2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE
,
208 PM_READ_ONLY
, /* metadata may not be changed */
210 PM_FAIL
, /* all I/O fails */
213 struct pool_features
{
216 bool zero_new_blocks
:1;
217 bool discard_enabled
:1;
218 bool discard_passdown
:1;
219 bool error_if_no_space
:1;
223 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
224 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
225 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
227 #define CELL_SORT_ARRAY_SIZE 8192
230 struct list_head list
;
231 struct dm_target
*ti
; /* Only set if a pool target is bound */
233 struct mapped_device
*pool_md
;
234 struct block_device
*data_dev
;
235 struct block_device
*md_dev
;
236 struct dm_pool_metadata
*pmd
;
238 dm_block_t low_water_blocks
;
239 uint32_t sectors_per_block
;
240 int sectors_per_block_shift
;
242 struct pool_features pf
;
243 bool low_water_triggered
:1; /* A dm event has been sent */
245 bool out_of_data_space
:1;
247 struct dm_bio_prison
*prison
;
248 struct dm_kcopyd_client
*copier
;
250 struct work_struct worker
;
251 struct workqueue_struct
*wq
;
252 struct throttle throttle
;
253 struct delayed_work waker
;
254 struct delayed_work no_space_timeout
;
256 unsigned long last_commit_jiffies
;
260 struct bio_list deferred_flush_bios
;
261 struct bio_list deferred_flush_completions
;
262 struct list_head prepared_mappings
;
263 struct list_head prepared_discards
;
264 struct list_head prepared_discards_pt2
;
265 struct list_head active_thins
;
267 struct dm_deferred_set
*shared_read_ds
;
268 struct dm_deferred_set
*all_io_ds
;
270 struct dm_thin_new_mapping
*next_mapping
;
272 process_bio_fn process_bio
;
273 process_bio_fn process_discard
;
275 process_cell_fn process_cell
;
276 process_cell_fn process_discard_cell
;
278 process_mapping_fn process_prepared_mapping
;
279 process_mapping_fn process_prepared_discard
;
280 process_mapping_fn process_prepared_discard_pt2
;
282 struct dm_bio_prison_cell
**cell_sort_array
;
284 mempool_t mapping_pool
;
286 struct bio flush_bio
;
289 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
291 static enum pool_mode
get_pool_mode(struct pool
*pool
)
293 return pool
->pf
.mode
;
296 static void notify_of_pool_mode_change(struct pool
*pool
)
298 const char *descs
[] = {
305 const char *extra_desc
= NULL
;
306 enum pool_mode mode
= get_pool_mode(pool
);
308 if (mode
== PM_OUT_OF_DATA_SPACE
) {
309 if (!pool
->pf
.error_if_no_space
)
310 extra_desc
= " (queue IO)";
312 extra_desc
= " (error IO)";
315 dm_table_event(pool
->ti
->table
);
316 DMINFO("%s: switching pool to %s%s mode",
317 dm_device_name(pool
->pool_md
),
318 descs
[(int)mode
], extra_desc
? : "");
322 * Target context for a pool.
325 struct dm_target
*ti
;
327 struct dm_dev
*data_dev
;
328 struct dm_dev
*metadata_dev
;
329 struct dm_target_callbacks callbacks
;
331 dm_block_t low_water_blocks
;
332 struct pool_features requested_pf
; /* Features requested during table load */
333 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
337 * Target context for a thin.
340 struct list_head list
;
341 struct dm_dev
*pool_dev
;
342 struct dm_dev
*origin_dev
;
343 sector_t origin_size
;
347 struct dm_thin_device
*td
;
348 struct mapped_device
*thin_md
;
352 struct list_head deferred_cells
;
353 struct bio_list deferred_bio_list
;
354 struct bio_list retry_on_resume_list
;
355 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
358 * Ensures the thin is not destroyed until the worker has finished
359 * iterating the active_thins list.
362 struct completion can_destroy
;
365 /*----------------------------------------------------------------*/
367 static bool block_size_is_power_of_two(struct pool
*pool
)
369 return pool
->sectors_per_block_shift
>= 0;
372 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
374 return block_size_is_power_of_two(pool
) ?
375 (b
<< pool
->sectors_per_block_shift
) :
376 (b
* pool
->sectors_per_block
);
379 /*----------------------------------------------------------------*/
383 struct blk_plug plug
;
384 struct bio
*parent_bio
;
388 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
393 blk_start_plug(&op
->plug
);
394 op
->parent_bio
= parent
;
398 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
400 struct thin_c
*tc
= op
->tc
;
401 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
402 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
404 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
,
405 GFP_NOWAIT
, 0, &op
->bio
);
408 static void end_discard(struct discard_op
*op
, int r
)
412 * Even if one of the calls to issue_discard failed, we
413 * need to wait for the chain to complete.
415 bio_chain(op
->bio
, op
->parent_bio
);
416 bio_set_op_attrs(op
->bio
, REQ_OP_DISCARD
, 0);
420 blk_finish_plug(&op
->plug
);
423 * Even if r is set, there could be sub discards in flight that we
426 if (r
&& !op
->parent_bio
->bi_status
)
427 op
->parent_bio
->bi_status
= errno_to_blk_status(r
);
428 bio_endio(op
->parent_bio
);
431 /*----------------------------------------------------------------*/
434 * wake_worker() is used when new work is queued and when pool_resume is
435 * ready to continue deferred IO processing.
437 static void wake_worker(struct pool
*pool
)
439 queue_work(pool
->wq
, &pool
->worker
);
442 /*----------------------------------------------------------------*/
444 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
445 struct dm_bio_prison_cell
**cell_result
)
448 struct dm_bio_prison_cell
*cell_prealloc
;
451 * Allocate a cell from the prison's mempool.
452 * This might block but it can't fail.
454 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
456 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
459 * We reused an old cell; we can get rid of
462 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
467 static void cell_release(struct pool
*pool
,
468 struct dm_bio_prison_cell
*cell
,
469 struct bio_list
*bios
)
471 dm_cell_release(pool
->prison
, cell
, bios
);
472 dm_bio_prison_free_cell(pool
->prison
, cell
);
475 static void cell_visit_release(struct pool
*pool
,
476 void (*fn
)(void *, struct dm_bio_prison_cell
*),
478 struct dm_bio_prison_cell
*cell
)
480 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
481 dm_bio_prison_free_cell(pool
->prison
, cell
);
484 static void cell_release_no_holder(struct pool
*pool
,
485 struct dm_bio_prison_cell
*cell
,
486 struct bio_list
*bios
)
488 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
489 dm_bio_prison_free_cell(pool
->prison
, cell
);
492 static void cell_error_with_code(struct pool
*pool
,
493 struct dm_bio_prison_cell
*cell
, blk_status_t error_code
)
495 dm_cell_error(pool
->prison
, cell
, error_code
);
496 dm_bio_prison_free_cell(pool
->prison
, cell
);
499 static blk_status_t
get_pool_io_error_code(struct pool
*pool
)
501 return pool
->out_of_data_space
? BLK_STS_NOSPC
: BLK_STS_IOERR
;
504 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
506 cell_error_with_code(pool
, cell
, get_pool_io_error_code(pool
));
509 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
511 cell_error_with_code(pool
, cell
, 0);
514 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
516 cell_error_with_code(pool
, cell
, BLK_STS_DM_REQUEUE
);
519 /*----------------------------------------------------------------*/
522 * A global list of pools that uses a struct mapped_device as a key.
524 static struct dm_thin_pool_table
{
526 struct list_head pools
;
527 } dm_thin_pool_table
;
529 static void pool_table_init(void)
531 mutex_init(&dm_thin_pool_table
.mutex
);
532 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
535 static void pool_table_exit(void)
537 mutex_destroy(&dm_thin_pool_table
.mutex
);
540 static void __pool_table_insert(struct pool
*pool
)
542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
543 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
546 static void __pool_table_remove(struct pool
*pool
)
548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
549 list_del(&pool
->list
);
552 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
554 struct pool
*pool
= NULL
, *tmp
;
556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
558 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
559 if (tmp
->pool_md
== md
) {
568 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
570 struct pool
*pool
= NULL
, *tmp
;
572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
574 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
575 if (tmp
->md_dev
== md_dev
) {
584 /*----------------------------------------------------------------*/
586 struct dm_thin_endio_hook
{
588 struct dm_deferred_entry
*shared_read_entry
;
589 struct dm_deferred_entry
*all_io_entry
;
590 struct dm_thin_new_mapping
*overwrite_mapping
;
591 struct rb_node rb_node
;
592 struct dm_bio_prison_cell
*cell
;
595 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
597 bio_list_merge(bios
, master
);
598 bio_list_init(master
);
601 static void error_bio_list(struct bio_list
*bios
, blk_status_t error
)
605 while ((bio
= bio_list_pop(bios
))) {
606 bio
->bi_status
= error
;
611 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
,
614 struct bio_list bios
;
616 bio_list_init(&bios
);
618 spin_lock_irq(&tc
->lock
);
619 __merge_bio_list(&bios
, master
);
620 spin_unlock_irq(&tc
->lock
);
622 error_bio_list(&bios
, error
);
625 static void requeue_deferred_cells(struct thin_c
*tc
)
627 struct pool
*pool
= tc
->pool
;
628 struct list_head cells
;
629 struct dm_bio_prison_cell
*cell
, *tmp
;
631 INIT_LIST_HEAD(&cells
);
633 spin_lock_irq(&tc
->lock
);
634 list_splice_init(&tc
->deferred_cells
, &cells
);
635 spin_unlock_irq(&tc
->lock
);
637 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
638 cell_requeue(pool
, cell
);
641 static void requeue_io(struct thin_c
*tc
)
643 struct bio_list bios
;
645 bio_list_init(&bios
);
647 spin_lock_irq(&tc
->lock
);
648 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
649 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
650 spin_unlock_irq(&tc
->lock
);
652 error_bio_list(&bios
, BLK_STS_DM_REQUEUE
);
653 requeue_deferred_cells(tc
);
656 static void error_retry_list_with_code(struct pool
*pool
, blk_status_t error
)
661 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
662 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
666 static void error_retry_list(struct pool
*pool
)
668 error_retry_list_with_code(pool
, get_pool_io_error_code(pool
));
672 * This section of code contains the logic for processing a thin device's IO.
673 * Much of the code depends on pool object resources (lists, workqueues, etc)
674 * but most is exclusively called from the thin target rather than the thin-pool
678 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
680 struct pool
*pool
= tc
->pool
;
681 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
683 if (block_size_is_power_of_two(pool
))
684 block_nr
>>= pool
->sectors_per_block_shift
;
686 (void) sector_div(block_nr
, pool
->sectors_per_block
);
692 * Returns the _complete_ blocks that this bio covers.
694 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
695 dm_block_t
*begin
, dm_block_t
*end
)
697 struct pool
*pool
= tc
->pool
;
698 sector_t b
= bio
->bi_iter
.bi_sector
;
699 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
701 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
703 if (block_size_is_power_of_two(pool
)) {
704 b
>>= pool
->sectors_per_block_shift
;
705 e
>>= pool
->sectors_per_block_shift
;
707 (void) sector_div(b
, pool
->sectors_per_block
);
708 (void) sector_div(e
, pool
->sectors_per_block
);
712 /* Can happen if the bio is within a single block. */
719 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
721 struct pool
*pool
= tc
->pool
;
722 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
724 bio_set_dev(bio
, tc
->pool_dev
->bdev
);
725 if (block_size_is_power_of_two(pool
))
726 bio
->bi_iter
.bi_sector
=
727 (block
<< pool
->sectors_per_block_shift
) |
728 (bi_sector
& (pool
->sectors_per_block
- 1));
730 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
731 sector_div(bi_sector
, pool
->sectors_per_block
);
734 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
736 bio_set_dev(bio
, tc
->origin_dev
->bdev
);
739 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
741 return op_is_flush(bio
->bi_opf
) &&
742 dm_thin_changed_this_transaction(tc
->td
);
745 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
747 struct dm_thin_endio_hook
*h
;
749 if (bio_op(bio
) == REQ_OP_DISCARD
)
752 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
753 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
756 static void issue(struct thin_c
*tc
, struct bio
*bio
)
758 struct pool
*pool
= tc
->pool
;
760 if (!bio_triggers_commit(tc
, bio
)) {
761 generic_make_request(bio
);
766 * Complete bio with an error if earlier I/O caused changes to
767 * the metadata that can't be committed e.g, due to I/O errors
768 * on the metadata device.
