1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
64 static bool devices_handle_discard_safely
= false;
65 module_param(devices_handle_discard_safely
, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely
,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct
*raid5_wq
;
70 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
72 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
73 return &conf
->stripe_hashtbl
[hash
];
76 static inline int stripe_hash_locks_hash(sector_t sect
)
78 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
81 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
83 spin_lock_irq(conf
->hash_locks
+ hash
);
84 spin_lock(&conf
->device_lock
);
87 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
89 spin_unlock(&conf
->device_lock
);
90 spin_unlock_irq(conf
->hash_locks
+ hash
);
93 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
96 spin_lock_irq(conf
->hash_locks
);
97 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
98 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
99 spin_lock(&conf
->device_lock
);
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
105 spin_unlock(&conf
->device_lock
);
106 for (i
= NR_STRIPE_HASH_LOCKS
- 1; i
; i
--)
107 spin_unlock(conf
->hash_locks
+ i
);
108 spin_unlock_irq(conf
->hash_locks
);
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head
*sh
)
115 /* ddf always start from first device */
117 /* md starts just after Q block */
118 if (sh
->qd_idx
== sh
->disks
- 1)
121 return sh
->qd_idx
+ 1;
123 static inline int raid6_next_disk(int disk
, int raid_disks
)
126 return (disk
< raid_disks
) ? disk
: 0;
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
134 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
135 int *count
, int syndrome_disks
)
141 if (idx
== sh
->pd_idx
)
142 return syndrome_disks
;
143 if (idx
== sh
->qd_idx
)
144 return syndrome_disks
+ 1;
150 static void print_raid5_conf (struct r5conf
*conf
);
152 static int stripe_operations_active(struct stripe_head
*sh
)
154 return sh
->check_state
|| sh
->reconstruct_state
||
155 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
156 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
159 static bool stripe_is_lowprio(struct stripe_head
*sh
)
161 return (test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) &&
163 !test_bit(STRIPE_R5C_CACHING
, &sh
->state
);
166 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
168 struct r5conf
*conf
= sh
->raid_conf
;
169 struct r5worker_group
*group
;
171 int i
, cpu
= sh
->cpu
;
173 if (!cpu_online(cpu
)) {
174 cpu
= cpumask_any(cpu_online_mask
);
178 if (list_empty(&sh
->lru
)) {
179 struct r5worker_group
*group
;
180 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
181 if (stripe_is_lowprio(sh
))
182 list_add_tail(&sh
->lru
, &group
->loprio_list
);
184 list_add_tail(&sh
->lru
, &group
->handle_list
);
185 group
->stripes_cnt
++;
189 if (conf
->worker_cnt_per_group
== 0) {
190 md_wakeup_thread(conf
->mddev
->thread
);
194 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
196 group
->workers
[0].working
= true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
200 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
201 /* wakeup more workers */
202 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
203 if (group
->workers
[i
].working
== false) {
204 group
->workers
[i
].working
= true;
205 queue_work_on(sh
->cpu
, raid5_wq
,
206 &group
->workers
[i
].work
);
212 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
213 struct list_head
*temp_inactive_list
)
216 int injournal
= 0; /* number of date pages with R5_InJournal */
218 BUG_ON(!list_empty(&sh
->lru
));
219 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
221 if (r5c_is_writeback(conf
->log
))
222 for (i
= sh
->disks
; i
--; )
223 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
232 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) ||
233 (conf
->quiesce
&& r5c_is_writeback(conf
->log
) &&
234 !test_bit(STRIPE_HANDLE
, &sh
->state
) && injournal
!= 0)) {
235 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
236 r5c_make_stripe_write_out(sh
);
237 set_bit(STRIPE_HANDLE
, &sh
->state
);
240 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
241 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
243 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
244 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
245 sh
->bm_seq
- conf
->seq_write
> 0)
246 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
248 clear_bit(STRIPE_DELAYED
, &sh
->state
);
249 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
250 if (conf
->worker_cnt_per_group
== 0) {
251 if (stripe_is_lowprio(sh
))
252 list_add_tail(&sh
->lru
,
255 list_add_tail(&sh
->lru
,
258 raid5_wakeup_stripe_thread(sh
);
262 md_wakeup_thread(conf
->mddev
->thread
);
264 BUG_ON(stripe_operations_active(sh
));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
266 if (atomic_dec_return(&conf
->preread_active_stripes
)
268 md_wakeup_thread(conf
->mddev
->thread
);
269 atomic_dec(&conf
->active_stripes
);
270 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
271 if (!r5c_is_writeback(conf
->log
))
272 list_add_tail(&sh
