treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / md / dm.c
blobb89f07ee2efff2c19207f2b820011af901e3a3cb
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
162 * Bio-based DM's mempools' reserved IOs set by the user.
164 #define RESERVED_BIO_BASED_IOS 16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
169 int param = READ_ONCE(*module_param);
170 int modified_param = 0;
171 bool modified = true;
173 if (param < min)
174 modified_param = min;
175 else if (param > max)
176 modified_param = max;
177 else
178 modified = false;
180 if (modified) {
181 (void)cmpxchg(module_param, param, modified_param);
182 param = modified_param;
185 return param;
188 unsigned __dm_get_module_param(unsigned *module_param,
189 unsigned def, unsigned max)
191 unsigned param = READ_ONCE(*module_param);
192 unsigned modified_param = 0;
194 if (!param)
195 modified_param = def;
196 else if (param > max)
197 modified_param = max;
199 if (modified_param) {
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
204 return param;
207 unsigned dm_get_reserved_bio_based_ios(void)
209 return __dm_get_module_param(&reserved_bio_based_ios,
210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
214 static unsigned dm_get_numa_node(void)
216 return __dm_get_module_param_int(&dm_numa_node,
217 DM_NUMA_NODE, num_online_nodes() - 1);
220 static int __init local_init(void)
222 int r;
224 r = dm_uevent_init();
225 if (r)
226 return r;
228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 if (!deferred_remove_workqueue) {
230 r = -ENOMEM;
231 goto out_uevent_exit;
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_free_workqueue;
239 if (!_major)
240 _major = r;
242 return 0;
244 out_free_workqueue:
245 destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 dm_uevent_exit();
249 return r;
252 static void local_exit(void)
254 flush_scheduled_work();
255 destroy_workqueue(deferred_remove_workqueue);
257 unregister_blkdev(_major, _name);
258 dm_uevent_exit();
260 _major = 0;
262 DMINFO("cleaned up");
265 static int (*_inits[])(void) __initdata = {
266 local_init,
267 dm_target_init,
268 dm_linear_init,
269 dm_stripe_init,
270 dm_io_init,
271 dm_kcopyd_init,
272 dm_interface_init,
273 dm_statistics_init,
276 static void (*_exits[])(void) = {
277 local_exit,
278 dm_target_exit,
279 dm_linear_exit,
280 dm_stripe_exit,
281 dm_io_exit,
282 dm_kcopyd_exit,
283 dm_interface_exit,
284 dm_statistics_exit,
287 static int __init dm_init(void)
289 const int count = ARRAY_SIZE(_inits);
291 int r, i;
293 for (i = 0; i < count; i++) {
294 r = _inits[i]();
295 if (r)
296 goto bad;
299 return 0;
301 bad:
302 while (i--)
303 _exits[i]();
305 return r;
308 static void __exit dm_exit(void)
310 int i = ARRAY_SIZE(_exits);
312 while (i--)
313 _exits[i]();
316 * Should be empty by this point.
318 idr_destroy(&_minor_idr);
322 * Block device functions
324 int dm_deleting_md(struct mapped_device *md)
326 return test_bit(DMF_DELETING, &md->flags);
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
331 struct mapped_device *md;
333 spin_lock(&_minor_lock);
335 md = bdev->bd_disk->private_data;
336 if (!md)
337 goto out;
339 if (test_bit(DMF_FREEING, &md->flags) ||
340 dm_deleting_md(md)) {
341 md = NULL;
342 goto out;
345 dm_get(md);
346 atomic_inc(&md->open_count);
347 out:
348 spin_unlock(&_minor_lock);
350 return md ? 0 : -ENXIO;
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
355 struct mapped_device *md;
357 spin_lock(&_minor_lock);
359 md = disk->private_data;
360 if (WARN_ON(!md))
361 goto out;
363 if (atomic_dec_and_test(&md->open_count) &&
364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 queue_work(deferred_remove_workqueue, &deferred_remove_work);
367 dm_put(md);
368 out:
369 spin_unlock(&_minor_lock);
372 int dm_open_count(struct mapped_device *md)
374 return atomic_read(&md->open_count);
378 * Guarantees nothing is using the device before it's deleted.
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
382 int r = 0;
384 spin_lock(&_minor_lock);
386 if (dm_open_count(md)) {
387 r = -EBUSY;
388 if (mark_deferred)
389 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 r = -EEXIST;
392 else
393 set_bit(DMF_DELETING, &md->flags);
395 spin_unlock(&_minor_lock);
397 return r;
400 int dm_cancel_deferred_remove(struct mapped_device *md)
402 int r = 0;
404 spin_lock(&_minor_lock);
406 if (test_bit(DMF_DELETING, &md->flags))
407 r = -EBUSY;
408 else
409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
411 spin_unlock(&_minor_lock);
413 return r;
416 static void do_deferred_remove(struct work_struct *w)
418 dm_deferred_remove();
421 sector_t dm_get_size(struct mapped_device *md)
423 return get_capacity(md->disk);
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
428 return md->queue;
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
433 return &md->stats;
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
438 struct mapped_device *md = bdev->bd_disk->private_data;
440 return dm_get_geometry(md, geo);
443 #ifdef CONFIG_BLK_DEV_ZONED
444 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
446 struct dm_report_zones_args *args = data;
447 sector_t sector_diff = args->tgt->begin - args->start;
450 * Ignore zones beyond the target range.
452 if (zone->start >= args->start + args->tgt->len)
453 return 0;
456 * Remap the start sector and write pointer position of the zone
457 * to match its position in the target range.
459 zone->start += sector_diff;
460 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
461 if (zone->cond == BLK_ZONE_COND_FULL)
462 zone->wp = zone->start + zone->len;
463 else if (zone->cond == BLK_ZONE_COND_EMPTY)
464 zone->wp = zone->start;
465 else
466 zone->wp += sector_diff;
469 args->next_sector = zone->start + zone->len;
470 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
472 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
474 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
475 unsigned int nr_zones, report_zones_cb cb, void *data)
477 struct mapped_device *md = disk->private_data;
478 struct dm_table *map;
479 int srcu_idx, ret;
480 struct dm_report_zones_args args = {
481 .next_sector = sector,
482 .orig_data = data,
483 .orig_cb = cb,
486 if (dm_suspended_md(md))
487 return -EAGAIN;
489 map = dm_get_live_table(md, &srcu_idx);
490 if (!map)
491 return -EIO;
493 do {
494 struct dm_target *tgt;
496 tgt = dm_table_find_target(map, args.next_sector);
497 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
498 ret = -EIO;
499 goto out;
502 args.tgt = tgt;
503 ret = tgt->type->report_zones(tgt, &args, nr_zones);
504 if (ret < 0)
505 goto out;
506 } while (args.zone_idx < nr_zones &&
507 args.next_sector < get_capacity(disk));
509 ret = args.zone_idx;
510 out:
511 dm_put_live_table(md, srcu_idx);
512 return ret;
514 #else
515 #define dm_blk_report_zones NULL
516 #endif /* CONFIG_BLK_DEV_ZONED */
518 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
519 struct block_device **bdev)
520 __acquires(md->io_barrier)
522 struct dm_target *tgt;
523 struct dm_table *map;
524 int r;
526 retry:
527 r = -ENOTTY;
528 map = dm_get_live_table(md, srcu_idx);
529 if (!map || !dm_table_get_size(map))
530 return r;
532 /* We only support devices that have a single target */
533 if (dm_table_get_num_targets(map) != 1)
534 return r;
536 tgt = dm_table_get_target(map, 0);
537 if (!tgt->type->prepare_ioctl)
538 return r;
540 if (dm_suspended_md(md))
541 return -EAGAIN;
543 r = tgt->type->prepare_ioctl(tgt, bdev);
544 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
545 dm_put_live_table(md, *srcu_idx);
546 msleep(10);
547 goto retry;
550 return r;
553 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
554 __releases(md->io_barrier)
556 dm_put_live_table(md, srcu_idx);
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
562 struct mapped_device *md = bdev->bd_disk->private_data;
563 int r, srcu_idx;
565 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
566 if (r < 0)
567 goto out;
569 if (r > 0) {
571 * Target determined this ioctl is being issued against a
572 * subset of the parent bdev; require extra privileges.
