150 wait_for_completion(&tc->can_destroy);
4152 mutex_lock(&dm_thin_pool_table.mutex);
4154 __pool_dec(tc->pool);
4155 dm_pool_close_thin_device(tc->td);
4156 dm_put_device(ti, tc->pool_dev);
4157 if (tc->origin_dev)
4158 dm_put_device(ti, tc->origin_dev);
4159 kfree(tc);
4161 mutex_unlock(&dm_thin_pool_table.mutex);
4165 * Thin target parameters:
4167 * <pool_dev> <dev_id> [origin_dev]
4169 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4170 * dev_id: the internal device identifier
4171 * origin_dev: a device external to the pool that should act as the origin
4173 * If the pool device has discards disabled, they get disabled for the thin
4174 * device as well.
4176 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4178 int r;
4179 struct thin_c *tc;
4180 struct dm_dev *pool_dev, *origin_dev;
4181 struct mapped_device *pool_md;
4183 mutex_lock(&dm_thin_pool_table.mutex);
4185 if (argc != 2 && argc != 3) {
4186 ti->error = "Invalid argument count";
4187 r = -EINVAL;
4188 goto out_unlock;
4191 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4192 if (!tc) {
4193 ti->error = "Out of memory";
4194 r = -ENOMEM;
4195 goto out_unlock;
4197 tc->thin_md = dm_table_get_md(ti->table);
4198 spin_lock_init(&tc->lock);
4199 INIT_LIST_HEAD(&tc->deferred_cells);
4200 bio_list_init(&tc->deferred_bio_list);
4201 bio_list_init(&tc->retry_on_resume_list);
4202 tc->sort_bio_list = RB_ROOT;
4204 if (argc == 3) {
4205 if (!strcmp(argv[0], argv[2])) {
4206 ti->error = "Error setting origin device";
4207 r = -EINVAL;
4208 goto bad_origin_dev;
4211 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4212 if (r) {
4213 ti->error = "Error opening origin device";
4214 goto bad_origin_dev;
4216 tc->origin_dev = origin_dev;
4219 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4220 if (r) {
4221 ti->error = "Error opening pool device";
4222 goto bad_pool_dev;
4224 tc->pool_dev = pool_dev;
4226 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4227 ti->error = "Invalid device id";
4228 r = -EINVAL;
4229 goto bad_common;
4232 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4233 if (!pool_md) {
4234 ti->error = "Couldn't get pool mapped device";
4235 r = -EINVAL;
4236 goto bad_common;
4239 tc->pool = __pool_table_lookup(pool_md);
4240 if (!tc->pool) {
4241 ti->error = "Couldn't find pool object";
4242 r = -EINVAL;
4243 goto bad_pool_lookup;
4245 __pool_inc(tc->pool);
4247 if (get_pool_mode(tc->pool) == PM_FAIL) {
4248 ti->error = "Couldn't open thin device, Pool is in fail mode";
4249 r = -EINVAL;
4250 goto bad_pool;
4253 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4254 if (r) {
4255 ti->error = "Couldn't open thin internal device";
4256 goto bad_pool;
4259 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4260 if (r)
4261 goto bad;
4263 ti->num_flush_bios = 1;
4264 ti->flush_supported = true;
4265 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4267 /* In case the pool supports discards, pass them on. */
4268 if (tc->pool->pf.discard_enabled) {
4269 ti->discards_supported = true;
4270 ti->num_discard_bios = 1;
4273 mutex_unlock(&dm_thin_pool_table.mutex);
4275 spin_lock_irq(&tc->pool->lock);
4276 if (tc->pool->suspended) {
4277 spin_unlock_irq(&tc->pool->lock);
4278 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4279 ti->error = "Unable to activate thin device while pool is suspended";
4280 r = -EINVAL;
4281 goto bad;
4283 refcount_set(&tc->refcount, 1);
4284 init_completion(&tc->can_destroy);
4285 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4286 spin_unlock_irq(&tc->pool->lock);
4288 * This synchronize_rcu() call is needed here otherwise we risk a
4289 * wake_worker() call finding no bios to process (because the newly
4290 * added tc isn't yet visible). So this reduces latency since we
4291 * aren't then dependent on the periodic commit to wake_worker().
