2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name
= DM_NAME
;
40 static unsigned int major
= 0;
41 static unsigned int _major
= 0;
43 static DEFINE_IDR(_minor_idr
);
45 static DEFINE_SPINLOCK(_minor_lock
);
47 static void do_deferred_remove(struct work_struct
*w
);
49 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
51 static struct workqueue_struct
*deferred_remove_workqueue
;
53 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr
);
59 wake_up(&dm_global_eventq
);
63 * One of these is allocated (on-stack) per original bio.
70 unsigned sector_count
;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
81 unsigned target_bio_nr
;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
94 struct mapped_device
*md
;
98 unsigned long start_time
;
99 spinlock_t endio_lock
;
100 struct dm_stats_aux stats_aux
;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio
;
105 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
107 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
108 if (!tio
->inside_dm_io
)
109 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
110 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
114 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
116 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
117 if (io
->magic
== DM_IO_MAGIC
)
118 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
119 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
120 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
124 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
126 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node
= DM_NUMA_NODE
;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools
{
152 struct bio_set io_bs
;
155 struct table_device
{
156 struct list_head list
;
158 struct dm_dev dm_dev
;
162 * Bio-based DM's mempools' reserved IOs set by the user.
164 #define RESERVED_BIO_BASED_IOS 16
165 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
167 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
169 int param
= READ_ONCE(*module_param
);
170 int modified_param
= 0;
171 bool modified
= true;
174 modified_param
= min
;
175 else if (param
> max
)
176 modified_param
= max
;
181 (void)cmpxchg(module_param
, param
, modified_param
);
182 param
= modified_param
;
188 unsigned __dm_get_module_param(unsigned *module_param
,
189 unsigned def
, unsigned max
)
191 unsigned param
= READ_ONCE(*module_param
);
192 unsigned modified_param
= 0;
195 modified_param
= def
;
196 else if (param
> max
)
197 modified_param
= max
;
199 if (modified_param
) {
200 (void)cmpxchg(module_param
, param
, modified_param
);
201 param
= modified_param
;
207 unsigned dm_get_reserved_bio_based_ios(void)
209 return __dm_get_module_param(&reserved_bio_based_ios
,
210 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
214 static unsigned dm_get_numa_node(void)
216 return __dm_get_module_param_int(&dm_numa_node
,
217 DM_NUMA_NODE
, num_online_nodes() - 1);
220 static int __init
local_init(void)
224 r
= dm_uevent_init();
228 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
229 if (!deferred_remove_workqueue
) {
231 goto out_uevent_exit
;
235 r
= register_blkdev(_major
, _name
);
237 goto out_free_workqueue
;
245 destroy_workqueue(deferred_remove_workqueue
);
252 static void local_exit(void)
254 flush_scheduled_work();
255 destroy_workqueue(deferred_remove_workqueue
);
257 unregister_blkdev(_major
, _name
);
262 DMINFO("cleaned up");
265 static int (*_inits
[])(void) __initdata
= {
276 static void (*_exits
[])(void) = {
287 static int __init
dm_init(void)
289 const int count
= ARRAY_SIZE(_inits
);
293 for (i
= 0; i
< count
; i
++) {
308 static void __exit
dm_exit(void)
310 int i
= ARRAY_SIZE(_exits
);
316 * Should be empty by this point.
318 idr_destroy(&_minor_idr
);
322 * Block device functions
324 int dm_deleting_md(struct mapped_device
*md
)
326 return test_bit(DMF_DELETING
, &md
->flags
);
329 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
331 struct mapped_device
*md
;
333 spin_lock(&_minor_lock
);
335 md
= bdev
->bd_disk
->private_data
;
339 if (test_bit(DMF_FREEING
, &md
->flags
) ||
340 dm_deleting_md(md
)) {
346 atomic_inc(&md
->open_count
);
348 spin_unlock(&_minor_lock
);
350 return md
? 0 : -ENXIO
;
353 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
355 struct mapped_device
*md
;
357 spin_lock(&_minor_lock
);
359 md
= disk
->private_data
;
363 if (atomic_dec_and_test(&md
->open_count
) &&
364 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
365 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
369 spin_unlock(&_minor_lock
);
372 int dm_open_count(struct mapped_device
*md
)
374 return atomic_read(&md
->open_count
);
378 * Guarantees nothing is using the device before it's deleted.
380 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
384 spin_lock(&_minor_lock
);
386 if (dm_open_count(md
)) {
389 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
390 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
393 set_bit(DMF_DELETING
, &md
->flags
);
395 spin_unlock(&_minor_lock
);
400 int dm_cancel_deferred_remove(struct mapped_device
*md
)
404 spin_lock(&_minor_lock
);
406 if (test_bit(DMF_DELETING
, &md
->flags
))
409 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
411 spin_unlock(&_minor_lock
);
416 static void do_deferred_remove(struct work_struct
*w
)
418 dm_deferred_remove();
421 sector_t
dm_get_size(struct mapped_device
*md
)
423 return get_capacity(md
->disk
);
426 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
431 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
436 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
438 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
440 return dm_get_geometry(md
, geo
);
443 #ifdef CONFIG_BLK_DEV_ZONED
444 int dm_report_zones_cb(struct blk_zone
*zone
, unsigned int idx
, void *data
)
446 struct dm_report_zones_args
*args
= data
;
447 sector_t sector_diff
= args
->tgt
->begin
- args
->start
;
450 * Ignore zones beyond the target range.
452 if (zone
->start
>= args
->start
+ args
->tgt
->len
)
456 * Remap the start sector and write pointer position of the zone
457 * to match its position in the target range.
459 zone
->start
+= sector_diff
;
460 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
461 if (zone
->cond
== BLK_ZONE_COND_FULL
)
462 zone
->wp
= zone
->start
+ zone
->len
;
463 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
464 zone
->wp
= zone
->start
;
466 zone
->wp
+= sector_diff
;
469 args
->next_sector
= zone
->start
+ zone
->len
;
470 return args
->orig_cb(zone
, args
->zone_idx
++, args
->orig_data
);
472 EXPORT_SYMBOL_GPL(dm_report_zones_cb
);
474 static int dm_blk_report_zones(struct gendisk
*disk
, sector_t sector
,
475 unsigned int nr_zones
, report_zones_cb cb
, void *data
)
477 struct mapped_device
*md
= disk
->private_data
;
478 struct dm_table
*map
;
480 struct dm_report_zones_args args
= {
481 .next_sector
= sector
,
486 if (dm_suspended_md(md
))
489 map
= dm_get_live_table(md
, &srcu_idx
);
494 struct dm_target
*tgt
;
496 tgt
= dm_table_find_target(map
, args
.next_sector
);
497 if (WARN_ON_ONCE(!tgt
->type
->report_zones
)) {
503 ret
= tgt
->type
->report_zones(tgt
, &args
, nr_zones
);
506 } while (args
.zone_idx
< nr_zones
&&
507 args
.next_sector
< get_capacity(disk
));
511 dm_put_live_table(md
, srcu_idx
);
515 #define dm_blk_report_zones NULL
516 #endif /* CONFIG_BLK_DEV_ZONED */
518 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
519 struct block_device
**bdev
)
520 __acquires(md
->io_barrier
)
522 struct dm_target
*tgt
;
523 struct dm_table
*map
;
528 map
= dm_get_live_table(md
, srcu_idx
);
529 if (!map
|| !dm_table_get_size(map
))
532 /* We only support devices that have a single target */
533 if (dm_table_get_num_targets(map
) != 1)
536 tgt
= dm_table_get_target(map
, 0);
537 if (!tgt
->type
->prepare_ioctl
)
540 if (dm_suspended_md(md
))
543 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
);
544 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
545 dm_put_live_table(md
, *srcu_idx
);
553 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
554 __releases(md
->io_barrier
)
556 dm_put_live_table(md
, srcu_idx
);
559 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
560 unsigned int cmd
, unsigned long arg
)
562 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
565 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
571 * Target determined this ioctl is being issued against a
572 * subset of the parent bdev; require extra privileges.
