treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / drivers / md / raid1.c
blobcd810e19508619db468fc777028e9620a6da055c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
52 #include "raid1-10.c"
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
79 return ret;
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
127 return get_resync_pages(bio)->raid_bio;
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
165 * Allocate bios : 1 for reading, n-1 for writing
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
174 * Allocate RESYNC_PAGES data pages and attach them to
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
181 else
182 need_pages = 1;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
186 bio = r1_bio->bios[j];
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
200 r1_bio->master_bio = NULL;
202 return r1_bio;
204 out_free_pages:
205 while (--j >= 0)
206 resync_free_pages(&rps[j]);
208 out_free_bio:
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
211 kfree(rps);
213 out_free_r1bio:
214 rbio_pool_free(r1_bio, data);
215 return NULL;
218 static void r1buf_pool_free(void *__r1_bio, void *data)
220 struct pool_info *pi = data;
221 int i;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
234 rbio_pool_free(r1bio, data);
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
239 int i;
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
249 static void free_r1bio(struct r1bio *r1_bio)
251 struct r1conf *conf = r1_bio->mddev->private;
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
257 static void put_buf(struct r1bio *r1_bio)
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
261 int i;
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 mempool_free(r1_bio, &conf->r1buf_pool);
271 lower_barrier(conf, sect);
274 static void reschedule_retry(struct r1bio *r1_bio)
276 unsigned long flags;
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
279 int idx;
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
296 static void call_bio_endio(struct r1bio *r1_bio)
298 struct bio *bio = r1_bio->master_bio;
299 struct r1conf *conf = r1_bio->mddev->private;
301 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
302 bio->bi_status = BLK_STS_IOERR;
304 bio_endio(bio);
306 * Wake up any possible resync thread that waits for the device
307 * to go idle.
309 allow_barrier(conf, r1_bio->sector);
312 static void raid_end_bio_io(struct r1bio *r1_bio)
314 struct bio *bio = r1_bio->master_bio;
316 /* if nobody has done the final endio yet, do it now */
317 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320 (unsigned long long) bio->bi_iter.bi_sector,
321 (unsigned long long) bio_end_sector(bio) - 1);
323 call_bio_endio(r1_bio);
325 free_r1bio(r1_bio);
329 * Update disk head position estimator based on IRQ completion info.
331 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
333 struct r1conf *conf = r1_bio->mddev->private;
335 conf->mirrors[disk].head_position =
336 r1_bio->sector + (r1_bio->sectors);
340 * Find the disk number which triggered given bio
342 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
344 int mirror;
345 struct r1conf *conf = r1_bio->mddev->private;
346 int raid_disks = conf->raid_disks;
348 for (mirror = 0; mirror < raid_disks * 2; mirror++)
349 if (r1_bio->bios[mirror] == bio)
350 break;
352 BUG_ON(mirror == raid_disks * 2);
353 update_head_pos(mirror, r1_bio);
355 return mirror;
358 static void raid1_end_read_request(struct bio *bio)
360 int uptodate = !bio->bi_status;
361 struct r1bio *r1_bio = bio->bi_private;
362 struct r1conf *conf = r1_bio->mddev->private;
363 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
366 * this branch is our 'one mirror IO has finished' event handler:
368 update_head_pos(r1_bio->read_disk, r1_bio);
370 if (uptodate)
371 set_bit(R1BIO_Uptodate, &r1_bio->state);
372 else if (test_bit(FailFast, &rdev->flags) &&
373 test_bit(R1BIO_FailFast, &r1_bio->state))
374 /* This was a fail-fast read so we definitely
375 * want to retry */
377 else {
378 /* If all other devices have failed, we want to return
379 * the error upwards rather than fail the last device.
380 * Here we redefine "uptodate" to mean "Don't want to retry"
382 unsigned long flags;
383 spin_lock_irqsave(&conf->device_lock, flags);
384 if (r1_bio->mddev->degraded == conf->raid_disks ||
385 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
386 test_bit(In_sync, &rdev->flags)))
387 uptodate = 1;
388 spin_unlock_irqrestore(&conf->device_lock, flags);
391 if (uptodate) {
392 raid_end_bio_io(r1_bio);
393 rdev_dec_pending(rdev, conf->mddev);
394 } else {
396 * oops, read error:
398 char b[BDEVNAME_SIZE];
399 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
400 mdname(conf->mddev),
401 bdevname(rdev->bdev, b),
402 (unsigned long long)r1_bio->sector);
403 set_bit(R1BIO_ReadError, &r1_bio->state);
404 reschedule_retry(r1_bio);
405 /* don't drop the reference on read_disk yet */
409 static void close_write(struct r1bio *r1_bio)
411 /* it really is the end of this request */
412 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
413 bio_free_pages(r1_bio->behind_master_bio);
414 bio_put(r1_bio->behind_master_bio);
415 r1_bio->behind_master_bio = NULL;
417 /* clear the bitmap if all writes complete successfully */
418 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
419 r1_bio->sectors,
420 !test_bit(R1BIO_Degraded, &r1_bio->state),
421 test_bit(R1BIO_BehindIO, &r1_bio->state));
422 md_write_end(r1_bio->mddev);
425 static void r1_bio_write_done(struct r1bio *r1_bio)
427 if (!atomic_dec_and_test(&r1_bio->remaining))
428 return;
430 if (test_bit(R1BIO_WriteError, &r1_bio->state))
431 reschedule_retry(r1_bio);
432 else {
433 close_write(r1_bio);
434 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
435 reschedule_retry(r1_bio);
436 else
437 raid_end_bio_io(r1_bio);
441 static void raid1_end_write_request(struct bio *bio)
443 struct r1bio *r1_bio = bio->bi_private;
444 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
445 struct r1conf *conf = r1_bio->mddev->private;
446 struct bio *to_put = NULL;
447 int mirror = find_bio_disk(r1_bio, bio);
448 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
449 bool discard_error;
450 sector_t lo = r1_bio->sector;
451 sector_t hi = r1_bio->sector + r1_bio->sectors;
453 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
456 * 'one mirror IO has finished' event handler:
458 if (bio->bi_status && !discard_error) {
459 set_bit(WriteErrorSeen, &rdev->flags);
460 if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 set_bit(MD_RECOVERY_NEEDED, &
462 conf->mddev->recovery);
464 if (test_bit(FailFast, &rdev->flags) &&
465 (bio->bi_opf & MD_FAILFAST) &&
466 /* We never try FailFast to WriteMostly devices */
467 !test_bit(WriteMostly, &rdev->flags)) {
468 md_error(r1_bio->mddev, rdev);
472 * When the device is faulty, it is not necessary to
473 * handle write error.
474 * For failfast, this is the only remaining device,
475 * We need to retry the write without FailFast.
477 if (!test_bit(Faulty, &rdev->flags))
478 set_bit(R1BIO_WriteError, &r1_bio->state);
479 else {
480 /* Finished with this branch */
481 r1_bio->bios[mirror] = NULL;
482 to_put = bio;
484 } else {
486 * Set R1BIO_Uptodate in our master bio, so that we
487 * will return a good error code for to the higher
488 * levels even if IO on some other mirrored buffer
489 * fails.
491 * The 'master' represents the composite IO operation
492 * to user-side. So if something waits for IO, then it
493 * will wait for the 'master' bio.
495 sector_t first_bad;
496 int bad_sectors;
498 r1_bio->bios[mirror] = NULL;
499 to_put = bio;
501 * Do not set R1BIO_Uptodate if the current device is
502 * rebuilding or Faulty. This is because we cannot use
503 * such device for properly reading the data back (we could
504 * potentially use it, if the current write would have felt
505 * before rdev->recovery_offset, but for simplicity we don't
506 * check this here.
508 if (test_bit(In_sync, &rdev->flags) &&
509 !test_bit(Faulty, &rdev->flags))
510 set_bit(R1BIO_Uptodate, &r1_bio->state);
512 /* Maybe we can clear some bad blocks. */
513 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
514 &first_bad, &bad_sectors) && !discard_error) {
515 r1_bio->bios[mirror] = IO_MADE_GOOD;
516 set_bit(R1BIO_MadeGood, &r1_bio->state);
520 if (behind) {
521 if (test_bit(CollisionCheck, &rdev->flags))
522 remove_serial(rdev, lo, hi);
523 if (test_bit(WriteMostly, &rdev->flags))
524 atomic_dec(&r1_bio->behind_remaining);
527 * In behind mode, we ACK the master bio once the I/O
528 * has safely reached all non-writemostly
529 * disks. Setting the Returned bit ensures that this
530 * gets done only once -- we don't ever want to return
531 * -EIO here, instead we'll wait
533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 /* Maybe we can return now */
536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 struct bio *mbio = r1_bio->master_bio;
538 pr_debug("raid1: behind end write sectors"
539 " %llu-%llu\n",
540 (unsigned long long) mbio->bi_iter.bi_sector,
541 (unsigned long long) bio_end_sector(mbio) - 1);
542 call_bio_endio(r1_bio);
545 } else if (rdev->mddev->serialize_policy)
546 remove_serial(rdev, lo, hi);
547 if (r1_bio->bios[mirror] == NULL)
548 rdev_dec_pending(rdev, conf->mddev);
551 * Let's see if all mirrored write operations have finished
552 * already.
554 r1_bio_write_done(r1_bio);
556 if (to_put)
557 bio_put(to_put);
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 sector_t sectors)
563 sector_t len;
565 WARN_ON(sectors == 0);
567 * len is the number of sectors from start_sector to end of the
568 * barrier unit which start_sector belongs to.
570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 start_sector;
573 if (len > sectors)
574 len = sectors;
576 return len;
580 * This routine returns the disk from which the requested read should
581 * be done. There is a per-array 'next expected sequential IO' sector
582 * number - if this matches on the next IO then we use the last disk.
583 * There is also a per-disk 'last know head position' sector that is
584 * maintained from IRQ contexts, both the normal and the resync IO
585 * completion handlers update this position correctly. If there is no
586 * perfect sequential match then we pick the disk whose head is closest.
588 * If there are 2 mirrors in the same 2 devices, performance degrades
589 * because position is mirror, not device based.
591 * The rdev for the device selected will have nr_pending incremented.
593 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
595 const sector_t this_sector = r1_bio->sector;
596 int sectors;
597 int best_good_sectors;
598 int best_disk, best_dist_disk, best_pending_disk;
599 int has_nonrot_disk;
600 int disk;
601 sector_t best_dist;
602 unsigned int min_pending;
603 struct md_rdev *rdev;
604 int choose_first;
605 int choose_next_idle;
607 rcu_read_lock();
609 * Check if we can balance. We can balance on the whole
610 * device if no resync is going on, or below the resync window.
611 * We take the first readable disk when above the resync window.
613 retry:
614 sectors = r1_bio->sectors;
615 best_disk = -1;
616 best_dist_disk = -1;
617 best_dist = MaxSector;
618 best_pending_disk = -1;
619 min_pending = UINT_MAX;
620 best_good_sectors = 0;
621 has_nonrot_disk = 0;
622 choose_next_idle = 0;
623 clear_bit(R1BIO_FailFast, &r1_bio->state);
625 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
626 (mddev_is_clustered(conf->mddev) &&
627 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
628 this_sector + sectors)))
629 choose_first = 1;
630 else
631 choose_first = 0;
633 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
634 sector_t dist;
635 sector_t first_bad;
636 int bad_sectors;
637 unsigned int pending;
638 bool nonrot;
640 rdev = rcu_dereference(conf->mirrors[disk].rdev);
641 if (r1_bio->bios[disk] == IO_BLOCKED
642 || rdev == NULL
643 || test_bit(Faulty, &rdev->flags))
644 continue;
645 if (!test_bit(In_sync, &rdev->flags) &&
646 rdev->recovery_offset < this_sector + sectors)
647 continue;
648 if (test_bit(WriteMostly, &rdev->flags)) {
649 /* Don't balance among write-mostly, just
650 * use the first as a last resort */
651 if (best_dist_disk < 0) {
652 if (is_badblock(rdev, this_sector, sectors,
653 &first_bad, &bad_sectors)) {
654 if (first_bad <= this_sector)
655 /* Cannot use this */
656 continue;
657 best_good_sectors = first_bad - this_sector;
658 } else
659 best_good_sectors = sectors;
660 best_dist_disk = disk;
661 best_pending_disk = disk;
663 continue;
665 /* This is a reasonable device to use. It might
666 * even be best.