->lru
, temp_inactive_list
);
274 WARN_ON(test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
));
276 list_add_tail(&sh
->lru
, temp_inactive_list
);
277 else if (injournal
== conf
->raid_disks
- conf
->max_degraded
) {
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
))
280 atomic_inc(&conf
->r5c_cached_full_stripes
);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
282 atomic_dec(&conf
->r5c_cached_partial_stripes
);
283 list_add_tail(&sh
->lru
, &conf
->r5c_full_stripe_list
);
284 r5c_check_cached_full_stripe(conf
);
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
291 list_add_tail(&sh
->lru
, &conf
->r5c_partial_stripe_list
);
297 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
298 struct list_head
*temp_inactive_list
)
300 if (atomic_dec_and_test(&sh
->count
))
301 do_release_stripe(conf
, sh
, temp_inactive_list
);
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
311 static void release_inactive_stripe_list(struct r5conf
*conf
,
312 struct list_head
*temp_inactive_list
,
316 bool do_wakeup
= false;
319 if (hash
== NR_STRIPE_HASH_LOCKS
) {
320 size
= NR_STRIPE_HASH_LOCKS
;
321 hash
= NR_STRIPE_HASH_LOCKS
- 1;
325 struct list_head
*list
= &temp_inactive_list
[size
- 1];
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
331 if (!list_empty_careful(list
)) {
332 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
333 if (list_empty(conf
->inactive_list
+ hash
) &&
335 atomic_dec(&conf
->empty_inactive_list_nr
);
336 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
338 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
345 wake_up(&conf
->wait_for_stripe
);
346 if (atomic_read(&conf
->active_stripes
) == 0)
347 wake_up(&conf
->wait_for_quiescent
);
348 if (conf
->retry_read_aligned
)
349 md_wakeup_thread(conf
->mddev
->thread
);
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf
*conf
,
355 struct list_head
*temp_inactive_list
)
357 struct stripe_head
*sh
, *t
;
359 struct llist_node
*head
;
361 head
= llist_del_all(&conf
->released_stripes
);
362 head
= llist_reverse_order(head
);
363 llist_for_each_entry_safe(sh
, t
, head
, release_list
) {
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
374 hash
= sh
->hash_lock_index
;
375 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
382 void raid5_release_stripe(struct stripe_head
*sh
)
384 struct r5conf
*conf
= sh
->raid_conf
;
386 struct list_head list
;
390 /* Avoid release_list until the last reference.
392 if (atomic_add_unless(&sh
->count
, -1, 1))
395 if (unlikely(!conf
->mddev
->thread
) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
398 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
400 md_wakeup_thread(conf
->mddev
->thread
);
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh
->count
, &conf
->device_lock
, flags
)) {
405 INIT_LIST_HEAD(&list
);
406 hash
= sh
->hash_lock_index
;
407 do_release_stripe(conf
, sh
, &list
);
408 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
409 release_inactive_stripe_list(conf
, &list
, hash
);
413 static inline void remove_hash(struct stripe_head
*sh
)
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh
->sector
);
418 hlist_del_init(&sh
->hash
);
421 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
423 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh
->sector
);
428 hlist_add_head(&sh
->hash
, hp
);
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
434 struct stripe_head
*sh
= NULL
;
435 struct list_head
*first
;
437 if (list_empty(conf
->inactive_list
+ hash
))
439 first
= (conf
->inactive_list
+ hash
)->next
;
440 sh
= list_entry(first
, struct stripe_head
, lru
);
441 list_del_init(first
);
443 atomic_inc(&conf
->active_stripes
);
444 BUG_ON(hash
!= sh
->hash_lock_index
);
445 if (list_empty(conf
->inactive_list
+ hash
))
446 atomic_inc(&conf
->empty_inactive_list_nr
);
451 static void shrink_buffers(struct stripe_head
*sh
)
455 int num
= sh
->raid_conf
->pool_size
;
457 for (i
= 0; i
< num
; i
++) {
458 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
462 sh
->dev
[i
].page
= NULL
;
467 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
470 int num
= sh
->raid_conf
->pool_size
;
472 for (i
= 0; i
< num
; i
++) {
475 if (!(page
= alloc_page(gfp
))) {
478 sh
->dev
[i
].page
= page
;
479 sh
->dev
[i
].orig_page
= page
;
485 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
486 struct stripe_head
*sh
);
488 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
490 struct r5conf
*conf
= sh
->raid_conf
;
493 BUG_ON(atomic_read(&sh
->count
) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
495 BUG_ON(stripe_operations_active(sh
));
496 BUG_ON(sh
->batch_head
);
498 pr_debug("init_stripe called, stripe %llu\n",
499 (unsigned long long)sector
);
501 seq
= read_seqcount_begin(&conf
->gen_lock
);
502 sh
->generation
= conf
->generation
- previous
;
503 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
505 stripe_set_idx(sector
, conf
, previous
, sh
);
508 for (i
= sh
->disks
; i
--; ) {
509 struct r5dev
*dev
= &sh
->dev
[i
];
511 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
512 test_bit(R5_LOCKED
, &dev
->flags
)) {
513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 (unsigned long long)sh