574 if (!capable(CAP_SYS_RAWIO
)) {
576 "%s: sending ioctl %x to DM device without required privilege.",
583 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
585 dm_unprepare_ioctl(md
, srcu_idx
);
589 static void start_io_acct(struct dm_io
*io
);
591 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
594 struct dm_target_io
*tio
;
597 clone
= bio_alloc_bioset(GFP_NOIO
, 0, &md
->io_bs
);
601 tio
= container_of(clone
, struct dm_target_io
, clone
);
602 tio
->inside_dm_io
= true;
605 io
= container_of(tio
, struct dm_io
, tio
);
606 io
->magic
= DM_IO_MAGIC
;
608 atomic_set(&io
->io_count
, 1);
611 spin_lock_init(&io
->endio_lock
);
618 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
620 bio_put(&io
->tio
.clone
);
623 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
624 unsigned target_bio_nr
, gfp_t gfp_mask
)
626 struct dm_target_io
*tio
;
628 if (!ci
->io
->tio
.io
) {
629 /* the dm_target_io embedded in ci->io is available */
632 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, &ci
->io
->md
->bs
);
636 tio
= container_of(clone
, struct dm_target_io
, clone
);
637 tio
->inside_dm_io
= false;
640 tio
->magic
= DM_TIO_MAGIC
;
643 tio
->target_bio_nr
= target_bio_nr
;
648 static void free_tio(struct dm_target_io
*tio
)
650 if (tio
->inside_dm_io
)
652 bio_put(&tio
->clone
);
655 static bool md_in_flight_bios(struct mapped_device
*md
)
658 struct hd_struct
*part
= &dm_disk(md
)->part0
;
661 for_each_possible_cpu(cpu
) {
662 sum
+= part_stat_local_read_cpu(part
, in_flight
[0], cpu
);
663 sum
+= part_stat_local_read_cpu(part
, in_flight
[1], cpu
);
669 static bool md_in_flight(struct mapped_device
*md
)
671 if (queue_is_mq(md
->queue
))
672 return blk_mq_queue_inflight(md
->queue
);
674 return md_in_flight_bios(md
);
677 static void start_io_acct(struct dm_io
*io
)
679 struct mapped_device
*md
= io
->md
;
680 struct bio
*bio
= io
->orig_bio
;
682 io
->start_time
= jiffies
;
684 generic_start_io_acct(md
->queue
, bio_op(bio
), bio_sectors(bio
),
685 &dm_disk(md
)->part0
);
687 if (unlikely(dm_stats_used(&md
->stats
)))
688 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
689 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
690 false, 0, &io
->stats_aux
);
693 static void end_io_acct(struct dm_io
*io
)
695 struct mapped_device
*md
= io
->md
;
696 struct bio
*bio
= io
->orig_bio
;
697 unsigned long duration
= jiffies
- io
->start_time
;
699 generic_end_io_acct(md
->queue
, bio_op(bio
), &dm_disk(md
)->part0
,
702 if (unlikely(dm_stats_used(&md
->stats
)))
703 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
704 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
705 true, duration
, &io
->stats_aux
);
707 /* nudge anyone waiting on suspend queue */
708 if (unlikely(wq_has_sleeper(&md
->wait
)))
713 * Add the bio to the list of deferred io.
715 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
719 spin_lock_irqsave(&md
->deferred_lock
, flags
);
720 bio_list_add(&md
->deferred
, bio
);
721 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
722 queue_work(md
->wq
, &md
->work
);
726 * Everyone (including functions in this file), should use this
727 * function to access the md->map field, and make sure they call
728 * dm_put_live_table() when finished.
730 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
732 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
734 return srcu_dereference(md
->map
, &md
->io_barrier
);
737 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
739 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
742 void dm_sync_table(struct mapped_device
*md
)
744 synchronize_srcu(&md
->io_barrier
);
745 synchronize_rcu_expedited();
749 * A fast alternative to dm_get_live_table/dm_put_live_table.
750 * The caller must not block between these two functions.
752 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
755 return rcu_dereference(md
->map
);
758 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
763 static char *_dm_claim_ptr
= "I belong to device-mapper";
766 * Open a table device so we can use it as a map destination.
768 static int open_table_device(struct table_device
*td
, dev_t dev
,
769 struct mapped_device
*md
)
771 struct block_device
*bdev
;
775 BUG_ON(td
->dm_dev
.bdev
);
777 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _dm_claim_ptr
);
779 return PTR_ERR(bdev
);
781 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
783 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
787 td
->dm_dev
.bdev
= bdev
;
788 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
793 * Close a table device that we've been using.
795 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
797 if (!td
->dm_dev
.bdev
)
800 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
801 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
802 put_dax(td
->dm_dev
.dax_dev
);
803 td
->dm_dev
.bdev
= NULL
;
804 td
->dm_dev
.dax_dev
= NULL
;
807 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
810 struct table_device
*td
;
812 list_for_each_entry(td
, l
, list
)
813 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
819 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
820 struct dm_dev
**result
)
823 struct table_device
*td
;
825 mutex_lock(&md
->table_devices_lock
);
826 td
= find_table_device(&md
->table_devices
, dev
, mode
);
828 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
830 mutex_unlock(&md
->table_devices_lock
);
834 td
->dm_dev
.mode
= mode
;
835 td
->dm_dev
.bdev
= NULL
;
837 if ((r
= open_table_device(td
, dev
, md
))) {
838 mutex_unlock(&md
->table_devices_lock
);
843 format_dev_t(td
->dm_dev
.name
, dev
);
845 refcount_set(&td
->count
, 1);
846 list_add(&td
->list
, &md
->table_devices
);
848 refcount_inc(&td
->count
);
850 mutex_unlock(&md
->table_devices_lock
);
852 *result
= &td
->dm_dev
;
855 EXPORT_SYMBOL_GPL(dm_get_table_device
);
857 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
859 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
861 mutex_lock(&md
->table_devices_lock
);
862 if (refcount_dec_and_test(&td
->count
)) {
863 close_table_device(td
, md
);
867 mutex_unlock(&md
->table_devices_lock
);
869 EXPORT_SYMBOL(dm_put_table_device
);
871 static void free_table_devices(struct list_head
*devices
)
873 struct list_head
*tmp
, *next
;
875 list_for_each_safe(tmp
, next
, devices
) {
876 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
878 DMWARN("dm_destroy: %s still exists with %d references",
879 td
->dm_dev
.name
, refcount_read(&td
->count
));
885 * Get the geometry associated with a dm device
887 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
895 * Set the geometry of a device.
897 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
899 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
901 if (geo
->start
> sz
) {
902 DMWARN("Start sector is beyond the geometry limits.");
911 static int __noflush_suspending(struct mapped_device
*md
)
913 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
917 * Decrements the number of outstanding ios that a bio has been
918 * cloned into, completing the original io if necc.
920 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
923 blk_status_t io_error
;
925 struct mapped_device
*md
= io
->md
;
927 /* Push-back supersedes any I/O errors */
928 if (unlikely(error
)) {
929 spin_lock_irqsave(&io
->endio_lock
, flags
);
930 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
932 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
935 if (atomic_dec_and_test(&io
->io_count
)) {
936 if (io
->status
== BLK_STS_DM_REQUEUE
) {
938 * Target requested pushing back the I/O.
940 spin_lock_irqsave(&md
->deferred_lock
, flags
);
941 if (__noflush_suspending(md
))
942 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
943 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
945 /* noflush suspend was interrupted. */
946 io
->status
= BLK_STS_IOERR
;
947 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
950 io_error
= io
->status
;
955 if (io_error
== BLK_STS_DM_REQUEUE
)
958 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
960 * Preflush done for flush with data, reissue
961 * without REQ_PREFLUSH.