668 if (is_badblock(rdev, this_sector, sectors,
669 &first_bad, &bad_sectors)) {
670 if (best_dist < MaxSector)
671 /* already have a better device */
672 continue;
673 if (first_bad <= this_sector) {
674 /* cannot read here. If this is the 'primary'
675 * device, then we must not read beyond
676 * bad_sectors from another device..
678 bad_sectors -= (this_sector - first_bad);
679 if (choose_first && sectors > bad_sectors)
680 sectors = bad_sectors;
681 if (best_good_sectors > sectors)
682 best_good_sectors = sectors;
684 } else {
685 sector_t good_sectors = first_bad - this_sector;
686 if (good_sectors > best_good_sectors) {
687 best_good_sectors = good_sectors;
688 best_disk = disk;
690 if (choose_first)
691 break;
693 continue;
694 } else {
695 if ((sectors > best_good_sectors) && (best_disk >= 0))
696 best_disk = -1;
697 best_good_sectors = sectors;
700 if (best_disk >= 0)
701 /* At least two disks to choose from so failfast is OK */
702 set_bit(R1BIO_FailFast, &r1_bio->state);
704 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
705 has_nonrot_disk |= nonrot;
706 pending = atomic_read(&rdev->nr_pending);
707 dist = abs(this_sector - conf->mirrors[disk].head_position);
708 if (choose_first) {
709 best_disk = disk;
710 break;
712 /* Don't change to another disk for sequential reads */
713 if (conf->mirrors[disk].next_seq_sect == this_sector
714 || dist == 0) {
715 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
716 struct raid1_info *mirror = &conf->mirrors[disk];
718 best_disk = disk;
720 * If buffered sequential IO size exceeds optimal
721 * iosize, check if there is idle disk. If yes, choose
722 * the idle disk. read_balance could already choose an
723 * idle disk before noticing it's a sequential IO in
724 * this disk. This doesn't matter because this disk
725 * will idle, next time it will be utilized after the
726 * first disk has IO size exceeds optimal iosize. In
727 * this way, iosize of the first disk will be optimal
728 * iosize at least. iosize of the second disk might be
729 * small, but not a big deal since when the second disk
730 * starts IO, the first disk is likely still busy.
732 if (nonrot && opt_iosize > 0 &&
733 mirror->seq_start != MaxSector &&
734 mirror->next_seq_sect > opt_iosize &&
735 mirror->next_seq_sect - opt_iosize >=
736 mirror->seq_start) {
737 choose_next_idle = 1;
738 continue;
740 break;
743 if (choose_next_idle)
744 continue;
746 if (min_pending > pending) {
747 min_pending = pending;
748 best_pending_disk = disk;
751 if (dist < best_dist) {
752 best_dist = dist;
753 best_dist_disk = disk;
758 * If all disks are rotational, choose the closest disk. If any disk is
759 * non-rotational, choose the disk with less pending request even the
760 * disk is rotational, which might/might not be optimal for raids with
761 * mixed ratation/non-rotational disks depending on workload.
763 if (best_disk == -1) {
764 if (has_nonrot_disk || min_pending == 0)
765 best_disk = best_pending_disk;
766 else
767 best_disk = best_dist_disk;
770 if (best_disk >= 0) {
771 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
772 if (!rdev)
773 goto retry;
774 atomic_inc(&rdev->nr_pending);
775 sectors = best_good_sectors;
777 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
778 conf->mirrors[best_disk].seq_start = this_sector;
780 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
782 rcu_read_unlock();
783 *max_sectors = sectors;
785 return best_disk;
788 static int raid1_congested(struct mddev *mddev, int bits)
790 struct r1conf *conf = mddev->private;
791 int i, ret = 0;
793 if ((bits & (1 << WB_async_congested)) &&
794 conf->pending_count >= max_queued_requests)
795 return 1;
797 rcu_read_lock();
798 for (i = 0; i < conf->raid_disks * 2; i++) {
799 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
800 if (rdev && !test_bit(Faulty, &rdev->flags)) {
801 struct request_queue *q = bdev_get_queue(rdev->bdev);
803 BUG_ON(!q);
805 /* Note the '|| 1' - when read_balance prefers
806 * non-congested targets, it can be removed
808 if ((bits & (1 << WB_async_congested)) || 1)
809 ret |= bdi_congested(q->backing_dev_info, bits);
810 else
811 ret &= bdi_congested(q->backing_dev_info, bits);
814 rcu_read_unlock();
815 return ret;
818 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
820 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
821 md_bitmap_unplug(conf->mddev->bitmap);
822 wake_up(&conf->wait_barrier);
824 while (bio) { /* submit pending writes */
825 struct bio *next = bio->bi_next;
826 struct md_rdev *rdev = (void *)bio->bi_disk;
827 bio->bi_next = NULL;
828 bio_set_dev(bio, rdev->bdev);
829 if (test_bit(Faulty, &rdev->flags)) {
830 bio_io_error(bio);
831 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
832 !blk_queue_discard(bio->bi_disk->queue)))
833 /* Just ignore it */
834 bio_endio(bio);
835 else
836 generic_make_request(bio);
837 bio = next;
838 cond_resched();
842 static void flush_pending_writes(struct r1conf *conf)
844 /* Any writes that have been queued but are awaiting
845 * bitmap updates get flushed here.
847 spin_lock_irq(&conf->device_lock);
849 if (conf->pending_bio_list.head) {
850 struct blk_plug plug;
851 struct bio *bio;
853 bio = bio_list_get(&conf->pending_bio_list);
854 conf->pending_count = 0;
855 spin_unlock_irq(&conf->device_lock);
858 * As this is called in a wait_event() loop (see freeze_array),
859 * current->state might be TASK_UNINTERRUPTIBLE which will
860 * cause a warning when we prepare to wait again. As it is
861 * rare that this path is taken, it is perfectly safe to force
862 * us to go around the wait_event() loop again, so the warning
863 * is a false-positive. Silence the warning by resetting
864 * thread state
866 __set_current_state(TASK_RUNNING);
867 blk_start_plug(&plug);
868 flush_bio_list(conf, bio);
869 blk_finish_plug(&plug);
870 } else
871 spin_unlock_irq(&conf->device_lock);
874 /* Barriers....
875 * Sometimes we need to suspend IO while we do something else,
876 * either some resync/recovery, or reconfigure the array.
877 * To do this we raise a 'barrier'.
878 * The 'barrier' is a counter that can be raised multiple times
879 * to count how many activities are happening which preclude
880 * normal IO.
881 * We can only raise the barrier if there is no pending IO.
882 * i.e. if nr_pending == 0.
883 * We choose only to raise the barrier if no-one is waiting for the
884 * barrier to go down. This means that as soon as an IO request
885 * is ready, no other operations which require a barrier will start
886 * until the IO request has had a chance.
888 * So: regular IO calls 'wait_barrier'. When that returns there
889 * is no backgroup IO happening, It must arrange to call
890 * allow_barrier when it has finished its IO.
891 * backgroup IO calls must call raise_barrier. Once that returns
892 * there is no normal IO happeing. It must arrange to call
893 * lower_barrier when the particular background IO completes.
895 * If resync/recovery is interrupted, returns -EINTR;
896 * Otherwise, returns 0.
898 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
900 int idx = sector_to_idx(sector_nr);
902 spin_lock_irq(&conf->resync_lock);
904 /* Wait until no block IO is waiting */
905 wait_event_lock_irq(conf->wait_barrier,
906 !atomic_read(&conf->nr_waiting[idx]),
907 conf->resync_lock);
909 /* block any new IO from starting */
910 atomic_inc(&conf->barrier[idx]);
912 * In raise_barrier() we firstly increase conf->barrier[idx] then
913 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
914 * increase conf->nr_pending[idx] then check conf->barrier[idx].
915 * A memory barrier here to make sure conf->nr_pending[idx] won't
916 * be fetched before conf->barrier[idx] is increased. Otherwise
917 * there will be a race between raise_barrier() and _wait_barrier().
919 smp_mb__after_atomic();
921 /* For these conditions we must wait:
922 * A: while the array is in frozen state
923 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
924 * existing in corresponding I/O barrier bucket.
925 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
926 * max resync count which allowed on current I/O barrier bucket.
928 wait_event_lock_irq(conf->wait_barrier,
929 (!conf->array_frozen &&
930 !atomic_read(&conf->nr_pending[idx]) &&
931 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
932 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
933 conf->resync_lock);
935 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
936 atomic_dec(&conf->barrier[idx]);
937 spin_unlock_irq(&conf->resync_lock);
938 wake_up(&conf->wait_barrier);
939 return -EINTR;
942 atomic_inc(&conf->nr_sync_pending);
943 spin_unlock_irq(&conf->resync_lock);
945 return 0;
948 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
950 int idx = sector_to_idx(sector_nr);
952 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
954 atomic_dec(&conf->barrier[idx]);
955 atomic_dec(&conf->nr_sync_pending);
956 wake_up(&conf->wait_barrier);
959 static void _wait_barrier(struct r1conf *conf, int idx)
962 * We need to increase conf->nr_pending[idx] very early here,
963 * then raise_barrier() can be blocked when it waits for
964 * conf->nr_pending[idx] to be 0. Then we can avoid holding
965 * conf->resync_lock when there is no barrier raised in same
966 * barrier unit bucket. Also if the array is frozen, I/O
967 * should be blocked until array is unfrozen.
969 atomic_inc(&conf->nr_pending[idx]);
971 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
972 * check conf->barrier[idx]. In raise_barrier() we firstly increase
973 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
974 * barrier is necessary here to make sure conf->barrier[idx] won't be
975 * fetched before conf->nr_pending[idx] is increased. Otherwise there
976 * will be a race between _wait_barrier() and raise_barrier().
978 smp_mb__after_atomic();
981 * Don't worry about checking two atomic_t variables at same time
982 * here. If during we check conf->barrier[idx], the array is
983 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
984 * 0, it is safe to return and make the I/O continue. Because the
985 * array is frozen, all I/O returned here will eventually complete
986 * or be queued, no race will happen. See code comment in
987 * frozen_array().
989 if (!READ_ONCE(conf->array_frozen) &&
990 !atomic_read(&conf->barrier[idx]))
991 return;
994 * After holding conf->resync_lock, conf->nr_pending[idx]
995 * should be decreased before waiting for barrier to drop.
996 * Otherwise, we may encounter a race condition because
997 * raise_barrer() might be waiting for conf->nr_pending[idx]
998 * to be 0 at same time.