574 if (!capable(CAP_SYS_RAWIO)) {
575 DMWARN_LIMIT(
576 "%s: sending ioctl %x to DM device without required privilege.",
577 current->comm, cmd);
578 r = -ENOIOCTLCMD;
579 goto out;
583 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
584 out:
585 dm_unprepare_ioctl(md, srcu_idx);
586 return r;
589 static void start_io_acct(struct dm_io *io);
591 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
593 struct dm_io *io;
594 struct dm_target_io *tio;
595 struct bio *clone;
597 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
598 if (!clone)
599 return NULL;
601 tio = container_of(clone, struct dm_target_io, clone);
602 tio->inside_dm_io = true;
603 tio->io = NULL;
605 io = container_of(tio, struct dm_io, tio);
606 io->magic = DM_IO_MAGIC;
607 io->status = 0;
608 atomic_set(&io->io_count, 1);
609 io->orig_bio = bio;
610 io->md = md;
611 spin_lock_init(&io->endio_lock);
613 start_io_acct(io);
615 return io;
618 static void free_io(struct mapped_device *md, struct dm_io *io)
620 bio_put(&io->tio.clone);
623 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
624 unsigned target_bio_nr, gfp_t gfp_mask)
626 struct dm_target_io *tio;
628 if (!ci->io->tio.io) {
629 /* the dm_target_io embedded in ci->io is available */
630 tio = &ci->io->tio;
631 } else {
632 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
633 if (!clone)
634 return NULL;
636 tio = container_of(clone, struct dm_target_io, clone);
637 tio->inside_dm_io = false;
640 tio->magic = DM_TIO_MAGIC;
641 tio->io = ci->io;
642 tio->ti = ti;
643 tio->target_bio_nr = target_bio_nr;
645 return tio;
648 static void free_tio(struct dm_target_io *tio)
650 if (tio->inside_dm_io)
651 return;
652 bio_put(&tio->clone);
655 static bool md_in_flight_bios(struct mapped_device *md)
657 int cpu;
658 struct hd_struct *part = &dm_disk(md)->part0;
659 long sum = 0;
661 for_each_possible_cpu(cpu) {
662 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
663 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
666 return sum != 0;
669 static bool md_in_flight(struct mapped_device *md)
671 if (queue_is_mq(md->queue))
672 return blk_mq_queue_inflight(md->queue);
673 else
674 return md_in_flight_bios(md);
677 static void start_io_acct(struct dm_io *io)
679 struct mapped_device *md = io->md;
680 struct bio *bio = io->orig_bio;
682 io->start_time = jiffies;
684 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
685 &dm_disk(md)->part0);
687 if (unlikely(dm_stats_used(&md->stats)))
688 dm_stats_account_io(&md->stats, bio_data_dir(bio),
689 bio->bi_iter.bi_sector, bio_sectors(bio),
690 false, 0, &io->stats_aux);
693 static void end_io_acct(struct dm_io *io)
695 struct mapped_device *md = io->md;
696 struct bio *bio = io->orig_bio;
697 unsigned long duration = jiffies - io->start_time;
699 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
700 io->start_time);
702 if (unlikely(dm_stats_used(&md->stats)))
703 dm_stats_account_io(&md->stats, bio_data_dir(bio),
704 bio->bi_iter.bi_sector, bio_sectors(bio),
705 true, duration, &io->stats_aux);
707 /* nudge anyone waiting on suspend queue */
708 if (unlikely(wq_has_sleeper(&md->wait)))
709 wake_up(&md->wait);
713 * Add the bio to the list of deferred io.
715 static void queue_io(struct mapped_device *md, struct bio *bio)
717 unsigned long flags;
719 spin_lock_irqsave(&md->deferred_lock, flags);
720 bio_list_add(&md->deferred, bio);
721 spin_unlock_irqrestore(&md->deferred_lock, flags);
722 queue_work(md->wq, &md->work);
726 * Everyone (including functions in this file), should use this
727 * function to access the md->map field, and make sure they call
728 * dm_put_live_table() when finished.
730 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
732 *srcu_idx = srcu_read_lock(&md->io_barrier);
734 return srcu_dereference(md->map, &md->io_barrier);
737 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
739 srcu_read_unlock(&md->io_barrier, srcu_idx);
742 void dm_sync_table(struct mapped_device *md)
744 synchronize_srcu(&md->io_barrier);
745 synchronize_rcu_expedited();
749 * A fast alternative to dm_get_live_table/dm_put_live_table.
750 * The caller must not block between these two functions.
752 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
754 rcu_read_lock();
755 return rcu_dereference(md->map);
758 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
760 rcu_read_unlock();
763 static char *_dm_claim_ptr = "I belong to device-mapper";
766 * Open a table device so we can use it as a map destination.
768 static int open_table_device(struct table_device *td, dev_t dev,
769 struct mapped_device *md)
771 struct block_device *bdev;
773 int r;
775 BUG_ON(td->dm_dev.bdev);
777 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
778 if (IS_ERR(bdev))
779 return PTR_ERR(bdev);
781 r = bd_link_disk_holder(bdev, dm_disk(md));
782 if (r) {
783 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
784 return r;
787 td->dm_dev.bdev = bdev;
788 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
789 return 0;
793 * Close a table device that we've been using.
795 static void close_table_device(struct table_device *td, struct mapped_device *md)
797 if (!td->dm_dev.bdev)
798 return;
800 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
801 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
802 put_dax(td->dm_dev.dax_dev);
803 td->dm_dev.bdev = NULL;
804 td->dm_dev.dax_dev = NULL;
807 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
808 fmode_t mode)
810 struct table_device *td;
812 list_for_each_entry(td, l, list)
813 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
814 return td;
816 return NULL;
819 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
820 struct dm_dev **result)
822 int r;
823 struct table_device *td;
825 mutex_lock(&md->table_devices_lock);
826 td = find_table_device(&md->table_devices, dev, mode);
827 if (!td) {
828 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
829 if (!td) {
830 mutex_unlock(&md->table_devices_lock);
831 return -ENOMEM;
834 td->dm_dev.mode = mode;
835 td->dm_dev.bdev = NULL;
837 if ((r = open_table_device(td, dev, md))) {
838 mutex_unlock(&md->table_devices_lock);
839 kfree(td);
840 return r;
843 format_dev_t(td->dm_dev.name, dev);
845 refcount_set(&td->count, 1);
846 list_add(&td->list, &md->table_devices);
847 } else {
848 refcount_inc(&td->count);
850 mutex_unlock(&md->table_devices_lock);
852 *result = &td->dm_dev;
853 return 0;
855 EXPORT_SYMBOL_GPL(dm_get_table_device);
857 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 struct table_device *td = container_of(d, struct table_device, dm_dev);
861 mutex_lock(&md->table_devices_lock);
862 if (refcount_dec_and_test(&td->count)) {
863 close_table_device(td, md);
864 list_del(&td->list);
865 kfree(td);
867 mutex_unlock(&md->table_devices_lock);
869 EXPORT_SYMBOL(dm_put_table_device);
871 static void free_table_devices(struct list_head *devices)
873 struct list_head *tmp, *next;
875 list_for_each_safe(tmp, next, devices) {
876 struct table_device *td = list_entry(tmp, struct table_device, list);
878 DMWARN("dm_destroy: %s still exists with %d references",
879 td->dm_dev.name, refcount_read(&td->count));
880 kfree(td);
885 * Get the geometry associated with a dm device
887 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 *geo = md->geometry;
891 return 0;
895 * Set the geometry of a device.
897 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901 if (geo->start > sz) {
902 DMWARN("Start sector is beyond the geometry limits.");
903 return -EINVAL;
906 md->geometry = *geo;
908 return 0;
911 static int __noflush_suspending(struct mapped_device *md)
913 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
917 * Decrements the number of outstanding ios that a bio has been
918 * cloned into, completing the original io if necc.
920 static void dec_pending(struct dm_io *io, blk_status_t error)
922 unsigned long flags;
923 blk_status_t io_error;
924 struct bio *bio;
925 struct mapped_device *md = io->md;
927 /* Push-back supersedes any I/O errors */
928 if (unlikely(error)) {
929 spin_lock_irqsave(&io->endio_lock, flags);
930 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
931 io->status = error;
932 spin_unlock_irqrestore(&io->endio_lock, flags);
935 if (atomic_dec_and_test(&io->io_count)) {
936 if (io->status == BLK_STS_DM_REQUEUE) {
938 * Target requested pushing back the I/O.
940 spin_lock_irqsave(&md->deferred_lock, flags);
941 if (__noflush_suspending(md))
942 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
943 bio_list_add_head(&md->deferred, io->orig_bio);
944 else
945 /* noflush suspend was interrupted. */
946 io->status = BLK_STS_IOERR;
947 spin_unlock_irqrestore(&md->deferred_lock, flags);
950 io_error = io->status;
951 bio = io->orig_bio;
952 end_io_acct(io);
953 free_io(md, io);
955 if (io_error == BLK_STS_DM_REQUEUE)
956 return;
958 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
960 * Preflush done for flush with data, reissue
961 * without REQ_PREFLUSH.