->sector
, i
, dev
->toread
,
515 dev
->read
, dev
->towrite
, dev
->written
,
516 test_bit(R5_LOCKED
, &dev
->flags
));
520 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
522 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
524 sh
->overwrite_disks
= 0;
525 insert_hash(conf
, sh
);
526 sh
->cpu
= smp_processor_id();
527 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
530 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
533 struct stripe_head
*sh
;
535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
536 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
537 if (sh
->sector
== sector
&& sh
->generation
== generation
)
539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
544 * Need to check if array has failed when deciding whether to:
546 * - remove non-faulty devices
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
556 int raid5_calc_degraded(struct r5conf
*conf
)
558 int degraded
, degraded2
;
563 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
564 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
565 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
566 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
567 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
569 else if (test_bit(In_sync
, &rdev
->flags
))
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
581 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
585 if (conf
->raid_disks
== conf
->previous_raid_disks
)
589 for (i
= 0; i
< conf
->raid_disks
; i
++) {
590 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
591 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
592 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
593 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
595 else if (test_bit(In_sync
, &rdev
->flags
))
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
603 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
607 if (degraded2
> degraded
)
612 static int has_failed(struct r5conf
*conf
)
616 if (conf
->mddev
->reshape_position
== MaxSector
)
617 return conf
->mddev
->degraded
> conf
->max_degraded
;
619 degraded
= raid5_calc_degraded(conf
);
620 if (degraded
> conf
->max_degraded
)
626 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
627 int previous
, int noblock
, int noquiesce
)
629 struct stripe_head
*sh
;
630 int hash
= stripe_hash_locks_hash(sector
);
631 int inc_empty_inactive_list_flag
;
633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
635 spin_lock_irq(conf
->hash_locks
+ hash
);
638 wait_event_lock_irq(conf
->wait_for_quiescent
,
639 conf
->quiesce
== 0 || noquiesce
,
640 *(conf
->hash_locks
+ hash
));
641 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
643 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
644 sh
= get_free_stripe(conf
, hash
);
645 if (!sh
&& !test_bit(R5_DID_ALLOC
,
647 set_bit(R5_ALLOC_MORE
,
650 if (noblock
&& sh
== NULL
)
653 r5c_check_stripe_cache_usage(conf
);
655 set_bit(R5_INACTIVE_BLOCKED
,
657 r5l_wake_reclaim(conf
->log
, 0);
659 conf
->wait_for_stripe
,
660 !list_empty(conf
->inactive_list
+ hash
) &&
661 (atomic_read(&conf
->active_stripes
)
662 < (conf
->max_nr_stripes
* 3 / 4)
663 || !test_bit(R5_INACTIVE_BLOCKED
,
664 &conf
->cache_state
)),
665 *(conf
->hash_locks
+ hash
));
666 clear_bit(R5_INACTIVE_BLOCKED
,
669 init_stripe(sh
, sector
, previous
);
670 atomic_inc(&sh
->count
);
672 } else if (!atomic_inc_not_zero(&sh
->count
)) {
673 spin_lock(&conf
->device_lock
);
674 if (!atomic_read(&sh
->count
)) {
675 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
676 atomic_inc(&conf
->active_stripes
);
677 BUG_ON(list_empty(&sh
->lru
) &&
678 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
679 inc_empty_inactive_list_flag
= 0;
680 if (!list_empty(conf
->inactive_list
+ hash
))
681 inc_empty_inactive_list_flag
= 1;
682 list_del_init(&sh
->lru
);
683 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
684 atomic_inc(&conf
->empty_inactive_list_nr
);
686 sh
->group
->stripes_cnt
--;
690 atomic_inc(&sh
->count
);
691 spin_unlock(&conf
->device_lock
);
693 } while (sh
== NULL
);
695 spin_unlock_irq(conf
->hash_locks
+ hash
);
699 static bool is_full_stripe_write(struct stripe_head
*sh
)
701 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
702 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
705 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
706 __acquires(&sh1
->stripe_lock
)
707 __acquires(&sh2
->stripe_lock
)
710 spin_lock_irq(&sh2
->stripe_lock
);
711 spin_lock_nested(&sh1
->stripe_lock
, 1);
713 spin_lock_irq(&sh1
->stripe_lock
);
714 spin_lock_nested(&sh2
->stripe_lock
, 1);
718 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
719 __releases(&sh1
->stripe_lock
)
720 __releases(&sh2
->stripe_lock
)
722 spin_unlock(&sh1
->stripe_lock
);
723 spin_unlock_irq(&sh2
->stripe_lock
);
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head
*sh
)
729 struct r5conf
*conf
= sh
->raid_conf
;
731 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
733 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
734 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
735 is_full_stripe_write(sh
);