963 bio
->bi_opf
&= ~REQ_PREFLUSH
;
966 /* done with normal IO or empty flush */
968 bio
->bi_status
= io_error
;
974 void disable_discard(struct mapped_device
*md
)
976 struct queue_limits
*limits
= dm_get_queue_limits(md
);
978 /* device doesn't really support DISCARD, disable it */
979 limits
->max_discard_sectors
= 0;
980 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, md
->queue
);
983 void disable_write_same(struct mapped_device
*md
)
985 struct queue_limits
*limits
= dm_get_queue_limits(md
);
987 /* device doesn't really support WRITE SAME, disable it */
988 limits
->max_write_same_sectors
= 0;
991 void disable_write_zeroes(struct mapped_device
*md
)
993 struct queue_limits
*limits
= dm_get_queue_limits(md
);
995 /* device doesn't really support WRITE ZEROES, disable it */
996 limits
->max_write_zeroes_sectors
= 0;
999 static void clone_endio(struct bio
*bio
)
1001 blk_status_t error
= bio
->bi_status
;
1002 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1003 struct dm_io
*io
= tio
->io
;
1004 struct mapped_device
*md
= tio
->io
->md
;
1005 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
1007 if (unlikely(error
== BLK_STS_TARGET
) && md
->type
!= DM_TYPE_NVME_BIO_BASED
) {
1008 if (bio_op(bio
) == REQ_OP_DISCARD
&&
1009 !bio
->bi_disk
->queue
->limits
.max_discard_sectors
)
1010 disable_discard(md
);
1011 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
1012 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
1013 disable_write_same(md
);
1014 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
1015 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
1016 disable_write_zeroes(md
);
1020 int r
= endio(tio
->ti
, bio
, &error
);
1022 case DM_ENDIO_REQUEUE
:
1023 error
= BLK_STS_DM_REQUEUE
;
1027 case DM_ENDIO_INCOMPLETE
:
1028 /* The target will handle the io */
1031 DMWARN("unimplemented target endio return value: %d", r
);
1037 dec_pending(io
, error
);
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1044 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1046 sector_t target_offset
= dm_target_offset(ti
, sector
);
1048 return ti
->len
- target_offset
;
1051 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1053 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1054 sector_t offset
, max_len
;
1057 * Does the target need to split even further?
1059 if (ti
->max_io_len
) {
1060 offset
= dm_target_offset(ti
, sector
);
1061 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1062 max_len
= sector_div(offset
, ti
->max_io_len
);
1064 max_len
= offset
& (ti
->max_io_len
- 1);
1065 max_len
= ti
->max_io_len
- max_len
;
1074 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1076 if (len
> UINT_MAX
) {
1077 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 (unsigned long long)len
, UINT_MAX
);
1079 ti
->error
= "Maximum size of target IO is too large";
1083 ti
->max_io_len
= (uint32_t) len
;
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1089 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1090 sector_t sector
, int *srcu_idx
)
1091 __acquires(md
->io_barrier
)
1093 struct dm_table
*map
;
1094 struct dm_target
*ti
;
1096 map
= dm_get_live_table(md
, srcu_idx
);
1100 ti
= dm_table_find_target(map
, sector
);
1107 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1108 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1110 struct mapped_device
*md
= dax_get_private(dax_dev
);
1111 sector_t sector
= pgoff
* PAGE_SECTORS
;
1112 struct dm_target
*ti
;
1113 long len
, ret
= -EIO
;
1116 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1120 if (!ti
->type
->direct_access
)
1122 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
1125 nr_pages
= min(len
, nr_pages
);
1126 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1129 dm_put_live_table(md
, srcu_idx
);
1134 static bool dm_dax_supported(struct dax_device
*dax_dev
, struct block_device
*bdev
,
1135 int blocksize
, sector_t start
, sector_t len
)
1137 struct mapped_device
*md
= dax_get_private(dax_dev
);
1138 struct dm_table
*map
;
1142 map
= dm_get_live_table(md
, &srcu_idx
);
1146 ret
= dm_table_supports_dax(map
, device_supports_dax
, &blocksize
);
1148 dm_put_live_table(md
, srcu_idx
);
1153 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1154 void *addr
, size_t bytes
, struct iov_iter
*i
)
1156 struct mapped_device
*md
= dax_get_private(dax_dev
);
1157 sector_t sector
= pgoff
* PAGE_SECTORS
;
1158 struct dm_target
*ti
;
1162 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1166 if (!ti
->type
->dax_copy_from_iter
) {
1167 ret
= copy_from_iter(addr
, bytes
, i
);
1170 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1172 dm_put_live_table(md
, srcu_idx
);
1177 static size_t dm_dax_copy_to_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1178 void *addr
, size_t bytes
, struct iov_iter
*i
)
1180 struct mapped_device
*md
= dax_get_private(dax_dev
);
1181 sector_t sector
= pgoff
* PAGE_SECTORS
;
1182 struct dm_target
*ti
;
1186 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1190 if (!ti
->type
->dax_copy_to_iter
) {
1191 ret
= copy_to_iter(addr
, bytes
, i
);
1194 ret
= ti
->type
->dax_copy_to_iter(ti
, pgoff
, addr
, bytes
, i
);
1196 dm_put_live_table(md
, srcu_idx
);
1202 * A target may call dm_accept_partial_bio only from the map routine. It is
1203 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1204 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1206 * dm_accept_partial_bio informs the dm that the target only wants to process
1207 * additional n_sectors sectors of the bio and the rest of the data should be
1208 * sent in a next bio.
1210 * A diagram that explains the arithmetics:
1211 * +--------------------+---------------+-------+
1213 * +--------------------+---------------+-------+
1215 * <-------------- *tio->len_ptr --------------->
1216 * <------- bi_size ------->
1219 * Region 1 was already iterated over with bio_advance or similar function.
1220 * (it may be empty if the target doesn't use bio_advance)
1221 * Region 2 is the remaining bio size that the target wants to process.
1222 * (it may be empty if region 1 is non-empty, although there is no reason
1224 * The target requires that region 3 is to be sent in the next bio.
1226 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1227 * the partially processed part (the sum of regions 1+2) must be the same for all
1228 * copies of the bio.
1230 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1232 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1233 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1234 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1235 BUG_ON(bi_size
> *tio
->len_ptr
);
1236 BUG_ON(n_sectors
> bi_size
);
1237 *tio
->len_ptr
-= bi_size
- n_sectors
;
1238 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1240 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1242 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1246 struct bio
*clone
= &tio
->clone
;
1247 struct dm_io
*io
= tio
->io
;
1248 struct mapped_device
*md
= io
->md
;
1249 struct dm_target
*ti
= tio
->ti
;
1250 blk_qc_t ret
= BLK_QC_T_NONE
;
1252 clone
->bi_end_io
= clone_endio
;
1255 * Map the clone. If r == 0 we don't need to do
1256 * anything, the target has assumed ownership of
1259 atomic_inc(&io
->io_count
);
1260 sector
= clone
->bi_iter
.bi_sector
;
1262 r
= ti
->type
->map(ti
, clone
);
1264 case DM_MAPIO_SUBMITTED
:
1266 case DM_MAPIO_REMAPPED
:
1267 /* the bio has been remapped so dispatch it */
1268 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1269 bio_dev(io
->orig_bio
), sector
);
1270 if (md
->type
== DM_TYPE_NVME_BIO_BASED
)
1271 ret
= direct_make_request(clone
);
1273 ret
= generic_make_request(clone
);
1277 dec_pending(io
, BLK_STS_IOERR
);
1279 case DM_MAPIO_REQUEUE
:
1281 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1284 DMWARN("unimplemented target map return value: %d", r
);
1291 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1293 bio
->bi_iter
.bi_sector
= sector
;
1294 bio
->bi_iter
.bi_size
= to_bytes(len
);
1298 * Creates a bio that consists of range of complete bvecs.