963 bio->bi_opf &= ~REQ_PREFLUSH;
964 queue_io(md, bio);
965 } else {
966 /* done with normal IO or empty flush */
967 if (io_error)
968 bio->bi_status = io_error;
969 bio_endio(bio);
974 void disable_discard(struct mapped_device *md)
976 struct queue_limits *limits = dm_get_queue_limits(md);
978 /* device doesn't really support DISCARD, disable it */
979 limits->max_discard_sectors = 0;
980 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
983 void disable_write_same(struct mapped_device *md)
985 struct queue_limits *limits = dm_get_queue_limits(md);
987 /* device doesn't really support WRITE SAME, disable it */
988 limits->max_write_same_sectors = 0;
991 void disable_write_zeroes(struct mapped_device *md)
993 struct queue_limits *limits = dm_get_queue_limits(md);
995 /* device doesn't really support WRITE ZEROES, disable it */
996 limits->max_write_zeroes_sectors = 0;
999 static void clone_endio(struct bio *bio)
1001 blk_status_t error = bio->bi_status;
1002 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1003 struct dm_io *io = tio->io;
1004 struct mapped_device *md = tio->io->md;
1005 dm_endio_fn endio = tio->ti->type->end_io;
1007 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1008 if (bio_op(bio) == REQ_OP_DISCARD &&
1009 !bio->bi_disk->queue->limits.max_discard_sectors)
1010 disable_discard(md);
1011 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1012 !bio->bi_disk->queue->limits.max_write_same_sectors)
1013 disable_write_same(md);
1014 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1015 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1016 disable_write_zeroes(md);
1019 if (endio) {
1020 int r = endio(tio->ti, bio, &error);
1021 switch (r) {
1022 case DM_ENDIO_REQUEUE:
1023 error = BLK_STS_DM_REQUEUE;
1024 /*FALLTHRU*/
1025 case DM_ENDIO_DONE:
1026 break;
1027 case DM_ENDIO_INCOMPLETE:
1028 /* The target will handle the io */
1029 return;
1030 default:
1031 DMWARN("unimplemented target endio return value: %d", r);
1032 BUG();
1036 free_tio(tio);
1037 dec_pending(io, error);
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1042 * target boundary.
1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1046 sector_t target_offset = dm_target_offset(ti, sector);
1048 return ti->len - target_offset;
1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1053 sector_t len = max_io_len_target_boundary(sector, ti);
1054 sector_t offset, max_len;
1057 * Does the target need to split even further?
1059 if (ti->max_io_len) {
1060 offset = dm_target_offset(ti, sector);
1061 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062 max_len = sector_div(offset, ti->max_io_len);
1063 else
1064 max_len = offset & (ti->max_io_len - 1);
1065 max_len = ti->max_io_len - max_len;
1067 if (len > max_len)
1068 len = max_len;
1071 return len;
1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1076 if (len > UINT_MAX) {
1077 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 (unsigned long long)len, UINT_MAX);
1079 ti->error = "Maximum size of target IO is too large";
1080 return -EINVAL;
1083 ti->max_io_len = (uint32_t) len;
1085 return 0;
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090 sector_t sector, int *srcu_idx)
1091 __acquires(md->io_barrier)
1093 struct dm_table *map;
1094 struct dm_target *ti;
1096 map = dm_get_live_table(md, srcu_idx);
1097 if (!map)
1098 return NULL;
1100 ti = dm_table_find_target(map, sector);
1101 if (!ti)
1102 return NULL;
1104 return ti;
1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108 long nr_pages, void **kaddr, pfn_t *pfn)
1110 struct mapped_device *md = dax_get_private(dax_dev);
1111 sector_t sector = pgoff * PAGE_SECTORS;
1112 struct dm_target *ti;
1113 long len, ret = -EIO;
1114 int srcu_idx;
1116 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1118 if (!ti)
1119 goto out;
1120 if (!ti->type->direct_access)
1121 goto out;
1122 len = max_io_len(sector, ti) / PAGE_SECTORS;
1123 if (len < 1)
1124 goto out;
1125 nr_pages = min(len, nr_pages);
1126 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1128 out:
1129 dm_put_live_table(md, srcu_idx);
1131 return ret;
1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135 int blocksize, sector_t start, sector_t len)
1137 struct mapped_device *md = dax_get_private(dax_dev);
1138 struct dm_table *map;
1139 int srcu_idx;
1140 bool ret;
1142 map = dm_get_live_table(md, &srcu_idx);
1143 if (!map)
1144 return false;
1146 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1148 dm_put_live_table(md, srcu_idx);
1150 return ret;
1153 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1154 void *addr, size_t bytes, struct iov_iter *i)
1156 struct mapped_device *md = dax_get_private(dax_dev);
1157 sector_t sector = pgoff * PAGE_SECTORS;
1158 struct dm_target *ti;
1159 long ret = 0;
1160 int srcu_idx;
1162 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1164 if (!ti)
1165 goto out;
1166 if (!ti->type->dax_copy_from_iter) {
1167 ret = copy_from_iter(addr, bytes, i);
1168 goto out;
1170 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1171 out:
1172 dm_put_live_table(md, srcu_idx);
1174 return ret;
1177 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1178 void *addr, size_t bytes, struct iov_iter *i)
1180 struct mapped_device *md = dax_get_private(dax_dev);
1181 sector_t sector = pgoff * PAGE_SECTORS;
1182 struct dm_target *ti;
1183 long ret = 0;
1184 int srcu_idx;
1186 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1188 if (!ti)
1189 goto out;
1190 if (!ti->type->dax_copy_to_iter) {
1191 ret = copy_to_iter(addr, bytes, i);
1192 goto out;
1194 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1195 out:
1196 dm_put_live_table(md, srcu_idx);
1198 return ret;
1202 * A target may call dm_accept_partial_bio only from the map routine. It is
1203 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1204 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1206 * dm_accept_partial_bio informs the dm that the target only wants to process
1207 * additional n_sectors sectors of the bio and the rest of the data should be
1208 * sent in a next bio.
1210 * A diagram that explains the arithmetics:
1211 * +--------------------+---------------+-------+
1212 * | 1 | 2 | 3 |
1213 * +--------------------+---------------+-------+
1215 * <-------------- *tio->len_ptr --------------->
1216 * <------- bi_size ------->
1217 * <-- n_sectors -->
1219 * Region 1 was already iterated over with bio_advance or similar function.
1220 * (it may be empty if the target doesn't use bio_advance)
1221 * Region 2 is the remaining bio size that the target wants to process.
1222 * (it may be empty if region 1 is non-empty, although there is no reason
1223 * to make it empty)
1224 * The target requires that region 3 is to be sent in the next bio.
1226 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1227 * the partially processed part (the sum of regions 1+2) must be the same for all
1228 * copies of the bio.
1230 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1232 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1233 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1234 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1235 BUG_ON(bi_size > *tio->len_ptr);
1236 BUG_ON(n_sectors > bi_size);
1237 *tio->len_ptr -= bi_size - n_sectors;
1238 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1240 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1242 static blk_qc_t __map_bio(struct dm_target_io *tio)
1244 int r;
1245 sector_t sector;
1246 struct bio *clone = &tio->clone;
1247 struct dm_io *io = tio->io;
1248 struct mapped_device *md = io->md;
1249 struct dm_target *ti = tio->ti;
1250 blk_qc_t ret = BLK_QC_T_NONE;
1252 clone->bi_end_io = clone_endio;
1255 * Map the clone. If r == 0 we don't need to do
1256 * anything, the target has assumed ownership of
1257 * this io.
1259 atomic_inc(&io->io_count);
1260 sector = clone->bi_iter.bi_sector;
1262 r = ti->type->map(ti, clone);
1263 switch (r) {
1264 case DM_MAPIO_SUBMITTED:
1265 break;
1266 case DM_MAPIO_REMAPPED:
1267 /* the bio has been remapped so dispatch it */
1268 trace_block_bio_remap(clone->bi_disk->queue, clone,
1269 bio_dev(io->orig_bio), sector);
1270 if (md->type == DM_TYPE_NVME_BIO_BASED)
1271 ret = direct_make_request(clone);
1272 else
1273 ret = generic_make_request(clone);
1274 break;
1275 case DM_MAPIO_KILL:
1276 free_tio(tio);
1277 dec_pending(io, BLK_STS_IOERR);
1278 break;
1279 case DM_MAPIO_REQUEUE:
1280 free_tio(tio);
1281 dec_pending(io, BLK_STS_DM_REQUEUE);
1282 break;
1283 default:
1284 DMWARN("unimplemented target map return value: %d", r);
1285 BUG();
1288 return ret;
1291 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1293 bio->bi_iter.bi_sector = sector;
1294 bio->bi_iter.bi_size = to_bytes(len);
1298 * Creates a bio that consists of range of complete bvecs.