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
741 struct stripe_head
*head
;
742 sector_t head_sector
, tmp_sec
;
745 int inc_empty_inactive_list_flag
;
747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec
= sh
->sector
;
749 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
751 head_sector
= sh
->sector
- STRIPE_SECTORS
;
753 hash
= stripe_hash_locks_hash(head_sector
);
754 spin_lock_irq(conf
->hash_locks
+ hash
);
755 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
756 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
757 spin_lock(&conf
->device_lock
);
758 if (!atomic_read(&head
->count
)) {
759 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
760 atomic_inc(&conf
->active_stripes
);
761 BUG_ON(list_empty(&head
->lru
) &&
762 !test_bit(STRIPE_EXPANDING
, &head
->state
));
763 inc_empty_inactive_list_flag
= 0;
764 if (!list_empty(conf
->inactive_list
+ hash
))
765 inc_empty_inactive_list_flag
= 1;
766 list_del_init(&head
->lru
);
767 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
768 atomic_inc(&conf
->empty_inactive_list_nr
);
770 head
->group
->stripes_cnt
--;
774 atomic_inc(&head
->count
);
775 spin_unlock(&conf
->device_lock
);
777 spin_unlock_irq(conf
->hash_locks
+ hash
);
781 if (!stripe_can_batch(head
))
784 lock_two_stripes(head
, sh
);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
793 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
795 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
796 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
799 if (head
->batch_head
) {
800 spin_lock(&head
->batch_head
->batch_lock
);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head
)) {
803 spin_unlock(&head
->batch_head
->batch_lock
);
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
813 sh
->batch_head
= head
->batch_head
;
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
819 list_add(&sh
->batch_list
, &head
->batch_list
);
820 spin_unlock(&head
->batch_head
->batch_lock
);
822 head
->batch_head
= head
;
823 sh
->batch_head
= head
->batch_head
;
824 spin_lock(&head
->batch_lock
);
825 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
826 spin_unlock(&head
->batch_lock
);
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
830 if (atomic_dec_return(&conf
->preread_active_stripes
)
832 md_wakeup_thread(conf
->mddev
->thread
);
834 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
835 int seq
= sh
->bm_seq
;
836 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
837 sh
->batch_head
->bm_seq
> seq
)
838 seq
= sh
->batch_head
->bm_seq
;
839 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
840 sh
->batch_head
->bm_seq
= seq
;
843 atomic_inc(&sh
->count
);
845 unlock_two_stripes(head
, sh
);
847 raid5_release_stripe(head
);
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
853 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
855 sector_t progress
= conf
->reshape_progress
;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
861 if (progress
== MaxSector
)
863 if (sh
->generation
== conf
->generation
- 1)
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
871 static void dispatch_bio_list(struct bio_list
*tmp
)
875 while ((bio
= bio_list_pop(tmp
)))
876 generic_make_request(bio
);
879 static int cmp_stripe(void *priv
, struct list_head
*a
, struct list_head
*b
)
881 const struct r5pending_data
*da
= list_entry(a
,
882 struct r5pending_data
, sibling
);
883 const struct r5pending_data
*db
= list_entry(b
,
884 struct r5pending_data
, sibling
);
885 if (da
->sector
> db
->sector
)
887 if (da
->sector
< db
->sector
)
892 static void dispatch_defer_bios(struct r5conf
*conf
, int target
,
893 struct bio_list
*list
)
895 struct r5pending_data
*data
;
896 struct list_head
*first
, *next
= NULL
;
899 if (conf
->pending_data_cnt
== 0)
902 list_sort(NULL
, &conf
->pending_list
, cmp_stripe
);
904 first
= conf
->pending_list
.next
;
906 /* temporarily move the head */
907 if (conf
->next_pending_data
)
908 list_move_tail(&conf
->pending_list
,
909 &conf
->next_pending_data
->sibling
);
911 while (!list_empty(&conf
->pending_list
)) {
912 data
= list_first_entry(&conf
->pending_list
,
913 struct r5pending_data
, sibling
);
914 if (&data
->sibling
== first
)
915 first
= data
->sibling
.next
;
916 next
= data
->sibling
.next
;
918 bio_list_merge(list
, &data
->bios
);
919 list_move(&data
->sibling
, &conf
->free_list
);
924 conf
->pending_data_cnt
-= cnt
;
925 BUG_ON(conf
->pending_data_cnt
< 0 || cnt
< target
);
927 if (next
!= &conf
->pending_list
)
928 conf
->next_pending_data
= list_entry(next
,
929 struct r5pending_data
, sibling
);
931 conf
->next_pending_data
= NULL
;
932 /* list isn't empty */
933 if (first
!= &conf
->pending_list
)
934 list_move_tail(&conf
->pending_list
, first
);
937 static void flush_deferred_bios(struct r5conf
*conf
)
939 struct bio_list tmp
= BIO_EMPTY_LIST
;
941 if (conf
->pending_data_cnt
== 0)
944 spin_lock(&conf
->pending_bios_lock
);
945 dispatch_defer_bios(conf
, conf
->pending_data_cnt
, &tmp
);
946 BUG_ON(conf
->pending_data_cnt
!= 0);
947 spin_unlock(&conf
->pending_bios_lock
);
949 dispatch_bio_list(&tmp
);
952 static void defer_issue_bios(struct r5conf
*conf
, sector_t sector
,