1000 spin_lock_irq(&conf->resync_lock);
1001 atomic_inc(&conf->nr_waiting[idx]);
1002 atomic_dec(&conf->nr_pending[idx]);
1004 * In case freeze_array() is waiting for
1005 * get_unqueued_pending() == extra
1007 wake_up(&conf->wait_barrier);
1008 /* Wait for the barrier in same barrier unit bucket to drop. */
1009 wait_event_lock_irq(conf->wait_barrier,
1010 !conf->array_frozen &&
1011 !atomic_read(&conf->barrier[idx]),
1012 conf->resync_lock);
1013 atomic_inc(&conf->nr_pending[idx]);
1014 atomic_dec(&conf->nr_waiting[idx]);
1015 spin_unlock_irq(&conf->resync_lock);
1018 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1020 int idx = sector_to_idx(sector_nr);
1023 * Very similar to _wait_barrier(). The difference is, for read
1024 * I/O we don't need wait for sync I/O, but if the whole array
1025 * is frozen, the read I/O still has to wait until the array is
1026 * unfrozen. Since there is no ordering requirement with
1027 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1029 atomic_inc(&conf->nr_pending[idx]);
1031 if (!READ_ONCE(conf->array_frozen))
1032 return;
1034 spin_lock_irq(&conf->resync_lock);
1035 atomic_inc(&conf->nr_waiting[idx]);
1036 atomic_dec(&conf->nr_pending[idx]);
1038 * In case freeze_array() is waiting for
1039 * get_unqueued_pending() == extra
1041 wake_up(&conf->wait_barrier);
1042 /* Wait for array to be unfrozen */
1043 wait_event_lock_irq(conf->wait_barrier,
1044 !conf->array_frozen,
1045 conf->resync_lock);
1046 atomic_inc(&conf->nr_pending[idx]);
1047 atomic_dec(&conf->nr_waiting[idx]);
1048 spin_unlock_irq(&conf->resync_lock);
1051 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1053 int idx = sector_to_idx(sector_nr);
1055 _wait_barrier(conf, idx);
1058 static void _allow_barrier(struct r1conf *conf, int idx)
1060 atomic_dec(&conf->nr_pending[idx]);
1061 wake_up(&conf->wait_barrier);
1064 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1066 int idx = sector_to_idx(sector_nr);
1068 _allow_barrier(conf, idx);
1071 /* conf->resync_lock should be held */
1072 static int get_unqueued_pending(struct r1conf *conf)
1074 int idx, ret;
1076 ret = atomic_read(&conf->nr_sync_pending);
1077 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1078 ret += atomic_read(&conf->nr_pending[idx]) -
1079 atomic_read(&conf->nr_queued[idx]);
1081 return ret;
1084 static void freeze_array(struct r1conf *conf, int extra)
1086 /* Stop sync I/O and normal I/O and wait for everything to
1087 * go quiet.
1088 * This is called in two situations:
1089 * 1) management command handlers (reshape, remove disk, quiesce).
1090 * 2) one normal I/O request failed.
1092 * After array_frozen is set to 1, new sync IO will be blocked at
1093 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1094 * or wait_read_barrier(). The flying I/Os will either complete or be
1095 * queued. When everything goes quite, there are only queued I/Os left.
1097 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1098 * barrier bucket index which this I/O request hits. When all sync and
1099 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1100 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1101 * in handle_read_error(), we may call freeze_array() before trying to
1102 * fix the read error. In this case, the error read I/O is not queued,
1103 * so get_unqueued_pending() == 1.
1105 * Therefore before this function returns, we need to wait until
1106 * get_unqueued_pendings(conf) gets equal to extra. For
1107 * normal I/O context, extra is 1, in rested situations extra is 0.
1109 spin_lock_irq(&conf->resync_lock);
1110 conf->array_frozen = 1;
1111 raid1_log(conf->mddev, "wait freeze");
1112 wait_event_lock_irq_cmd(
1113 conf->wait_barrier,
1114 get_unqueued_pending(conf) == extra,
1115 conf->resync_lock,
1116 flush_pending_writes(conf));
1117 spin_unlock_irq(&conf->resync_lock);
1119 static void unfreeze_array(struct r1conf *conf)
1121 /* reverse the effect of the freeze */
1122 spin_lock_irq(&conf->resync_lock);
1123 conf->array_frozen = 0;
1124 spin_unlock_irq(&conf->resync_lock);
1125 wake_up(&conf->wait_barrier);
1128 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1129 struct bio *bio)
1131 int size = bio->bi_iter.bi_size;
1132 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1133 int i = 0;
1134 struct bio *behind_bio = NULL;
1136 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1137 if (!behind_bio)
1138 return;
1140 /* discard op, we don't support writezero/writesame yet */
1141 if (!bio_has_data(bio)) {
1142 behind_bio->bi_iter.bi_size = size;
1143 goto skip_copy;
1146 behind_bio->bi_write_hint = bio->bi_write_hint;
1148 while (i < vcnt && size) {
1149 struct page *page;
1150 int len = min_t(int, PAGE_SIZE, size);
1152 page = alloc_page(GFP_NOIO);
1153 if (unlikely(!page))
1154 goto free_pages;
1156 bio_add_page(behind_bio, page, len, 0);
1158 size -= len;
1159 i++;
1162 bio_copy_data(behind_bio, bio);
1163 skip_copy:
1164 r1_bio->behind_master_bio = behind_bio;
1165 set_bit(R1BIO_BehindIO, &r1_bio->state);
1167 return;
1169 free_pages:
1170 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1171 bio->bi_iter.bi_size);
1172 bio_free_pages(behind_bio);
1173 bio_put(behind_bio);
1176 struct raid1_plug_cb {
1177 struct blk_plug_cb cb;
1178 struct bio_list pending;
1179 int pending_cnt;
1182 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1184 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1185 cb);
1186 struct mddev *mddev = plug->cb.data;
1187 struct r1conf *conf = mddev->private;
1188 struct bio *bio;
1190 if (from_schedule || current->bio_list) {
1191 spin_lock_irq(&conf->device_lock);
1192 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1193 conf->pending_count += plug->pending_cnt;
1194 spin_unlock_irq(&conf->device_lock);
1195 wake_up(&conf->wait_barrier);
1196 md_wakeup_thread(mddev->thread);
1197 kfree(plug);
1198 return;
1201 /* we aren't scheduling, so we can do the write-out directly. */
1202 bio = bio_list_get(&plug->pending);
1203 flush_bio_list(conf, bio);
1204 kfree(plug);
1207 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1209 r1_bio->master_bio = bio;
1210 r1_bio->sectors = bio_sectors(bio);
1211 r1_bio->state = 0;
1212 r1_bio->mddev = mddev;
1213 r1_bio->sector = bio->bi_iter.bi_sector;
1216 static inline struct r1bio *
1217 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1219 struct r1conf *conf = mddev->private;
1220 struct r1bio *r1_bio;
1222 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1223 /* Ensure no bio records IO_BLOCKED */
1224 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1225 init_r1bio(r1_bio, mddev, bio);
1226 return r1_bio;
1229 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1230 int max_read_sectors, struct r1bio *r1_bio)
1232 struct r1conf *conf = mddev->private;
1233 struct raid1_info *mirror;
1234 struct bio *read_bio;
1235 struct bitmap *bitmap = mddev->bitmap;
1236 const int op = bio_op(bio);
1237 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1238 int max_sectors;
1239 int rdisk;
1240 bool print_msg = !!r1_bio;
1241 char b[BDEVNAME_SIZE];
1244 * If r1_bio is set, we are blocking the raid1d thread
1245 * so there is a tiny risk of deadlock. So ask for
1246 * emergency memory if needed.
1248 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1250 if (print_msg) {
1251 /* Need to get the block device name carefully */
1252 struct md_rdev *rdev;
1253 rcu_read_lock();
1254 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1255 if (rdev)
1256 bdevname(rdev->bdev, b);
1257 else
1258 strcpy(b, "???");
1259 rcu_read_unlock();
1263 * Still need barrier for READ in case that whole
1264 * array is frozen.
1266 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1268 if (!r1_bio)
1269 r1_bio = alloc_r1bio(mddev, bio);
1270 else
1271 init_r1bio(r1_bio, mddev, bio);
1272 r1_bio->sectors = max_read_sectors;
1275 * make_request() can abort the operation when read-ahead is being
1276 * used and no empty request is available.
1278 rdisk = read_balance(conf, r1_bio, &max_sectors);
1280 if (rdisk < 0) {
1281 /* couldn't find anywhere to read from */
1282 if (print_msg) {
1283 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1284 mdname(mddev),
1286 (unsigned long long)r1_bio->sector);
1288 raid_end_bio_io(r1_bio);
1289 return;
1291 mirror = conf->mirrors + rdisk;
1293 if (print_msg)
1294 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1295 mdname(mddev),
1296 (unsigned long long)r1_bio->sector,
1297 bdevname(mirror->rdev->bdev, b));
1299 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1300 bitmap) {
1302 * Reading from a write-mostly device must take care not to
1303 * over-take any writes that are 'behind'
1305 raid1_log(mddev, "wait behind writes");
1306 wait_event(bitmap->behind_wait,
1307 atomic_read(&bitmap->behind_writes) == 0);
1310 if (max_sectors < bio_sectors(bio)) {
1311 struct bio *split = bio_split(bio, max_sectors,
1312 gfp, &conf->bio_split);
1313 bio_chain(split, bio);
1314 generic_make_request(bio);
1315 bio = split;
1316 r1_bio->master_bio = bio;
1317 r1_bio->sectors = max_sectors;
1320 r1_bio->read_disk = rdisk;
1322 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1324 r1_bio->bios[rdisk] = read_bio;
1326 read_bio->bi_iter.bi_sector = r1_bio->sector +
1327 mirror->rdev->data_offset;
1328 bio_set_dev(read_bio, mirror->rdev->bdev);
1329 read_bio->bi_end_io = raid1_end_read_request;
1330 bio_set_op_attrs(read_bio, op, do_sync);
1331 if (test_bit(FailFast, &mirror->rdev->flags) &&
1332 test_bit(R1BIO_FailFast, &r1_bio->state))
1333 read_bio->bi_opf |= MD_FAILFAST;
1334 read_bio->bi_private = r1_bio;
1336 if (mddev->gendisk)
1337 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1338 disk_devt(mddev->gendisk), r1_bio->sector);
1340 generic_make_request(read_bio);
1343 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1344 int max_write_sectors)
1346 struct r1conf *conf = mddev->private;
1347 struct r1bio *r1_bio;
1348 int i, disks;
1349 struct bitmap *bitmap = mddev->bitmap;
1350 unsigned long flags;
1351 struct md_rdev *blocked_rdev;
1352 struct blk_plug_cb *cb;
1353 struct raid1_plug_cb *plug = NULL;
1354 int first_clone;
1355 int max_sectors;
1357 if (mddev_is_clustered(mddev) &&
1358 md_cluster_ops->area_resyncing(mddev, WRITE,
1359 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1361 DEFINE_WAIT(w);
1362 for (;;) {
1363 prepare_to_wait(&conf->wait_barrier,
1364 &w, TASK_IDLE);
1365 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1366 bio->bi_iter.bi_sector,
1367 bio_end_sector(bio)))
1368 break;
1369 schedule();
1371 finish_wait(&conf->wait_barrier, &w);
1375 * Register the new request and wait if the reconstruction
1376 * thread has put up a bar for new requests.
1377 * Continue immediately if no resync is active currently.
1379 wait_barrier(conf, bio->bi_iter.bi_sector);
1381 r1_bio = alloc_r1bio(mddev, bio);
1382 r1_bio->sectors = max_write_sectors;
1384 if (conf->pending_count >= max_queued_requests) {
1385 md_wakeup_thread(mddev->thread);
1386 raid1_log(mddev, "wait queued");
1387 wait_event(conf->wait_barrier,
1388 conf->pending_count < max_queued_requests);
1390 /* first select target devices under rcu_lock and
1391 * inc refcount on their rdev. Record them by setting
1392 * bios[x] to bio
1393 * If there are known/acknowledged bad blocks on any device on
1394 * which we have seen a write error, we want to avoid writing those
1395 * blocks.
1396 * This potentially requires several writes to write around
1397 * the bad blocks. Each set of writes gets it's own r1bio
1398 * with a set of bios attached.
1401 disks = conf->raid_disks * 2;
1402 retry_write:
1403 blocked_rdev = NULL;
1404 rcu_read_lock();
1405 max_sectors = r1_bio->sectors;
1406 for (i = 0; i < disks; i++) {
1407 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1408 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1409 atomic_inc(&rdev->nr_pending);
1410 blocked_rdev = rdev;
1411 break;
1413 r1_bio->bios[i] = NULL;
1414 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1415 if (i < conf->raid_disks)
1416 set_bit(R1BIO_Degraded, &r1_bio->state);
1417 continue;
1420 atomic_inc(&rdev->nr_pending);
1421 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1422 sector_t first_bad;
1423 int bad_sectors;
1424 int is_bad;
1426 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1427 &first_bad, &bad_sectors);
1428 if (is_bad < 0) {
1429 /* mustn't write here until the bad block is
1430 * acknowledged*/
1431 set_bit(BlockedBadBlocks, &rdev->flags);
1432 blocked_rdev = rdev;
1433 break;
1435 if (is_bad && first_bad <= r1_bio->sector) {
1436 /* Cannot write here at all */
1437 bad_sectors -= (r1_bio->sector - first_bad);
1438 if (bad_sectors < max_sectors)
1439 /* mustn't write more than bad_sectors
1440 * to other devices yet
1442 max_sectors = bad_sectors;
1443 rdev_dec_pending(rdev, mddev);
1444 /* We don't set R1BIO_Degraded as that
1445 * only applies if the disk is
1446 * missing, so it might be re-added,
1447 * and we want to know to recover this
1448 * chunk.