770 if (dm_thin_aborted_changes(tc
->td
)) {
776 * Batch together any bios that trigger commits and then issue a
777 * single commit for them in process_deferred_bios().
779 spin_lock_irq(&pool
->lock
);
780 bio_list_add(&pool
->deferred_flush_bios
, bio
);
781 spin_unlock_irq(&pool
->lock
);
784 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
786 remap_to_origin(tc
, bio
);
790 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
793 remap(tc
, bio
, block
);
797 /*----------------------------------------------------------------*/
800 * Bio endio functions.
802 struct dm_thin_new_mapping
{
803 struct list_head list
;
809 * Track quiescing, copying and zeroing preparation actions. When this
810 * counter hits zero the block is prepared and can be inserted into the
813 atomic_t prepare_actions
;
817 dm_block_t virt_begin
, virt_end
;
818 dm_block_t data_block
;
819 struct dm_bio_prison_cell
*cell
;
822 * If the bio covers the whole area of a block then we can avoid
823 * zeroing or copying. Instead this bio is hooked. The bio will
824 * still be in the cell, so care has to be taken to avoid issuing
828 bio_end_io_t
*saved_bi_end_io
;
831 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
833 struct pool
*pool
= m
->tc
->pool
;
835 if (atomic_dec_and_test(&m
->prepare_actions
)) {
836 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
841 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
844 struct pool
*pool
= m
->tc
->pool
;
846 spin_lock_irqsave(&pool
->lock
, flags
);
847 __complete_mapping_preparation(m
);
848 spin_unlock_irqrestore(&pool
->lock
, flags
);
851 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
853 struct dm_thin_new_mapping
*m
= context
;
855 m
->status
= read_err
|| write_err
? BLK_STS_IOERR
: 0;
856 complete_mapping_preparation(m
);
859 static void overwrite_endio(struct bio
*bio
)
861 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
862 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
864 bio
->bi_end_io
= m
->saved_bi_end_io
;
866 m
->status
= bio
->bi_status
;
867 complete_mapping_preparation(m
);
870 /*----------------------------------------------------------------*/
877 * Prepared mapping jobs.
881 * This sends the bios in the cell, except the original holder, back
882 * to the deferred_bios list.
884 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
886 struct pool
*pool
= tc
->pool
;
890 spin_lock_irqsave(&tc
->lock
, flags
);
891 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
892 has_work
= !bio_list_empty(&tc
->deferred_bio_list
);
893 spin_unlock_irqrestore(&tc
->lock
, flags
);
899 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
903 struct bio_list defer_bios
;
904 struct bio_list issue_bios
;
907 static void __inc_remap_and_issue_cell(void *context
,
908 struct dm_bio_prison_cell
*cell
)
910 struct remap_info
*info
= context
;
913 while ((bio
= bio_list_pop(&cell
->bios
))) {
914 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
)
915 bio_list_add(&info
->defer_bios
, bio
);
917 inc_all_io_entry(info
->tc
->pool
, bio
);
920 * We can't issue the bios with the bio prison lock
921 * held, so we add them to a list to issue on
922 * return from this function.
924 bio_list_add(&info
->issue_bios
, bio
);
929 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
930 struct dm_bio_prison_cell
*cell
,
934 struct remap_info info
;
937 bio_list_init(&info
.defer_bios
);
938 bio_list_init(&info
.issue_bios
);
941 * We have to be careful to inc any bios we're about to issue
942 * before the cell is released, and avoid a race with new bios
943 * being added to the cell.
945 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
948 while ((bio
= bio_list_pop(&info
.defer_bios
)))
949 thin_defer_bio(tc
, bio
);
951 while ((bio
= bio_list_pop(&info
.issue_bios
)))
952 remap_and_issue(info
.tc
, bio
, block
);
955 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
957 cell_error(m
->tc
->pool
, m
->cell
);
959 mempool_free(m
, &m
->tc
->pool
->mapping_pool
);
962 static void complete_overwrite_bio(struct thin_c
*tc
, struct bio
*bio
)
964 struct pool
*pool
= tc
->pool
;
967 * If the bio has the REQ_FUA flag set we must commit the metadata
968 * before signaling its completion.
970 if (!bio_triggers_commit(tc
, bio
)) {
976 * Complete bio with an error if earlier I/O caused changes to the
977 * metadata that can't be committed, e.g, due to I/O errors on the
980 if (dm_thin_aborted_changes(tc
->td
)) {
986 * Batch together any bios that trigger commits and then issue a
987 * single commit for them in process_deferred_bios().
989 spin_lock_irq(&pool
->lock
);
990 bio_list_add(&pool
->deferred_flush_completions
, bio
);
991 spin_unlock_irq(&pool
->lock
);
994 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
996 struct thin_c
*tc
= m
->tc
;
997 struct pool
*pool
= tc
->pool
;
998 struct bio
*bio
= m
->bio
;
1002 cell_error(pool
, m
->cell
);
1007 * Commit the prepared block into the mapping btree.
1008 * Any I/O for this block arriving after this point will get
1009 * remapped to it directly.
1011 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
1013 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
1014 cell_error(pool
, m
->cell
);
1019 * Release any bios held while the block was being provisioned.
1020 * If we are processing a write bio that completely covers the block,
1021 * we already processed it so can ignore it now when processing
1022 * the bios in the cell.
1025 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1026 complete_overwrite_bio(tc
, bio
);
1028 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
1029 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
1030 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1035 mempool_free(m
, &pool
->mapping_pool
);
1038 /*----------------------------------------------------------------*/
1040 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
1042 struct thin_c
*tc
= m
->tc
;
1044 cell_defer_no_holder(tc
, m
->cell
);
1045 mempool_free(m
, &tc
->pool
->mapping_pool
);
1048 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
1050 bio_io_error(m
->bio
);
1051 free_discard_mapping(m
);
1054 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
1057 free_discard_mapping(m
);
1060 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
1063 struct thin_c
*tc
= m
->tc
;
1065 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
1067 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
1068 bio_io_error(m
->bio
);
1072 cell_defer_no_holder(tc
, m
->cell
);
1073 mempool_free(m
, &tc
->pool
->mapping_pool
);
1076 /*----------------------------------------------------------------*/
1078 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
,
1079 struct bio
*discard_parent
)
1082 * We've already unmapped this range of blocks, but before we
1083 * passdown we have to check that these blocks are now unused.
1087 struct thin_c
*tc
= m
->tc
;
1088 struct pool
*pool
= tc
->pool
;
1089 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1090 struct discard_op op
;
1092 begin_discard(&op
, tc
, discard_parent
);
1094 /* find start of unmapped run */
1095 for (; b
< end
; b
++) {
1096 r
= dm_pool_block_is_shared(pool
->pmd
, b
, &shared
);
1107 /* find end of run */
1108 for (e
= b
+ 1; e
!= end
; e
++) {
1109 r
= dm_pool_block_is_shared(pool
->pmd
, e
, &shared
);
1117 r
= issue_discard(&op
, b
, e
);
1124 end_discard(&op
, r
);
1127 static void queue_passdown_pt2(struct dm_thin_new_mapping
*m
)
1129 unsigned long flags
;
1130 struct pool
*pool
= m
->tc
->pool
;
1132 spin_lock_irqsave(&pool
->lock
, flags
);
1133 list_add_tail(&m
->list
, &pool
->prepared_discards_pt2
);
1134 spin_unlock_irqrestore(&pool
->lock
, flags
);
1138 static void passdown_endio(struct bio
*bio
)
1141 * It doesn't matter if the passdown discard failed, we still want
1142 * to unmap (we ignore err).
1144 queue_passdown_pt2(bio
->bi_private
);
1148 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping
*m
)
1151 struct thin_c
*tc
= m
->tc
;
1152 struct pool
*pool
= tc
->pool
;
1153 struct bio
*discard_parent
;
1154 dm_block_t data_end
= m
->data_block
+ (m
->virt_end
- m
->virt_begin
);
1157 * Only this thread allocates blocks, so we can be sure that the
1158 * newly unmapped blocks will not be allocated before the end of
1161 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1163 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1164 bio_io_error(m
->bio
);
1165 cell_defer_no_holder(tc
, m
->cell
);
1166 mempool_free(m
, &pool
->mapping_pool
);
1171 * Increment the unmapped blocks. This prevents a race between the
1172 * passdown io and reallocation of freed blocks.
1174 r
= dm_pool_inc_data_range(pool
->pmd
, m
->data_block
, data_end
);
1176 metadata_operation_failed(pool
, "dm_pool_inc_data_range", r
);
1177 bio_io_error(m
->bio
);
1178 cell_defer_no_holder(tc
, m
->cell
);
1179 mempool_free(m
, &pool
->mapping_pool
);
1183 discard_parent
= bio_alloc(GFP_NOIO
, 1);
1184 if (!discard_parent
) {
1185 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1186 dm_device_name(tc
->pool
->pool_md
));
1187 queue_passdown_pt2(m
);
1190 discard_parent
->bi_end_io
= passdown_endio
;
1191 discard_parent
->bi_private
= m
;
1193 if (m
->maybe_shared
)
1194 passdown_double_checking_shared_status(m
, discard_parent
);
1196 struct discard_op op
;
1198 begin_discard(&op
, tc
, discard_parent
);
1199 r
= issue_discard(&op
, m
->data_block
, data_end
);
1200 end_discard(&op
, r
);
1205 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping
*m
)
1208 struct thin_c
*tc
= m
->tc
;
1209 struct pool
*pool
= tc
->pool
;
1212 * The passdown has completed, so now we can decrement all those
1215 r
= dm_pool_dec_data_range(pool
->pmd
, m
->data_block
,
1216 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1218 metadata_operation_failed(pool
, "dm_pool_dec_data_range", r
);
1219 bio_io_error(m
->bio
);
1223 cell_defer_no_holder(tc
, m
->cell
);
1224 mempool_free(m
, &pool
->mapping_pool
);
1227 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1228 process_mapping_fn
*fn
)
1230 struct list_head maps
;
1231 struct dm_thin_new_mapping
*m
, *tmp
;
1233 INIT_LIST_HEAD(&maps
);
1234 spin_lock_irq(&pool
->lock
);
1235 list_splice_init(head
, &maps
);
1236 spin_unlock_irq(&pool
->lock
);
1238 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1243 * Deferred bio jobs.
1245 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1247 return bio
->bi_iter
.bi_size
==
1248 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1251 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1253 return (bio_data_dir(bio
) == WRITE
) &&
1254 io_overlaps_block(pool
, bio
);
1257 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1260 *save
= bio
->bi_end_io
;
1261 bio
->bi_end_io
= fn
;
1264 static int ensure_next_mapping(struct pool
*pool
)
1266 if (pool
->next_mapping
)
1269 pool
->next_mapping
= mempool_alloc(&pool
->mapping_pool
, GFP_ATOMIC
);
1271 return pool
->next_mapping
? 0 : -ENOMEM
;
1274 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1276 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1278 BUG_ON(!pool
->next_mapping
);
1280 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1281 INIT_LIST_HEAD(&m
->list
);
1284 pool
->next_mapping
= NULL
;
1289 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1290 sector_t begin
, sector_t end
)
1292 struct dm_io_region to
;
1294 to
.bdev
= tc
->pool_dev
->bdev
;
1296 to
.count
= end
- begin
;
1298 dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1301 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1302 dm_block_t data_begin
,
1303 struct dm_thin_new_mapping
*m
)
1305 struct pool
*pool
= tc
->pool
;
1306 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1308 h
->overwrite_mapping
= m
;
1310 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1311 inc_all_io_entry(pool
, bio
);
1312 remap_and_issue(tc
, bio
, data_begin
);
1316 * A partial copy also needs to zero the uncopied region.