1300 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1301 sector_t sector, unsigned len)
1303 struct bio *clone = &tio->clone;
1305 __bio_clone_fast(clone, bio);
1307 if (bio_integrity(bio)) {
1308 int r;
1310 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1311 !dm_target_passes_integrity(tio->ti->type))) {
1312 DMWARN("%s: the target %s doesn't support integrity data.",
1313 dm_device_name(tio->io->md),
1314 tio->ti->type->name);
1315 return -EIO;
1318 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1319 if (r < 0)
1320 return r;
1323 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1324 clone->bi_iter.bi_size = to_bytes(len);
1326 if (bio_integrity(bio))
1327 bio_integrity_trim(clone);
1329 return 0;
1332 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1333 struct dm_target *ti, unsigned num_bios)
1335 struct dm_target_io *tio;
1336 int try;
1338 if (!num_bios)
1339 return;
1341 if (num_bios == 1) {
1342 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1343 bio_list_add(blist, &tio->clone);
1344 return;
1347 for (try = 0; try < 2; try++) {
1348 int bio_nr;
1349 struct bio *bio;
1351 if (try)
1352 mutex_lock(&ci->io->md->table_devices_lock);
1353 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1354 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1355 if (!tio)
1356 break;
1358 bio_list_add(blist, &tio->clone);
1360 if (try)
1361 mutex_unlock(&ci->io->md->table_devices_lock);
1362 if (bio_nr == num_bios)
1363 return;
1365 while ((bio = bio_list_pop(blist))) {
1366 tio = container_of(bio, struct dm_target_io, clone);
1367 free_tio(tio);
1372 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1373 struct dm_target_io *tio, unsigned *len)
1375 struct bio *clone = &tio->clone;
1377 tio->len_ptr = len;
1379 __bio_clone_fast(clone, ci->bio);
1380 if (len)
1381 bio_setup_sector(clone, ci->sector, *len);
1383 return __map_bio(tio);
1386 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1387 unsigned num_bios, unsigned *len)
1389 struct bio_list blist = BIO_EMPTY_LIST;
1390 struct bio *bio;
1391 struct dm_target_io *tio;
1393 alloc_multiple_bios(&blist, ci, ti, num_bios);
1395 while ((bio = bio_list_pop(&blist))) {
1396 tio = container_of(bio, struct dm_target_io, clone);
1397 (void) __clone_and_map_simple_bio(ci, tio, len);
1401 static int __send_empty_flush(struct clone_info *ci)
1403 unsigned target_nr = 0;
1404 struct dm_target *ti;
1407 * Empty flush uses a statically initialized bio, as the base for
1408 * cloning. However, blkg association requires that a bdev is
1409 * associated with a gendisk, which doesn't happen until the bdev is
1410 * opened. So, blkg association is done at issue time of the flush
1411 * rather than when the device is created in alloc_dev().
1413 bio_set_dev(ci->bio, ci->io->md->bdev);
1415 BUG_ON(bio_has_data(ci->bio));
1416 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1417 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1419 bio_disassociate_blkg(ci->bio);
1421 return 0;
1424 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1425 sector_t sector, unsigned *len)
1427 struct bio *bio = ci->bio;
1428 struct dm_target_io *tio;
1429 int r;
1431 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1432 tio->len_ptr = len;
1433 r = clone_bio(tio, bio, sector, *len);
1434 if (r < 0) {
1435 free_tio(tio);
1436 return r;
1438 (void) __map_bio(tio);
1440 return 0;
1443 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1445 static unsigned get_num_discard_bios(struct dm_target *ti)
1447 return ti->num_discard_bios;
1450 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1452 return ti->num_secure_erase_bios;
1455 static unsigned get_num_write_same_bios(struct dm_target *ti)
1457 return ti->num_write_same_bios;
1460 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1462 return ti->num_write_zeroes_bios;
1465 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1466 unsigned num_bios)
1468 unsigned len;
1471 * Even though the device advertised support for this type of
1472 * request, that does not mean every target supports it, and
1473 * reconfiguration might also have changed that since the
1474 * check was performed.
1476 if (!num_bios)
1477 return -EOPNOTSUPP;
1479 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1481 __send_duplicate_bios(ci, ti, num_bios, &len);
1483 ci->sector += len;
1484 ci->sector_count -= len;
1486 return 0;
1489 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1491 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1494 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1496 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1499 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1501 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1504 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1506 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1509 static bool is_abnormal_io(struct bio *bio)
1511 bool r = false;
1513 switch (bio_op(bio)) {
1514 case REQ_OP_DISCARD:
1515 case REQ_OP_SECURE_ERASE:
1516 case REQ_OP_WRITE_SAME:
1517 case REQ_OP_WRITE_ZEROES:
1518 r = true;
1519 break;
1522 return r;
1525 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1526 int *result)
1528 struct bio *bio = ci->bio;
1530 if (bio_op(bio) == REQ_OP_DISCARD)
1531 *result = __send_discard(ci, ti);
1532 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1533 *result = __send_secure_erase(ci, ti);
1534 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1535 *result = __send_write_same(ci, ti);
1536 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1537 *result = __send_write_zeroes(ci, ti);
1538 else
1539 return false;
1541 return true;
1545 * Select the correct strategy for processing a non-flush bio.
1547 static int __split_and_process_non_flush(struct clone_info *ci)
1549 struct dm_target *ti;
1550 unsigned len;
1551 int r;
1553 ti = dm_table_find_target(ci->map, ci->sector);
1554 if (!ti)
1555 return -EIO;
1557 if (__process_abnormal_io(ci, ti, &r))
1558 return r;
1560 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1562 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1563 if (r < 0)
1564 return r;
1566 ci->sector += len;
1567 ci->sector_count -= len;
1569 return 0;
1572 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1573 struct dm_table *map, struct bio *bio)
1575 ci->map = map;
1576 ci->io = alloc_io(md, bio);
1577 ci->sector = bio->bi_iter.bi_sector;
1580 #define __dm_part_stat_sub(part, field, subnd) \
1581 (part_stat_get(part, field) -= (subnd))
1584 * Entry point to split a bio into clones and submit them to the targets.
1586 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1587 struct dm_table *map, struct bio *bio)
1589 struct clone_info ci;
1590 blk_qc_t ret = BLK_QC_T_NONE;
1591 int error = 0;
1593 init_clone_info(&ci, md, map, bio);
1595 if (bio->bi_opf & REQ_PREFLUSH) {
1596 struct bio flush_bio;
1599 * Use an on-stack bio for this, it's safe since we don't
1600 * need to reference it after submit. It's just used as
1601 * the basis for the clone(s).
1603 bio_init(&flush_bio, NULL, 0);
1604 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1605 ci.bio = &flush_bio;
1606 ci.sector_count = 0;
1607 error = __send_empty_flush(&ci);
1608 /* dec_pending submits any data associated with flush */
1609 } else if (op_is_zone_mgmt(bio_op(bio))) {
1610 ci.bio = bio;
1611 ci.sector_count = 0;
1612 error = __split_and_process_non_flush(&ci);
1613 } else {
1614 ci.bio = bio;
1615 ci.sector_count = bio_sectors(bio);
1616 while (ci.sector_count && !error) {
1617 error = __split_and_process_non_flush(&ci);
1618 if (current->bio_list && ci.sector_count && !error) {
1620 * Remainder must be passed to generic_make_request()
1621 * so that it gets handled *after* bios already submitted
1622 * have been completely processed.
1623 * We take a clone of the original to store in
1624 * ci.io->orig_bio to be used by end_io_acct() and
1625 * for dec_pending to use for completion handling.
1627 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1628 GFP_NOIO, &md->queue->bio_split);
1629 ci.io->orig_bio = b;
1632 * Adjust IO stats for each split, otherwise upon queue
1633 * reentry there will be redundant IO accounting.
1634 * NOTE: this is a stop-gap fix, a proper fix involves
1635 * significant refactoring of DM core's bio splitting
1636 * (by eliminating DM's splitting and just using bio_split)
1638 part_stat_lock();
1639 __dm_part_stat_sub(&dm_disk(md)->part0,
1640 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1641 part_stat_unlock();
1643 bio_chain(b, bio);
1644 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1645 ret = generic_make_request(bio);
1646 break;
1651 /* drop the extra reference count */
1652 dec_pending(ci.io, errno_to_blk_status(error));
1653 return ret;
1657 * Optimized variant of __split_and_process_bio that leverages the
1658 * fact that targets that use it do _not_ have a need to split bios.
1660 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1661 struct bio *bio, struct dm_target *ti)
1663 struct clone_info ci;
1664 blk_qc_t ret = BLK_QC_T_NONE;
1665 int error = 0;
1667 init_clone_info(&ci, md, map, bio);
1669 if (bio->bi_opf & REQ_PREFLUSH) {
1670 struct bio flush_bio;
1673 * Use an on-stack bio for this, it's safe since we don't
1674 * need to reference it after submit. It's just used as
1675 * the basis for the clone(s).
1677 bio_init(&flush_bio, NULL, 0);
1678 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1679 ci.bio = &flush_bio;
1680 ci.sector_count = 0;
1681 error = __send_empty_flush(&ci);
1682 /* dec_pending submits any data associated with flush */
1683 } else {
1684 struct dm_target_io *tio;
1686 ci.bio = bio;
1687 ci.sector_count = bio_sectors(bio);
1688 if (__process_abnormal_io(&ci, ti, &error))
1689 goto out;
1691 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1692 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1694 out:
1695 /* drop the extra reference count */
1696 dec_pending(ci.io, errno_to_blk_status(error));
1697 return ret;
1700 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1702 unsigned len, sector_count;
1704 sector_count = bio_sectors(*bio);
1705 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1707 if (sector_count > len) {
1708 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1710 bio_chain(split, *bio);
1711 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1712 generic_make_request(*bio);
1713 *bio = split;
1717 static blk_qc_t dm_process_bio(struct mapped_device *md,
1718 struct dm_table *map, struct bio *bio)
1720 blk_qc_t ret = BLK_QC_T_NONE;
1721 struct dm_target *ti = md->immutable_target;
1723 if (unlikely(!map)) {
1724 bio_io_error(bio);
1725 return ret;
1728 if (!ti) {
1729 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1730 if (unlikely(!ti)) {
1731 bio_io_error(bio);
1732 return ret;
1737 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1738 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1739 * won't be imposed.