1449 * In this case the device is here,
1450 * and the fact that this chunk is not
1451 * in-sync is recorded in the bad
1452 * block log
1454 continue;
1456 if (is_bad) {
1457 int good_sectors = first_bad - r1_bio->sector;
1458 if (good_sectors < max_sectors)
1459 max_sectors = good_sectors;
1462 r1_bio->bios[i] = bio;
1464 rcu_read_unlock();
1466 if (unlikely(blocked_rdev)) {
1467 /* Wait for this device to become unblocked */
1468 int j;
1470 for (j = 0; j < i; j++)
1471 if (r1_bio->bios[j])
1472 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1473 r1_bio->state = 0;
1474 allow_barrier(conf, bio->bi_iter.bi_sector);
1475 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1476 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1477 wait_barrier(conf, bio->bi_iter.bi_sector);
1478 goto retry_write;
1481 if (max_sectors < bio_sectors(bio)) {
1482 struct bio *split = bio_split(bio, max_sectors,
1483 GFP_NOIO, &conf->bio_split);
1484 bio_chain(split, bio);
1485 generic_make_request(bio);
1486 bio = split;
1487 r1_bio->master_bio = bio;
1488 r1_bio->sectors = max_sectors;
1491 atomic_set(&r1_bio->remaining, 1);
1492 atomic_set(&r1_bio->behind_remaining, 0);
1494 first_clone = 1;
1496 for (i = 0; i < disks; i++) {
1497 struct bio *mbio = NULL;
1498 struct md_rdev *rdev = conf->mirrors[i].rdev;
1499 if (!r1_bio->bios[i])
1500 continue;
1502 if (first_clone) {
1503 /* do behind I/O ?
1504 * Not if there are too many, or cannot
1505 * allocate memory, or a reader on WriteMostly
1506 * is waiting for behind writes to flush */
1507 if (bitmap &&
1508 (atomic_read(&bitmap->behind_writes)
1509 < mddev->bitmap_info.max_write_behind) &&
1510 !waitqueue_active(&bitmap->behind_wait)) {
1511 alloc_behind_master_bio(r1_bio, bio);
1514 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1515 test_bit(R1BIO_BehindIO, &r1_bio->state));
1516 first_clone = 0;
1519 if (r1_bio->behind_master_bio)
1520 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1521 GFP_NOIO, &mddev->bio_set);
1522 else
1523 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1525 if (r1_bio->behind_master_bio) {
1526 if (test_bit(CollisionCheck, &rdev->flags))
1527 wait_for_serialization(rdev, r1_bio);
1528 if (test_bit(WriteMostly, &rdev->flags))
1529 atomic_inc(&r1_bio->behind_remaining);
1530 } else if (mddev->serialize_policy)
1531 wait_for_serialization(rdev, r1_bio);
1533 r1_bio->bios[i] = mbio;
1535 mbio->bi_iter.bi_sector = (r1_bio->sector +
1536 conf->mirrors[i].rdev->data_offset);
1537 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1538 mbio->bi_end_io = raid1_end_write_request;
1539 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1540 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1541 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1542 conf->raid_disks - mddev->degraded > 1)
1543 mbio->bi_opf |= MD_FAILFAST;
1544 mbio->bi_private = r1_bio;
1546 atomic_inc(&r1_bio->remaining);
1548 if (mddev->gendisk)
1549 trace_block_bio_remap(mbio->bi_disk->queue,
1550 mbio, disk_devt(mddev->gendisk),
1551 r1_bio->sector);
1552 /* flush_pending_writes() needs access to the rdev so...*/
1553 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1555 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1556 if (cb)
1557 plug = container_of(cb, struct raid1_plug_cb, cb);
1558 else
1559 plug = NULL;
1560 if (plug) {
1561 bio_list_add(&plug->pending, mbio);
1562 plug->pending_cnt++;
1563 } else {
1564 spin_lock_irqsave(&conf->device_lock, flags);
1565 bio_list_add(&conf->pending_bio_list, mbio);
1566 conf->pending_count++;
1567 spin_unlock_irqrestore(&conf->device_lock, flags);
1568 md_wakeup_thread(mddev->thread);
1572 r1_bio_write_done(r1_bio);
1574 /* In case raid1d snuck in to freeze_array */
1575 wake_up(&conf->wait_barrier);
1578 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1580 sector_t sectors;
1582 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1583 && md_flush_request(mddev, bio))
1584 return true;
1587 * There is a limit to the maximum size, but
1588 * the read/write handler might find a lower limit
1589 * due to bad blocks. To avoid multiple splits,
1590 * we pass the maximum number of sectors down
1591 * and let the lower level perform the split.
1593 sectors = align_to_barrier_unit_end(
1594 bio->bi_iter.bi_sector, bio_sectors(bio));
1596 if (bio_data_dir(bio) == READ)
1597 raid1_read_request(mddev, bio, sectors, NULL);
1598 else {
1599 if (!md_write_start(mddev,bio))
1600 return false;
1601 raid1_write_request(mddev, bio, sectors);
1603 return true;
1606 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1608 struct r1conf *conf = mddev->private;
1609 int i;
1611 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1612 conf->raid_disks - mddev->degraded);
1613 rcu_read_lock();
1614 for (i = 0; i < conf->raid_disks; i++) {
1615 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1616 seq_printf(seq, "%s",
1617 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1619 rcu_read_unlock();
1620 seq_printf(seq, "]");
1623 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1625 char b[BDEVNAME_SIZE];
1626 struct r1conf *conf = mddev->private;
1627 unsigned long flags;
1630 * If it is not operational, then we have already marked it as dead
1631 * else if it is the last working disks with "fail_last_dev == false",
1632 * ignore the error, let the next level up know.
1633 * else mark the drive as failed
1635 spin_lock_irqsave(&conf->device_lock, flags);
1636 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1637 && (conf->raid_disks - mddev->degraded) == 1) {
1639 * Don't fail the drive, act as though we were just a
1640 * normal single drive.
1641 * However don't try a recovery from this drive as
1642 * it is very likely to fail.
1644 conf->recovery_disabled = mddev->recovery_disabled;
1645 spin_unlock_irqrestore(&conf->device_lock, flags);
1646 return;
1648 set_bit(Blocked, &rdev->flags);
1649 if (test_and_clear_bit(In_sync, &rdev->flags))
1650 mddev->degraded++;
1651 set_bit(Faulty, &rdev->flags);
1652 spin_unlock_irqrestore(&conf->device_lock, flags);
1654 * if recovery is running, make sure it aborts.
1656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657 set_mask_bits(&mddev->sb_flags, 0,
1658 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1659 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1660 "md/raid1:%s: Operation continuing on %d devices.\n",
1661 mdname(mddev), bdevname(rdev->bdev, b),
1662 mdname(mddev), conf->raid_disks - mddev->degraded);
1665 static void print_conf(struct r1conf *conf)
1667 int i;
1669 pr_debug("RAID1 conf printout:\n");
1670 if (!conf) {
1671 pr_debug("(!conf)\n");
1672 return;
1674 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1675 conf->raid_disks);
1677 rcu_read_lock();
1678 for (i = 0; i < conf->raid_disks; i++) {
1679 char b[BDEVNAME_SIZE];
1680 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1681 if (rdev)
1682 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1683 i, !test_bit(In_sync, &rdev->flags),
1684 !test_bit(Faulty, &rdev->flags),
1685 bdevname(rdev->bdev,b));
1687 rcu_read_unlock();
1690 static void close_sync(struct r1conf *conf)
1692 int idx;
1694 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1695 _wait_barrier(conf, idx);
1696 _allow_barrier(conf, idx);
1699 mempool_exit(&conf->r1buf_pool);
1702 static int raid1_spare_active(struct mddev *mddev)
1704 int i;
1705 struct r1conf *conf = mddev->private;
1706 int count = 0;
1707 unsigned long flags;
1710 * Find all failed disks within the RAID1 configuration
1711 * and mark them readable.
1712 * Called under mddev lock, so rcu protection not needed.
1713 * device_lock used to avoid races with raid1_end_read_request
1714 * which expects 'In_sync' flags and ->degraded to be consistent.
1716 spin_lock_irqsave(&conf->device_lock, flags);
1717 for (i = 0; i < conf->raid_disks; i++) {
1718 struct md_rdev *rdev = conf->mirrors[i].rdev;
1719 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1720 if (repl
1721 && !test_bit(Candidate, &repl->flags)
1722 && repl->recovery_offset == MaxSector
1723 && !test_bit(Faulty, &repl->flags)
1724 && !test_and_set_bit(In_sync, &repl->flags)) {
1725 /* replacement has just become active */
1726 if (!rdev ||
1727 !test_and_clear_bit(In_sync, &rdev->flags))
1728 count++;
1729 if (rdev) {
1730 /* Replaced device not technically
1731 * faulty, but we need to be sure
1732 * it gets removed and never re-added
1734 set_bit(Faulty, &rdev->flags);
1735 sysfs_notify_dirent_safe(
1736 rdev->sysfs_state);
1739 if (rdev
1740 && rdev->recovery_offset == MaxSector
1741 && !test_bit(Faulty, &rdev->flags)
1742 && !test_and_set_bit(In_sync, &rdev->flags)) {
1743 count++;
1744 sysfs_notify_dirent_safe(rdev->sysfs_state);
1747 mddev->degraded -= count;
1748 spin_unlock_irqrestore(&conf->device_lock, flags);
1750 print_conf(conf);
1751 return count;
1754 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756 struct r1conf *conf = mddev->private;
1757 int err = -EEXIST;
1758 int mirror = 0;
1759 struct raid1_info *p;
1760 int first = 0;
1761 int last = conf->raid_disks - 1;
1763 if (mddev->recovery_disabled == conf->recovery_disabled)
1764 return -EBUSY;
1766 if (md_integrity_add_rdev(rdev, mddev))
1767 return -ENXIO;
1769 if (rdev->raid_disk >= 0)
1770 first = last = rdev->raid_disk;
1773 * find the disk ... but prefer rdev->saved_raid_disk
1774 * if possible.
1776 if (rdev->saved_raid_disk >= 0 &&
1777 rdev->saved_raid_disk >= first &&
1778 rdev->saved_raid_disk < conf->raid_disks &&
1779 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780 first = last = rdev->saved_raid_disk;
1782 for (mirror = first; mirror <= last; mirror++) {
1783 p = conf->mirrors + mirror;
1784 if (!p->rdev) {
1785 if (mddev->gendisk)
1786 disk_stack_limits(mddev->gendisk, rdev->bdev,
1787 rdev->data_offset << 9);
1789 p->head_position = 0;
1790 rdev->raid_disk = mirror;
1791 err = 0;
1792 /* As all devices are equivalent, we don't need a full recovery
1793 * if this was recently any drive of the array
1795 if (rdev->saved_raid_disk < 0)
1796 conf->fullsync = 1;
1797 rcu_assign_pointer(p->rdev, rdev);
1798 break;
1800 if (test_bit(WantReplacement, &p->rdev->flags) &&
1801 p[conf->raid_disks].rdev == NULL) {
1802 /* Add this device as a replacement */
1803 clear_bit(In_sync, &rdev->flags);
1804 set_bit(Replacement, &rdev->flags);
1805 rdev->raid_disk = mirror;
1806 err = 0;
1807 conf->fullsync = 1;
1808 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1809 break;
1812 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1813 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1814 print_conf(conf);
1815 return err;
1818 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1820 struct r1conf *conf = mddev->private;
1821 int err = 0;
1822 int number = rdev->raid_disk;
1823 struct raid1_info *p = conf->mirrors + number;
1825 if (rdev != p->rdev)
1826 p = conf->mirrors + conf->raid_disks + number;
1828 print_conf(conf);
1829 if (rdev == p->rdev) {
1830 if (test_bit(In_sync, &rdev->flags) ||
1831 atomic_read(&rdev->nr_pending)) {
1832 err = -EBUSY;
1833 goto abort;
1835 /* Only remove non-faulty devices if recovery
1836 * is not possible.