1318 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1319 struct dm_dev
*origin
, dm_block_t data_origin
,
1320 dm_block_t data_dest
,
1321 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1324 struct pool
*pool
= tc
->pool
;
1325 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1328 m
->virt_begin
= virt_block
;
1329 m
->virt_end
= virt_block
+ 1u;
1330 m
->data_block
= data_dest
;
1334 * quiesce action + copy action + an extra reference held for the
1335 * duration of this function (we may need to inc later for a
1338 atomic_set(&m
->prepare_actions
, 3);
1340 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1341 complete_mapping_preparation(m
); /* already quiesced */
1344 * IO to pool_dev remaps to the pool target's data_dev.
1346 * If the whole block of data is being overwritten, we can issue the
1347 * bio immediately. Otherwise we use kcopyd to clone the data first.
1349 if (io_overwrites_block(pool
, bio
))
1350 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1352 struct dm_io_region from
, to
;
1354 from
.bdev
= origin
->bdev
;
1355 from
.sector
= data_origin
* pool
->sectors_per_block
;
1358 to
.bdev
= tc
->pool_dev
->bdev
;
1359 to
.sector
= data_dest
* pool
->sectors_per_block
;
1362 dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1363 0, copy_complete
, m
);
1366 * Do we need to zero a tail region?
1368 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1369 atomic_inc(&m
->prepare_actions
);
1371 data_dest
* pool
->sectors_per_block
+ len
,
1372 (data_dest
+ 1) * pool
->sectors_per_block
);
1376 complete_mapping_preparation(m
); /* drop our ref */
1379 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1380 dm_block_t data_origin
, dm_block_t data_dest
,
1381 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1383 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1384 data_origin
, data_dest
, cell
, bio
,
1385 tc
->pool
->sectors_per_block
);
1388 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1389 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1392 struct pool
*pool
= tc
->pool
;
1393 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1395 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1397 m
->virt_begin
= virt_block
;
1398 m
->virt_end
= virt_block
+ 1u;
1399 m
->data_block
= data_block
;
1403 * If the whole block of data is being overwritten or we are not
1404 * zeroing pre-existing data, we can issue the bio immediately.
1405 * Otherwise we use kcopyd to zero the data first.
1407 if (pool
->pf
.zero_new_blocks
) {
1408 if (io_overwrites_block(pool
, bio
))
1409 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1411 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1412 (data_block
+ 1) * pool
->sectors_per_block
);
1414 process_prepared_mapping(m
);
1417 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1418 dm_block_t data_dest
,
1419 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1421 struct pool
*pool
= tc
->pool
;
1422 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1423 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1425 if (virt_block_end
<= tc
->origin_size
)
1426 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1427 virt_block
, data_dest
, cell
, bio
,
1428 pool
->sectors_per_block
);
1430 else if (virt_block_begin
< tc
->origin_size
)
1431 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1432 virt_block
, data_dest
, cell
, bio
,
1433 tc
->origin_size
- virt_block_begin
);
1436 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1439 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1441 static void requeue_bios(struct pool
*pool
);
1443 static bool is_read_only_pool_mode(enum pool_mode mode
)
1445 return (mode
== PM_OUT_OF_METADATA_SPACE
|| mode
== PM_READ_ONLY
);
1448 static bool is_read_only(struct pool
*pool
)
1450 return is_read_only_pool_mode(get_pool_mode(pool
));
1453 static void check_for_metadata_space(struct pool
*pool
)
1456 const char *ooms_reason
= NULL
;
1459 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free
);
1461 ooms_reason
= "Could not get free metadata blocks";
1463 ooms_reason
= "No free metadata blocks";
1465 if (ooms_reason
&& !is_read_only(pool
)) {
1466 DMERR("%s", ooms_reason
);
1467 set_pool_mode(pool
, PM_OUT_OF_METADATA_SPACE
);
1471 static void check_for_data_space(struct pool
*pool
)
1476 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1479 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1484 set_pool_mode(pool
, PM_WRITE
);
1490 * A non-zero return indicates read_only or fail_io mode.
1491 * Many callers don't care about the return value.
1493 static int commit(struct pool
*pool
)
1497 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
)
1500 r
= dm_pool_commit_metadata(pool
->pmd
);
1502 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1504 check_for_metadata_space(pool
);
1505 check_for_data_space(pool
);
1511 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1513 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1514 DMWARN("%s: reached low water mark for data device: sending event.",
1515 dm_device_name(pool
->pool_md
));
1516 spin_lock_irq(&pool
->lock
);
1517 pool
->low_water_triggered
= true;
1518 spin_unlock_irq(&pool
->lock
);
1519 dm_table_event(pool
->ti
->table
);
1523 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1526 dm_block_t free_blocks
;
1527 struct pool
*pool
= tc
->pool
;
1529 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1532 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1534 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1538 check_low_water_mark(pool
, free_blocks
);
1542 * Try to commit to see if that will free up some
1549 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1551 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1556 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1561 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1564 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1566 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1570 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &free_blocks
);
1572 metadata_operation_failed(pool
, "dm_pool_get_free_metadata_block_count", r
);
1577 /* Let's commit before we use up the metadata reserve. */
1587 * If we have run out of space, queue bios until the device is
1588 * resumed, presumably after having been reloaded with more space.
1590 static void retry_on_resume(struct bio
*bio
)
1592 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1593 struct thin_c
*tc
= h
->tc
;
1595 spin_lock_irq(&tc
->lock
);
1596 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1597 spin_unlock_irq(&tc
->lock
);
1600 static blk_status_t
should_error_unserviceable_bio(struct pool
*pool
)
1602 enum pool_mode m
= get_pool_mode(pool
);
1606 /* Shouldn't get here */
1607 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1608 return BLK_STS_IOERR
;
1610 case PM_OUT_OF_DATA_SPACE
:
1611 return pool
->pf
.error_if_no_space
? BLK_STS_NOSPC
: 0;
1613 case PM_OUT_OF_METADATA_SPACE
:
1616 return BLK_STS_IOERR
;
1618 /* Shouldn't get here */
1619 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1620 return BLK_STS_IOERR
;
1624 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1626 blk_status_t error
= should_error_unserviceable_bio(pool
);
1629 bio
->bi_status
= error
;
1632 retry_on_resume(bio
);
1635 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1638 struct bio_list bios
;
1641 error
= should_error_unserviceable_bio(pool
);
1643 cell_error_with_code(pool
, cell
, error
);
1647 bio_list_init(&bios
);
1648 cell_release(pool
, cell
, &bios
);
1650 while ((bio
= bio_list_pop(&bios
)))
1651 retry_on_resume(bio
);
1654 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1655 struct dm_bio_prison_cell
*virt_cell
)
1657 struct pool
*pool
= tc
->pool
;
1658 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1661 * We don't need to lock the data blocks, since there's no
1662 * passdown. We only lock data blocks for allocation and breaking sharing.
1665 m
->virt_begin
= virt_cell
->key
.block_begin
;
1666 m
->virt_end
= virt_cell
->key
.block_end
;
1667 m
->cell
= virt_cell
;
1668 m
->bio
= virt_cell
->holder
;
1670 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1671 pool
->process_prepared_discard(m
);
1674 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1677 struct pool
*pool
= tc
->pool
;
1681 struct dm_cell_key data_key
;
1682 struct dm_bio_prison_cell
*data_cell
;
1683 struct dm_thin_new_mapping
*m
;
1684 dm_block_t virt_begin
, virt_end
, data_begin
;
1686 while (begin
!= end
) {
1687 r
= ensure_next_mapping(pool
);
1689 /* we did our best */
1692 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1693 &data_begin
, &maybe_shared
);
1696 * Silently fail, letting any mappings we've
1701 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1702 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1703 /* contention, we'll give up with this range */
1709 * IO may still be going to the destination block. We must
1710 * quiesce before we can do the removal.
1712 m
= get_next_mapping(pool
);
1714 m
->maybe_shared
= maybe_shared
;
1715 m
->virt_begin
= virt_begin
;
1716 m
->virt_end
= virt_end
;
1717 m
->data_block
= data_begin
;
1718 m
->cell
= data_cell
;
1722 * The parent bio must not complete before sub discard bios are
1723 * chained to it (see end_discard's bio_chain)!
1725 * This per-mapping bi_remaining increment is paired with
1726 * the implicit decrement that occurs via bio_endio() in
1729 bio_inc_remaining(bio
);
1730 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1731 pool
->process_prepared_discard(m
);
1737 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1739 struct bio
*bio
= virt_cell
->holder
;
1740 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1743 * The virt_cell will only get freed once the origin bio completes.
1744 * This means it will remain locked while all the individual
1745 * passdown bios are in flight.
1747 h
->cell
= virt_cell
;
1748 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1751 * We complete the bio now, knowing that the bi_remaining field
1752 * will prevent completion until the sub range discards have
1758 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1760 dm_block_t begin
, end
;
1761 struct dm_cell_key virt_key
;
1762 struct dm_bio_prison_cell
*virt_cell
;
1764 get_bio_block_range(tc
, bio
, &begin
, &end
);
1767 * The discard covers less than a block.
1773 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1774 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1776 * Potential starvation issue: We're relying on the
1777 * fs/application being well behaved, and not trying to
1778 * send IO to a region at the same time as discarding it.
1779 * If they do this persistently then it's possible this
1780 * cell will never be granted.
1784 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1787 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1788 struct dm_cell_key
*key
,
1789 struct dm_thin_lookup_result
*lookup_result
,
1790 struct dm_bio_prison_cell
*cell
)
1793 dm_block_t data_block
;
1794 struct pool
*pool
= tc
->pool
;
1796 r
= alloc_data_block(tc
, &data_block
);
1799 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1800 data_block
, cell
, bio
);
1804 retry_bios_on_resume(pool
, cell
);
1808 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1810 cell_error(pool
, cell
);
1815 static void __remap_and_issue_shared_cell(void *context
,
1816 struct dm_bio_prison_cell
*cell
)
1818 struct remap_info
*info
= context
;
1821 while ((bio
= bio_list_pop(&cell
->bios
))) {
1822 if (bio_data_dir(bio
) == WRITE
|| op_is_flush(bio
->bi_opf
) ||
1823 bio_op(bio
) == REQ_OP_DISCARD
)
1824 bio_list_add(&info
->defer_bios
, bio
);
1826 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1828 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1829 inc_all_io_entry(info
->tc
->pool
, bio
);
1830 bio_list_add(&info
->issue_bios
, bio
);
1835 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1836 struct dm_bio_prison_cell
*cell
,
1840 struct remap_info info
;
1843 bio_list_init(&info
.defer_bios
);
1844 bio_list_init(&info
.issue_bios
);
1846 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1849 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1850 thin_defer_bio(tc
, bio
);
1852 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1853 remap_and_issue(tc
, bio
, block
);
1856 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1858 struct dm_thin_lookup_result
*lookup_result
,
1859 struct dm_bio_prison_cell
*virt_cell
)
1861 struct dm_bio_prison_cell
*data_cell
;
1862 struct pool
*pool
= tc
->pool
;
1863 struct dm_cell_key key
;
1866 * If cell is already occupied, then sharing is already in the process
1867 * of being broken so we have nothing further to do here.