1300 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1301 sector_t sector
, unsigned len
)
1303 struct bio
*clone
= &tio
->clone
;
1305 __bio_clone_fast(clone
, bio
);
1307 if (bio_integrity(bio
)) {
1310 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1311 !dm_target_passes_integrity(tio
->ti
->type
))) {
1312 DMWARN("%s: the target %s doesn't support integrity data.",
1313 dm_device_name(tio
->io
->md
),
1314 tio
->ti
->type
->name
);
1318 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1323 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1324 clone
->bi_iter
.bi_size
= to_bytes(len
);
1326 if (bio_integrity(bio
))
1327 bio_integrity_trim(clone
);
1332 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1333 struct dm_target
*ti
, unsigned num_bios
)
1335 struct dm_target_io
*tio
;
1341 if (num_bios
== 1) {
1342 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1343 bio_list_add(blist
, &tio
->clone
);
1347 for (try = 0; try < 2; try++) {
1352 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1353 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1354 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1358 bio_list_add(blist
, &tio
->clone
);
1361 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1362 if (bio_nr
== num_bios
)
1365 while ((bio
= bio_list_pop(blist
))) {
1366 tio
= container_of(bio
, struct dm_target_io
, clone
);
1372 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1373 struct dm_target_io
*tio
, unsigned *len
)
1375 struct bio
*clone
= &tio
->clone
;
1379 __bio_clone_fast(clone
, ci
->bio
);
1381 bio_setup_sector(clone
, ci
->sector
, *len
);
1383 return __map_bio(tio
);
1386 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1387 unsigned num_bios
, unsigned *len
)
1389 struct bio_list blist
= BIO_EMPTY_LIST
;
1391 struct dm_target_io
*tio
;
1393 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1395 while ((bio
= bio_list_pop(&blist
))) {
1396 tio
= container_of(bio
, struct dm_target_io
, clone
);
1397 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1401 static int __send_empty_flush(struct clone_info
*ci
)
1403 unsigned target_nr
= 0;
1404 struct dm_target
*ti
;
1407 * Empty flush uses a statically initialized bio, as the base for
1408 * cloning. However, blkg association requires that a bdev is
1409 * associated with a gendisk, which doesn't happen until the bdev is
1410 * opened. So, blkg association is done at issue time of the flush
1411 * rather than when the device is created in alloc_dev().
1413 bio_set_dev(ci
->bio
, ci
->io
->md
->bdev
);
1415 BUG_ON(bio_has_data(ci
->bio
));
1416 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1417 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1419 bio_disassociate_blkg(ci
->bio
);
1424 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1425 sector_t sector
, unsigned *len
)
1427 struct bio
*bio
= ci
->bio
;
1428 struct dm_target_io
*tio
;
1431 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1433 r
= clone_bio(tio
, bio
, sector
, *len
);
1438 (void) __map_bio(tio
);
1443 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1445 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1447 return ti
->num_discard_bios
;
1450 static unsigned get_num_secure_erase_bios(struct dm_target
*ti
)
1452 return ti
->num_secure_erase_bios
;
1455 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1457 return ti
->num_write_same_bios
;
1460 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1462 return ti
->num_write_zeroes_bios
;
1465 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1471 * Even though the device advertised support for this type of
1472 * request, that does not mean every target supports it, and
1473 * reconfiguration might also have changed that since the
1474 * check was performed.
1479 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1481 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1484 ci
->sector_count
-= len
;
1489 static int __send_discard(struct clone_info
*ci
, struct dm_target
*ti
)
1491 return __send_changing_extent_only(ci
, ti
, get_num_discard_bios(ti
));
1494 static int __send_secure_erase(struct clone_info
*ci
, struct dm_target
*ti
)
1496 return __send_changing_extent_only(ci
, ti
, get_num_secure_erase_bios(ti
));
1499 static int __send_write_same(struct clone_info
*ci
, struct dm_target
*ti
)
1501 return __send_changing_extent_only(ci
, ti
, get_num_write_same_bios(ti
));
1504 static int __send_write_zeroes(struct clone_info
*ci
, struct dm_target
*ti
)
1506 return __send_changing_extent_only(ci
, ti
, get_num_write_zeroes_bios(ti
));
1509 static bool is_abnormal_io(struct bio
*bio
)
1513 switch (bio_op(bio
)) {
1514 case REQ_OP_DISCARD
:
1515 case REQ_OP_SECURE_ERASE
:
1516 case REQ_OP_WRITE_SAME
:
1517 case REQ_OP_WRITE_ZEROES
:
1525 static bool __process_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1528 struct bio
*bio
= ci
->bio
;
1530 if (bio_op(bio
) == REQ_OP_DISCARD
)
1531 *result
= __send_discard(ci
, ti
);
1532 else if (bio_op(bio
) == REQ_OP_SECURE_ERASE
)
1533 *result
= __send_secure_erase(ci
, ti
);
1534 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
)
1535 *result
= __send_write_same(ci
, ti
);
1536 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
)
1537 *result
= __send_write_zeroes(ci
, ti
);
1545 * Select the correct strategy for processing a non-flush bio.
1547 static int __split_and_process_non_flush(struct clone_info
*ci
)
1549 struct dm_target
*ti
;
1553 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1557 if (__process_abnormal_io(ci
, ti
, &r
))
1560 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1562 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1567 ci
->sector_count
-= len
;
1572 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1573 struct dm_table
*map
, struct bio
*bio
)
1576 ci
->io
= alloc_io(md
, bio
);
1577 ci
->sector
= bio
->bi_iter
.bi_sector
;
1580 #define __dm_part_stat_sub(part, field, subnd) \
1581 (part_stat_get(part, field) -= (subnd))
1584 * Entry point to split a bio into clones and submit them to the targets.
1586 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1587 struct dm_table
*map
, struct bio
*bio
)
1589 struct clone_info ci
;
1590 blk_qc_t ret
= BLK_QC_T_NONE
;
1593 init_clone_info(&ci
, md
, map
, bio
);
1595 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1596 struct bio flush_bio
;
1599 * Use an on-stack bio for this, it's safe since we don't
1600 * need to reference it after submit. It's just used as
1601 * the basis for the clone(s).
1603 bio_init(&flush_bio
, NULL
, 0);
1604 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1605 ci
.bio
= &flush_bio
;
1606 ci
.sector_count
= 0;
1607 error
= __send_empty_flush(&ci
);
1608 /* dec_pending submits any data associated with flush */
1609 } else if (op_is_zone_mgmt(bio_op(bio
))) {
1611 ci
.sector_count
= 0;
1612 error
= __split_and_process_non_flush(&ci
);
1615 ci
.sector_count
= bio_sectors(bio
);
1616 while (ci
.sector_count
&& !error
) {
1617 error
= __split_and_process_non_flush(&ci
);
1618 if (current
->bio_list
&& ci
.sector_count
&& !error
) {
1620 * Remainder must be passed to generic_make_request()
1621 * so that it gets handled *after* bios already submitted
1622 * have been completely processed.
1623 * We take a clone of the original to store in
1624 * ci.io->orig_bio to be used by end_io_acct() and
1625 * for dec_pending to use for completion handling.
1627 struct bio
*b
= bio_split(bio
, bio_sectors(bio
) - ci
.sector_count
,
1628 GFP_NOIO
, &md
->queue
->bio_split
);
1629 ci
.io
->orig_bio
= b
;
1632 * Adjust IO stats for each split, otherwise upon queue
1633 * reentry there will be redundant IO accounting.
1634 * NOTE: this is a stop-gap fix, a proper fix involves
1635 * significant refactoring of DM core's bio splitting
1636 * (by eliminating DM's splitting and just using bio_split)
1639 __dm_part_stat_sub(&dm_disk(md
)->part0
,
1640 sectors
[op_stat_group(bio_op(bio
))], ci
.sector_count
);
1644 trace_block_split(md
->queue
, b
, bio
->bi_iter
.bi_sector
);
1645 ret
= generic_make_request(bio
);
1651 /* drop the extra reference count */
1652 dec_pending(ci
.io
, errno_to_blk_status(error
));
1657 * Optimized variant of __split_and_process_bio that leverages the
1658 * fact that targets that use it do _not_ have a need to split bios.
1660 static blk_qc_t
__process_bio(struct mapped_device
*md
, struct dm_table
*map
,
1661 struct bio
*bio
, struct dm_target
*ti
)
1663 struct clone_info ci
;
1664 blk_qc_t ret
= BLK_QC_T_NONE
;
1667 init_clone_info(&ci
, md
, map
, bio
);
1669 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1670 struct bio flush_bio
;
1673 * Use an on-stack bio for this, it's safe since we don't
1674 * need to reference it after submit. It's just used as
1675 * the basis for the clone(s).