1838 if (!test_bit(Faulty, &rdev->flags) &&
1839 mddev->recovery_disabled != conf->recovery_disabled &&
1840 mddev->degraded < conf->raid_disks) {
1841 err = -EBUSY;
1842 goto abort;
1844 p->rdev = NULL;
1845 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1846 synchronize_rcu();
1847 if (atomic_read(&rdev->nr_pending)) {
1848 /* lost the race, try later */
1849 err = -EBUSY;
1850 p->rdev = rdev;
1851 goto abort;
1854 if (conf->mirrors[conf->raid_disks + number].rdev) {
1855 /* We just removed a device that is being replaced.
1856 * Move down the replacement. We drain all IO before
1857 * doing this to avoid confusion.
1859 struct md_rdev *repl =
1860 conf->mirrors[conf->raid_disks + number].rdev;
1861 freeze_array(conf, 0);
1862 if (atomic_read(&repl->nr_pending)) {
1863 /* It means that some queued IO of retry_list
1864 * hold repl. Thus, we cannot set replacement
1865 * as NULL, avoiding rdev NULL pointer
1866 * dereference in sync_request_write and
1867 * handle_write_finished.
1869 err = -EBUSY;
1870 unfreeze_array(conf);
1871 goto abort;
1873 clear_bit(Replacement, &repl->flags);
1874 p->rdev = repl;
1875 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1876 unfreeze_array(conf);
1879 clear_bit(WantReplacement, &rdev->flags);
1880 err = md_integrity_register(mddev);
1882 abort:
1884 print_conf(conf);
1885 return err;
1888 static void end_sync_read(struct bio *bio)
1890 struct r1bio *r1_bio = get_resync_r1bio(bio);
1892 update_head_pos(r1_bio->read_disk, r1_bio);
1895 * we have read a block, now it needs to be re-written,
1896 * or re-read if the read failed.
1897 * We don't do much here, just schedule handling by raid1d
1899 if (!bio->bi_status)
1900 set_bit(R1BIO_Uptodate, &r1_bio->state);
1902 if (atomic_dec_and_test(&r1_bio->remaining))
1903 reschedule_retry(r1_bio);
1906 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1908 sector_t sync_blocks = 0;
1909 sector_t s = r1_bio->sector;
1910 long sectors_to_go = r1_bio->sectors;
1912 /* make sure these bits don't get cleared. */
1913 do {
1914 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1915 s += sync_blocks;
1916 sectors_to_go -= sync_blocks;
1917 } while (sectors_to_go > 0);
1920 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1922 if (atomic_dec_and_test(&r1_bio->remaining)) {
1923 struct mddev *mddev = r1_bio->mddev;
1924 int s = r1_bio->sectors;
1926 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1927 test_bit(R1BIO_WriteError, &r1_bio->state))
1928 reschedule_retry(r1_bio);
1929 else {
1930 put_buf(r1_bio);
1931 md_done_sync(mddev, s, uptodate);
1936 static void end_sync_write(struct bio *bio)
1938 int uptodate = !bio->bi_status;
1939 struct r1bio *r1_bio = get_resync_r1bio(bio);
1940 struct mddev *mddev = r1_bio->mddev;
1941 struct r1conf *conf = mddev->private;
1942 sector_t first_bad;
1943 int bad_sectors;
1944 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1946 if (!uptodate) {
1947 abort_sync_write(mddev, r1_bio);
1948 set_bit(WriteErrorSeen, &rdev->flags);
1949 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1950 set_bit(MD_RECOVERY_NEEDED, &
1951 mddev->recovery);
1952 set_bit(R1BIO_WriteError, &r1_bio->state);
1953 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1954 &first_bad, &bad_sectors) &&
1955 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1956 r1_bio->sector,
1957 r1_bio->sectors,
1958 &first_bad, &bad_sectors)
1960 set_bit(R1BIO_MadeGood, &r1_bio->state);
1962 put_sync_write_buf(r1_bio, uptodate);
1965 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1966 int sectors, struct page *page, int rw)
1968 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1969 /* success */
1970 return 1;
1971 if (rw == WRITE) {
1972 set_bit(WriteErrorSeen, &rdev->flags);
1973 if (!test_and_set_bit(WantReplacement,
1974 &rdev->flags))
1975 set_bit(MD_RECOVERY_NEEDED, &
1976 rdev->mddev->recovery);
1978 /* need to record an error - either for the block or the device */
1979 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1980 md_error(rdev->mddev, rdev);
1981 return 0;
1984 static int fix_sync_read_error(struct r1bio *r1_bio)
1986 /* Try some synchronous reads of other devices to get
1987 * good data, much like with normal read errors. Only
1988 * read into the pages we already have so we don't
1989 * need to re-issue the read request.
1990 * We don't need to freeze the array, because being in an
1991 * active sync request, there is no normal IO, and
1992 * no overlapping syncs.
1993 * We don't need to check is_badblock() again as we
1994 * made sure that anything with a bad block in range
1995 * will have bi_end_io clear.
1997 struct mddev *mddev = r1_bio->mddev;
1998 struct r1conf *conf = mddev->private;
1999 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2000 struct page **pages = get_resync_pages(bio)->pages;
2001 sector_t sect = r1_bio->sector;
2002 int sectors = r1_bio->sectors;
2003 int idx = 0;
2004 struct md_rdev *rdev;
2006 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2007 if (test_bit(FailFast, &rdev->flags)) {
2008 /* Don't try recovering from here - just fail it
2009 * ... unless it is the last working device of course */
2010 md_error(mddev, rdev);
2011 if (test_bit(Faulty, &rdev->flags))
2012 /* Don't try to read from here, but make sure
2013 * put_buf does it's thing
2015 bio->bi_end_io = end_sync_write;
2018 while(sectors) {
2019 int s = sectors;
2020 int d = r1_bio->read_disk;
2021 int success = 0;
2022 int start;
2024 if (s > (PAGE_SIZE>>9))
2025 s = PAGE_SIZE >> 9;
2026 do {
2027 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2028 /* No rcu protection needed here devices
2029 * can only be removed when no resync is
2030 * active, and resync is currently active
2032 rdev = conf->mirrors[d].rdev;
2033 if (sync_page_io(rdev, sect, s<<9,
2034 pages[idx],
2035 REQ_OP_READ, 0, false)) {
2036 success = 1;
2037 break;
2040 d++;
2041 if (d == conf->raid_disks * 2)
2042 d = 0;
2043 } while (!success && d != r1_bio->read_disk);
2045 if (!success) {
2046 char b[BDEVNAME_SIZE];
2047 int abort = 0;
2048 /* Cannot read from anywhere, this block is lost.
2049 * Record a bad block on each device. If that doesn't
2050 * work just disable and interrupt the recovery.
2051 * Don't fail devices as that won't really help.
2053 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2054 mdname(mddev), bio_devname(bio, b),
2055 (unsigned long long)r1_bio->sector);
2056 for (d = 0; d < conf->raid_disks * 2; d++) {
2057 rdev = conf->mirrors[d].rdev;
2058 if (!rdev || test_bit(Faulty, &rdev->flags))
2059 continue;
2060 if (!rdev_set_badblocks(rdev, sect, s, 0))
2061 abort = 1;
2063 if (abort) {
2064 conf->recovery_disabled =
2065 mddev->recovery_disabled;
2066 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2067 md_done_sync(mddev, r1_bio->sectors, 0);
2068 put_buf(r1_bio);
2069 return 0;
2071 /* Try next page */
2072 sectors -= s;
2073 sect += s;
2074 idx++;
2075 continue;
2078 start = d;
2079 /* write it back and re-read */
2080 while (d != r1_bio->read_disk) {
2081 if (d == 0)
2082 d = conf->raid_disks * 2;
2083 d--;
2084 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2085 continue;
2086 rdev = conf->mirrors[d].rdev;
2087 if (r1_sync_page_io(rdev, sect, s,
2088 pages[idx],
2089 WRITE) == 0) {
2090 r1_bio->bios[d]->bi_end_io = NULL;
2091 rdev_dec_pending(rdev, mddev);
2094 d = start;
2095 while (d != r1_bio->read_disk) {
2096 if (d == 0)
2097 d = conf->raid_disks * 2;
2098 d--;
2099 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2100 continue;
2101 rdev = conf->mirrors[d].rdev;
2102 if (r1_sync_page_io(rdev, sect, s,
2103 pages[idx],
2104 READ) != 0)
2105 atomic_add(s, &rdev->corrected_errors);
2107 sectors -= s;
2108 sect += s;
2109 idx ++;
2111 set_bit(R1BIO_Uptodate, &r1_bio->state);
2112 bio->bi_status = 0;
2113 return 1;
2116 static void process_checks(struct r1bio *r1_bio)
2118 /* We have read all readable devices. If we haven't
2119 * got the block, then there is no hope left.
2120 * If we have, then we want to do a comparison
2121 * and skip the write if everything is the same.
2122 * If any blocks failed to read, then we need to
2123 * attempt an over-write
2125 struct mddev *mddev = r1_bio->mddev;
2126 struct r1conf *conf = mddev->private;
2127 int primary;
2128 int i;
2129 int vcnt;
2131 /* Fix variable parts of all bios */
2132 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2133 for (i = 0; i < conf->raid_disks * 2; i++) {
2134 blk_status_t status;
2135 struct bio *b = r1_bio->bios[i];
2136 struct resync_pages *rp = get_resync_pages(b);
2137 if (b->bi_end_io != end_sync_read)
2138 continue;
2139 /* fixup the bio for reuse, but preserve errno */
2140 status = b->bi_status;
2141 bio_reset(b);
2142 b->bi_status = status;
2143 b->bi_iter.bi_sector = r1_bio->sector +
2144 conf->mirrors[i].rdev->data_offset;
2145 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2146 b->bi_end_io = end_sync_read;
2147 rp->raid_bio = r1_bio;
2148 b->bi_private = rp;
2150 /* initialize bvec table again */
2151 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2153 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2154 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2155 !r1_bio->bios[primary]->bi_status) {
2156 r1_bio->bios[primary]->bi_end_io = NULL;
2157 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2158 break;
2160 r1_bio->read_disk = primary;
2161 for (i = 0; i < conf->raid_disks * 2; i++) {
2162 int j = 0;
2163 struct bio *pbio = r1_bio->bios[primary];
2164 struct bio *sbio = r1_bio->bios[i];
2165 blk_status_t status = sbio->bi_status;
2166 struct page **ppages = get_resync_pages(pbio)->pages;
2167 struct page **spages = get_resync_pages(sbio)->pages;
2168 struct bio_vec *bi;
2169 int page_len[RESYNC_PAGES] = { 0 };
2170 struct bvec_iter_all iter_all;
2172 if (sbio->bi_end_io != end_sync_read)
2173 continue;
2174 /* Now we can 'fixup' the error value */
2175 sbio->bi_status = 0;
2177 bio_for_each_segment_all(bi, sbio, iter_all)
2178 page_len[j++] = bi->bv_len;
2180 if (!status) {
2181 for (j = vcnt; j-- ; ) {
2182 if (memcmp(page_address(ppages[j]),
2183 page_address(spages[j]),
2184 page_len[j]))
2185 break;
2187 } else
2188 j = 0;
2189 if (j >= 0)
2190 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2191 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2192 && !status)) {
2193 /* No need to write to this device. */
2194 sbio->bi_end_io = NULL;
2195 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2196 continue;
2199 bio_copy_data(sbio, pbio);
2203 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2205 struct r1conf *conf = mddev->private;
2206 int i;
2207 int disks = conf->raid_disks * 2;
2208 struct bio *wbio;
2210 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2211 /* ouch - failed to read all of that. */
2212 if (!fix_sync_read_error(r1_bio))
2213 return;
2215 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2216 process_checks(r1_bio);
2219 * schedule writes
2221 atomic_set(&r1_bio->remaining, 1);
2222 for (i = 0; i < disks ; i++) {
2223 wbio = r1_bio->bios[i];
2224 if (wbio->bi_end_io == NULL ||
2225 (wbio->bi_end_io == end_sync_read &&
2226 (i == r1_bio->read_disk ||
2227 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2228 continue;
2229 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2230 abort_sync_write(mddev, r1_bio);
2231 continue;
2234 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2235 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2236 wbio->bi_opf |= MD_FAILFAST;
2238 wbio->bi_end_io = end_sync_write;
2239 atomic_inc(&r1_bio->remaining);
2240 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2242 generic_make_request(wbio);
2245 put_sync_write_buf(r1_bio, 1);
2249 * This is a kernel thread which:
2251 * 1. Retries failed read operations on working mirrors.