1869 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1870 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1871 cell_defer_no_holder(tc
, virt_cell
);
1875 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1876 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1877 cell_defer_no_holder(tc
, virt_cell
);
1879 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1881 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1882 inc_all_io_entry(pool
, bio
);
1883 remap_and_issue(tc
, bio
, lookup_result
->block
);
1885 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1886 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1890 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1891 struct dm_bio_prison_cell
*cell
)
1894 dm_block_t data_block
;
1895 struct pool
*pool
= tc
->pool
;
1898 * Remap empty bios (flushes) immediately, without provisioning.
1900 if (!bio
->bi_iter
.bi_size
) {
1901 inc_all_io_entry(pool
, bio
);
1902 cell_defer_no_holder(tc
, cell
);
1904 remap_and_issue(tc
, bio
, 0);
1909 * Fill read bios with zeroes and complete them immediately.
1911 if (bio_data_dir(bio
) == READ
) {
1913 cell_defer_no_holder(tc
, cell
);
1918 r
= alloc_data_block(tc
, &data_block
);
1922 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1924 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1928 retry_bios_on_resume(pool
, cell
);
1932 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1934 cell_error(pool
, cell
);
1939 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1942 struct pool
*pool
= tc
->pool
;
1943 struct bio
*bio
= cell
->holder
;
1944 dm_block_t block
= get_bio_block(tc
, bio
);
1945 struct dm_thin_lookup_result lookup_result
;
1947 if (tc
->requeue_mode
) {
1948 cell_requeue(pool
, cell
);
1952 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1955 if (lookup_result
.shared
)
1956 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1958 inc_all_io_entry(pool
, bio
);
1959 remap_and_issue(tc
, bio
, lookup_result
.block
);
1960 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1965 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1966 inc_all_io_entry(pool
, bio
);
1967 cell_defer_no_holder(tc
, cell
);
1969 if (bio_end_sector(bio
) <= tc
->origin_size
)
1970 remap_to_origin_and_issue(tc
, bio
);
1972 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1974 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1975 remap_to_origin_and_issue(tc
, bio
);
1982 provision_block(tc
, bio
, block
, cell
);
1986 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1988 cell_defer_no_holder(tc
, cell
);
1994 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1996 struct pool
*pool
= tc
->pool
;
1997 dm_block_t block
= get_bio_block(tc
, bio
);
1998 struct dm_bio_prison_cell
*cell
;
1999 struct dm_cell_key key
;
2002 * If cell is already occupied, then the block is already
2003 * being provisioned so we have nothing further to do here.
2005 build_virtual_key(tc
->td
, block
, &key
);
2006 if (bio_detain(pool
, &key
, bio
, &cell
))
2009 process_cell(tc
, cell
);
2012 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
2013 struct dm_bio_prison_cell
*cell
)
2016 int rw
= bio_data_dir(bio
);
2017 dm_block_t block
= get_bio_block(tc
, bio
);
2018 struct dm_thin_lookup_result lookup_result
;
2020 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
2023 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
2024 handle_unserviceable_bio(tc
->pool
, bio
);
2026 cell_defer_no_holder(tc
, cell
);
2028 inc_all_io_entry(tc
->pool
, bio
);
2029 remap_and_issue(tc
, bio
, lookup_result
.block
);
2031 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
2037 cell_defer_no_holder(tc
, cell
);
2039 handle_unserviceable_bio(tc
->pool
, bio
);
2043 if (tc
->origin_dev
) {
2044 inc_all_io_entry(tc
->pool
, bio
);
2045 remap_to_origin_and_issue(tc
, bio
);
2054 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2057 cell_defer_no_holder(tc
, cell
);
2063 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
2065 __process_bio_read_only(tc
, bio
, NULL
);
2068 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2070 __process_bio_read_only(tc
, cell
->holder
, cell
);
2073 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
2078 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
2083 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2085 cell_success(tc
->pool
, cell
);
2088 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2090 cell_error(tc
->pool
, cell
);
2094 * FIXME: should we also commit due to size of transaction, measured in
2097 static int need_commit_due_to_time(struct pool
*pool
)
2099 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
2100 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
2103 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2104 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2106 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
2108 struct rb_node
**rbp
, *parent
;
2109 struct dm_thin_endio_hook
*pbd
;
2110 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
2112 rbp
= &tc
->sort_bio_list
.rb_node
;
2116 pbd
= thin_pbd(parent
);
2118 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
2119 rbp
= &(*rbp
)->rb_left
;
2121 rbp
= &(*rbp
)->rb_right
;
2124 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2125 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
2126 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
2129 static void __extract_sorted_bios(struct thin_c
*tc
)
2131 struct rb_node
*node
;
2132 struct dm_thin_endio_hook
*pbd
;
2135 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
2136 pbd
= thin_pbd(node
);
2137 bio
= thin_bio(pbd
);
2139 bio_list_add(&tc
->deferred_bio_list
, bio
);
2140 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
2143 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
2146 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
2149 struct bio_list bios
;
2151 bio_list_init(&bios
);
2152 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2153 bio_list_init(&tc
->deferred_bio_list
);
2155 /* Sort deferred_bio_list using rb-tree */
2156 while ((bio
= bio_list_pop(&bios
)))
2157 __thin_bio_rb_add(tc
, bio
);
2160 * Transfer the sorted bios in sort_bio_list back to
2161 * deferred_bio_list to allow lockless submission of
2164 __extract_sorted_bios(tc
);
2167 static void process_thin_deferred_bios(struct thin_c
*tc
)
2169 struct pool
*pool
= tc
->pool
;
2171 struct bio_list bios
;
2172 struct blk_plug plug
;
2175 if (tc
->requeue_mode
) {
2176 error_thin_bio_list(tc
, &tc
->deferred_bio_list
,
2177 BLK_STS_DM_REQUEUE
);
2181 bio_list_init(&bios
);
2183 spin_lock_irq(&tc
->lock
);
2185 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2186 spin_unlock_irq(&tc
->lock
);
2190 __sort_thin_deferred_bios(tc
);
2192 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2193 bio_list_init(&tc
->deferred_bio_list
);
2195 spin_unlock_irq(&tc
->lock
);
2197 blk_start_plug(&plug
);
2198 while ((bio
= bio_list_pop(&bios
))) {
2200 * If we've got no free new_mapping structs, and processing
2201 * this bio might require one, we pause until there are some
2202 * prepared mappings to process.
2204 if (ensure_next_mapping(pool
)) {
2205 spin_lock_irq(&tc
->lock
);
2206 bio_list_add(&tc
->deferred_bio_list
, bio
);
2207 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2208 spin_unlock_irq(&tc
->lock
);
2212 if (bio_op(bio
) == REQ_OP_DISCARD
)
2213 pool
->process_discard(tc
, bio
);
2215 pool
->process_bio(tc
, bio
);
2217 if ((count
++ & 127) == 0) {
2218 throttle_work_update(&pool
->throttle
);
2219 dm_pool_issue_prefetches(pool
->pmd
);
2222 blk_finish_plug(&plug
);
2225 static int cmp_cells(const void *lhs
, const void *rhs
)
2227 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2228 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2230 BUG_ON(!lhs_cell
->holder
);
2231 BUG_ON(!rhs_cell
->holder
);
2233 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2236 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2242 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2245 struct dm_bio_prison_cell
*cell
, *tmp
;
2247 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2248 if (count
>= CELL_SORT_ARRAY_SIZE
)
2251 pool
->cell_sort_array
[count
++] = cell
;
2252 list_del(&cell
->user_list
);
2255 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2260 static void process_thin_deferred_cells(struct thin_c
*tc
)
2262 struct pool
*pool
= tc
->pool
;
2263 struct list_head cells
;
2264 struct dm_bio_prison_cell
*cell
;
2265 unsigned i
, j
, count
;
2267 INIT_LIST_HEAD(&cells
);
2269 spin_lock_irq(&tc
->lock
);
2270 list_splice_init(&tc
->deferred_cells
, &cells
);
2271 spin_unlock_irq(&tc
->lock
);
2273 if (list_empty(&cells
))
2277 count
= sort_cells(tc
->pool
, &cells
);
2279 for (i
= 0; i
< count
; i
++) {
2280 cell
= pool
->cell_sort_array
[i
];
2281 BUG_ON(!cell
->holder
);
2284 * If we've got no free new_mapping structs, and processing
2285 * this bio might require one, we pause until there are some
2286 * prepared mappings to process.
2288 if (ensure_next_mapping(pool
)) {
2289 for (j
= i
; j
< count
; j
++)
2290 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2292 spin_lock_irq(&tc
->lock
);
2293 list_splice(&cells
, &tc
->deferred_cells
);
2294 spin_unlock_irq(&tc
->lock
);
2298 if (bio_op(cell
->holder
) == REQ_OP_DISCARD
)
2299 pool
->process_discard_cell(tc
, cell
);
2301 pool
->process_cell(tc
, cell
);
2303 } while (!list_empty(&cells
));
2306 static void thin_get(struct thin_c
*tc
);
2307 static void thin_put(struct thin_c
*tc
);
2310 * We can't hold rcu_read_lock() around code that can block. So we
2311 * find a thin with the rcu lock held; bump a refcount; then drop
2314 static struct thin_c
*get_first_thin(struct pool
*pool
)
2316 struct thin_c
*tc
= NULL
;
2319 if (!list_empty(&pool
->active_thins
)) {
2320 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2328 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2330 struct thin_c
*old_tc
= tc
;
2333 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2345 static void process_deferred_bios(struct pool
*pool
)
2348 struct bio_list bios
, bio_completions
;
2351 tc
= get_first_thin(pool
);
2353 process_thin_deferred_cells(tc
);
2354 process_thin_deferred_bios(tc
);
2355 tc
= get_next_thin(pool
, tc
);
2359 * If there are any deferred flush bios, we must commit the metadata
2360 * before issuing them or signaling their completion.
2362 bio_list_init(&bios
);
2363 bio_list_init(&bio_completions
);
2365 spin_lock_irq(&pool
->lock
);
2366 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2367 bio_list_init(&pool
->deferred_flush_bios
);
2369 bio_list_merge(&bio_completions
, &pool
->deferred_flush_completions
);
2370 bio_list_init(&pool
->deferred_flush_completions
);
2371 spin_unlock_irq(&pool
->lock
);
2373 if (bio_list_empty(&bios
) && bio_list_empty(&bio_completions
) &&
2374 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2378 bio_list_merge(&bios
, &bio_completions
);
2380 while ((bio
= bio_list_pop(&bios
)))
2384 pool
->last_commit_jiffies
= jiffies
;
2386 while ((bio
= bio_list_pop(&bio_completions
)))
2389 while ((bio
= bio_list_pop(&bios
))) {
2391 * The data device was flushed as part of metadata commit,
2392 * so complete redundant flushes immediately.
2394 if (bio
->bi_opf
& REQ_PREFLUSH
)
2397 generic_make_request(bio
);
2401 static void do_worker(struct work_struct
*ws
)
2403 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2405 throttle_work_start(&pool
->throttle
);
2406 dm_pool_issue_prefetches(pool
->pmd
);
2407 throttle_work_update(&pool
->throttle
);
2408 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2409 throttle_work_update(&pool
->throttle
);
2410 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2411 throttle_work_update(&pool
->throttle
);
2412 process_prepared(pool
, &pool
->prepared_discards_pt2
, &pool
->process_prepared_discard_pt2
);
2413 throttle_work_update(&pool
->throttle
);
2414 process_deferred_bios(pool
);
2415 throttle_work_complete(&pool
->throttle
);
2419 * We want to commit periodically so that not too much
2420 * unwritten data builds up.