1677 bio_init(&flush_bio
, NULL
, 0);
1678 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1679 ci
.bio
= &flush_bio
;
1680 ci
.sector_count
= 0;
1681 error
= __send_empty_flush(&ci
);
1682 /* dec_pending submits any data associated with flush */
1684 struct dm_target_io
*tio
;
1687 ci
.sector_count
= bio_sectors(bio
);
1688 if (__process_abnormal_io(&ci
, ti
, &error
))
1691 tio
= alloc_tio(&ci
, ti
, 0, GFP_NOIO
);
1692 ret
= __clone_and_map_simple_bio(&ci
, tio
, NULL
);
1695 /* drop the extra reference count */
1696 dec_pending(ci
.io
, errno_to_blk_status(error
));
1700 static void dm_queue_split(struct mapped_device
*md
, struct dm_target
*ti
, struct bio
**bio
)
1702 unsigned len
, sector_count
;
1704 sector_count
= bio_sectors(*bio
);
1705 len
= min_t(sector_t
, max_io_len((*bio
)->bi_iter
.bi_sector
, ti
), sector_count
);
1707 if (sector_count
> len
) {
1708 struct bio
*split
= bio_split(*bio
, len
, GFP_NOIO
, &md
->queue
->bio_split
);
1710 bio_chain(split
, *bio
);
1711 trace_block_split(md
->queue
, split
, (*bio
)->bi_iter
.bi_sector
);
1712 generic_make_request(*bio
);
1717 static blk_qc_t
dm_process_bio(struct mapped_device
*md
,
1718 struct dm_table
*map
, struct bio
*bio
)
1720 blk_qc_t ret
= BLK_QC_T_NONE
;
1721 struct dm_target
*ti
= md
->immutable_target
;
1723 if (unlikely(!map
)) {
1729 ti
= dm_table_find_target(map
, bio
->bi_iter
.bi_sector
);
1730 if (unlikely(!ti
)) {
1737 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1738 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1741 if (current
->bio_list
) {
1742 blk_queue_split(md
->queue
, &bio
);
1743 if (!is_abnormal_io(bio
))
1744 dm_queue_split(md
, ti
, &bio
);
1747 if (dm_get_md_type(md
) == DM_TYPE_NVME_BIO_BASED
)
1748 return __process_bio(md
, map
, bio
, ti
);
1750 return __split_and_process_bio(md
, map
, bio
);
1753 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1755 struct mapped_device
*md
= q
->queuedata
;
1756 blk_qc_t ret
= BLK_QC_T_NONE
;
1758 struct dm_table
*map
;
1760 map
= dm_get_live_table(md
, &srcu_idx
);
1762 /* if we're suspended, we have to queue this io for later */
1763 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1764 dm_put_live_table(md
, srcu_idx
);
1766 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1773 ret
= dm_process_bio(md
, map
, bio
);
1775 dm_put_live_table(md
, srcu_idx
);
1779 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1782 struct mapped_device
*md
= congested_data
;
1783 struct dm_table
*map
;
1785 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1786 if (dm_request_based(md
)) {
1788 * With request-based DM we only need to check the
1789 * top-level queue for congestion.
1791 r
= md
->queue
->backing_dev_info
->wb
.state
& bdi_bits
;
1793 map
= dm_get_live_table_fast(md
);
1795 r
= dm_table_any_congested(map
, bdi_bits
);
1796 dm_put_live_table_fast(md
);
1803 /*-----------------------------------------------------------------
1804 * An IDR is used to keep track of allocated minor numbers.
1805 *---------------------------------------------------------------*/
1806 static void free_minor(int minor
)
1808 spin_lock(&_minor_lock
);
1809 idr_remove(&_minor_idr
, minor
);
1810 spin_unlock(&_minor_lock
);
1814 * See if the device with a specific minor # is free.
1816 static int specific_minor(int minor
)
1820 if (minor
>= (1 << MINORBITS
))
1823 idr_preload(GFP_KERNEL
);
1824 spin_lock(&_minor_lock
);
1826 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1828 spin_unlock(&_minor_lock
);
1831 return r
== -ENOSPC
? -EBUSY
: r
;
1835 static int next_free_minor(int *minor
)
1839 idr_preload(GFP_KERNEL
);
1840 spin_lock(&_minor_lock
);
1842 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1844 spin_unlock(&_minor_lock
);
1852 static const struct block_device_operations dm_blk_dops
;
1853 static const struct dax_operations dm_dax_ops
;
1855 static void dm_wq_work(struct work_struct
*work
);
1857 static void dm_init_normal_md_queue(struct mapped_device
*md
)
1860 * Initialize aspects of queue that aren't relevant for blk-mq
1862 md
->queue
->backing_dev_info
->congested_data
= md
;
1863 md
->queue
->backing_dev_info
->congested_fn
= dm_any_congested
;
1866 static void cleanup_mapped_device(struct mapped_device
*md
)
1869 destroy_workqueue(md
->wq
);
1870 bioset_exit(&md
->bs
);
1871 bioset_exit(&md
->io_bs
);
1874 kill_dax(md
->dax_dev
);
1875 put_dax(md
->dax_dev
);
1880 spin_lock(&_minor_lock
);
1881 md
->disk
->private_data
= NULL
;
1882 spin_unlock(&_minor_lock
);
1883 del_gendisk(md
->disk
);
1888 blk_cleanup_queue(md
->queue
);
1890 cleanup_srcu_struct(&md
->io_barrier
);
1897 mutex_destroy(&md
->suspend_lock
);
1898 mutex_destroy(&md
->type_lock
);
1899 mutex_destroy(&md
->table_devices_lock
);
1901 dm_mq_cleanup_mapped_device(md
);
1905 * Allocate and initialise a blank device with a given minor.
1907 static struct mapped_device
*alloc_dev(int minor
)
1909 int r
, numa_node_id
= dm_get_numa_node();
1910 struct mapped_device
*md
;
1913 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1915 DMWARN("unable to allocate device, out of memory.");
1919 if (!try_module_get(THIS_MODULE
))
1920 goto bad_module_get
;
1922 /* get a minor number for the dev */
1923 if (minor
== DM_ANY_MINOR
)
1924 r
= next_free_minor(&minor
);
1926 r
= specific_minor(minor
);
1930 r
= init_srcu_struct(&md
->io_barrier
);
1932 goto bad_io_barrier
;
1934 md
->numa_node_id
= numa_node_id
;
1935 md
->init_tio_pdu
= false;
1936 md
->type
= DM_TYPE_NONE
;
1937 mutex_init(&md
->suspend_lock
);
1938 mutex_init(&md
->type_lock
);
1939 mutex_init(&md
->table_devices_lock
);
1940 spin_lock_init(&md
->deferred_lock
);
1941 atomic_set(&md
->holders
, 1);
1942 atomic_set(&md
->open_count
, 0);
1943 atomic_set(&md
->event_nr
, 0);
1944 atomic_set(&md
->uevent_seq
, 0);
1945 INIT_LIST_HEAD(&md
->uevent_list
);
1946 INIT_LIST_HEAD(&md
->table_devices
);
1947 spin_lock_init(&md
->uevent_lock
);
1949 md
->queue
= blk_alloc_queue_node(GFP_KERNEL
, numa_node_id
);
1952 md
->queue
->queuedata
= md
;
1954 * default to bio-based required ->make_request_fn until DM
1955 * table is loaded and md->type established. If request-based
1956 * table is loaded: blk-mq will override accordingly.