953 struct bio_list
*bios
)
955 struct bio_list tmp
= BIO_EMPTY_LIST
;
956 struct r5pending_data
*ent
;
958 spin_lock(&conf
->pending_bios_lock
);
959 ent
= list_first_entry(&conf
->free_list
, struct r5pending_data
,
961 list_move_tail(&ent
->sibling
, &conf
->pending_list
);
962 ent
->sector
= sector
;
963 bio_list_init(&ent
->bios
);
964 bio_list_merge(&ent
->bios
, bios
);
965 conf
->pending_data_cnt
++;
966 if (conf
->pending_data_cnt
>= PENDING_IO_MAX
)
967 dispatch_defer_bios(conf
, PENDING_IO_ONE_FLUSH
, &tmp
);
969 spin_unlock(&conf
->pending_bios_lock
);
971 dispatch_bio_list(&tmp
);
975 raid5_end_read_request(struct bio
*bi
);
977 raid5_end_write_request(struct bio
*bi
);
979 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
981 struct r5conf
*conf
= sh
->raid_conf
;
982 int i
, disks
= sh
->disks
;
983 struct stripe_head
*head_sh
= sh
;
984 struct bio_list pending_bios
= BIO_EMPTY_LIST
;
989 if (log_stripe(sh
, s
) == 0)
992 should_defer
= conf
->batch_bio_dispatch
&& conf
->group_cnt
;
994 for (i
= disks
; i
--; ) {
995 int op
, op_flags
= 0;
996 int replace_only
= 0;
997 struct bio
*bi
, *rbi
;
998 struct md_rdev
*rdev
, *rrdev
= NULL
;
1001 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
1003 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
1005 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1006 op
= REQ_OP_DISCARD
;
1007 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1009 else if (test_and_clear_bit(R5_WantReplace
,
1010 &sh
->dev
[i
].flags
)) {
1015 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
1016 op_flags
|= REQ_SYNC
;
1019 bi
= &sh
->dev
[i
].req
;
1020 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
1023 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1030 if (op_is_write(op
)) {
1034 /* We raced and saw duplicates */
1037 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
1042 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1045 atomic_inc(&rdev
->nr_pending
);
1046 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
1049 atomic_inc(&rrdev
->nr_pending
);
1052 /* We have already checked bad blocks for reads. Now
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
1056 while (op_is_write(op
) && rdev
&&
1057 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1060 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
1061 &first_bad
, &bad_sectors
);
1066 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1067 if (!conf
->mddev
->external
&&
1068 conf
->mddev
->sb_flags
) {
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1073 md_check_recovery(conf
->mddev
);
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1080 atomic_inc(&rdev
->nr_pending
);
1081 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev
, conf
->mddev
);
1090 if (s
->syncing
|| s
->expanding
|| s
->expanded
1092 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1094 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1096 bio_set_dev(bi
, rdev
->bdev
);
1097 bio_set_op_attrs(bi
, op
, op_flags
);
1098 bi
->bi_end_io
= op_is_write(op
)
1099 ? raid5_end_write_request
1100 : raid5_end_read_request
;
1101 bi
->bi_private
= sh
;
1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 __func__
, (unsigned long long)sh
->sector
,
1106 atomic_inc(&sh
->count
);
1108 atomic_inc(&head_sh
->count
);
1109 if (use_new_offset(conf
, sh
))
1110 bi
->bi_iter
.bi_sector
= (sh
->sector
1111 + rdev
->new_data_offset
);
1113 bi
->bi_iter
.bi_sector
= (sh
->sector
1114 + rdev
->data_offset
);
1115 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1116 bi
->bi_opf
|= REQ_NOMERGE
;
1118 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1119 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1121 if (!op_is_write(op
) &&
1122 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1128 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].orig_page
;
1130 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1132 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1133 bi
->bi_io_vec
[0].bv_offset
= 0;
1134 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1135 bi
->bi_write_hint
= sh
->dev
[i
].write_hint
;
1137 sh
->dev
[i
].write_hint
= RWH_WRITE_LIFE_NOT_SET
;
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1142 if (op
== REQ_OP_DISCARD
)
1145 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1147 if (conf
->mddev
->gendisk
)
1148 trace_block_bio_remap(bi
->bi_disk
->queue
,
1149 bi
, disk_devt(conf
->mddev
->gendisk
),
1151 if (should_defer
&& op_is_write(op
))
1152 bio_list_add(&pending_bios
, bi
);
1154 generic_make_request(bi
);
1157 if (s
->syncing
|| s
->expanding
|| s
->expanded
1159 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1161 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1163 bio_set_dev(rbi
, rrdev
->bdev
);
1164 bio_set_op_attrs(rbi
, op
, op_flags
);
1165 BUG_ON(!op_is_write(op
));
1166 rbi
->bi_end_io
= raid5_end_write_request
;
1167 rbi
->bi_private
= sh
;
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__
, (unsigned long long)sh
->sector
,
1173 atomic_inc(&sh
->count
);
1175 atomic_inc(&head_sh
->count
);
1176 if (use_new_offset(conf
, sh
))
1177 rbi
->bi_iter
.bi_sector
= (sh
->sector
1178 + rrdev