1741 if (current->bio_list) {
1742 blk_queue_split(md->queue, &bio);
1743 if (!is_abnormal_io(bio))
1744 dm_queue_split(md, ti, &bio);
1747 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1748 return __process_bio(md, map, bio, ti);
1749 else
1750 return __split_and_process_bio(md, map, bio);
1753 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1755 struct mapped_device *md = q->queuedata;
1756 blk_qc_t ret = BLK_QC_T_NONE;
1757 int srcu_idx;
1758 struct dm_table *map;
1760 map = dm_get_live_table(md, &srcu_idx);
1762 /* if we're suspended, we have to queue this io for later */
1763 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1764 dm_put_live_table(md, srcu_idx);
1766 if (!(bio->bi_opf & REQ_RAHEAD))
1767 queue_io(md, bio);
1768 else
1769 bio_io_error(bio);
1770 return ret;
1773 ret = dm_process_bio(md, map, bio);
1775 dm_put_live_table(md, srcu_idx);
1776 return ret;
1779 static int dm_any_congested(void *congested_data, int bdi_bits)
1781 int r = bdi_bits;
1782 struct mapped_device *md = congested_data;
1783 struct dm_table *map;
1785 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1786 if (dm_request_based(md)) {
1788 * With request-based DM we only need to check the
1789 * top-level queue for congestion.
1791 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1792 } else {
1793 map = dm_get_live_table_fast(md);
1794 if (map)
1795 r = dm_table_any_congested(map, bdi_bits);
1796 dm_put_live_table_fast(md);
1800 return r;
1803 /*-----------------------------------------------------------------
1804 * An IDR is used to keep track of allocated minor numbers.
1805 *---------------------------------------------------------------*/
1806 static void free_minor(int minor)
1808 spin_lock(&_minor_lock);
1809 idr_remove(&_minor_idr, minor);
1810 spin_unlock(&_minor_lock);
1814 * See if the device with a specific minor # is free.
1816 static int specific_minor(int minor)
1818 int r;
1820 if (minor >= (1 << MINORBITS))
1821 return -EINVAL;
1823 idr_preload(GFP_KERNEL);
1824 spin_lock(&_minor_lock);
1826 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1828 spin_unlock(&_minor_lock);
1829 idr_preload_end();
1830 if (r < 0)
1831 return r == -ENOSPC ? -EBUSY : r;
1832 return 0;
1835 static int next_free_minor(int *minor)
1837 int r;
1839 idr_preload(GFP_KERNEL);
1840 spin_lock(&_minor_lock);
1842 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1844 spin_unlock(&_minor_lock);
1845 idr_preload_end();
1846 if (r < 0)
1847 return r;
1848 *minor = r;
1849 return 0;
1852 static const struct block_device_operations dm_blk_dops;
1853 static const struct dax_operations dm_dax_ops;
1855 static void dm_wq_work(struct work_struct *work);
1857 static void dm_init_normal_md_queue(struct mapped_device *md)
1860 * Initialize aspects of queue that aren't relevant for blk-mq
1862 md->queue->backing_dev_info->congested_data = md;
1863 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1866 static void cleanup_mapped_device(struct mapped_device *md)
1868 if (md->wq)
1869 destroy_workqueue(md->wq);
1870 bioset_exit(&md->bs);
1871 bioset_exit(&md->io_bs);
1873 if (md->dax_dev) {
1874 kill_dax(md->dax_dev);
1875 put_dax(md->dax_dev);
1876 md->dax_dev = NULL;
1879 if (md->disk) {
1880 spin_lock(&_minor_lock);
1881 md->disk->private_data = NULL;
1882 spin_unlock(&_minor_lock);
1883 del_gendisk(md->disk);
1884 put_disk(md->disk);
1887 if (md->queue)
1888 blk_cleanup_queue(md->queue);
1890 cleanup_srcu_struct(&md->io_barrier);
1892 if (md->bdev) {
1893 bdput(md->bdev);
1894 md->bdev = NULL;
1897 mutex_destroy(&md->suspend_lock);
1898 mutex_destroy(&md->type_lock);
1899 mutex_destroy(&md->table_devices_lock);
1901 dm_mq_cleanup_mapped_device(md);
1905 * Allocate and initialise a blank device with a given minor.
1907 static struct mapped_device *alloc_dev(int minor)
1909 int r, numa_node_id = dm_get_numa_node();
1910 struct mapped_device *md;
1911 void *old_md;
1913 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1914 if (!md) {
1915 DMWARN("unable to allocate device, out of memory.");
1916 return NULL;
1919 if (!try_module_get(THIS_MODULE))
1920 goto bad_module_get;
1922 /* get a minor number for the dev */
1923 if (minor == DM_ANY_MINOR)
1924 r = next_free_minor(&minor);
1925 else
1926 r = specific_minor(minor);
1927 if (r < 0)
1928 goto bad_minor;
1930 r = init_srcu_struct(&md->io_barrier);
1931 if (r < 0)
1932 goto bad_io_barrier;
1934 md->numa_node_id = numa_node_id;
1935 md->init_tio_pdu = false;
1936 md->type = DM_TYPE_NONE;
1937 mutex_init(&md->suspend_lock);
1938 mutex_init(&md->type_lock);
1939 mutex_init(&md->table_devices_lock);
1940 spin_lock_init(&md->deferred_lock);
1941 atomic_set(&md->holders, 1);
1942 atomic_set(&md->open_count, 0);
1943 atomic_set(&md->event_nr, 0);
1944 atomic_set(&md->uevent_seq, 0);
1945 INIT_LIST_HEAD(&md->uevent_list);
1946 INIT_LIST_HEAD(&md->table_devices);
1947 spin_lock_init(&md->uevent_lock);
1949 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1950 if (!md->queue)
1951 goto bad;
1952 md->queue->queuedata = md;
1954 * default to bio-based required ->make_request_fn until DM
1955 * table is loaded and md->type established. If request-based
1956 * table is loaded: blk-mq will override accordingly.
1958 blk_queue_make_request(md->queue, dm_make_request);
1960 md->disk = alloc_disk_node(1, md->numa_node_id);
1961 if (!md->disk)
1962 goto bad;
1964 init_waitqueue_head(&md->wait);
1965 INIT_WORK(&md->work, dm_wq_work);
1966 init_waitqueue_head(&md->eventq);
1967 init_completion(&md->kobj_holder.completion);
1969 md->disk->major = _major;
1970 md->disk->first_minor = minor;
1971 md->disk->fops = &dm_blk_dops;
1972 md->disk->queue = md->queue;
1973 md->disk->private_data = md;
1974 sprintf(md->disk->disk_name, "dm-%d", minor);
1976 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1977 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1978 &dm_dax_ops, 0);
1979 if (!md->dax_dev)
1980 goto bad;
1983 add_disk_no_queue_reg(md->disk);
1984 format_dev_t(md->name, MKDEV(_major, minor));
1986 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1987 if (!md->wq)
1988 goto bad;
1990 md->bdev = bdget_disk(md->disk, 0);
1991 if (!md->bdev)
1992 goto bad;
1994 dm_stats_init(&md->stats);
1996 /* Populate the mapping, nobody knows we exist yet */
1997 spin_lock(&_minor_lock);
1998 old_md = idr_replace(&_minor_idr, md, minor);
1999 spin_unlock(&_minor_lock);
2001 BUG_ON(old_md != MINOR_ALLOCED);
2003 return md;
2005 bad:
2006 cleanup_mapped_device(md);
2007 bad_io_barrier:
2008 free_minor(minor);
2009 bad_minor:
2010 module_put(THIS_MODULE);
2011 bad_module_get:
2012 kvfree(md);
2013 return NULL;
2016 static void unlock_fs(struct mapped_device *md);
2018 static void free_dev(struct mapped_device *md)
2020 int minor = MINOR(disk_devt(md->disk));
2022 unlock_fs(md);
2024 cleanup_mapped_device(md);
2026 free_table_devices(&md->table_devices);
2027 dm_stats_cleanup(&md->stats);
2028 free_minor(minor);
2030 module_put(THIS_MODULE);
2031 kvfree(md);
2034 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2036 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2037 int ret = 0;
2039 if (dm_table_bio_based(t)) {
2041 * The md may already have mempools that need changing.
2042 * If so, reload bioset because front_pad may have changed
2043 * because a different table was loaded.
2045 bioset_exit(&md->bs);
2046 bioset_exit(&md->io_bs);
2048 } else if (bioset_initialized(&md->bs)) {
2050 * There's no need to reload with request-based dm
2051 * because the size of front_pad doesn't change.
2052 * Note for future: If you are to reload bioset,
2053 * prep-ed requests in the queue may refer
2054 * to bio from the old bioset, so you must walk
2055 * through the queue to unprep.
2057 goto out;
2060 BUG_ON(!p ||
2061 bioset_initialized(&md->bs) ||
2062 bioset_initialized(&md->io_bs));
2064 ret = bioset_init_from_src(&md->bs, &p->bs);
2065 if (ret)
2066 goto out;
2067 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2068 if (ret)
2069 bioset_exit(&md->bs);
2070 out:
2071 /* mempool bind completed, no longer need any mempools in the table */
2072 dm_table_free_md_mempools(t);
2073 return ret;
2077 * Bind a table to the device.