1958 blk_queue_make_request(md
->queue
, dm_make_request
);
1960 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1964 init_waitqueue_head(&md
->wait
);
1965 INIT_WORK(&md
->work
, dm_wq_work
);
1966 init_waitqueue_head(&md
->eventq
);
1967 init_completion(&md
->kobj_holder
.completion
);
1969 md
->disk
->major
= _major
;
1970 md
->disk
->first_minor
= minor
;
1971 md
->disk
->fops
= &dm_blk_dops
;
1972 md
->disk
->queue
= md
->queue
;
1973 md
->disk
->private_data
= md
;
1974 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1976 if (IS_ENABLED(CONFIG_DAX_DRIVER
)) {
1977 md
->dax_dev
= alloc_dax(md
, md
->disk
->disk_name
,
1983 add_disk_no_queue_reg(md
->disk
);
1984 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1986 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1990 md
->bdev
= bdget_disk(md
->disk
, 0);
1994 dm_stats_init(&md
->stats
);
1996 /* Populate the mapping, nobody knows we exist yet */
1997 spin_lock(&_minor_lock
);
1998 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1999 spin_unlock(&_minor_lock
);
2001 BUG_ON(old_md
!= MINOR_ALLOCED
);
2006 cleanup_mapped_device(md
);
2010 module_put(THIS_MODULE
);
2016 static void unlock_fs(struct mapped_device
*md
);
2018 static void free_dev(struct mapped_device
*md
)
2020 int minor
= MINOR(disk_devt(md
->disk
));
2024 cleanup_mapped_device(md
);
2026 free_table_devices(&md
->table_devices
);
2027 dm_stats_cleanup(&md
->stats
);
2030 module_put(THIS_MODULE
);
2034 static int __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2036 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2039 if (dm_table_bio_based(t
)) {
2041 * The md may already have mempools that need changing.
2042 * If so, reload bioset because front_pad may have changed
2043 * because a different table was loaded.
2045 bioset_exit(&md
->bs
);
2046 bioset_exit(&md
->io_bs
);
2048 } else if (bioset_initialized(&md
->bs
)) {
2050 * There's no need to reload with request-based dm
2051 * because the size of front_pad doesn't change.
2052 * Note for future: If you are to reload bioset,
2053 * prep-ed requests in the queue may refer
2054 * to bio from the old bioset, so you must walk
2055 * through the queue to unprep.
2061 bioset_initialized(&md
->bs
) ||
2062 bioset_initialized(&md
->io_bs
));
2064 ret
= bioset_init_from_src(&md
->bs
, &p
->bs
);
2067 ret
= bioset_init_from_src(&md
->io_bs
, &p
->io_bs
);
2069 bioset_exit(&md
->bs
);
2071 /* mempool bind completed, no longer need any mempools in the table */
2072 dm_table_free_md_mempools(t
);
2077 * Bind a table to the device.
2079 static void event_callback(void *context
)
2081 unsigned long flags
;
2083 struct mapped_device
*md
= (struct mapped_device
*) context
;
2085 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2086 list_splice_init(&md
->uevent_list
, &uevents
);
2087 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2089 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2091 atomic_inc(&md
->event_nr
);
2092 wake_up(&md
->eventq
);
2093 dm_issue_global_event();
2097 * Protected by md->suspend_lock obtained by dm_swap_table().
2099 static void __set_size(struct mapped_device
*md
, sector_t size
)
2101 lockdep_assert_held(&md
->suspend_lock
);
2103 set_capacity(md
->disk
, size
);
2105 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2109 * Returns old map, which caller must destroy.
2111 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2112 struct queue_limits
*limits
)
2114 struct dm_table
*old_map
;
2115 struct request_queue
*q
= md
->queue
;
2116 bool request_based
= dm_table_request_based(t
);
2120 lockdep_assert_held(&md
->suspend_lock
);
2122 size
= dm_table_get_size(t
);
2125 * Wipe any geometry if the size of the table changed.
2127 if (size
!= dm_get_size(md
))
2128 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2130 __set_size(md
, size
);
2132 dm_table_event_callback(t
, event_callback
, md
);
2135 * The queue hasn't been stopped yet, if the old table type wasn't
2136 * for request-based during suspension. So stop it to prevent
2137 * I/O mapping before resume.
2138 * This must be done before setting the queue restrictions,
2139 * because request-based dm may be run just after the setting.
2144 if (request_based
|| md
->type
== DM_TYPE_NVME_BIO_BASED
) {
2146 * Leverage the fact that request-based DM targets and
2147 * NVMe bio based targets are immutable singletons
2148 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2149 * and __process_bio.
2151 md
->immutable_target
= dm_table_get_immutable_target(t
);
2154 ret
= __bind_mempools(md
, t
);
2156 old_map
= ERR_PTR(ret
);
2160 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2161 rcu_assign_pointer(md
->map
, (void *)t
);
2162 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2164 dm_table_set_restrictions(t
, q
, limits
);
2173 * Returns unbound table for the caller to free.
2175 static struct dm_table
*__unbind(struct mapped_device
*md
)
2177 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2182 dm_table_event_callback(map
, NULL
, NULL
);
2183 RCU_INIT_POINTER(md
->map
, NULL
);
2190 * Constructor for a new device.
2192 int dm_create(int minor
, struct mapped_device
**result
)
2195 struct mapped_device
*md
;
2197 md
= alloc_dev(minor
);
2201 r
= dm_sysfs_init(md
);
2212 * Functions to manage md->type.
2213 * All are required to hold md->type_lock.
2215 void dm_lock_md_type(struct mapped_device
*md
)
2217 mutex_lock(&md
->type_lock
);
2220 void dm_unlock_md_type(struct mapped_device
*md
)
2222 mutex_unlock(&md
->type_lock
);
2225 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2227 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2231 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2236 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2238 return md
->immutable_target_type
;
2242 * The queue_limits are only valid as long as you have a reference
2245 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2247 BUG_ON(!atomic_read(&md
->holders
));
2248 return &md
->queue
->limits
;
2250 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2253 * Setup the DM device's queue based on md's type
2255 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2258 struct queue_limits limits
;
2259 enum dm_queue_mode type
= dm_get_md_type(md
);
2262 case DM_TYPE_REQUEST_BASED
:
2263 r
= dm_mq_init_request_queue(md
, t
);
2265 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2269 case DM_TYPE_BIO_BASED
:
2270 case DM_TYPE_DAX_BIO_BASED
:
2271 case DM_TYPE_NVME_BIO_BASED
:
2272 dm_init_normal_md_queue(md
);
2279 r
= dm_calculate_queue_limits(t
, &limits
);
2281 DMERR("Cannot calculate initial queue limits");
2284 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2285 blk_register_queue(md
->disk
);
2290 struct mapped_device
*dm_get_md(dev_t dev
)
2292 struct mapped_device
*md
;
2293 unsigned minor
= MINOR(dev
);
2295 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2298 spin_lock(&_minor_lock
);
2300 md
= idr_find(&_minor_idr
, minor
);
2301 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2302 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2308 spin_unlock(&_minor_lock
);
2312 EXPORT_SYMBOL_GPL(dm_get_md
);
2314 void *dm_get_mdptr(struct mapped_device
*md
)
2316 return md
->interface_ptr
;
2319 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2321 md
->interface_ptr
= ptr
;
2324 void dm_get(struct mapped_device
*md
)
2326 atomic_inc(&md
->holders
);
2327 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2330 int dm_hold(struct mapped_device
*md
)
2332 spin_lock(&_minor_lock
);
2333 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2334 spin_unlock(&_minor_lock
);
2338 spin_unlock(&_minor_lock
);
2341 EXPORT_SYMBOL_GPL(dm_hold
);
2343 const char *dm_device_name(struct mapped_device
*md
)
2347 EXPORT_SYMBOL_GPL(dm_device_name
);
2349 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2351 struct dm_table
*map
;
2356 spin_lock(&_minor_lock
);
2357 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2358 set_bit(DMF_FREEING
, &md
->flags
);
2359 spin_unlock(&_minor_lock
);
2361 blk_set_queue_dying(md
->queue
);
2364 * Take suspend_lock so that presuspend and postsuspend methods
2365 * do not race with internal suspend.
2367 mutex_lock(&md
->suspend_lock
);
2368 map
= dm_get_live_table(md
, &srcu_idx
);
2369 if (!dm_suspended_md(md
)) {
2370 dm_table_presuspend_targets(map
);
2371 dm_table_postsuspend_targets(map
);
2373 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2374 dm_put_live_table(md
, srcu_idx
);
2375 mutex_unlock(&md
->suspend_lock
);
2378 * Rare, but there may be I/O requests still going to complete,
2379 * for example. Wait for all references to disappear.