2252 * 2. Updates the raid superblock when problems encounter.
2253 * 3. Performs writes following reads for array synchronising.
2256 static void fix_read_error(struct r1conf *conf, int read_disk,
2257 sector_t sect, int sectors)
2259 struct mddev *mddev = conf->mddev;
2260 while(sectors) {
2261 int s = sectors;
2262 int d = read_disk;
2263 int success = 0;
2264 int start;
2265 struct md_rdev *rdev;
2267 if (s > (PAGE_SIZE>>9))
2268 s = PAGE_SIZE >> 9;
2270 do {
2271 sector_t first_bad;
2272 int bad_sectors;
2274 rcu_read_lock();
2275 rdev = rcu_dereference(conf->mirrors[d].rdev);
2276 if (rdev &&
2277 (test_bit(In_sync, &rdev->flags) ||
2278 (!test_bit(Faulty, &rdev->flags) &&
2279 rdev->recovery_offset >= sect + s)) &&
2280 is_badblock(rdev, sect, s,
2281 &first_bad, &bad_sectors) == 0) {
2282 atomic_inc(&rdev->nr_pending);
2283 rcu_read_unlock();
2284 if (sync_page_io(rdev, sect, s<<9,
2285 conf->tmppage, REQ_OP_READ, 0, false))
2286 success = 1;
2287 rdev_dec_pending(rdev, mddev);
2288 if (success)
2289 break;
2290 } else
2291 rcu_read_unlock();
2292 d++;
2293 if (d == conf->raid_disks * 2)
2294 d = 0;
2295 } while (!success && d != read_disk);
2297 if (!success) {
2298 /* Cannot read from anywhere - mark it bad */
2299 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2300 if (!rdev_set_badblocks(rdev, sect, s, 0))
2301 md_error(mddev, rdev);
2302 break;
2304 /* write it back and re-read */
2305 start = d;
2306 while (d != read_disk) {
2307 if (d==0)
2308 d = conf->raid_disks * 2;
2309 d--;
2310 rcu_read_lock();
2311 rdev = rcu_dereference(conf->mirrors[d].rdev);
2312 if (rdev &&
2313 !test_bit(Faulty, &rdev->flags)) {
2314 atomic_inc(&rdev->nr_pending);
2315 rcu_read_unlock();
2316 r1_sync_page_io(rdev, sect, s,
2317 conf->tmppage, WRITE);
2318 rdev_dec_pending(rdev, mddev);
2319 } else
2320 rcu_read_unlock();
2322 d = start;
2323 while (d != read_disk) {
2324 char b[BDEVNAME_SIZE];
2325 if (d==0)
2326 d = conf->raid_disks * 2;
2327 d--;
2328 rcu_read_lock();
2329 rdev = rcu_dereference(conf->mirrors[d].rdev);
2330 if (rdev &&
2331 !test_bit(Faulty, &rdev->flags)) {
2332 atomic_inc(&rdev->nr_pending);
2333 rcu_read_unlock();
2334 if (r1_sync_page_io(rdev, sect, s,
2335 conf->tmppage, READ)) {
2336 atomic_add(s, &rdev->corrected_errors);
2337 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2338 mdname(mddev), s,
2339 (unsigned long long)(sect +
2340 rdev->data_offset),
2341 bdevname(rdev->bdev, b));
2343 rdev_dec_pending(rdev, mddev);
2344 } else
2345 rcu_read_unlock();
2347 sectors -= s;
2348 sect += s;
2352 static int narrow_write_error(struct r1bio *r1_bio, int i)
2354 struct mddev *mddev = r1_bio->mddev;
2355 struct r1conf *conf = mddev->private;
2356 struct md_rdev *rdev = conf->mirrors[i].rdev;
2358 /* bio has the data to be written to device 'i' where
2359 * we just recently had a write error.
2360 * We repeatedly clone the bio and trim down to one block,
2361 * then try the write. Where the write fails we record
2362 * a bad block.
2363 * It is conceivable that the bio doesn't exactly align with
2364 * blocks. We must handle this somehow.
2366 * We currently own a reference on the rdev.
2369 int block_sectors;
2370 sector_t sector;
2371 int sectors;
2372 int sect_to_write = r1_bio->sectors;
2373 int ok = 1;
2375 if (rdev->badblocks.shift < 0)
2376 return 0;
2378 block_sectors = roundup(1 << rdev->badblocks.shift,
2379 bdev_logical_block_size(rdev->bdev) >> 9);
2380 sector = r1_bio->sector;
2381 sectors = ((sector + block_sectors)
2382 & ~(sector_t)(block_sectors - 1))
2383 - sector;
2385 while (sect_to_write) {
2386 struct bio *wbio;
2387 if (sectors > sect_to_write)
2388 sectors = sect_to_write;
2389 /* Write at 'sector' for 'sectors'*/
2391 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2392 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2393 GFP_NOIO,
2394 &mddev->bio_set);
2395 } else {
2396 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2397 &mddev->bio_set);
2400 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2401 wbio->bi_iter.bi_sector = r1_bio->sector;
2402 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2404 bio_trim(wbio, sector - r1_bio->sector, sectors);
2405 wbio->bi_iter.bi_sector += rdev->data_offset;
2406 bio_set_dev(wbio, rdev->bdev);
2408 if (submit_bio_wait(wbio) < 0)
2409 /* failure! */
2410 ok = rdev_set_badblocks(rdev, sector,
2411 sectors, 0)
2412 && ok;
2414 bio_put(wbio);
2415 sect_to_write -= sectors;
2416 sector += sectors;
2417 sectors = block_sectors;
2419 return ok;
2422 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2424 int m;
2425 int s = r1_bio->sectors;
2426 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2427 struct md_rdev *rdev = conf->mirrors[m].rdev;
2428 struct bio *bio = r1_bio->bios[m];
2429 if (bio->bi_end_io == NULL)
2430 continue;
2431 if (!bio->bi_status &&
2432 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2433 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2435 if (bio->bi_status &&
2436 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2437 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2438 md_error(conf->mddev, rdev);
2441 put_buf(r1_bio);
2442 md_done_sync(conf->mddev, s, 1);
2445 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2447 int m, idx;
2448 bool fail = false;
2450 for (m = 0; m < conf->raid_disks * 2 ; m++)
2451 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2452 struct md_rdev *rdev = conf->mirrors[m].rdev;
2453 rdev_clear_badblocks(rdev,
2454 r1_bio->sector,
2455 r1_bio->sectors, 0);
2456 rdev_dec_pending(rdev, conf->mddev);
2457 } else if (r1_bio->bios[m] != NULL) {
2458 /* This drive got a write error. We need to
2459 * narrow down and record precise write
2460 * errors.
2462 fail = true;
2463 if (!narrow_write_error(r1_bio, m)) {
2464 md_error(conf->mddev,
2465 conf->mirrors[m].rdev);
2466 /* an I/O failed, we can't clear the bitmap */
2467 set_bit(R1BIO_Degraded, &r1_bio->state);
2469 rdev_dec_pending(conf->mirrors[m].rdev,
2470 conf->mddev);
2472 if (fail) {
2473 spin_lock_irq(&conf->device_lock);
2474 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2475 idx = sector_to_idx(r1_bio->sector);
2476 atomic_inc(&conf->nr_queued[idx]);
2477 spin_unlock_irq(&conf->device_lock);
2479 * In case freeze_array() is waiting for condition
2480 * get_unqueued_pending() == extra to be true.
2482 wake_up(&conf->wait_barrier);
2483 md_wakeup_thread(conf->mddev->thread);
2484 } else {
2485 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2486 close_write(r1_bio);
2487 raid_end_bio_io(r1_bio);
2491 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2493 struct mddev *mddev = conf->mddev;
2494 struct bio *bio;
2495 struct md_rdev *rdev;
2497 clear_bit(R1BIO_ReadError, &r1_bio->state);
2498 /* we got a read error. Maybe the drive is bad. Maybe just
2499 * the block and we can fix it.
2500 * We freeze all other IO, and try reading the block from
2501 * other devices. When we find one, we re-write
2502 * and check it that fixes the read error.
2503 * This is all done synchronously while the array is
2504 * frozen
2507 bio = r1_bio->bios[r1_bio->read_disk];
2508 bio_put(bio);
2509 r1_bio->bios[r1_bio->read_disk] = NULL;
2511 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2512 if (mddev->ro == 0
2513 && !test_bit(FailFast, &rdev->flags)) {
2514 freeze_array(conf, 1);
2515 fix_read_error(conf, r1_bio->read_disk,
2516 r1_bio->sector, r1_bio->sectors);
2517 unfreeze_array(conf);
2518 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2519 md_error(mddev, rdev);
2520 } else {
2521 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2524 rdev_dec_pending(rdev, conf->mddev);
2525 allow_barrier(conf, r1_bio->sector);
2526 bio = r1_bio->master_bio;
2528 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2529 r1_bio->state = 0;
2530 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2533 static void raid1d(struct md_thread *thread)
2535 struct mddev *mddev = thread->mddev;
2536 struct r1bio *r1_bio;
2537 unsigned long flags;
2538 struct r1conf *conf = mddev->private;
2539 struct list_head *head = &conf->retry_list;
2540 struct blk_plug plug;
2541 int idx;
2543 md_check_recovery(mddev);
2545 if (!list_empty_careful(&conf->bio_end_io_list) &&
2546 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2547 LIST_HEAD(tmp);
2548 spin_lock_irqsave(&conf->device_lock, flags);
2549 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2550 list_splice_init(&conf->bio_end_io_list, &tmp);
2551 spin_unlock_irqrestore(&conf->device_lock, flags);
2552 while (!list_empty(&tmp)) {
2553 r1_bio = list_first_entry(&tmp, struct r1bio,
2554 retry_list);
2555 list_del(&r1_bio->retry_list);
2556 idx = sector_to_idx(r1_bio->sector);
2557 atomic_dec(&conf->nr_queued[idx]);
2558 if (mddev->degraded)
2559 set_bit(R1BIO_Degraded, &r1_bio->state);
2560 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2561 close_write(r1_bio);
2562 raid_end_bio_io(r1_bio);
2566 blk_start_plug(&plug);
2567 for (;;) {
2569 flush_pending_writes(conf);
2571 spin_lock_irqsave(&conf->device_lock, flags);
2572 if (list_empty(head)) {
2573 spin_unlock_irqrestore(&conf->device_lock, flags);
2574 break;
2576 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2577 list_del(head->prev);
2578 idx = sector_to_idx(r1_bio->sector);
2579 atomic_dec(&conf->nr_queued[idx]);
2580 spin_unlock_irqrestore(&conf->device_lock, flags);
2582 mddev = r1_bio->mddev;
2583 conf = mddev->private;
2584 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2585 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2586 test_bit(R1BIO_WriteError, &r1_bio->state))
2587 handle_sync_write_finished(conf, r1_bio);
2588 else
2589 sync_request_write(mddev, r1_bio);
2590 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2591 test_bit(R1BIO_WriteError, &r1_bio->state))
2592 handle_write_finished(conf, r1_bio);
2593 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2594 handle_read_error(conf, r1_bio);
2595 else
2596 WARN_ON_ONCE(1);
2598 cond_resched();
2599 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2600 md_check_recovery(mddev);
2602 blk_finish_plug(&plug);
2605 static int init_resync(struct r1conf *conf)
2607 int buffs;
2609 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2610 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2612 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2613 r1buf_pool_free, conf->poolinfo);
2616 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2618 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2619 struct resync_pages *rps;
2620 struct bio *bio;
2621 int i;
2623 for (i = conf->poolinfo->raid_disks; i--; ) {
2624 bio = r1bio->bios[i];
2625 rps = bio->bi_private;
2626 bio_reset(bio);
2627 bio->bi_private = rps;
2629 r1bio->master_bio = NULL;
2630 return r1bio;
2634 * perform a "sync" on one "block"
2636 * We need to make sure that no normal I/O request - particularly write
2637 * requests - conflict with active sync requests.