2422 static void do_waker(struct work_struct
*ws
)
2424 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2426 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2430 * We're holding onto IO to allow userland time to react. After the
2431 * timeout either the pool will have been resized (and thus back in
2432 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2434 static void do_no_space_timeout(struct work_struct
*ws
)
2436 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2439 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2440 pool
->pf
.error_if_no_space
= true;
2441 notify_of_pool_mode_change(pool
);
2442 error_retry_list_with_code(pool
, BLK_STS_NOSPC
);
2446 /*----------------------------------------------------------------*/
2449 struct work_struct worker
;
2450 struct completion complete
;
2453 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2455 return container_of(ws
, struct pool_work
, worker
);
2458 static void pool_work_complete(struct pool_work
*pw
)
2460 complete(&pw
->complete
);
2463 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2464 void (*fn
)(struct work_struct
*))
2466 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2467 init_completion(&pw
->complete
);
2468 queue_work(pool
->wq
, &pw
->worker
);
2469 wait_for_completion(&pw
->complete
);
2472 /*----------------------------------------------------------------*/
2474 struct noflush_work
{
2475 struct pool_work pw
;
2479 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2481 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2484 static void do_noflush_start(struct work_struct
*ws
)
2486 struct noflush_work
*w
= to_noflush(ws
);
2487 w
->tc
->requeue_mode
= true;
2489 pool_work_complete(&w
->pw
);
2492 static void do_noflush_stop(struct work_struct
*ws
)
2494 struct noflush_work
*w
= to_noflush(ws
);
2495 w
->tc
->requeue_mode
= false;
2496 pool_work_complete(&w
->pw
);
2499 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2501 struct noflush_work w
;
2504 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2507 /*----------------------------------------------------------------*/
2509 static bool passdown_enabled(struct pool_c
*pt
)
2511 return pt
->adjusted_pf
.discard_passdown
;
2514 static void set_discard_callbacks(struct pool
*pool
)
2516 struct pool_c
*pt
= pool
->ti
->private;
2518 if (passdown_enabled(pt
)) {
2519 pool
->process_discard_cell
= process_discard_cell_passdown
;
2520 pool
->process_prepared_discard
= process_prepared_discard_passdown_pt1
;
2521 pool
->process_prepared_discard_pt2
= process_prepared_discard_passdown_pt2
;
2523 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2524 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2528 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2530 struct pool_c
*pt
= pool
->ti
->private;
2531 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2532 enum pool_mode old_mode
= get_pool_mode(pool
);
2533 unsigned long no_space_timeout
= READ_ONCE(no_space_timeout_secs
) * HZ
;
2536 * Never allow the pool to transition to PM_WRITE mode if user
2537 * intervention is required to verify metadata and data consistency.
2539 if (new_mode
== PM_WRITE
&& needs_check
) {
2540 DMERR("%s: unable to switch pool to write mode until repaired.",
2541 dm_device_name(pool
->pool_md
));
2542 if (old_mode
!= new_mode
)
2543 new_mode
= old_mode
;
2545 new_mode
= PM_READ_ONLY
;
2548 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2549 * not going to recover without a thin_repair. So we never let the
2550 * pool move out of the old mode.
2552 if (old_mode
== PM_FAIL
)
2553 new_mode
= old_mode
;
2557 dm_pool_metadata_read_only(pool
->pmd
);
2558 pool
->process_bio
= process_bio_fail
;
2559 pool
->process_discard
= process_bio_fail
;
2560 pool
->process_cell
= process_cell_fail
;
2561 pool
->process_discard_cell
= process_cell_fail
;
2562 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2563 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2565 error_retry_list(pool
);
2568 case PM_OUT_OF_METADATA_SPACE
:
2570 dm_pool_metadata_read_only(pool
->pmd
);
2571 pool
->process_bio
= process_bio_read_only
;
2572 pool
->process_discard
= process_bio_success
;
2573 pool
->process_cell
= process_cell_read_only
;
2574 pool
->process_discard_cell
= process_cell_success
;
2575 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2576 pool
->process_prepared_discard
= process_prepared_discard_success
;
2578 error_retry_list(pool
);
2581 case PM_OUT_OF_DATA_SPACE
:
2583 * Ideally we'd never hit this state; the low water mark
2584 * would trigger userland to extend the pool before we
2585 * completely run out of data space. However, many small
2586 * IOs to unprovisioned space can consume data space at an
2587 * alarming rate. Adjust your low water mark if you're
2588 * frequently seeing this mode.
2590 pool
->out_of_data_space
= true;
2591 pool
->process_bio
= process_bio_read_only
;
2592 pool
->process_discard
= process_discard_bio
;
2593 pool
->process_cell
= process_cell_read_only
;
2594 pool
->process_prepared_mapping
= process_prepared_mapping
;
2595 set_discard_callbacks(pool
);
2597 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2598 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2602 if (old_mode
== PM_OUT_OF_DATA_SPACE
)
2603 cancel_delayed_work_sync(&pool
->no_space_timeout
);
2604 pool
->out_of_data_space
= false;
2605 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2606 dm_pool_metadata_read_write(pool
->pmd
);
2607 pool
->process_bio
= process_bio
;
2608 pool
->process_discard
= process_discard_bio
;
2609 pool
->process_cell
= process_cell
;
2610 pool
->process_prepared_mapping
= process_prepared_mapping
;
2611 set_discard_callbacks(pool
);
2615 pool
->pf
.mode
= new_mode
;
2617 * The pool mode may have changed, sync it so bind_control_target()
2618 * doesn't cause an unexpected mode transition on resume.
2620 pt
->adjusted_pf
.mode
= new_mode
;
2622 if (old_mode
!= new_mode
)
2623 notify_of_pool_mode_change(pool
);
2626 static void abort_transaction(struct pool
*pool
)
2628 const char *dev_name
= dm_device_name(pool
->pool_md
);
2630 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2631 if (dm_pool_abort_metadata(pool
->pmd
)) {
2632 DMERR("%s: failed to abort metadata transaction", dev_name
);
2633 set_pool_mode(pool
, PM_FAIL
);
2636 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2637 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2638 set_pool_mode(pool
, PM_FAIL
);
2642 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2644 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2645 dm_device_name(pool
->pool_md
), op
, r
);
2647 abort_transaction(pool
);
2648 set_pool_mode(pool
, PM_READ_ONLY
);
2651 /*----------------------------------------------------------------*/
2654 * Mapping functions.
2658 * Called only while mapping a thin bio to hand it over to the workqueue.
2660 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2662 struct pool
*pool
= tc
->pool
;
2664 spin_lock_irq(&tc
->lock
);
2665 bio_list_add(&tc
->deferred_bio_list
, bio
);
2666 spin_unlock_irq(&tc
->lock
);
2671 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2673 struct pool
*pool
= tc
->pool
;
2675 throttle_lock(&pool
->throttle
);
2676 thin_defer_bio(tc
, bio
);
2677 throttle_unlock(&pool
->throttle
);
2680 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2682 struct pool
*pool
= tc
->pool
;
2684 throttle_lock(&pool
->throttle
);
2685 spin_lock_irq(&tc
->lock
);
2686 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2687 spin_unlock_irq(&tc
->lock
);
2688 throttle_unlock(&pool
->throttle
);
2693 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2695 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2698 h
->shared_read_entry
= NULL
;
2699 h
->all_io_entry
= NULL
;
2700 h
->overwrite_mapping
= NULL
;
2705 * Non-blocking function called from the thin target's map function.
2707 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2710 struct thin_c
*tc
= ti
->private;
2711 dm_block_t block
= get_bio_block(tc
, bio
);
2712 struct dm_thin_device
*td
= tc
->td
;
2713 struct dm_thin_lookup_result result
;
2714 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2715 struct dm_cell_key key
;
2717 thin_hook_bio(tc
, bio
);
2719 if (tc
->requeue_mode
) {
2720 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
2722 return DM_MAPIO_SUBMITTED
;
2725 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2727 return DM_MAPIO_SUBMITTED
;
2730 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
) {
2731 thin_defer_bio_with_throttle(tc
, bio
);
2732 return DM_MAPIO_SUBMITTED
;
2736 * We must hold the virtual cell before doing the lookup, otherwise
2737 * there's a race with discard.
2739 build_virtual_key(tc
->td
, block
, &key
);
2740 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2741 return DM_MAPIO_SUBMITTED
;
2743 r
= dm_thin_find_block(td
, block
, 0, &result
);
2746 * Note that we defer readahead too.
2750 if (unlikely(result
.shared
)) {
2752 * We have a race condition here between the
2753 * result.shared value returned by the lookup and
2754 * snapshot creation, which may cause new
2757 * To avoid this always quiesce the origin before
2758 * taking the snap. You want to do this anyway to
2759 * ensure a consistent application view
2762 * More distant ancestors are irrelevant. The
2763 * shared flag will be set in their case.
2765 thin_defer_cell(tc
, virt_cell
);
2766 return DM_MAPIO_SUBMITTED
;
2769 build_data_key(tc
->td
, result
.block
, &key
);
2770 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2771 cell_defer_no_holder(tc
, virt_cell
);
2772 return DM_MAPIO_SUBMITTED
;
2775 inc_all_io_entry(tc
->pool
, bio
);
2776 cell_defer_no_holder(tc
, data_cell
);
2777 cell_defer_no_holder(tc
, virt_cell
);
2779 remap(tc
, bio
, result
.block
);
2780 return DM_MAPIO_REMAPPED
;
2784 thin_defer_cell(tc
, virt_cell
);
2785 return DM_MAPIO_SUBMITTED
;
2789 * Must always call bio_io_error on failure.
2790 * dm_thin_find_block can fail with -EINVAL if the
2791 * pool is switched to fail-io mode.
2794 cell_defer_no_holder(tc
, virt_cell
);
2795 return DM_MAPIO_SUBMITTED
;
2799 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2801 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2802 struct request_queue
*q
;
2804 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2807 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2808 return bdi_congested(q
->backing_dev_info
, bdi_bits
);
2811 static void requeue_bios(struct pool
*pool
)
2816 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2817 spin_lock_irq(&tc
->lock
);
2818 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2819 bio_list_init(&tc
->retry_on_resume_list
);
2820 spin_unlock_irq(&tc
->lock
);
2825 /*----------------------------------------------------------------
2826 * Binding of control targets to a pool object
2827 *--------------------------------------------------------------*/
2828 static bool data_dev_supports_discard(struct pool_c
*pt
)
2830 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2832 return q
&& blk_queue_discard(q
);
2835 static bool is_factor(sector_t block_size
, uint32_t n
)
2837 return !sector_div(block_size
, n
);
2841 * If discard_passdown was enabled verify that the data device
2842 * supports discards. Disable discard_passdown if not.
2844 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2846 struct pool
*pool
= pt
->pool
;
2847 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2848 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2849 const char *reason
= NULL
;
2850 char buf
[BDEVNAME_SIZE
];
2852 if (!pt
->adjusted_pf
.discard_passdown
)
2855 if (!data_dev_supports_discard(pt
))
2856 reason
= "discard unsupported";
2858 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2859 reason
= "max discard sectors smaller than a block";
2862 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2863 pt
->adjusted_pf
.discard_passdown
= false;
2867 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2869 struct pool_c
*pt
= ti
->private;
2872 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2874 enum pool_mode old_mode
= get_pool_mode(pool
);
2875 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2878 * Don't change the pool's mode until set_pool_mode() below.
2879 * Otherwise the pool's process_* function pointers may
2880 * not match the desired pool mode.