2380 * No one should increment the reference count of the mapped_device,
2381 * after the mapped_device state becomes DMF_FREEING.
2384 while (atomic_read(&md
->holders
))
2386 else if (atomic_read(&md
->holders
))
2387 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2388 dm_device_name(md
), atomic_read(&md
->holders
));
2391 dm_table_destroy(__unbind(md
));
2395 void dm_destroy(struct mapped_device
*md
)
2397 __dm_destroy(md
, true);
2400 void dm_destroy_immediate(struct mapped_device
*md
)
2402 __dm_destroy(md
, false);
2405 void dm_put(struct mapped_device
*md
)
2407 atomic_dec(&md
->holders
);
2409 EXPORT_SYMBOL_GPL(dm_put
);
2411 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2417 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2419 if (!md_in_flight(md
))
2422 if (signal_pending_state(task_state
, current
)) {
2429 finish_wait(&md
->wait
, &wait
);
2435 * Process the deferred bios
2437 static void dm_wq_work(struct work_struct
*work
)
2439 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2443 struct dm_table
*map
;
2445 map
= dm_get_live_table(md
, &srcu_idx
);
2447 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2448 spin_lock_irq(&md
->deferred_lock
);
2449 c
= bio_list_pop(&md
->deferred
);
2450 spin_unlock_irq(&md
->deferred_lock
);
2455 if (dm_request_based(md
))
2456 (void) generic_make_request(c
);
2458 (void) dm_process_bio(md
, map
, c
);
2461 dm_put_live_table(md
, srcu_idx
);
2464 static void dm_queue_flush(struct mapped_device
*md
)
2466 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2467 smp_mb__after_atomic();
2468 queue_work(md
->wq
, &md
->work
);
2472 * Swap in a new table, returning the old one for the caller to destroy.
2474 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2476 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2477 struct queue_limits limits
;
2480 mutex_lock(&md
->suspend_lock
);
2482 /* device must be suspended */
2483 if (!dm_suspended_md(md
))
2487 * If the new table has no data devices, retain the existing limits.
2488 * This helps multipath with queue_if_no_path if all paths disappear,
2489 * then new I/O is queued based on these limits, and then some paths
2492 if (dm_table_has_no_data_devices(table
)) {
2493 live_map
= dm_get_live_table_fast(md
);
2495 limits
= md
->queue
->limits
;
2496 dm_put_live_table_fast(md
);
2500 r
= dm_calculate_queue_limits(table
, &limits
);
2507 map
= __bind(md
, table
, &limits
);
2508 dm_issue_global_event();
2511 mutex_unlock(&md
->suspend_lock
);
2516 * Functions to lock and unlock any filesystem running on the
2519 static int lock_fs(struct mapped_device
*md
)
2523 WARN_ON(md
->frozen_sb
);
2525 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2526 if (IS_ERR(md
->frozen_sb
)) {
2527 r
= PTR_ERR(md
->frozen_sb
);
2528 md
->frozen_sb
= NULL
;
2532 set_bit(DMF_FROZEN
, &md
->flags
);
2537 static void unlock_fs(struct mapped_device
*md
)
2539 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2542 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2543 md
->frozen_sb
= NULL
;
2544 clear_bit(DMF_FROZEN
, &md
->flags
);
2548 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2549 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2550 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2552 * If __dm_suspend returns 0, the device is completely quiescent
2553 * now. There is no request-processing activity. All new requests
2554 * are being added to md->deferred list.
2556 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2557 unsigned suspend_flags
, long task_state
,
2558 int dmf_suspended_flag
)
2560 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2561 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2564 lockdep_assert_held(&md
->suspend_lock
);
2567 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2568 * This flag is cleared before dm_suspend returns.
2571 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2573 pr_debug("%s: suspending with flush\n", dm_device_name(md
));
2576 * This gets reverted if there's an error later and the targets
2577 * provide the .presuspend_undo hook.
2579 dm_table_presuspend_targets(map
);
2582 * Flush I/O to the device.
2583 * Any I/O submitted after lock_fs() may not be flushed.
2584 * noflush takes precedence over do_lockfs.
2585 * (lock_fs() flushes I/Os and waits for them to complete.)
2587 if (!noflush
&& do_lockfs
) {
2590 dm_table_presuspend_undo_targets(map
);
2596 * Here we must make sure that no processes are submitting requests
2597 * to target drivers i.e. no one may be executing
2598 * __split_and_process_bio. This is called from dm_request and
2601 * To get all processes out of __split_and_process_bio in dm_request,
2602 * we take the write lock. To prevent any process from reentering
2603 * __split_and_process_bio from dm_request and quiesce the thread
2604 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2605 * flush_workqueue(md->wq).
2607 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2609 synchronize_srcu(&md
->io_barrier
);
2612 * Stop md->queue before flushing md->wq in case request-based
2613 * dm defers requests to md->wq from md->queue.
2615 if (dm_request_based(md
))
2616 dm_stop_queue(md
->queue
);
2618 flush_workqueue(md
->wq
);
2621 * At this point no more requests are entering target request routines.
2622 * We call dm_wait_for_completion to wait for all existing requests
2625 r
= dm_wait_for_completion(md
, task_state
);
2627 set_bit(dmf_suspended_flag
, &md
->flags
);
2630 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2632 synchronize_srcu(&md
->io_barrier
);
2634 /* were we interrupted ? */
2638 if (dm_request_based(md
))
2639 dm_start_queue(md
->queue
);
2642 dm_table_presuspend_undo_targets(map
);
2643 /* pushback list is already flushed, so skip flush */
2650 * We need to be able to change a mapping table under a mounted
2651 * filesystem. For example we might want to move some data in
2652 * the background. Before the table can be swapped with
2653 * dm_bind_table, dm_suspend must be called to flush any in
2654 * flight bios and ensure that any further io gets deferred.
2657 * Suspend mechanism in request-based dm.
2659 * 1. Flush all I/Os by lock_fs() if needed.
2660 * 2. Stop dispatching any I/O by stopping the request_queue.
2661 * 3. Wait for all in-flight I/Os to be completed or requeued.
2663 * To abort suspend, start the request_queue.
2665 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2667 struct dm_table
*map
= NULL
;
2671 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2673 if (dm_suspended_md(md
)) {
2678 if (dm_suspended_internally_md(md
)) {
2679 /* already internally suspended, wait for internal resume */
2680 mutex_unlock(&md
->suspend_lock
);
2681 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2687 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2689 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2693 dm_table_postsuspend_targets(map
);
2696 mutex_unlock(&md
->suspend_lock
);
2700 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2703 int r
= dm_table_resume_targets(map
);
2711 * Flushing deferred I/Os must be done after targets are resumed
2712 * so that mapping of targets can work correctly.
2713 * Request-based dm is queueing the deferred I/Os in its request_queue.
2715 if (dm_request_based(md
))
2716 dm_start_queue(md
->queue
);
2723 int dm_resume(struct mapped_device
*md
)
2726 struct dm_table
*map
= NULL
;
2730 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2732 if (!dm_suspended_md(md
))
2735 if (dm_suspended_internally_md(md
)) {
2736 /* already internally suspended, wait for internal resume */
2737 mutex_unlock(&md
->suspend_lock
);
2738 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2744 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2745 if (!map
|| !dm_table_get_size(map
))
2748 r
= __dm_resume(md
, map
);
2752 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2754 mutex_unlock(&md
->suspend_lock
);
2760 * Internal suspend/resume works like userspace-driven suspend. It waits
2761 * until all bios finish and prevents issuing new bios to the target drivers.
2762 * It may be used only from the kernel.
2765 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2767 struct dm_table
*map
= NULL
;
2769 lockdep_assert_held(&md
->suspend_lock
);
2771 if (md
->internal_suspend_count
++)
2772 return; /* nested internal suspend */
2774 if (dm_suspended_md(md
)) {
2775 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2776 return; /* nest suspend */
2779 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2782 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2783 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2784 * would require changing .presuspend to return an error -- avoid this
2785 * until there is a need for more elaborate variants of internal suspend.