2079 static void event_callback(void *context)
2081 unsigned long flags;
2082 LIST_HEAD(uevents);
2083 struct mapped_device *md = (struct mapped_device *) context;
2085 spin_lock_irqsave(&md->uevent_lock, flags);
2086 list_splice_init(&md->uevent_list, &uevents);
2087 spin_unlock_irqrestore(&md->uevent_lock, flags);
2089 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2091 atomic_inc(&md->event_nr);
2092 wake_up(&md->eventq);
2093 dm_issue_global_event();
2097 * Protected by md->suspend_lock obtained by dm_swap_table().
2099 static void __set_size(struct mapped_device *md, sector_t size)
2101 lockdep_assert_held(&md->suspend_lock);
2103 set_capacity(md->disk, size);
2105 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2109 * Returns old map, which caller must destroy.
2111 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2112 struct queue_limits *limits)
2114 struct dm_table *old_map;
2115 struct request_queue *q = md->queue;
2116 bool request_based = dm_table_request_based(t);
2117 sector_t size;
2118 int ret;
2120 lockdep_assert_held(&md->suspend_lock);
2122 size = dm_table_get_size(t);
2125 * Wipe any geometry if the size of the table changed.
2127 if (size != dm_get_size(md))
2128 memset(&md->geometry, 0, sizeof(md->geometry));
2130 __set_size(md, size);
2132 dm_table_event_callback(t, event_callback, md);
2135 * The queue hasn't been stopped yet, if the old table type wasn't
2136 * for request-based during suspension. So stop it to prevent
2137 * I/O mapping before resume.
2138 * This must be done before setting the queue restrictions,
2139 * because request-based dm may be run just after the setting.
2141 if (request_based)
2142 dm_stop_queue(q);
2144 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2146 * Leverage the fact that request-based DM targets and
2147 * NVMe bio based targets are immutable singletons
2148 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2149 * and __process_bio.
2151 md->immutable_target = dm_table_get_immutable_target(t);
2154 ret = __bind_mempools(md, t);
2155 if (ret) {
2156 old_map = ERR_PTR(ret);
2157 goto out;
2160 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2161 rcu_assign_pointer(md->map, (void *)t);
2162 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2164 dm_table_set_restrictions(t, q, limits);
2165 if (old_map)
2166 dm_sync_table(md);
2168 out:
2169 return old_map;
2173 * Returns unbound table for the caller to free.
2175 static struct dm_table *__unbind(struct mapped_device *md)
2177 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2179 if (!map)
2180 return NULL;
2182 dm_table_event_callback(map, NULL, NULL);
2183 RCU_INIT_POINTER(md->map, NULL);
2184 dm_sync_table(md);
2186 return map;
2190 * Constructor for a new device.
2192 int dm_create(int minor, struct mapped_device **result)
2194 int r;
2195 struct mapped_device *md;
2197 md = alloc_dev(minor);
2198 if (!md)
2199 return -ENXIO;
2201 r = dm_sysfs_init(md);
2202 if (r) {
2203 free_dev(md);
2204 return r;
2207 *result = md;
2208 return 0;
2212 * Functions to manage md->type.
2213 * All are required to hold md->type_lock.
2215 void dm_lock_md_type(struct mapped_device *md)
2217 mutex_lock(&md->type_lock);
2220 void dm_unlock_md_type(struct mapped_device *md)
2222 mutex_unlock(&md->type_lock);
2225 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2227 BUG_ON(!mutex_is_locked(&md->type_lock));
2228 md->type = type;
2231 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2233 return md->type;
2236 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2238 return md->immutable_target_type;
2242 * The queue_limits are only valid as long as you have a reference
2243 * count on 'md'.
2245 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2247 BUG_ON(!atomic_read(&md->holders));
2248 return &md->queue->limits;
2250 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2253 * Setup the DM device's queue based on md's type
2255 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2257 int r;
2258 struct queue_limits limits;
2259 enum dm_queue_mode type = dm_get_md_type(md);
2261 switch (type) {
2262 case DM_TYPE_REQUEST_BASED:
2263 r = dm_mq_init_request_queue(md, t);
2264 if (r) {
2265 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2266 return r;
2268 break;
2269 case DM_TYPE_BIO_BASED:
2270 case DM_TYPE_DAX_BIO_BASED:
2271 case DM_TYPE_NVME_BIO_BASED:
2272 dm_init_normal_md_queue(md);
2273 break;
2274 case DM_TYPE_NONE:
2275 WARN_ON_ONCE(true);
2276 break;
2279 r = dm_calculate_queue_limits(t, &limits);
2280 if (r) {
2281 DMERR("Cannot calculate initial queue limits");
2282 return r;
2284 dm_table_set_restrictions(t, md->queue, &limits);
2285 blk_register_queue(md->disk);
2287 return 0;
2290 struct mapped_device *dm_get_md(dev_t dev)
2292 struct mapped_device *md;
2293 unsigned minor = MINOR(dev);
2295 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2296 return NULL;
2298 spin_lock(&_minor_lock);
2300 md = idr_find(&_minor_idr, minor);
2301 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2302 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2303 md = NULL;
2304 goto out;
2306 dm_get(md);
2307 out:
2308 spin_unlock(&_minor_lock);
2310 return md;
2312 EXPORT_SYMBOL_GPL(dm_get_md);
2314 void *dm_get_mdptr(struct mapped_device *md)
2316 return md->interface_ptr;
2319 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2321 md->interface_ptr = ptr;
2324 void dm_get(struct mapped_device *md)
2326 atomic_inc(&md->holders);
2327 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2330 int dm_hold(struct mapped_device *md)
2332 spin_lock(&_minor_lock);
2333 if (test_bit(DMF_FREEING, &md->flags)) {
2334 spin_unlock(&_minor_lock);
2335 return -EBUSY;
2337 dm_get(md);
2338 spin_unlock(&_minor_lock);
2339 return 0;
2341 EXPORT_SYMBOL_GPL(dm_hold);
2343 const char *dm_device_name(struct mapped_device *md)
2345 return md->name;
2347 EXPORT_SYMBOL_GPL(dm_device_name);
2349 static void __dm_destroy(struct mapped_device *md, bool wait)
2351 struct dm_table *map;
2352 int srcu_idx;
2354 might_sleep();
2356 spin_lock(&_minor_lock);
2357 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2358 set_bit(DMF_FREEING, &md->flags);
2359 spin_unlock(&_minor_lock);
2361 blk_set_queue_dying(md->queue);
2364 * Take suspend_lock so that presuspend and postsuspend methods
2365 * do not race with internal suspend.
2367 mutex_lock(&md->suspend_lock);
2368 map = dm_get_live_table(md, &srcu_idx);
2369 if (!dm_suspended_md(md)) {
2370 dm_table_presuspend_targets(map);
2371 dm_table_postsuspend_targets(map);
2373 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2374 dm_put_live_table(md, srcu_idx);
2375 mutex_unlock(&md->suspend_lock);
2378 * Rare, but there may be I/O requests still going to complete,
2379 * for example. Wait for all references to disappear.
2380 * No one should increment the reference count of the mapped_device,
2381 * after the mapped_device state becomes DMF_FREEING.
2383 if (wait)
2384 while (atomic_read(&md->holders))
2385 msleep(1);
2386 else if (atomic_read(&md->holders))
2387 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2388 dm_device_name(md), atomic_read(&md->holders));
2390 dm_sysfs_exit(md);
2391 dm_table_destroy(__unbind(md));
2392 free_dev(md);
2395 void dm_destroy(struct mapped_device *md)
2397 __dm_destroy(md, true);
2400 void dm_destroy_immediate(struct mapped_device *md)
2402 __dm_destroy(md, false);
2405 void dm_put(struct mapped_device *md)
2407 atomic_dec(&md->holders);
2409 EXPORT_SYMBOL_GPL(dm_put);
2411 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2413 int r = 0;
2414 DEFINE_WAIT(wait);
2416 while (1) {
2417 prepare_to_wait(&md->wait, &wait, task_state);
2419 if (!md_in_flight(md))
2420 break;
2422 if (signal_pending_state(task_state, current)) {
2423 r = -EINTR;
2424 break;
2427 io_schedule();
2429 finish_wait(&md->wait, &wait);
2431 return r;
2435 * Process the deferred bios
2437 static void dm_wq_work(struct work_struct *work)
2439 struct mapped_device *md = container_of(work, struct mapped_device,
2440 work);
2441 struct bio *c;
2442 int srcu_idx;
2443 struct dm_table *map;
2445 map = dm_get_live_table(md, &srcu_idx);
2447 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2448 spin_lock_irq(&md->deferred_lock);
2449 c = bio_list_pop(&md->deferred);
2450 spin_unlock_irq(&md->deferred_lock);
2452 if (!c)
2453 break;
2455 if (dm_request_based(md))
2456 (void) generic_make_request(c);
2457 else
2458 (void) dm_process_bio(md, map, c);
2461 dm_put_live_table(md, srcu_idx);
2464 static void dm_queue_flush(struct mapped_device *md)
2466 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2467 smp_mb__after_atomic();
2468 queue_work(md->wq, &md->work);
2472 * Swap in a new table, returning the old one for the caller to destroy.