->new_data_offset
);
1180 rbi
->bi_iter
.bi_sector
= (sh
->sector
1181 + rrdev
->data_offset
);
1182 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1183 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1184 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1186 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1187 rbi
->bi_io_vec
[0].bv_offset
= 0;
1188 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1189 rbi
->bi_write_hint
= sh
->dev
[i
].write_hint
;
1190 sh
->dev
[i
].write_hint
= RWH_WRITE_LIFE_NOT_SET
;
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1195 if (op
== REQ_OP_DISCARD
)
1197 if (conf
->mddev
->gendisk
)
1198 trace_block_bio_remap(rbi
->bi_disk
->queue
,
1199 rbi
, disk_devt(conf
->mddev
->gendisk
),
1201 if (should_defer
&& op_is_write(op
))
1202 bio_list_add(&pending_bios
, rbi
);
1204 generic_make_request(rbi
);
1206 if (!rdev
&& !rrdev
) {
1207 if (op_is_write(op
))
1208 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1210 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1211 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1212 set_bit(STRIPE_HANDLE
, &sh
->state
);
1215 if (!head_sh
->batch_head
)
1217 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1223 if (should_defer
&& !bio_list_empty(&pending_bios
))
1224 defer_issue_bios(conf
, head_sh
->sector
, &pending_bios
);
1227 static struct dma_async_tx_descriptor
*
1228 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1229 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1230 struct stripe_head
*sh
, int no_skipcopy
)
1233 struct bvec_iter iter
;
1234 struct page
*bio_page
;
1236 struct async_submit_ctl submit
;
1237 enum async_tx_flags flags
= 0;
1239 if (bio
->bi_iter
.bi_sector
>= sector
)
1240 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1242 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1245 flags
|= ASYNC_TX_FENCE
;
1246 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1248 bio_for_each_segment(bvl
, bio
, iter
) {
1249 int len
= bvl
.bv_len
;
1253 if (page_offset
< 0) {
1254 b_offset
= -page_offset
;
1255 page_offset
+= b_offset
;
1259 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1260 clen
= STRIPE_SIZE
- page_offset
;
1265 b_offset
+= bvl
.bv_offset
;
1266 bio_page
= bvl
.bv_page
;
1268 if (sh
->raid_conf
->skip_copy
&&
1269 b_offset
== 0 && page_offset
== 0 &&
1270 clen
== STRIPE_SIZE
&&
1274 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1275 b_offset
, clen
, &submit
);
1277 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1278 page_offset
, clen
, &submit
);
1280 /* chain the operations */
1281 submit
.depend_tx
= tx
;
1283 if (clen
< len
) /* hit end of page */
1291 static void ops_complete_biofill(void *stripe_head_ref
)
1293 struct stripe_head
*sh
= stripe_head_ref
;
1296 pr_debug("%s: stripe %llu\n", __func__
,
1297 (unsigned long long)sh
->sector
);
1299 /* clear completed biofills */
1300 for (i
= sh
->disks
; i
--; ) {
1301 struct r5dev
*dev
= &sh
->dev
[i
];
1303 /* acknowledge completion of a biofill operation */
1304 /* and check if we need to reply to a read request,
1305 * new R5_Wantfill requests are held off until
1306 * !STRIPE_BIOFILL_RUN
1308 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1309 struct bio
*rbi
, *rbi2
;
1314 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1315 dev
->sector
+ STRIPE_SECTORS
) {
1316 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1322 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1324 set_bit(STRIPE_HANDLE
, &sh
->state
);
1325 raid5_release_stripe(sh
);
1328 static void ops_run_biofill(struct stripe_head
*sh
)
1330 struct dma_async_tx_descriptor
*tx
= NULL
;
1331 struct async_submit_ctl submit
;
1334 BUG_ON(sh
->batch_head
);
1335 pr_debug("%s: stripe %llu\n", __func__
,
1336 (unsigned long long)sh
->sector
);
1338 for (i
= sh
->disks
; i
--; ) {
1339 struct r5dev
*dev
= &sh
->dev
[i
];
1340 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1342 spin_lock_irq(&sh
->stripe_lock
);
1343 dev
->read
= rbi
= dev
->toread
;
1345 spin_unlock_irq(&sh
->stripe_lock
);
1346 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1347 dev
->sector
+ STRIPE_SECTORS
) {
1348 tx
= async_copy_data(0, rbi
, &dev
->page
,
1349 dev
->sector
, tx
, sh
, 0);
1350 rbi
= r5_next_bio(rbi
, dev
->sector
);
1355 atomic_inc(&sh
->count
);
1356 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1357 async_trigger_callback(&submit
);
1360 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1367 tgt
= &sh
->dev
[target
];
1368 set_bit(R5_UPTODATE
, &tgt
->flags
);
1369 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1370 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1373 static void ops_complete_compute(void *stripe_head_ref
)
1375 struct stripe_head
*sh
= stripe_head_ref
;
1377 pr_debug("%s: stripe %llu\n", __func__
,
1378 (unsigned long long)sh
->sector
);
1380 /* mark the computed target(s) as uptodate */
1381 mark_target_uptodate(sh
, sh
->ops
.target
);
1382 mark_target_uptodate(sh
, sh
->ops
.target2
);
1384 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1385 if (sh
->check_state
== check_state_compute_run
)
1386 sh
->check_state