2882 pt
->adjusted_pf
.mode
= old_mode
;
2885 pool
->pf
= pt
->adjusted_pf
;
2886 pool
->low_water_blocks
= pt
->low_water_blocks
;
2888 set_pool_mode(pool
, new_mode
);
2893 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2899 /*----------------------------------------------------------------
2901 *--------------------------------------------------------------*/
2902 /* Initialize pool features. */
2903 static void pool_features_init(struct pool_features
*pf
)
2905 pf
->mode
= PM_WRITE
;
2906 pf
->zero_new_blocks
= true;
2907 pf
->discard_enabled
= true;
2908 pf
->discard_passdown
= true;
2909 pf
->error_if_no_space
= false;
2912 static void __pool_destroy(struct pool
*pool
)
2914 __pool_table_remove(pool
);
2916 vfree(pool
->cell_sort_array
);
2917 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2918 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2920 dm_bio_prison_destroy(pool
->prison
);
2921 dm_kcopyd_client_destroy(pool
->copier
);
2924 destroy_workqueue(pool
->wq
);
2926 if (pool
->next_mapping
)
2927 mempool_free(pool
->next_mapping
, &pool
->mapping_pool
);
2928 mempool_exit(&pool
->mapping_pool
);
2929 bio_uninit(&pool
->flush_bio
);
2930 dm_deferred_set_destroy(pool
->shared_read_ds
);
2931 dm_deferred_set_destroy(pool
->all_io_ds
);
2935 static struct kmem_cache
*_new_mapping_cache
;
2937 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2938 struct block_device
*metadata_dev
,
2939 struct block_device
*data_dev
,
2940 unsigned long block_size
,
2941 int read_only
, char **error
)
2946 struct dm_pool_metadata
*pmd
;
2947 bool format_device
= read_only
? false : true;
2949 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2951 *error
= "Error creating metadata object";
2952 return (struct pool
*)pmd
;
2955 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2957 *error
= "Error allocating memory for pool";
2958 err_p
= ERR_PTR(-ENOMEM
);
2963 pool
->sectors_per_block
= block_size
;
2964 if (block_size
& (block_size
- 1))
2965 pool
->sectors_per_block_shift
= -1;
2967 pool
->sectors_per_block_shift
= __ffs(block_size
);
2968 pool
->low_water_blocks
= 0;
2969 pool_features_init(&pool
->pf
);
2970 pool
->prison
= dm_bio_prison_create();
2971 if (!pool
->prison
) {
2972 *error
= "Error creating pool's bio prison";
2973 err_p
= ERR_PTR(-ENOMEM
);
2977 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2978 if (IS_ERR(pool
->copier
)) {
2979 r
= PTR_ERR(pool
->copier
);
2980 *error
= "Error creating pool's kcopyd client";
2982 goto bad_kcopyd_client
;
2986 * Create singlethreaded workqueue that will service all devices
2987 * that use this metadata.
2989 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2991 *error
= "Error creating pool's workqueue";
2992 err_p
= ERR_PTR(-ENOMEM
);
2996 throttle_init(&pool
->throttle
);
2997 INIT_WORK(&pool
->worker
, do_worker
);
2998 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2999 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
3000 spin_lock_init(&pool
->lock
);
3001 bio_list_init(&pool
->deferred_flush_bios
);
3002 bio_list_init(&pool
->deferred_flush_completions
);
3003 INIT_LIST_HEAD(&pool
->prepared_mappings
);
3004 INIT_LIST_HEAD(&pool
->prepared_discards
);
3005 INIT_LIST_HEAD(&pool
->prepared_discards_pt2
);
3006 INIT_LIST_HEAD(&pool
->active_thins
);
3007 pool
->low_water_triggered
= false;
3008 pool
->suspended
= true;
3009 pool
->out_of_data_space
= false;
3010 bio_init(&pool
->flush_bio
, NULL
, 0);
3012 pool
->shared_read_ds
= dm_deferred_set_create();
3013 if (!pool
->shared_read_ds
) {
3014 *error
= "Error creating pool's shared read deferred set";
3015 err_p
= ERR_PTR(-ENOMEM
);
3016 goto bad_shared_read_ds
;
3019 pool
->all_io_ds
= dm_deferred_set_create();
3020 if (!pool
->all_io_ds
) {
3021 *error
= "Error creating pool's all io deferred set";
3022 err_p
= ERR_PTR(-ENOMEM
);
3026 pool
->next_mapping
= NULL
;
3027 r
= mempool_init_slab_pool(&pool
->mapping_pool
, MAPPING_POOL_SIZE
,
3028 _new_mapping_cache
);
3030 *error
= "Error creating pool's mapping mempool";
3032 goto bad_mapping_pool
;
3035 pool
->cell_sort_array
=
3036 vmalloc(array_size(CELL_SORT_ARRAY_SIZE
,
3037 sizeof(*pool
->cell_sort_array
)));
3038 if (!pool
->cell_sort_array
) {
3039 *error
= "Error allocating cell sort array";
3040 err_p
= ERR_PTR(-ENOMEM
);
3041 goto bad_sort_array
;
3044 pool
->ref_count
= 1;
3045 pool
->last_commit_jiffies
= jiffies
;
3046 pool
->pool_md
= pool_md
;
3047 pool
->md_dev
= metadata_dev
;
3048 pool
->data_dev
= data_dev
;
3049 __pool_table_insert(pool
);
3054 mempool_exit(&pool
->mapping_pool
);
3056 dm_deferred_set_destroy(pool
->all_io_ds
);
3058 dm_deferred_set_destroy(pool
->shared_read_ds
);
3060 destroy_workqueue(pool
->wq
);
3062 dm_kcopyd_client_destroy(pool
->copier
);
3064 dm_bio_prison_destroy(pool
->prison
);
3068 if (dm_pool_metadata_close(pmd
))
3069 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
3074 static void __pool_inc(struct pool
*pool
)
3076 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3080 static void __pool_dec(struct pool
*pool
)
3082 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3083 BUG_ON(!pool
->ref_count
);
3084 if (!--pool
->ref_count
)
3085 __pool_destroy(pool
);
3088 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
3089 struct block_device
*metadata_dev
,
3090 struct block_device
*data_dev
,
3091 unsigned long block_size
, int read_only
,
3092 char **error
, int *created
)
3094 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
3097 if (pool
->pool_md
!= pool_md
) {
3098 *error
= "metadata device already in use by a pool";
3099 return ERR_PTR(-EBUSY
);
3101 if (pool
->data_dev
!= data_dev
) {
3102 *error
= "data device already in use by a pool";
3103 return ERR_PTR(-EBUSY
);
3108 pool
= __pool_table_lookup(pool_md
);
3110 if (pool
->md_dev
!= metadata_dev
|| pool
->data_dev
!= data_dev
) {
3111 *error
= "different pool cannot replace a pool";
3112 return ERR_PTR(-EINVAL
);
3117 pool
= pool_create(pool_md
, metadata_dev
, data_dev
, block_size
, read_only
, error
);
3125 /*----------------------------------------------------------------
3126 * Pool target methods
3127 *--------------------------------------------------------------*/
3128 static void pool_dtr(struct dm_target
*ti
)
3130 struct pool_c
*pt
= ti
->private;
3132 mutex_lock(&dm_thin_pool_table
.mutex
);
3134 unbind_control_target(pt
->pool
, ti
);
3135 __pool_dec(pt
->pool
);
3136 dm_put_device(ti
, pt
->metadata_dev
);
3137 dm_put_device(ti
, pt
->data_dev
);
3140 mutex_unlock(&dm_thin_pool_table
.mutex
);
3143 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
3144 struct dm_target
*ti
)
3148 const char *arg_name
;
3150 static const struct dm_arg _args
[] = {
3151 {0, 4, "Invalid number of pool feature arguments"},
3155 * No feature arguments supplied.
3160 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
3164 while (argc
&& !r
) {
3165 arg_name
= dm_shift_arg(as
);
3168 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
3169 pf
->zero_new_blocks
= false;
3171 else if (!strcasecmp(arg_name
, "ignore_discard"))
3172 pf
->discard_enabled
= false;
3174 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3175 pf
->discard_passdown
= false;
3177 else if (!strcasecmp(arg_name
, "read_only"))
3178 pf
->mode
= PM_READ_ONLY
;
3180 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3181 pf
->error_if_no_space
= true;
3184 ti
->error
= "Unrecognised pool feature requested";
3193 static void metadata_low_callback(void *context
)
3195 struct pool
*pool
= context
;
3197 DMWARN("%s: reached low water mark for metadata device: sending event.",
3198 dm_device_name(pool
->pool_md
));
3200 dm_table_event(pool
->ti
->table
);
3204 * We need to flush the data device **before** committing the metadata.
3206 * This ensures that the data blocks of any newly inserted mappings are
3207 * properly written to non-volatile storage and won't be lost in case of a
3210 * Failure to do so can result in data corruption in the case of internal or
3211 * external snapshots and in the case of newly provisioned blocks, when block
3212 * zeroing is enabled.
3214 static int metadata_pre_commit_callback(void *context
)
3216 struct pool
*pool
= context
;
3217 struct bio
*flush_bio
= &pool
->flush_bio
;
3219 bio_reset(flush_bio
);
3220 bio_set_dev(flush_bio
, pool
->data_dev
);
3221 flush_bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
3223 return submit_bio_wait(flush_bio
);
3226 static sector_t
get_dev_size(struct block_device
*bdev
)
3228 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3231 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3233 sector_t metadata_dev_size
= get_dev_size(bdev
);
3234 char buffer
[BDEVNAME_SIZE
];
3236 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3237 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3238 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3241 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3243 sector_t metadata_dev_size
= get_dev_size(bdev
);
3245 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3246 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3248 return metadata_dev_size
;
3251 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3253 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3255 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3257 return metadata_dev_size
;
3261 * When a metadata threshold is crossed a dm event is triggered, and
3262 * userland should respond by growing the metadata device. We could let
3263 * userland set the threshold, like we do with the data threshold, but I'm
3264 * not sure they know enough to do this well.
3266 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3269 * 4M is ample for all ops with the possible exception of thin
3270 * device deletion which is harmless if it fails (just retry the
3271 * delete after you've grown the device).
3273 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3274 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3278 * thin-pool <metadata dev> <data dev>
3279 * <data block size (sectors)>
3280 * <low water mark (blocks)>
3281 * [<#feature args> [<arg>]*]
3283 * Optional feature arguments are:
3284 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3285 * ignore_discard: disable discard
3286 * no_discard_passdown: don't pass discards down to the data device
3287 * read_only: Don't allow any changes to be made to the pool metadata.
3288 * error_if_no_space: error IOs, instead of queueing, if no space.
3290 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3292 int r
, pool_created
= 0;
3295 struct pool_features pf
;
3296 struct dm_arg_set as
;
3297 struct dm_dev
*data_dev
;
3298 unsigned long block_size
;
3299 dm_block_t low_water_blocks
;
3300 struct dm_dev
*metadata_dev
;
3301 fmode_t metadata_mode
;
3304 * FIXME Remove validation from scope of lock.
3306 mutex_lock(&dm_thin_pool_table
.mutex
);
3309 ti
->error
= "Invalid argument count";
3317 /* make sure metadata and data are different devices */
3318 if (!strcmp(argv
[0], argv
[1])) {
3319 ti
->error
= "Error setting metadata or data device";
3325 * Set default pool features.
3327 pool_features_init(&pf
);
3329 dm_consume_args(&as
, 4);
3330 r
= parse_pool_features(&as
, &pf
, ti
);
3334 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3335 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3337 ti
->error
= "Error opening metadata block device";
3340 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3342 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3344 ti
->error
= "Error getting data device";
3348 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3349 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3350 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3351 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3352 ti
->error
= "Invalid block size";
3357 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3358 ti
->error
= "Invalid low water mark";
3363 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3369 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
, data_dev
->bdev
,
3370 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3377 * 'pool_created' reflects whether this is the first table load.
3378 * Top level discard support is not allowed to be changed after
3379 * initial load. This would require a pool reload to trigger thin
3382 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3383 ti
->error
= "Discard support cannot be disabled once enabled";
3385 goto out_flags_changed
;
3390 pt
->metadata_dev
= metadata_dev
;
3391 pt
->data_dev
= data_dev
;
3392 pt
->low_water_blocks
= low_water_blocks
;
3393 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3394 ti
->num_flush_bios
= 1;
3397 * Only need to enable discards if the pool should pass
3398 * them down to the data device. The thin device's discard
3399 * processing will cause mappings to be removed from the btree.