2787 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2788 DMF_SUSPENDED_INTERNALLY
);
2790 dm_table_postsuspend_targets(map
);
2793 static void __dm_internal_resume(struct mapped_device
*md
)
2795 BUG_ON(!md
->internal_suspend_count
);
2797 if (--md
->internal_suspend_count
)
2798 return; /* resume from nested internal suspend */
2800 if (dm_suspended_md(md
))
2801 goto done
; /* resume from nested suspend */
2804 * NOTE: existing callers don't need to call dm_table_resume_targets
2805 * (which may fail -- so best to avoid it for now by passing NULL map)
2807 (void) __dm_resume(md
, NULL
);
2810 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2811 smp_mb__after_atomic();
2812 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2815 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2817 mutex_lock(&md
->suspend_lock
);
2818 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2819 mutex_unlock(&md
->suspend_lock
);
2821 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2823 void dm_internal_resume(struct mapped_device
*md
)
2825 mutex_lock(&md
->suspend_lock
);
2826 __dm_internal_resume(md
);
2827 mutex_unlock(&md
->suspend_lock
);
2829 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2832 * Fast variants of internal suspend/resume hold md->suspend_lock,
2833 * which prevents interaction with userspace-driven suspend.
2836 void dm_internal_suspend_fast(struct mapped_device
*md
)
2838 mutex_lock(&md
->suspend_lock
);
2839 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2842 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2843 synchronize_srcu(&md
->io_barrier
);
2844 flush_workqueue(md
->wq
);
2845 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2847 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2849 void dm_internal_resume_fast(struct mapped_device
*md
)
2851 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2857 mutex_unlock(&md
->suspend_lock
);
2859 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2861 /*-----------------------------------------------------------------
2862 * Event notification.
2863 *---------------------------------------------------------------*/
2864 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2867 char udev_cookie
[DM_COOKIE_LENGTH
];
2868 char *envp
[] = { udev_cookie
, NULL
};
2871 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2873 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2874 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2875 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2880 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2882 return atomic_add_return(1, &md
->uevent_seq
);
2885 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2887 return atomic_read(&md
->event_nr
);
2890 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2892 return wait_event_interruptible(md
->eventq
,
2893 (event_nr
!= atomic_read(&md
->event_nr
)));
2896 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2898 unsigned long flags
;
2900 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2901 list_add(elist
, &md
->uevent_list
);
2902 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2906 * The gendisk is only valid as long as you have a reference
2909 struct gendisk
*dm_disk(struct mapped_device
*md
)
2913 EXPORT_SYMBOL_GPL(dm_disk
);
2915 struct kobject
*dm_kobject(struct mapped_device
*md
)
2917 return &md
->kobj_holder
.kobj
;
2920 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2922 struct mapped_device
*md
;
2924 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2926 spin_lock(&_minor_lock
);
2927 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2933 spin_unlock(&_minor_lock
);
2938 int dm_suspended_md(struct mapped_device
*md
)
2940 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2943 int dm_suspended_internally_md(struct mapped_device
*md
)
2945 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2948 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2950 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2953 int dm_suspended(struct dm_target
*ti
)
2955 return dm_suspended_md(dm_table_get_md(ti
->table
));
2957 EXPORT_SYMBOL_GPL(dm_suspended
);
2959 int dm_noflush_suspending(struct dm_target
*ti
)
2961 return __noflush_suspending(dm_table_get_md(ti
->table
));
2963 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2965 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2966 unsigned integrity
, unsigned per_io_data_size
,
2967 unsigned min_pool_size
)
2969 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2970 unsigned int pool_size
= 0;
2971 unsigned int front_pad
, io_front_pad
;
2978 case DM_TYPE_BIO_BASED
:
2979 case DM_TYPE_DAX_BIO_BASED
:
2980 case DM_TYPE_NVME_BIO_BASED
:
2981 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
2982 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2983 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
2984 ret
= bioset_init(&pools
->io_bs
, pool_size
, io_front_pad
, 0);
2987 if (integrity
&& bioset_integrity_create(&pools
->io_bs
, pool_size
))
2990 case DM_TYPE_REQUEST_BASED
:
2991 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
2992 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2993 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2999 ret
= bioset_init(&pools
->bs
, pool_size
, front_pad
, 0);
3003 if (integrity
&& bioset_integrity_create(&pools
->bs
, pool_size
))
3009 dm_free_md_mempools(pools
);
3014 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3019 bioset_exit(&pools
->bs
);
3020 bioset_exit(&pools
->io_bs
);
3032 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
3035 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3036 struct dm_table
*table
;
3037 struct dm_target
*ti
;
3038 int ret
= -ENOTTY
, srcu_idx
;
3040 table
= dm_get_live_table(md
, &srcu_idx
);
3041 if (!table
|| !dm_table_get_size(table
))
3044 /* We only support devices that have a single target */
3045 if (dm_table_get_num_targets(table
) != 1)
3047 ti
= dm_table_get_target(table
, 0);
3050 if (!ti
->type
->iterate_devices
)
3053 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
3055 dm_put_live_table(md
, srcu_idx
);
3060 * For register / unregister we need to manually call out to every path.
3062 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
3063 sector_t start
, sector_t len
, void *data
)
3065 struct dm_pr
*pr
= data
;
3066 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3068 if (!ops
|| !ops
->pr_register
)
3070 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
3073 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3084 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3085 if (ret
&& new_key
) {
3086 /* unregister all paths if we failed to register any path */
3087 pr
.old_key
= new_key
;
3090 pr
.fail_early
= false;
3091 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3097 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3100 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3101 const struct pr_ops
*ops
;
3104 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3108 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3109 if (ops
&& ops
->pr_reserve
)
3110 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3114 dm_unprepare_ioctl(md
, srcu_idx
);
3118 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3120 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3121 const struct pr_ops
*ops
;
3124 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3128 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3129 if (ops
&& ops
->pr_release
)
3130 r
= ops
->pr_release(bdev
, key
, type
);
3134 dm_unprepare_ioctl(md
, srcu_idx
);
3138 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3139 enum pr_type type
, bool abort
)
3141 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3142 const struct pr_ops
*ops
;
3145 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3149 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3150 if (ops
&& ops
->pr_preempt
)
3151 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3155 dm_unprepare_ioctl(md
, srcu_idx
);
3159 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3161 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3162 const struct pr_ops
*ops
;
3165 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3169 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3170 if (ops
&& ops
->pr_clear
)
3171 r
= ops
->pr_clear(bdev
, key
);
3175 dm_unprepare_ioctl(md
, srcu_idx
);
3179 static const struct pr_ops dm_pr_ops
= {
3180 .pr_register
= dm_pr_register
,
3181 .pr_reserve
= dm_pr_reserve
,
3182 .pr_release
= dm_pr_release
,
3183 .pr_preempt
= dm_pr_preempt
,
3184 .pr_clear
= dm_pr_clear
,
3187 static const struct block_device_operations dm_blk_dops
= {
3188 .open
= dm_blk_open
,
3189 .release
= dm_blk_close
,
3190 .ioctl
= dm_blk_ioctl
,
3191 .getgeo
= dm_blk_getgeo
,
3192 .report_zones
= dm_blk_report_zones
,
3193 .pr_ops
= &dm_pr_ops
,
3194 .owner
= THIS_MODULE
3197 static const struct dax_operations dm_dax_ops
= {
3198 .direct_access
= dm_dax_direct_access
,
3199 .dax_supported
= dm_dax_supported
,
3200 .copy_from_iter
= dm_dax_copy_from_iter
,
3201 .copy_to_iter
= dm_dax_copy_to_iter
,
3207 module_init(dm_init
);
3208 module_exit(dm_exit
);
3210 module_param(major
, uint
, 0);
3211 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3213 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3214 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3216 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3217 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3219 MODULE_DESCRIPTION(DM_NAME
" driver");
3220 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3221 MODULE_LICENSE("GPL");