= check_state_compute_result
;
1387 set_bit(STRIPE_HANDLE
, &sh
->state
);
1388 raid5_release_stripe(sh
);
1391 /* return a pointer to the address conversion region of the scribble buffer */
1392 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1394 return percpu
->scribble
+ i
* percpu
->scribble_obj_size
;
1397 /* return a pointer to the address conversion region of the scribble buffer */
1398 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1399 struct raid5_percpu
*percpu
, int i
)
1401 return (void *) (to_addr_page(percpu
, i
) + sh
->disks
+ 2);
1404 static struct dma_async_tx_descriptor
*
1405 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1407 int disks
= sh
->disks
;
1408 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1409 int target
= sh
->ops
.target
;
1410 struct r5dev
*tgt
= &sh
->dev
[target
];
1411 struct page
*xor_dest
= tgt
->page
;
1413 struct dma_async_tx_descriptor
*tx
;
1414 struct async_submit_ctl submit
;
1417 BUG_ON(sh
->batch_head
);
1419 pr_debug("%s: stripe %llu block: %d\n",
1420 __func__
, (unsigned long long)sh
->sector
, target
);
1421 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1423 for (i
= disks
; i
--; )
1425 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1427 atomic_inc(&sh
->count
);
1429 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1430 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1431 if (unlikely(count
== 1))
1432 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1434 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1439 /* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1448 static int set_syndrome_sources(struct page
**srcs
,
1449 struct stripe_head
*sh
,
1452 int disks
= sh
->disks
;
1453 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1454 int d0_idx
= raid6_d0(sh
);
1458 for (i
= 0; i
< disks
; i
++)
1464 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1465 struct r5dev
*dev
= &sh
->dev
[i
];
1467 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1468 (srctype
== SYNDROME_SRC_ALL
) ||
1469 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1470 (test_bit(R5_Wantdrain
, &dev
->flags
) ||
1471 test_bit(R5_InJournal
, &dev
->flags
))) ||
1472 (srctype
== SYNDROME_SRC_WRITTEN
&&
1474 test_bit(R5_InJournal
, &dev
->flags
)))) {
1475 if (test_bit(R5_InJournal
, &dev
->flags
))
1476 srcs
[slot
] = sh
->dev
[i
].orig_page
;
1478 srcs
[slot
] = sh
->dev
[i
].page
;
1480 i
= raid6_next_disk(i
, disks
);
1481 } while (i
!= d0_idx
);
1483 return syndrome_disks
;
1486 static struct dma_async_tx_descriptor
*
1487 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1489 int disks
= sh
->disks
;
1490 struct page
**blocks
= to_addr_page(percpu
, 0);
1492 int qd_idx
= sh
->qd_idx
;
1493 struct dma_async_tx_descriptor
*tx
;
1494 struct async_submit_ctl submit
;
1500 BUG_ON(sh
->batch_head
);
1501 if (sh
->ops
.target
< 0)
1502 target
= sh
->ops
.target2
;
1503 else if (sh
->ops
.target2
< 0)
1504 target
= sh
->ops
.target
;
1506 /* we should only have one valid target */
1509 pr_debug("%s: stripe %llu block: %d\n",
1510 __func__
, (unsigned long long)sh
->sector
, target
);
1512 tgt
= &sh
->dev
[target
];
1513 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1516 atomic_inc(&sh
->count
);
1518 if (target
== qd_idx
) {
1519 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1520 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1521 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1522 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1523 ops_complete_compute
, sh
,
1524 to_addr_conv(sh
, percpu
, 0));
1525 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1527 /* Compute any data- or p-drive using XOR */
1529 for (i
= disks
; i
-- ; ) {
1530 if (i
== target
|| i
== qd_idx
)
1532 blocks
[count
++] = sh
->dev
[i
].page
;
1535 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1536 NULL
, ops_complete_compute
, sh
,
1537 to_addr_conv(sh
, percpu
, 0));
1538 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1544 static struct dma_async_tx_descriptor
*
1545 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1547 int i
, count
, disks
= sh
->disks
;
1548 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1549 int d0_idx
= raid6_d0(sh
);
1550 int faila
= -1, failb
= -1;
1551 int target
= sh
->ops
.target
;
1552 int target2
= sh
->ops
.target2
;
1553 struct r5dev
*tgt
= &sh
->dev
[target
];
1554 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1555 struct dma_async_tx_descriptor
*tx
;
1556 struct page
**blocks
= to_addr_page(percpu
, 0);
1557 struct async_submit_ctl submit
;
1559 BUG_ON(sh
->batch_head
);
1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1562 BUG_ON(target
< 0 || target2
< 0);
1563 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1564 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1566 /* we need to open-code set_syndrome_sources to handle the
1567 * slot number conversion for 'faila' and 'failb'
1569 for (i
= 0; i
< disks
; i
++)
1574 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1576 blocks
[slot
] = sh
->dev
[i
].page
;
1582 i
= raid6_next_disk(i
, disks
);
1583 } while (i
!= d0_idx
);
1585 BUG_ON(faila
== failb
);