2639 * This is achieved by tracking pending requests and a 'barrier' concept
2640 * that can be installed to exclude normal IO requests.
2643 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2644 int *skipped)
2646 struct r1conf *conf = mddev->private;
2647 struct r1bio *r1_bio;
2648 struct bio *bio;
2649 sector_t max_sector, nr_sectors;
2650 int disk = -1;
2651 int i;
2652 int wonly = -1;
2653 int write_targets = 0, read_targets = 0;
2654 sector_t sync_blocks;
2655 int still_degraded = 0;
2656 int good_sectors = RESYNC_SECTORS;
2657 int min_bad = 0; /* number of sectors that are bad in all devices */
2658 int idx = sector_to_idx(sector_nr);
2659 int page_idx = 0;
2661 if (!mempool_initialized(&conf->r1buf_pool))
2662 if (init_resync(conf))
2663 return 0;
2665 max_sector = mddev->dev_sectors;
2666 if (sector_nr >= max_sector) {
2667 /* If we aborted, we need to abort the
2668 * sync on the 'current' bitmap chunk (there will
2669 * only be one in raid1 resync.
2670 * We can find the current addess in mddev->curr_resync
2672 if (mddev->curr_resync < max_sector) /* aborted */
2673 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2674 &sync_blocks, 1);
2675 else /* completed sync */
2676 conf->fullsync = 0;
2678 md_bitmap_close_sync(mddev->bitmap);
2679 close_sync(conf);
2681 if (mddev_is_clustered(mddev)) {
2682 conf->cluster_sync_low = 0;
2683 conf->cluster_sync_high = 0;
2685 return 0;
2688 if (mddev->bitmap == NULL &&
2689 mddev->recovery_cp == MaxSector &&
2690 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2691 conf->fullsync == 0) {
2692 *skipped = 1;
2693 return max_sector - sector_nr;
2695 /* before building a request, check if we can skip these blocks..
2696 * This call the bitmap_start_sync doesn't actually record anything
2698 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2699 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2700 /* We can skip this block, and probably several more */
2701 *skipped = 1;
2702 return sync_blocks;
2706 * If there is non-resync activity waiting for a turn, then let it
2707 * though before starting on this new sync request.
2709 if (atomic_read(&conf->nr_waiting[idx]))
2710 schedule_timeout_uninterruptible(1);
2712 /* we are incrementing sector_nr below. To be safe, we check against
2713 * sector_nr + two times RESYNC_SECTORS
2716 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2717 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2720 if (raise_barrier(conf, sector_nr))
2721 return 0;
2723 r1_bio = raid1_alloc_init_r1buf(conf);
2725 rcu_read_lock();
2727 * If we get a correctably read error during resync or recovery,
2728 * we might want to read from a different device. So we
2729 * flag all drives that could conceivably be read from for READ,
2730 * and any others (which will be non-In_sync devices) for WRITE.
2731 * If a read fails, we try reading from something else for which READ
2732 * is OK.
2735 r1_bio->mddev = mddev;
2736 r1_bio->sector = sector_nr;
2737 r1_bio->state = 0;
2738 set_bit(R1BIO_IsSync, &r1_bio->state);
2739 /* make sure good_sectors won't go across barrier unit boundary */
2740 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2742 for (i = 0; i < conf->raid_disks * 2; i++) {
2743 struct md_rdev *rdev;
2744 bio = r1_bio->bios[i];
2746 rdev = rcu_dereference(conf->mirrors[i].rdev);
2747 if (rdev == NULL ||
2748 test_bit(Faulty, &rdev->flags)) {
2749 if (i < conf->raid_disks)
2750 still_degraded = 1;
2751 } else if (!test_bit(In_sync, &rdev->flags)) {
2752 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2753 bio->bi_end_io = end_sync_write;
2754 write_targets ++;
2755 } else {
2756 /* may need to read from here */
2757 sector_t first_bad = MaxSector;
2758 int bad_sectors;
2760 if (is_badblock(rdev, sector_nr, good_sectors,
2761 &first_bad, &bad_sectors)) {
2762 if (first_bad > sector_nr)
2763 good_sectors = first_bad - sector_nr;
2764 else {
2765 bad_sectors -= (sector_nr - first_bad);
2766 if (min_bad == 0 ||
2767 min_bad > bad_sectors)
2768 min_bad = bad_sectors;
2771 if (sector_nr < first_bad) {
2772 if (test_bit(WriteMostly, &rdev->flags)) {
2773 if (wonly < 0)
2774 wonly = i;
2775 } else {
2776 if (disk < 0)
2777 disk = i;
2779 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2780 bio->bi_end_io = end_sync_read;
2781 read_targets++;
2782 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2783 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2784 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2786 * The device is suitable for reading (InSync),
2787 * but has bad block(s) here. Let's try to correct them,
2788 * if we are doing resync or repair. Otherwise, leave
2789 * this device alone for this sync request.
2791 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2792 bio->bi_end_io = end_sync_write;
2793 write_targets++;
2796 if (rdev && bio->bi_end_io) {
2797 atomic_inc(&rdev->nr_pending);
2798 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2799 bio_set_dev(bio, rdev->bdev);
2800 if (test_bit(FailFast, &rdev->flags))
2801 bio->bi_opf |= MD_FAILFAST;
2804 rcu_read_unlock();
2805 if (disk < 0)
2806 disk = wonly;
2807 r1_bio->read_disk = disk;
2809 if (read_targets == 0 && min_bad > 0) {
2810 /* These sectors are bad on all InSync devices, so we
2811 * need to mark them bad on all write targets
2813 int ok = 1;
2814 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2815 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2816 struct md_rdev *rdev = conf->mirrors[i].rdev;
2817 ok = rdev_set_badblocks(rdev, sector_nr,
2818 min_bad, 0
2819 ) && ok;
2821 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2822 *skipped = 1;
2823 put_buf(r1_bio);
2825 if (!ok) {
2826 /* Cannot record the badblocks, so need to
2827 * abort the resync.
2828 * If there are multiple read targets, could just
2829 * fail the really bad ones ???
2831 conf->recovery_disabled = mddev->recovery_disabled;
2832 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2833 return 0;
2834 } else
2835 return min_bad;
2838 if (min_bad > 0 && min_bad < good_sectors) {
2839 /* only resync enough to reach the next bad->good
2840 * transition */
2841 good_sectors = min_bad;
2844 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2845 /* extra read targets are also write targets */
2846 write_targets += read_targets-1;
2848 if (write_targets == 0 || read_targets == 0) {
2849 /* There is nowhere to write, so all non-sync
2850 * drives must be failed - so we are finished
2852 sector_t rv;
2853 if (min_bad > 0)
2854 max_sector = sector_nr + min_bad;
2855 rv = max_sector - sector_nr;
2856 *skipped = 1;
2857 put_buf(r1_bio);
2858 return rv;
2861 if (max_sector > mddev->resync_max)
2862 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863 if (max_sector > sector_nr + good_sectors)
2864 max_sector = sector_nr + good_sectors;
2865 nr_sectors = 0;
2866 sync_blocks = 0;
2867 do {
2868 struct page *page;
2869 int len = PAGE_SIZE;
2870 if (sector_nr + (len>>9) > max_sector)
2871 len = (max_sector - sector_nr) << 9;
2872 if (len == 0)
2873 break;
2874 if (sync_blocks == 0) {
2875 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2876 &sync_blocks, still_degraded) &&
2877 !conf->fullsync &&
2878 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2879 break;
2880 if ((len >> 9) > sync_blocks)
2881 len = sync_blocks<<9;
2884 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2885 struct resync_pages *rp;
2887 bio = r1_bio->bios[i];
2888 rp = get_resync_pages(bio);
2889 if (bio->bi_end_io) {
2890 page = resync_fetch_page(rp, page_idx);
2893 * won't fail because the vec table is big
2894 * enough to hold all these pages
2896 bio_add_page(bio, page, len, 0);
2899 nr_sectors += len>>9;
2900 sector_nr += len>>9;
2901 sync_blocks -= (len>>9);
2902 } while (++page_idx < RESYNC_PAGES);
2904 r1_bio->sectors = nr_sectors;
2906 if (mddev_is_clustered(mddev) &&
2907 conf->cluster_sync_high < sector_nr + nr_sectors) {
2908 conf->cluster_sync_low = mddev->curr_resync_completed;
2909 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2910 /* Send resync message */
2911 md_cluster_ops->resync_info_update(mddev,
2912 conf->cluster_sync_low,
2913 conf->cluster_sync_high);
2916 /* For a user-requested sync, we read all readable devices and do a
2917 * compare
2919 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2920 atomic_set(&r1_bio->remaining, read_targets);
2921 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2922 bio = r1_bio->bios[i];
2923 if (bio->bi_end_io == end_sync_read) {
2924 read_targets--;
2925 md_sync_acct_bio(bio, nr_sectors);
2926 if (read_targets == 1)
2927 bio->bi_opf &= ~MD_FAILFAST;
2928 generic_make_request(bio);
2931 } else {
2932 atomic_set(&r1_bio->remaining, 1);
2933 bio = r1_bio->bios[r1_bio->read_disk];
2934 md_sync_acct_bio(bio, nr_sectors);
2935 if (read_targets == 1)
2936 bio->bi_opf &= ~MD_FAILFAST;
2937 generic_make_request(bio);
2939 return nr_sectors;
2942 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2944 if (sectors)
2945 return sectors;
2947 return mddev->dev_sectors;
2950 static struct r1conf *setup_conf(struct mddev *mddev)
2952 struct r1conf *conf;
2953 int i;
2954 struct raid1_info *disk;
2955 struct md_rdev *rdev;
2956 int err = -ENOMEM;
2958 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2959 if (!conf)
2960 goto abort;
2962 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2963 sizeof(atomic_t), GFP_KERNEL);
2964 if (!conf->nr_pending)
2965 goto abort;
2967 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2968 sizeof(atomic_t), GFP_KERNEL);
2969 if (!conf->nr_waiting)
2970 goto abort;
2972 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2973 sizeof(atomic_t), GFP_KERNEL);
2974 if (!conf->nr_queued)
2975 goto abort;
2977 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2978 sizeof(atomic_t), GFP_KERNEL);
2979 if (!conf->barrier)
2980 goto abort;
2982 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2983 mddev->raid_disks, 2),
2984 GFP_KERNEL);
2985 if (!conf->mirrors)
2986 goto abort;
2988 conf->tmppage = alloc_page(GFP_KERNEL);
2989 if (!conf->tmppage)
2990 goto abort;
2992 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2993 if (!conf->poolinfo)
2994 goto abort;
2995 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2996 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2997 rbio_pool_free, conf->poolinfo);
2998 if (err)
2999 goto abort;
3001 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3002 if (err)
3003 goto abort;
3005 conf->poolinfo->mddev = mddev;
3007 err = -EINVAL;
3008 spin_lock_init(&conf->device_lock);
3009 rdev_for_each(rdev, mddev) {
3010 int disk_idx = rdev->raid_disk;
3011 if (disk_idx >= mddev->raid_disks
3012 || disk_idx < 0)
3013 continue;
3014 if (test_bit(Replacement, &rdev->flags))