2474 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2476 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2477 struct queue_limits limits;
2478 int r;
2480 mutex_lock(&md->suspend_lock);
2482 /* device must be suspended */
2483 if (!dm_suspended_md(md))
2484 goto out;
2487 * If the new table has no data devices, retain the existing limits.
2488 * This helps multipath with queue_if_no_path if all paths disappear,
2489 * then new I/O is queued based on these limits, and then some paths
2490 * reappear.
2492 if (dm_table_has_no_data_devices(table)) {
2493 live_map = dm_get_live_table_fast(md);
2494 if (live_map)
2495 limits = md->queue->limits;
2496 dm_put_live_table_fast(md);
2499 if (!live_map) {
2500 r = dm_calculate_queue_limits(table, &limits);
2501 if (r) {
2502 map = ERR_PTR(r);
2503 goto out;
2507 map = __bind(md, table, &limits);
2508 dm_issue_global_event();
2510 out:
2511 mutex_unlock(&md->suspend_lock);
2512 return map;
2516 * Functions to lock and unlock any filesystem running on the
2517 * device.
2519 static int lock_fs(struct mapped_device *md)
2521 int r;
2523 WARN_ON(md->frozen_sb);
2525 md->frozen_sb = freeze_bdev(md->bdev);
2526 if (IS_ERR(md->frozen_sb)) {
2527 r = PTR_ERR(md->frozen_sb);
2528 md->frozen_sb = NULL;
2529 return r;
2532 set_bit(DMF_FROZEN, &md->flags);
2534 return 0;
2537 static void unlock_fs(struct mapped_device *md)
2539 if (!test_bit(DMF_FROZEN, &md->flags))
2540 return;
2542 thaw_bdev(md->bdev, md->frozen_sb);
2543 md->frozen_sb = NULL;
2544 clear_bit(DMF_FROZEN, &md->flags);
2548 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2549 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2550 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2552 * If __dm_suspend returns 0, the device is completely quiescent
2553 * now. There is no request-processing activity. All new requests
2554 * are being added to md->deferred list.
2556 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2557 unsigned suspend_flags, long task_state,
2558 int dmf_suspended_flag)
2560 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2561 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2562 int r;
2564 lockdep_assert_held(&md->suspend_lock);
2567 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2568 * This flag is cleared before dm_suspend returns.
2570 if (noflush)
2571 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2572 else
2573 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2576 * This gets reverted if there's an error later and the targets
2577 * provide the .presuspend_undo hook.
2579 dm_table_presuspend_targets(map);
2582 * Flush I/O to the device.
2583 * Any I/O submitted after lock_fs() may not be flushed.
2584 * noflush takes precedence over do_lockfs.
2585 * (lock_fs() flushes I/Os and waits for them to complete.)
2587 if (!noflush && do_lockfs) {
2588 r = lock_fs(md);
2589 if (r) {
2590 dm_table_presuspend_undo_targets(map);
2591 return r;
2596 * Here we must make sure that no processes are submitting requests
2597 * to target drivers i.e. no one may be executing
2598 * __split_and_process_bio. This is called from dm_request and
2599 * dm_wq_work.
2601 * To get all processes out of __split_and_process_bio in dm_request,
2602 * we take the write lock. To prevent any process from reentering
2603 * __split_and_process_bio from dm_request and quiesce the thread
2604 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2605 * flush_workqueue(md->wq).
2607 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2608 if (map)
2609 synchronize_srcu(&md->io_barrier);
2612 * Stop md->queue before flushing md->wq in case request-based
2613 * dm defers requests to md->wq from md->queue.
2615 if (dm_request_based(md))
2616 dm_stop_queue(md->queue);
2618 flush_workqueue(md->wq);
2621 * At this point no more requests are entering target request routines.
2622 * We call dm_wait_for_completion to wait for all existing requests
2623 * to finish.
2625 r = dm_wait_for_completion(md, task_state);
2626 if (!r)
2627 set_bit(dmf_suspended_flag, &md->flags);
2629 if (noflush)
2630 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2631 if (map)
2632 synchronize_srcu(&md->io_barrier);
2634 /* were we interrupted ? */
2635 if (r < 0) {
2636 dm_queue_flush(md);
2638 if (dm_request_based(md))
2639 dm_start_queue(md->queue);
2641 unlock_fs(md);
2642 dm_table_presuspend_undo_targets(map);
2643 /* pushback list is already flushed, so skip flush */
2646 return r;
2650 * We need to be able to change a mapping table under a mounted
2651 * filesystem. For example we might want to move some data in
2652 * the background. Before the table can be swapped with
2653 * dm_bind_table, dm_suspend must be called to flush any in
2654 * flight bios and ensure that any further io gets deferred.
2657 * Suspend mechanism in request-based dm.
2659 * 1. Flush all I/Os by lock_fs() if needed.
2660 * 2. Stop dispatching any I/O by stopping the request_queue.
2661 * 3. Wait for all in-flight I/Os to be completed or requeued.
2663 * To abort suspend, start the request_queue.
2665 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2667 struct dm_table *map = NULL;
2668 int r = 0;
2670 retry:
2671 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2673 if (dm_suspended_md(md)) {
2674 r = -EINVAL;
2675 goto out_unlock;
2678 if (dm_suspended_internally_md(md)) {
2679 /* already internally suspended, wait for internal resume */
2680 mutex_unlock(&md->suspend_lock);
2681 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2682 if (r)
2683 return r;
2684 goto retry;
2687 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2689 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2690 if (r)
2691 goto out_unlock;
2693 dm_table_postsuspend_targets(map);
2695 out_unlock:
2696 mutex_unlock(&md->suspend_lock);
2697 return r;
2700 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2702 if (map) {
2703 int r = dm_table_resume_targets(map);
2704 if (r)
2705 return r;
2708 dm_queue_flush(md);
2711 * Flushing deferred I/Os must be done after targets are resumed
2712 * so that mapping of targets can work correctly.
2713 * Request-based dm is queueing the deferred I/Os in its request_queue.
2715 if (dm_request_based(md))
2716 dm_start_queue(md->queue);
2718 unlock_fs(md);
2720 return 0;
2723 int dm_resume(struct mapped_device *md)
2725 int r;
2726 struct dm_table *map = NULL;
2728 retry:
2729 r = -EINVAL;
2730 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2732 if (!dm_suspended_md(md))
2733 goto out;
2735 if (dm_suspended_internally_md(md)) {
2736 /* already internally suspended, wait for internal resume */
2737 mutex_unlock(&md->suspend_lock);
2738 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2739 if (r)
2740 return r;
2741 goto retry;
2744 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2745 if (!map || !dm_table_get_size(map))
2746 goto out;
2748 r = __dm_resume(md, map);
2749 if (r)
2750 goto out;
2752 clear_bit(DMF_SUSPENDED, &md->flags);
2753 out:
2754 mutex_unlock(&md->suspend_lock);
2756 return r;
2760 * Internal suspend/resume works like userspace-driven suspend. It waits
2761 * until all bios finish and prevents issuing new bios to the target drivers.
2762 * It may be used only from the kernel.
2765 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2767 struct dm_table *map = NULL;
2769 lockdep_assert_held(&md->suspend_lock);
2771 if (md->internal_suspend_count++)
2772 return; /* nested internal suspend */
2774 if (dm_suspended_md(md)) {
2775 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2776 return; /* nest suspend */
2779 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2782 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2783 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2784 * would require changing .presuspend to return an error -- avoid this
2785 * until there is a need for more elaborate variants of internal suspend.
2787 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2788 DMF_SUSPENDED_INTERNALLY);
2790 dm_table_postsuspend_targets(map);
2793 static void __dm_internal_resume(struct mapped_device *md)
2795 BUG_ON(!md->internal_suspend_count);
2797 if (--md->internal_suspend_count)
2798 return; /* resume from nested internal suspend */
2800 if (dm_suspended_md(md))
2801 goto done; /* resume from nested suspend */
2804 * NOTE: existing callers don't need to call dm_table_resume_targets
2805 * (which may fail -- so best to avoid it for now by passing NULL map)
2807 (void) __dm_resume(md, NULL);
2809 done:
2810 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2811 smp_mb__after_atomic();
2812 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2815 void dm_internal_suspend_noflush(struct mapped_device *md)
2817 mutex_lock(&md->suspend_lock);
2818 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2819 mutex_unlock(&md->suspend_lock);
2821 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2823 void dm_internal_resume(struct mapped_device *md)
2825 mutex_lock(&md->suspend_lock);
2826 __dm_internal_resume(md);
2827 mutex_unlock(&md->suspend_lock);
2829 EXPORT_SYMBOL_GPL(dm_internal_resume);
2832 * Fast variants of internal suspend/resume hold md->suspend_lock,
2833 * which prevents interaction with userspace-driven suspend.