4293 synchronize_rcu();
4295 dm_put(pool_md);
4297 return 0;
4299 bad:
4300 dm_pool_close_thin_device(tc->td);
4301 bad_pool:
4302 __pool_dec(tc->pool);
4303 bad_pool_lookup:
4304 dm_put(pool_md);
4305 bad_common:
4306 dm_put_device(ti, tc->pool_dev);
4307 bad_pool_dev:
4308 if (tc->origin_dev)
4309 dm_put_device(ti, tc->origin_dev);
4310 bad_origin_dev:
4311 kfree(tc);
4312 out_unlock:
4313 mutex_unlock(&dm_thin_pool_table.mutex);
4315 return r;
4318 static int thin_map(struct dm_target *ti, struct bio *bio)
4320 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4322 return thin_bio_map(ti, bio);
4325 static int thin_endio(struct dm_target *ti, struct bio *bio,
4326 blk_status_t *err)
4328 unsigned long flags;
4329 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4330 struct list_head work;
4331 struct dm_thin_new_mapping *m, *tmp;
4332 struct pool *pool = h->tc->pool;
4334 if (h->shared_read_entry) {
4335 INIT_LIST_HEAD(&work);
4336 dm_deferred_entry_dec(h->shared_read_entry, &work);
4338 spin_lock_irqsave(&pool->lock, flags);
4339 list_for_each_entry_safe(m, tmp, &work, list) {
4340 list_del(&m->list);
4341 __complete_mapping_preparation(m);
4343 spin_unlock_irqrestore(&pool->lock, flags);
4346 if (h->all_io_entry) {
4347 INIT_LIST_HEAD(&work);
4348 dm_deferred_entry_dec(h->all_io_entry, &work);
4349 if (!list_empty(&work)) {
4350 spin_lock_irqsave(&pool->lock, flags);
4351 list_for_each_entry_safe(m, tmp, &work, list)
4352 list_add_tail(&m->list, &pool->prepared_discards);
4353 spin_unlock_irqrestore(&pool->lock, flags);
4354 wake_worker(pool);
4358 if (h->cell)
4359 cell_defer_no_holder(h->tc, h->cell);
4361 return DM_ENDIO_DONE;
4364 static void thin_presuspend(struct dm_target *ti)
4366 struct thin_c *tc = ti->private;
4368 if (dm_noflush_suspending(ti))
4369 noflush_work(tc, do_noflush_start);
4372 static void thin_postsuspend(struct dm_target *ti)
4374 struct thin_c *tc = ti->private;
4377 * The dm_noflush_suspending flag has been cleared by now, so
4378 * unfortunately we must always run this.
4380 noflush_work(tc, do_noflush_stop);
4383 static int thin_preresume(struct dm_target *ti)
4385 struct thin_c *tc = ti->private;
4387 if (tc->origin_dev)
4388 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4390 return 0;
4394 * <nr mapped sectors> <highest mapped sector>
4396 static void thin_status(struct dm_target *ti, status_type_t type,
4397 unsigned status_flags, char *result, unsigned maxlen)
4399 int r;
4400 ssize_t sz = 0;
4401 dm_block_t mapped, highest;
4402 char buf[BDEVNAME_SIZE];
4403 struct thin_c *tc = ti->private;
4405 if (get_pool_mode(tc->pool) == PM_FAIL) {
4406 DMEMIT("Fail");
4407 return;
4410 if (!tc->td)
4411 DMEMIT("-");
4412 else {
4413 switch (type) {
4414 case STATUSTYPE_INFO:
4415 r = dm_thin_get_mapped_count(tc->td, &mapped);
4416 if (r) {
4417 DMERR("dm_thin_get_mapped_count returned %d", r);
4418 goto err;
4421 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4422 if (r < 0) {
4423 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4424 goto err;
4427 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4428 if (r)
4429 DMEMIT("%llu", ((highest + 1) *
4430 tc->pool->sectors_per_block) - 1);
4431 else
4432 DMEMIT("-");
4433 break;
4435 case STATUSTYPE_TABLE:
4436 DMEMIT("%s %lu",
4437 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4438 (unsigned long) tc->dev_id);
4439 if (tc->origin_dev)
4440 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4441 break;
4445 return;
4447 err:
4448 DMEMIT("Error");
4451 static int thin_iterate_devices(struct dm_target *ti,
4452 iterate_devices_callout_fn fn, void *data)
4454 sector_t blocks;
4455 struct thin_c *tc = ti->private;
4456 struct pool *pool = tc->pool;
4459 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4460 * we follow a more convoluted path through to the pool's target.
4462 if (!pool->ti)
4463 return 0; /* nothing is bound */
4465 blocks = pool->ti->len;
4466 (void) sector_div(blocks, pool->sectors_per_block);
4467 if (blocks)
4468 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4470 return 0;
4473 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4475 struct thin_c *tc = ti->private;
4476 struct pool *pool = tc->pool;
4478 if (!pool->pf.discard_enabled)
4479 return;
4481 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4482 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4485 static struct target_type thin_target = {
4486 .name = "thin",
4487 .version = {1, 22, 0},
4488 .module = THIS_MODULE,
4489 .ctr = thin_ctr,
4490 .dtr = thin_dtr,
4491 .map = thin_map,
4492 .end_io = thin_endio,
4493 .preresume = thin_preresume,
4494 .presuspend = thin_presuspend,
4495 .postsuspend = thin_postsuspend,
4496 .status = thin_status,
4497 .iterate_devices = thin_iterate_devices,
4498 .io_hints = thin_io_hints,
4501 /*----------------------------------------------------------------*/
4503 static int __init dm_thin_init(void)
4505 int r = -ENOMEM;
4507 pool_table_init();
4509 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4510 if (!_new_mapping_cache)
4511 return r;
4513 r = dm_register_target(&thin_target);
4514 if (r)
4515 goto bad_new_mapping_cache;
4517 r = dm_register_target(&pool_target);
4518 if (r)
4519 goto bad_thin_target;
4521 return 0;
4523 bad_thin_target:
4524 dm_unregister_target(&thin_target);
4525 bad_new_mapping_cache:
4526 kmem_cache_destroy(_new_mapping_cache);
4528 return r;
4531 static void dm_thin_exit(void)
4533 dm_unregister_target(&thin_target);
4534 dm_unregister_target(&pool_target);
4536 kmem_cache_destroy(_new_mapping_cache);
4538 pool_table_exit();
4541 module_init(dm_thin_init);
4542 module_exit(dm_thin_exit);
4544 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4545 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4547 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4548 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4549 MODULE_LICENSE("GPL");