3401 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3402 ti
->num_discard_bios
= 1;
3405 * Setting 'discards_supported' circumvents the normal
3406 * stacking of discard limits (this keeps the pool and
3407 * thin devices' discard limits consistent).
3409 ti
->discards_supported
= true;
3413 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3414 calc_metadata_threshold(pt
),
3415 metadata_low_callback
,
3418 goto out_flags_changed
;
3420 dm_pool_register_pre_commit_callback(pool
->pmd
,
3421 metadata_pre_commit_callback
, pool
);
3423 pt
->callbacks
.congested_fn
= pool_is_congested
;
3424 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3426 mutex_unlock(&dm_thin_pool_table
.mutex
);
3435 dm_put_device(ti
, data_dev
);
3437 dm_put_device(ti
, metadata_dev
);
3439 mutex_unlock(&dm_thin_pool_table
.mutex
);
3444 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3447 struct pool_c
*pt
= ti
->private;
3448 struct pool
*pool
= pt
->pool
;
3451 * As this is a singleton target, ti->begin is always zero.
3453 spin_lock_irq(&pool
->lock
);
3454 bio_set_dev(bio
, pt
->data_dev
->bdev
);
3455 r
= DM_MAPIO_REMAPPED
;
3456 spin_unlock_irq(&pool
->lock
);
3461 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3464 struct pool_c
*pt
= ti
->private;
3465 struct pool
*pool
= pt
->pool
;
3466 sector_t data_size
= ti
->len
;
3467 dm_block_t sb_data_size
;
3469 *need_commit
= false;
3471 (void) sector_div(data_size
, pool
->sectors_per_block
);
3473 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3475 DMERR("%s: failed to retrieve data device size",
3476 dm_device_name(pool
->pool_md
));
3480 if (data_size
< sb_data_size
) {
3481 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3482 dm_device_name(pool
->pool_md
),
3483 (unsigned long long)data_size
, sb_data_size
);
3486 } else if (data_size
> sb_data_size
) {
3487 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3488 DMERR("%s: unable to grow the data device until repaired.",
3489 dm_device_name(pool
->pool_md
));
3494 DMINFO("%s: growing the data device from %llu to %llu blocks",
3495 dm_device_name(pool
->pool_md
),
3496 sb_data_size
, (unsigned long long)data_size
);
3497 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3499 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3503 *need_commit
= true;
3509 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3512 struct pool_c
*pt
= ti
->private;
3513 struct pool
*pool
= pt
->pool
;
3514 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3516 *need_commit
= false;
3518 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3520 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3522 DMERR("%s: failed to retrieve metadata device size",
3523 dm_device_name(pool
->pool_md
));
3527 if (metadata_dev_size
< sb_metadata_dev_size
) {
3528 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3529 dm_device_name(pool
->pool_md
),
3530 metadata_dev_size
, sb_metadata_dev_size
);
3533 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3534 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3535 DMERR("%s: unable to grow the metadata device until repaired.",
3536 dm_device_name(pool
->pool_md
));
3540 warn_if_metadata_device_too_big(pool
->md_dev
);
3541 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3542 dm_device_name(pool
->pool_md
),
3543 sb_metadata_dev_size
, metadata_dev_size
);
3545 if (get_pool_mode(pool
) == PM_OUT_OF_METADATA_SPACE
)
3546 set_pool_mode(pool
, PM_WRITE
);
3548 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3550 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3554 *need_commit
= true;
3561 * Retrieves the number of blocks of the data device from
3562 * the superblock and compares it to the actual device size,
3563 * thus resizing the data device in case it has grown.
3565 * This both copes with opening preallocated data devices in the ctr
3566 * being followed by a resume
3568 * calling the resume method individually after userspace has
3569 * grown the data device in reaction to a table event.
3571 static int pool_preresume(struct dm_target
*ti
)
3574 bool need_commit1
, need_commit2
;
3575 struct pool_c
*pt
= ti
->private;
3576 struct pool
*pool
= pt
->pool
;
3579 * Take control of the pool object.
3581 r
= bind_control_target(pool
, ti
);
3585 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3589 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3593 if (need_commit1
|| need_commit2
)
3594 (void) commit(pool
);
3599 static void pool_suspend_active_thins(struct pool
*pool
)
3603 /* Suspend all active thin devices */
3604 tc
= get_first_thin(pool
);
3606 dm_internal_suspend_noflush(tc
->thin_md
);
3607 tc
= get_next_thin(pool
, tc
);
3611 static void pool_resume_active_thins(struct pool
*pool
)
3615 /* Resume all active thin devices */
3616 tc
= get_first_thin(pool
);
3618 dm_internal_resume(tc
->thin_md
);
3619 tc
= get_next_thin(pool
, tc
);
3623 static void pool_resume(struct dm_target
*ti
)
3625 struct pool_c
*pt
= ti
->private;
3626 struct pool
*pool
= pt
->pool
;
3629 * Must requeue active_thins' bios and then resume
3630 * active_thins _before_ clearing 'suspend' flag.
3633 pool_resume_active_thins(pool
);
3635 spin_lock_irq(&pool
->lock
);
3636 pool
->low_water_triggered
= false;
3637 pool
->suspended
= false;
3638 spin_unlock_irq(&pool
->lock
);
3640 do_waker(&pool
->waker
.work
);
3643 static void pool_presuspend(struct dm_target
*ti
)
3645 struct pool_c
*pt
= ti
->private;
3646 struct pool
*pool
= pt
->pool
;
3648 spin_lock_irq(&pool
->lock
);
3649 pool
->suspended
= true;
3650 spin_unlock_irq(&pool
->lock
);
3652 pool_suspend_active_thins(pool
);
3655 static void pool_presuspend_undo(struct dm_target
*ti
)
3657 struct pool_c
*pt
= ti
->private;
3658 struct pool
*pool
= pt
->pool
;
3660 pool_resume_active_thins(pool
);
3662 spin_lock_irq(&pool
->lock
);
3663 pool
->suspended
= false;
3664 spin_unlock_irq(&pool
->lock
);
3667 static void pool_postsuspend(struct dm_target
*ti
)
3669 struct pool_c
*pt
= ti
->private;
3670 struct pool
*pool
= pt
->pool
;
3672 cancel_delayed_work_sync(&pool
->waker
);
3673 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3674 flush_workqueue(pool
->wq
);
3675 (void) commit(pool
);
3678 static int check_arg_count(unsigned argc
, unsigned args_required
)
3680 if (argc
!= args_required
) {
3681 DMWARN("Message received with %u arguments instead of %u.",
3682 argc
, args_required
);
3689 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3691 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3692 *dev_id
<= MAX_DEV_ID
)
3696 DMWARN("Message received with invalid device id: %s", arg
);
3701 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3706 r
= check_arg_count(argc
, 2);
3710 r
= read_dev_id(argv
[1], &dev_id
, 1);
3714 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3716 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3724 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3727 dm_thin_id origin_dev_id
;
3730 r
= check_arg_count(argc
, 3);
3734 r
= read_dev_id(argv
[1], &dev_id
, 1);
3738 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3742 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3744 DMWARN("Creation of new snapshot %s of device %s failed.",
3752 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3757 r
= check_arg_count(argc
, 2);
3761 r
= read_dev_id(argv
[1], &dev_id
, 1);
3765 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3767 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3772 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3774 dm_thin_id old_id
, new_id
;
3777 r
= check_arg_count(argc
, 3);
3781 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3782 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3786 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3787 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3791 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3793 DMWARN("Failed to change transaction id from %s to %s.",
3801 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3805 r
= check_arg_count(argc
, 1);
3809 (void) commit(pool
);
3811 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3813 DMWARN("reserve_metadata_snap message failed.");
3818 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3822 r
= check_arg_count(argc
, 1);
3826 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3828 DMWARN("release_metadata_snap message failed.");
3834 * Messages supported:
3835 * create_thin <dev_id>
3836 * create_snap <dev_id> <origin_id>
3838 * set_transaction_id <current_trans_id> <new_trans_id>
3839 * reserve_metadata_snap
3840 * release_metadata_snap
3842 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3843 char *result
, unsigned maxlen
)
3846 struct pool_c
*pt
= ti
->private;
3847 struct pool
*pool
= pt
->pool
;
3849 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
) {
3850 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3851 dm_device_name(pool
->pool_md
));
3855 if (!strcasecmp(argv
[0], "create_thin"))
3856 r
= process_create_thin_mesg(argc
, argv
, pool
);
3858 else if (!strcasecmp(argv
[0], "create_snap"))
3859 r
= process_create_snap_mesg(argc
, argv
, pool
);
3861 else if (!strcasecmp(argv
[0], "delete"))
3862 r
= process_delete_mesg(argc
, argv
, pool
);
3864 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3865 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3867 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3868 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3870 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3871 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3874 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3877 (void) commit(pool
);
3882 static void emit_flags(struct pool_features
*pf
, char *result
,
3883 unsigned sz
, unsigned maxlen
)
3885 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3886 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3887 pf
->error_if_no_space
;
3888 DMEMIT("%u ", count
);
3890 if (!pf
->zero_new_blocks
)
3891 DMEMIT("skip_block_zeroing ");
3893 if (!pf
->discard_enabled
)
3894 DMEMIT("ignore_discard ");
3896 if (!pf
->discard_passdown
)
3897 DMEMIT("no_discard_passdown ");
3899 if (pf
->mode
== PM_READ_ONLY
)
3900 DMEMIT("read_only ");
3902 if (pf
->error_if_no_space
)
3903 DMEMIT("error_if_no_space ");
3908 * <transaction id> <used metadata sectors>/<total metadata sectors>
3909 * <used data sectors>/<total data sectors> <held metadata root>
3910 * <pool mode> <discard config> <no space config> <needs_check>
3912 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3913 unsigned status_flags
, char *result
, unsigned maxlen
)
3917 uint64_t transaction_id
;
3918 dm_block_t nr_free_blocks_data
;
3919 dm_block_t nr_free_blocks_metadata
;
3920 dm_block_t nr_blocks_data
;
3921 dm_block_t nr_blocks_metadata
;
3922 dm_block_t held_root
;
3923 enum pool_mode mode
;
3924 char buf
[BDEVNAME_SIZE
];
3925 char buf2
[BDEVNAME_SIZE
];
3926 struct pool_c
*pt
= ti
->private;
3927 struct pool
*pool
= pt
->pool
;
3930 case STATUSTYPE_INFO
:
3931 if (get_pool_mode(pool
) == PM_FAIL
) {
3936 /* Commit to ensure statistics aren't out-of-date */
3937 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3938 (void) commit(pool
);
3940 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3942 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3943 dm_device_name(pool
->pool_md
), r
);
3947 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3949 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3950 dm_device_name(pool
->pool_md
), r
);
3954 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3956 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3957 dm_device_name(pool
->pool_md
), r
);
3961 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3963 DMERR("%s: dm_pool_get_free_block_count returned %d",
3964 dm_device_name(pool
->pool_md
), r
);
3968 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3970 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3971 dm_device_name(pool
->pool_md
), r
);
3975 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3977 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3978 dm_device_name(pool
->pool_md
), r
);
3982 DMEMIT("%llu %llu/%llu %llu/%llu ",
3983 (unsigned long long)transaction_id
,
3984 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3985 (unsigned long long)nr_blocks_metadata
,
3986 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3987 (unsigned long long)nr_blocks_data
);
3990 DMEMIT("%llu ", held_root
);
3994 mode
= get_pool_mode(pool
);
3995 if (mode
== PM_OUT_OF_DATA_SPACE
)
3996 DMEMIT("out_of_data_space ");
3997 else if (is_read_only_pool_mode(mode
))
4002 if (!pool
->pf
.discard_enabled
)
4003 DMEMIT("ignore_discard ");
4004 else if (pool
->pf
.discard_passdown
)
4005 DMEMIT("discard_passdown ");
4007 DMEMIT("no_discard_passdown ");
4009 if (pool
->pf
.error_if_no_space
)
4010 DMEMIT("error_if_no_space ");
4012 DMEMIT("queue_if_no_space ");
4014 if (dm_pool_metadata_needs_check(pool
->pmd
))
4015 DMEMIT("needs_check ");
4019 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt
));
4023 case STATUSTYPE_TABLE
:
4024 DMEMIT("%s %s %lu %llu ",
4025 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
4026 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
4027 (unsigned long)pool
->sectors_per_block
,
4028 (unsigned long long)pt
->low_water_blocks
);
4029 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
4038 static int pool_iterate_devices(struct dm_target
*ti
,
4039 iterate_devices_callout_fn fn
, void *data
)
4041 struct pool_c
*pt
= ti
->private;
4043 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
4046 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4048 struct pool_c
*pt
= ti
->private;
4049 struct pool
*pool
= pt
->pool
;
4050 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
4053 * If max_sectors is smaller than pool->sectors_per_block adjust it
4054 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4055 * This is especially beneficial when the pool's data device is a RAID
4056 * device that has a full stripe width that matches pool->sectors_per_block
4057 * -- because even though partial RAID stripe-sized IOs will be issued to a
4058 * single RAID stripe; when aggregated they will end on a full RAID stripe
4059 * boundary.. which avoids additional partial RAID stripe writes cascading
4061 if (limits
->max_sectors
< pool
->sectors_per_block
) {
4062 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
4063 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
4064 limits
->max_sectors
--;
4065 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
4070 * If the system-determined stacked limits are compatible with the
4071 * pool's blocksize (io_opt is a factor) do not override them.