2836 void dm_internal_suspend_fast(struct mapped_device *md)
2838 mutex_lock(&md->suspend_lock);
2839 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2840 return;
2842 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2843 synchronize_srcu(&md->io_barrier);
2844 flush_workqueue(md->wq);
2845 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2847 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2849 void dm_internal_resume_fast(struct mapped_device *md)
2851 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2852 goto done;
2854 dm_queue_flush(md);
2856 done:
2857 mutex_unlock(&md->suspend_lock);
2859 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2861 /*-----------------------------------------------------------------
2862 * Event notification.
2863 *---------------------------------------------------------------*/
2864 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2865 unsigned cookie)
2867 char udev_cookie[DM_COOKIE_LENGTH];
2868 char *envp[] = { udev_cookie, NULL };
2870 if (!cookie)
2871 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2872 else {
2873 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2874 DM_COOKIE_ENV_VAR_NAME, cookie);
2875 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2876 action, envp);
2880 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2882 return atomic_add_return(1, &md->uevent_seq);
2885 uint32_t dm_get_event_nr(struct mapped_device *md)
2887 return atomic_read(&md->event_nr);
2890 int dm_wait_event(struct mapped_device *md, int event_nr)
2892 return wait_event_interruptible(md->eventq,
2893 (event_nr != atomic_read(&md->event_nr)));
2896 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2898 unsigned long flags;
2900 spin_lock_irqsave(&md->uevent_lock, flags);
2901 list_add(elist, &md->uevent_list);
2902 spin_unlock_irqrestore(&md->uevent_lock, flags);
2906 * The gendisk is only valid as long as you have a reference
2907 * count on 'md'.
2909 struct gendisk *dm_disk(struct mapped_device *md)
2911 return md->disk;
2913 EXPORT_SYMBOL_GPL(dm_disk);
2915 struct kobject *dm_kobject(struct mapped_device *md)
2917 return &md->kobj_holder.kobj;
2920 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2922 struct mapped_device *md;
2924 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2926 spin_lock(&_minor_lock);
2927 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2928 md = NULL;
2929 goto out;
2931 dm_get(md);
2932 out:
2933 spin_unlock(&_minor_lock);
2935 return md;
2938 int dm_suspended_md(struct mapped_device *md)
2940 return test_bit(DMF_SUSPENDED, &md->flags);
2943 int dm_suspended_internally_md(struct mapped_device *md)
2945 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2948 int dm_test_deferred_remove_flag(struct mapped_device *md)
2950 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2953 int dm_suspended(struct dm_target *ti)
2955 return dm_suspended_md(dm_table_get_md(ti->table));
2957 EXPORT_SYMBOL_GPL(dm_suspended);
2959 int dm_noflush_suspending(struct dm_target *ti)
2961 return __noflush_suspending(dm_table_get_md(ti->table));
2963 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2965 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2966 unsigned integrity, unsigned per_io_data_size,
2967 unsigned min_pool_size)
2969 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2970 unsigned int pool_size = 0;
2971 unsigned int front_pad, io_front_pad;
2972 int ret;
2974 if (!pools)
2975 return NULL;
2977 switch (type) {
2978 case DM_TYPE_BIO_BASED:
2979 case DM_TYPE_DAX_BIO_BASED:
2980 case DM_TYPE_NVME_BIO_BASED:
2981 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2982 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2983 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2984 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2985 if (ret)
2986 goto out;
2987 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2988 goto out;
2989 break;
2990 case DM_TYPE_REQUEST_BASED:
2991 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2992 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2993 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2994 break;
2995 default:
2996 BUG();
2999 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3000 if (ret)
3001 goto out;
3003 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3004 goto out;
3006 return pools;
3008 out:
3009 dm_free_md_mempools(pools);
3011 return NULL;
3014 void dm_free_md_mempools(struct dm_md_mempools *pools)
3016 if (!pools)
3017 return;
3019 bioset_exit(&pools->bs);
3020 bioset_exit(&pools->io_bs);
3022 kfree(pools);
3025 struct dm_pr {
3026 u64 old_key;
3027 u64 new_key;
3028 u32 flags;
3029 bool fail_early;
3032 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3033 void *data)
3035 struct mapped_device *md = bdev->bd_disk->private_data;
3036 struct dm_table *table;
3037 struct dm_target *ti;
3038 int ret = -ENOTTY, srcu_idx;
3040 table = dm_get_live_table(md, &srcu_idx);
3041 if (!table || !dm_table_get_size(table))
3042 goto out;
3044 /* We only support devices that have a single target */
3045 if (dm_table_get_num_targets(table) != 1)
3046 goto out;
3047 ti = dm_table_get_target(table, 0);
3049 ret = -EINVAL;
3050 if (!ti->type->iterate_devices)
3051 goto out;
3053 ret = ti->type->iterate_devices(ti, fn, data);
3054 out:
3055 dm_put_live_table(md, srcu_idx);
3056 return ret;
3060 * For register / unregister we need to manually call out to every path.
3062 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3063 sector_t start, sector_t len, void *data)
3065 struct dm_pr *pr = data;
3066 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3068 if (!ops || !ops->pr_register)
3069 return -EOPNOTSUPP;
3070 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3073 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3074 u32 flags)
3076 struct dm_pr pr = {
3077 .old_key = old_key,
3078 .new_key = new_key,
3079 .flags = flags,
3080 .fail_early = true,
3082 int ret;
3084 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3085 if (ret && new_key) {
3086 /* unregister all paths if we failed to register any path */
3087 pr.old_key = new_key;
3088 pr.new_key = 0;
3089 pr.flags = 0;
3090 pr.fail_early = false;
3091 dm_call_pr(bdev, __dm_pr_register, &pr);
3094 return ret;
3097 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3098 u32 flags)
3100 struct mapped_device *md = bdev->bd_disk->private_data;
3101 const struct pr_ops *ops;
3102 int r, srcu_idx;
3104 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3105 if (r < 0)
3106 goto out;
3108 ops = bdev->bd_disk->fops->pr_ops;
3109 if (ops && ops->pr_reserve)
3110 r = ops->pr_reserve(bdev, key, type, flags);
3111 else
3112 r = -EOPNOTSUPP;
3113 out:
3114 dm_unprepare_ioctl(md, srcu_idx);
3115 return r;
3118 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3120 struct mapped_device *md = bdev->bd_disk->private_data;
3121 const struct pr_ops *ops;
3122 int r, srcu_idx;
3124 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3125 if (r < 0)
3126 goto out;
3128 ops = bdev->bd_disk->fops->pr_ops;
3129 if (ops && ops->pr_release)
3130 r = ops->pr_release(bdev, key, type);
3131 else
3132 r = -EOPNOTSUPP;
3133 out:
3134 dm_unprepare_ioctl(md, srcu_idx);
3135 return r;
3138 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3139 enum pr_type type, bool abort)
3141 struct mapped_device *md = bdev->bd_disk->private_data;
3142 const struct pr_ops *ops;
3143 int r, srcu_idx;
3145 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3146 if (r < 0)
3147 goto out;
3149 ops = bdev->bd_disk->fops->pr_ops;
3150 if (ops && ops->pr_preempt)
3151 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3152 else
3153 r = -EOPNOTSUPP;
3154 out:
3155 dm_unprepare_ioctl(md, srcu_idx);
3156 return r;
3159 static int dm_pr_clear(struct block_device *bdev, u64 key)
3161 struct mapped_device *md = bdev->bd_disk->private_data;
3162 const struct pr_ops *ops;
3163 int r, srcu_idx;
3165 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3166 if (r < 0)
3167 goto out;
3169 ops = bdev->bd_disk->fops->pr_ops;
3170 if (ops && ops->pr_clear)
3171 r = ops->pr_clear(bdev, key);
3172 else
3173 r = -EOPNOTSUPP;
3174 out:
3175 dm_unprepare_ioctl(md, srcu_idx);
3176 return r;
3179 static const struct pr_ops dm_pr_ops = {
3180 .pr_register = dm_pr_register,
3181 .pr_reserve = dm_pr_reserve,
3182 .pr_release = dm_pr_release,
3183 .pr_preempt = dm_pr_preempt,
3184 .pr_clear = dm_pr_clear,
3187 static const struct block_device_operations dm_blk_dops = {
3188 .open = dm_blk_open,
3189 .release = dm_blk_close,
3190 .ioctl = dm_blk_ioctl,
3191 .getgeo = dm_blk_getgeo,
3192 .report_zones = dm_blk_report_zones,
3193 .pr_ops = &dm_pr_ops,
3194 .owner = THIS_MODULE
3197 static const struct dax_operations dm_dax_ops = {
3198 .direct_access = dm_dax_direct_access,
3199 .dax_supported = dm_dax_supported,
3200 .copy_from_iter = dm_dax_copy_from_iter,
3201 .copy_to_iter = dm_dax_copy_to_iter,
3205 * module hooks
3207 module_init(dm_init);
3208 module_exit(dm_exit);
3210 module_param(major, uint, 0);
3211 MODULE_PARM_DESC(major, "The major number of the device mapper");
3213 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3214 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3216 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3217 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3219 MODULE_DESCRIPTION(DM_NAME " driver");
3220 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3221 MODULE_LICENSE("GPL");