3015 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3016 else
3017 disk = conf->mirrors + disk_idx;
3019 if (disk->rdev)
3020 goto abort;
3021 disk->rdev = rdev;
3022 disk->head_position = 0;
3023 disk->seq_start = MaxSector;
3025 conf->raid_disks = mddev->raid_disks;
3026 conf->mddev = mddev;
3027 INIT_LIST_HEAD(&conf->retry_list);
3028 INIT_LIST_HEAD(&conf->bio_end_io_list);
3030 spin_lock_init(&conf->resync_lock);
3031 init_waitqueue_head(&conf->wait_barrier);
3033 bio_list_init(&conf->pending_bio_list);
3034 conf->pending_count = 0;
3035 conf->recovery_disabled = mddev->recovery_disabled - 1;
3037 err = -EIO;
3038 for (i = 0; i < conf->raid_disks * 2; i++) {
3040 disk = conf->mirrors + i;
3042 if (i < conf->raid_disks &&
3043 disk[conf->raid_disks].rdev) {
3044 /* This slot has a replacement. */
3045 if (!disk->rdev) {
3046 /* No original, just make the replacement
3047 * a recovering spare
3049 disk->rdev =
3050 disk[conf->raid_disks].rdev;
3051 disk[conf->raid_disks].rdev = NULL;
3052 } else if (!test_bit(In_sync, &disk->rdev->flags))
3053 /* Original is not in_sync - bad */
3054 goto abort;
3057 if (!disk->rdev ||
3058 !test_bit(In_sync, &disk->rdev->flags)) {
3059 disk->head_position = 0;
3060 if (disk->rdev &&
3061 (disk->rdev->saved_raid_disk < 0))
3062 conf->fullsync = 1;
3066 err = -ENOMEM;
3067 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3068 if (!conf->thread)
3069 goto abort;
3071 return conf;
3073 abort:
3074 if (conf) {
3075 mempool_exit(&conf->r1bio_pool);
3076 kfree(conf->mirrors);
3077 safe_put_page(conf->tmppage);
3078 kfree(conf->poolinfo);
3079 kfree(conf->nr_pending);
3080 kfree(conf->nr_waiting);
3081 kfree(conf->nr_queued);
3082 kfree(conf->barrier);
3083 bioset_exit(&conf->bio_split);
3084 kfree(conf);
3086 return ERR_PTR(err);
3089 static void raid1_free(struct mddev *mddev, void *priv);
3090 static int raid1_run(struct mddev *mddev)
3092 struct r1conf *conf;
3093 int i;
3094 struct md_rdev *rdev;
3095 int ret;
3096 bool discard_supported = false;
3098 if (mddev->level != 1) {
3099 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3100 mdname(mddev), mddev->level);
3101 return -EIO;
3103 if (mddev->reshape_position != MaxSector) {
3104 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3105 mdname(mddev));
3106 return -EIO;
3108 if (mddev_init_writes_pending(mddev) < 0)
3109 return -ENOMEM;
3111 * copy the already verified devices into our private RAID1
3112 * bookkeeping area. [whatever we allocate in run(),
3113 * should be freed in raid1_free()]
3115 if (mddev->private == NULL)
3116 conf = setup_conf(mddev);
3117 else
3118 conf = mddev->private;
3120 if (IS_ERR(conf))
3121 return PTR_ERR(conf);
3123 if (mddev->queue) {
3124 blk_queue_max_write_same_sectors(mddev->queue, 0);
3125 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3128 rdev_for_each(rdev, mddev) {
3129 if (!mddev->gendisk)
3130 continue;
3131 disk_stack_limits(mddev->gendisk, rdev->bdev,
3132 rdev->data_offset << 9);
3133 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3134 discard_supported = true;
3137 mddev->degraded = 0;
3138 for (i = 0; i < conf->raid_disks; i++)
3139 if (conf->mirrors[i].rdev == NULL ||
3140 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3141 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3142 mddev->degraded++;
3144 * RAID1 needs at least one disk in active
3146 if (conf->raid_disks - mddev->degraded < 1) {
3147 ret = -EINVAL;
3148 goto abort;
3151 if (conf->raid_disks - mddev->degraded == 1)
3152 mddev->recovery_cp = MaxSector;
3154 if (mddev->recovery_cp != MaxSector)
3155 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3156 mdname(mddev));
3157 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3158 mdname(mddev), mddev->raid_disks - mddev->degraded,
3159 mddev->raid_disks);
3162 * Ok, everything is just fine now
3164 mddev->thread = conf->thread;
3165 conf->thread = NULL;
3166 mddev->private = conf;
3167 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3169 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3171 if (mddev->queue) {
3172 if (discard_supported)
3173 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3174 mddev->queue);
3175 else
3176 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3177 mddev->queue);
3180 ret = md_integrity_register(mddev);
3181 if (ret) {
3182 md_unregister_thread(&mddev->thread);
3183 goto abort;
3185 return 0;
3187 abort:
3188 raid1_free(mddev, conf);
3189 return ret;
3192 static void raid1_free(struct mddev *mddev, void *priv)
3194 struct r1conf *conf = priv;
3196 mempool_exit(&conf->r1bio_pool);
3197 kfree(conf->mirrors);
3198 safe_put_page(conf->tmppage);
3199 kfree(conf->poolinfo);
3200 kfree(conf->nr_pending);
3201 kfree(conf->nr_waiting);
3202 kfree(conf->nr_queued);
3203 kfree(conf->barrier);
3204 bioset_exit(&conf->bio_split);
3205 kfree(conf);
3208 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3210 /* no resync is happening, and there is enough space
3211 * on all devices, so we can resize.
3212 * We need to make sure resync covers any new space.
3213 * If the array is shrinking we should possibly wait until
3214 * any io in the removed space completes, but it hardly seems
3215 * worth it.
3217 sector_t newsize = raid1_size(mddev, sectors, 0);
3218 if (mddev->external_size &&
3219 mddev->array_sectors > newsize)
3220 return -EINVAL;
3221 if (mddev->bitmap) {
3222 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3223 if (ret)
3224 return ret;
3226 md_set_array_sectors(mddev, newsize);
3227 if (sectors > mddev->dev_sectors &&
3228 mddev->recovery_cp > mddev->dev_sectors) {
3229 mddev->recovery_cp = mddev->dev_sectors;
3230 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3232 mddev->dev_sectors = sectors;
3233 mddev->resync_max_sectors = sectors;
3234 return 0;
3237 static int raid1_reshape(struct mddev *mddev)
3239 /* We need to:
3240 * 1/ resize the r1bio_pool
3241 * 2/ resize conf->mirrors
3243 * We allocate a new r1bio_pool if we can.
3244 * Then raise a device barrier and wait until all IO stops.
3245 * Then resize conf->mirrors and swap in the new r1bio pool.
3247 * At the same time, we "pack" the devices so that all the missing
3248 * devices have the higher raid_disk numbers.
3250 mempool_t newpool, oldpool;
3251 struct pool_info *newpoolinfo;
3252 struct raid1_info *newmirrors;
3253 struct r1conf *conf = mddev->private;
3254 int cnt, raid_disks;
3255 unsigned long flags;
3256 int d, d2;
3257 int ret;
3259 memset(&newpool, 0, sizeof(newpool));
3260 memset(&oldpool, 0, sizeof(oldpool));
3262 /* Cannot change chunk_size, layout, or level */
3263 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3264 mddev->layout != mddev->new_layout ||
3265 mddev->level != mddev->new_level) {
3266 mddev->new_chunk_sectors = mddev->chunk_sectors;
3267 mddev->new_layout = mddev->layout;
3268 mddev->new_level = mddev->level;
3269 return -EINVAL;
3272 if (!mddev_is_clustered(mddev))
3273 md_allow_write(mddev);
3275 raid_disks = mddev->raid_disks + mddev->delta_disks;
3277 if (raid_disks < conf->raid_disks) {
3278 cnt=0;
3279 for (d= 0; d < conf->raid_disks; d++)
3280 if (conf->mirrors[d].rdev)
3281 cnt++;
3282 if (cnt > raid_disks)
3283 return -EBUSY;
3286 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3287 if (!newpoolinfo)
3288 return -ENOMEM;
3289 newpoolinfo->mddev = mddev;
3290 newpoolinfo->raid_disks = raid_disks * 2;
3292 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3293 rbio_pool_free, newpoolinfo);
3294 if (ret) {
3295 kfree(newpoolinfo);
3296 return ret;
3298 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3299 raid_disks, 2),
3300 GFP_KERNEL);
3301 if (!newmirrors) {
3302 kfree(newpoolinfo);
3303 mempool_exit(&newpool);
3304 return -ENOMEM;
3307 freeze_array(conf, 0);
3309 /* ok, everything is stopped */
3310 oldpool = conf->r1bio_pool;
3311 conf->r1bio_pool = newpool;
3313 for (d = d2 = 0; d < conf->raid_disks; d++) {
3314 struct md_rdev *rdev = conf->mirrors[d].rdev;
3315 if (rdev && rdev->raid_disk != d2) {
3316 sysfs_unlink_rdev(mddev, rdev);
3317 rdev->raid_disk = d2;
3318 sysfs_unlink_rdev(mddev, rdev);
3319 if (sysfs_link_rdev(mddev, rdev))
3320 pr_warn("md/raid1:%s: cannot register rd%d\n",
3321 mdname(mddev), rdev->raid_disk);
3323 if (rdev)
3324 newmirrors[d2++].rdev = rdev;
3326 kfree(conf->mirrors);
3327 conf->mirrors = newmirrors;
3328 kfree(conf->poolinfo);
3329 conf->poolinfo = newpoolinfo;
3331 spin_lock_irqsave(&conf->device_lock, flags);
3332 mddev->degraded += (raid_disks - conf->raid_disks);
3333 spin_unlock_irqrestore(&conf->device_lock, flags);
3334 conf->raid_disks = mddev->raid_disks = raid_disks;
3335 mddev->delta_disks = 0;
3337 unfreeze_array(conf);
3339 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3340 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3341 md_wakeup_thread(mddev->thread);
3343 mempool_exit(&oldpool);
3344 return 0;
3347 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3349 struct r1conf *conf = mddev->private;
3351 if (quiesce)
3352 freeze_array(conf, 0);
3353 else
3354 unfreeze_array(conf);
3357 static void *raid1_takeover(struct mddev *mddev)
3359 /* raid1 can take over:
3360 * raid5 with 2 devices, any layout or chunk size
3362 if (mddev->level == 5 && mddev->raid_disks == 2) {
3363 struct r1conf *conf;
3364 mddev->new_level = 1;
3365 mddev->new_layout = 0;
3366 mddev->new_chunk_sectors = 0;
3367 conf = setup_conf(mddev);
3368 if (!IS_ERR(conf)) {
3369 /* Array must appear to be quiesced */
3370 conf->array_frozen = 1;
3371 mddev_clear_unsupported_flags(mddev,
3372 UNSUPPORTED_MDDEV_FLAGS);
3374 return conf;
3376 return ERR_PTR(-EINVAL);
3379 static struct md_personality raid1_personality =
3381 .name = "raid1",
3382 .level = 1,
3383 .owner = THIS_MODULE,
3384 .make_request = raid1_make_request,
3385 .run = raid1_run,
3386 .free = raid1_free,
3387 .status = raid1_status,
3388 .error_handler = raid1_error,
3389 .hot_add_disk = raid1_add_disk,
3390 .hot_remove_disk= raid1_remove_disk,
3391 .spare_active = raid1_spare_active,
3392 .sync_request = raid1_sync_request,
3393 .resize = raid1_resize,
3394 .size = raid1_size,
3395 .check_reshape = raid1_reshape,
3396 .quiesce = raid1_quiesce,
3397 .takeover = raid1_takeover,
3398 .congested = raid1_congested,
3401 static int __init raid_init(void)
3403 return register_md_personality(&raid1_personality);
3406 static void raid_exit(void)
3408 unregister_md_personality(&raid1_personality);
3411 module_init(raid_init);
3412 module_exit(raid_exit);
3413 MODULE_LICENSE("GPL");
3414 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3415 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3416 MODULE_ALIAS("md-raid1");
3417 MODULE_ALIAS("md-level-1");
3419 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);