4073 if (io_opt_sectors
< pool
->sectors_per_block
||
4074 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
4075 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
4076 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
4078 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4079 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4083 * pt->adjusted_pf is a staging area for the actual features to use.
4084 * They get transferred to the live pool in bind_control_target()
4085 * called from pool_preresume().
4087 if (!pt
->adjusted_pf
.discard_enabled
) {
4089 * Must explicitly disallow stacking discard limits otherwise the
4090 * block layer will stack them if pool's data device has support.
4091 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4092 * user to see that, so make sure to set all discard limits to 0.
4094 limits
->discard_granularity
= 0;
4098 disable_passdown_if_not_supported(pt
);
4101 * The pool uses the same discard limits as the underlying data
4102 * device. DM core has already set this up.
4106 static struct target_type pool_target
= {
4107 .name
= "thin-pool",
4108 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
4109 DM_TARGET_IMMUTABLE
,
4110 .version
= {1, 22, 0},
4111 .module
= THIS_MODULE
,
4115 .presuspend
= pool_presuspend
,
4116 .presuspend_undo
= pool_presuspend_undo
,
4117 .postsuspend
= pool_postsuspend
,
4118 .preresume
= pool_preresume
,
4119 .resume
= pool_resume
,
4120 .message
= pool_message
,
4121 .status
= pool_status
,
4122 .iterate_devices
= pool_iterate_devices
,
4123 .io_hints
= pool_io_hints
,
4126 /*----------------------------------------------------------------
4127 * Thin target methods
4128 *--------------------------------------------------------------*/
4129 static void thin_get(struct thin_c
*tc
)
4131 refcount_inc(&tc
->refcount
);
4134 static void thin_put(struct thin_c
*tc
)
4136 if (refcount_dec_and_test(&tc
->refcount
))
4137 complete(&tc
->can_destroy
);
4140 static void thin_dtr(struct dm_target
*ti
)
4142 struct thin_c
*tc
= ti
->private;
4144 spin_lock_irq(&tc
->pool
->lock
);
4145 list_del_rcu(&tc
->list
);
4146 spin_unlock_irq(&tc
->pool
->lock
);
4150 wait_for_completion(&tc
->can_destroy
);
4152 mutex_lock(&dm_thin_pool_table
.mutex
);
4154 __pool_dec(tc
->pool
);
4155 dm_pool_close_thin_device(tc
->td
);
4156 dm_put_device(ti
, tc
->pool_dev
);
4158 dm_put_device(ti
, tc
->origin_dev
);
4161 mutex_unlock(&dm_thin_pool_table
.mutex
);
4165 * Thin target parameters:
4167 * <pool_dev> <dev_id> [origin_dev]
4169 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4170 * dev_id: the internal device identifier
4171 * origin_dev: a device external to the pool that should act as the origin
4173 * If the pool device has discards disabled, they get disabled for the thin
4176 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
4180 struct dm_dev
*pool_dev
, *origin_dev
;
4181 struct mapped_device
*pool_md
;
4183 mutex_lock(&dm_thin_pool_table
.mutex
);
4185 if (argc
!= 2 && argc
!= 3) {
4186 ti
->error
= "Invalid argument count";
4191 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
4193 ti
->error
= "Out of memory";
4197 tc
->thin_md
= dm_table_get_md(ti
->table
);
4198 spin_lock_init(&tc
->lock
);
4199 INIT_LIST_HEAD(&tc
->deferred_cells
);
4200 bio_list_init(&tc
->deferred_bio_list
);
4201 bio_list_init(&tc
->retry_on_resume_list
);
4202 tc
->sort_bio_list
= RB_ROOT
;
4205 if (!strcmp(argv
[0], argv
[2])) {
4206 ti
->error
= "Error setting origin device";
4208 goto bad_origin_dev
;
4211 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
4213 ti
->error
= "Error opening origin device";
4214 goto bad_origin_dev
;
4216 tc
->origin_dev
= origin_dev
;
4219 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4221 ti
->error
= "Error opening pool device";
4224 tc
->pool_dev
= pool_dev
;
4226 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4227 ti
->error
= "Invalid device id";
4232 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4234 ti
->error
= "Couldn't get pool mapped device";
4239 tc
->pool
= __pool_table_lookup(pool_md
);
4241 ti
->error
= "Couldn't find pool object";
4243 goto bad_pool_lookup
;
4245 __pool_inc(tc
->pool
);
4247 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4248 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4253 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4255 ti
->error
= "Couldn't open thin internal device";
4259 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4263 ti
->num_flush_bios
= 1;
4264 ti
->flush_supported
= true;
4265 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4267 /* In case the pool supports discards, pass them on. */
4268 if (tc
->pool
->pf
.discard_enabled
) {
4269 ti
->discards_supported
= true;
4270 ti
->num_discard_bios
= 1;
4273 mutex_unlock(&dm_thin_pool_table
.mutex
);
4275 spin_lock_irq(&tc
->pool
->lock
);
4276 if (tc
->pool
->suspended
) {
4277 spin_unlock_irq(&tc
->pool
->lock
);
4278 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4279 ti
->error
= "Unable to activate thin device while pool is suspended";
4283 refcount_set(&tc
->refcount
, 1);
4284 init_completion(&tc
->can_destroy
);
4285 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4286 spin_unlock_irq(&tc
->pool
->lock
);
4288 * This synchronize_rcu() call is needed here otherwise we risk a
4289 * wake_worker() call finding no bios to process (because the newly
4290 * added tc isn't yet visible). So this reduces latency since we
4291 * aren't then dependent on the periodic commit to wake_worker().
4300 dm_pool_close_thin_device(tc
->td
);
4302 __pool_dec(tc
->pool
);
4306 dm_put_device(ti
, tc
->pool_dev
);
4309 dm_put_device(ti
, tc
->origin_dev
);
4313 mutex_unlock(&dm_thin_pool_table
.mutex
);
4318 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4320 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4322 return thin_bio_map(ti
, bio
);
4325 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
,
4328 unsigned long flags
;
4329 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4330 struct list_head work
;
4331 struct dm_thin_new_mapping
*m
, *tmp
;
4332 struct pool
*pool
= h
->tc
->pool
;
4334 if (h
->shared_read_entry
) {
4335 INIT_LIST_HEAD(&work
);
4336 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4338 spin_lock_irqsave(&pool
->lock
, flags
);
4339 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4341 __complete_mapping_preparation(m
);
4343 spin_unlock_irqrestore(&pool
->lock
, flags
);
4346 if (h
->all_io_entry
) {
4347 INIT_LIST_HEAD(&work
);
4348 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4349 if (!list_empty(&work
)) {
4350 spin_lock_irqsave(&pool
->lock
, flags
);
4351 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4352 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4353 spin_unlock_irqrestore(&pool
->lock
, flags
);
4359 cell_defer_no_holder(h
->tc
, h
->cell
);
4361 return DM_ENDIO_DONE
;
4364 static void thin_presuspend(struct dm_target
*ti
)
4366 struct thin_c
*tc
= ti
->private;
4368 if (dm_noflush_suspending(ti
))
4369 noflush_work(tc
, do_noflush_start
);
4372 static void thin_postsuspend(struct dm_target
*ti
)
4374 struct thin_c
*tc
= ti
->private;
4377 * The dm_noflush_suspending flag has been cleared by now, so
4378 * unfortunately we must always run this.
4380 noflush_work(tc
, do_noflush_stop
);
4383 static int thin_preresume(struct dm_target
*ti
)
4385 struct thin_c
*tc
= ti
->private;
4388 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4394 * <nr mapped sectors> <highest mapped sector>
4396 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4397 unsigned status_flags
, char *result
, unsigned maxlen
)
4401 dm_block_t mapped
, highest
;
4402 char buf
[BDEVNAME_SIZE
];
4403 struct thin_c
*tc
= ti
->private;
4405 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4414 case STATUSTYPE_INFO
:
4415 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4417 DMERR("dm_thin_get_mapped_count returned %d", r
);
4421 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4423 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4427 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4429 DMEMIT("%llu", ((highest
+ 1) *
4430 tc
->pool
->sectors_per_block
) - 1);
4435 case STATUSTYPE_TABLE
:
4437 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4438 (unsigned long) tc
->dev_id
);
4440 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4451 static int thin_iterate_devices(struct dm_target
*ti
,
4452 iterate_devices_callout_fn fn
, void *data
)
4455 struct thin_c
*tc
= ti
->private;
4456 struct pool
*pool
= tc
->pool
;
4459 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4460 * we follow a more convoluted path through to the pool's target.
4463 return 0; /* nothing is bound */
4465 blocks
= pool
->ti
->len
;
4466 (void) sector_div(blocks
, pool
->sectors_per_block
);
4468 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4473 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4475 struct thin_c
*tc
= ti
->private;
4476 struct pool
*pool
= tc
->pool
;
4478 if (!pool
->pf
.discard_enabled
)
4481 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4482 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4485 static struct target_type thin_target
= {
4487 .version
= {1, 22, 0},
4488 .module
= THIS_MODULE
,
4492 .end_io
= thin_endio
,
4493 .preresume
= thin_preresume
,
4494 .presuspend
= thin_presuspend
,
4495 .postsuspend
= thin_postsuspend
,
4496 .status
= thin_status
,
4497 .iterate_devices
= thin_iterate_devices
,
4498 .io_hints
= thin_io_hints
,
4501 /*----------------------------------------------------------------*/
4503 static int __init
dm_thin_init(void)
4509 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4510 if (!_new_mapping_cache
)
4513 r
= dm_register_target(&thin_target
);
4515 goto bad_new_mapping_cache
;
4517 r
= dm_register_target(&pool_target
);
4519 goto bad_thin_target
;
4524 dm_unregister_target(&thin_target
);
4525 bad_new_mapping_cache
:
4526 kmem_cache_destroy(_new_mapping_cache
);
4531 static void dm_thin_exit(void)
4533 dm_unregister_target(&thin_target
);
4534 dm_unregister_target(&pool_target
);
4536 kmem_cache_destroy(_new_mapping_cache
);
4541 module_init(dm_thin_init
);
4542 module_exit(dm_thin_exit
);
4544 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4545 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4547 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4548 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4549 MODULE_LICENSE("GPL");