1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1591 atomic_inc(&sh
->count
);
1593 if (failb
== syndrome_disks
+1) {
1594 /* Q disk is one of the missing disks */
1595 if (faila
== syndrome_disks
) {
1596 /* Missing P+Q, just recompute */
1597 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1598 ops_complete_compute
, sh
,
1599 to_addr_conv(sh
, percpu
, 0));
1600 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1601 STRIPE_SIZE
, &submit
);
1605 int qd_idx
= sh
->qd_idx
;
1607 /* Missing D+Q: recompute D from P, then recompute Q */
1608 if (target
== qd_idx
)
1609 data_target
= target2
;
1611 data_target
= target
;
1614 for (i
= disks
; i
-- ; ) {
1615 if (i
== data_target
|| i
== qd_idx
)
1617 blocks
[count
++] = sh
->dev
[i
].page
;
1619 dest
= sh
->dev
[data_target
].page
;
1620 init_async_submit(&submit
,
1621 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1623 to_addr_conv(sh
, percpu
, 0));
1624 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1627 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1628 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1629 ops_complete_compute
, sh
,
1630 to_addr_conv(sh
, percpu
, 0));
1631 return async_gen_syndrome(blocks
, 0, count
+2,
1632 STRIPE_SIZE
, &submit
);
1635 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1636 ops_complete_compute
, sh
,
1637 to_addr_conv(sh
, percpu
, 0));
1638 if (failb
== syndrome_disks
) {
1639 /* We're missing D+P. */
1640 return async_raid6_datap_recov(syndrome_disks
+2,
1644 /* We're missing D+D. */
1645 return async_raid6_2data_recov(syndrome_disks
+2,
1646 STRIPE_SIZE
, faila
, failb
,
1652 static void ops_complete_prexor(void *stripe_head_ref
)
1654 struct stripe_head
*sh
= stripe_head_ref
;
1656 pr_debug("%s: stripe %llu\n", __func__
,
1657 (unsigned long long)sh
->sector
);
1659 if (r5c_is_writeback(sh
->raid_conf
->log
))
1661 * raid5-cache write back uses orig_page during prexor.
1662 * After prexor, it is time to free orig_page
1664 r5c_release_extra_page(sh
);
1667 static struct dma_async_tx_descriptor
*
1668 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1669 struct dma_async_tx_descriptor
*tx
)
1671 int disks
= sh
->disks
;
1672 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1673 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1674 struct async_submit_ctl submit
;
1676 /* existing parity data subtracted */
1677 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1679 BUG_ON(sh
->batch_head
);
1680 pr_debug("%s: stripe %llu\n", __func__
,
1681 (unsigned long long)sh
->sector
);
1683 for (i
= disks
; i
--; ) {
1684 struct r5dev
*dev
= &sh
->dev
[i
];
1685 /* Only process blocks that are known to be uptodate */
1686 if (test_bit(R5_InJournal
, &dev
->flags
))
1687 xor_srcs
[count
++] = dev
->orig_page
;
1688 else if (test_bit(R5_Wantdrain
, &dev
->flags
))
1689 xor_srcs
[count
++] = dev
->page
;
1692 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1693 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1694 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1699 static struct dma_async_tx_descriptor
*
1700 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1701 struct dma_async_tx_descriptor
*tx
)
1703 struct page
**blocks
= to_addr_page(percpu
, 0);
1705 struct async_submit_ctl submit
;
1707 pr_debug("%s: stripe %llu\n", __func__
,
1708 (unsigned long long)sh
->sector
);
1710 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1712 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1713 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1714 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1719 static struct dma_async_tx_descriptor
*
1720 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1722 struct r5conf
*conf
= sh
->raid_conf
;
1723 int disks
= sh
->disks
;
1725 struct stripe_head
*head_sh
= sh
;
1727 pr_debug("%s: stripe %llu\n", __func__
,
1728 (unsigned long long)sh
->sector
);
1730 for (i
= disks
; i
--; ) {
1735 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1741 * clear R5_InJournal, so when rewriting a page in
1742 * journal, it is not skipped by r5l_log_stripe()
1744 clear_bit(R5_InJournal
, &dev
->flags
);
1745 spin_lock_irq(&sh
->stripe_lock
);
1746 chosen
= dev
->towrite
;
1747 dev
->towrite
= NULL
;
1748 sh
->overwrite_disks
= 0;
1749 BUG_ON(dev
->written
);
1750 wbi
= dev
->written
= chosen
;
1751 spin_unlock_irq(&sh
->stripe_lock
);
1752 WARN_ON(dev
->page
!= dev
->orig_page
);
1754 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1755 dev
->sector
+ STRIPE_SECTORS
) {
1756 if (wbi
->bi_opf
& REQ_FUA
)
1757 set_bit(R5_WantFUA
, &dev
->flags
);
1758 if (wbi
->bi_opf
& REQ_SYNC
)
1759 set_bit(R5_SyncIO
, &dev
->flags
);
1760 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1761 set_bit(R5_Discard
, &dev
->flags
);
1763 tx
= async_copy_data(1, wbi
, &dev
->page
,
1764 dev
->sector
, tx
, sh
,
1765 r5c_is_writeback(conf
->log
));
1766 if (dev
->page
!= dev
->orig_page
&&
1767 !r5c_is_writeback(conf
->log
)) {
1768 set_bit(R5_SkipCopy
, &dev
->flags
);
1769 clear_bit(R5_UPTODATE
, &dev
->flags
);
1770 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1773 wbi
= r5_next_bio(wbi
, dev
->sector
);
1776 if (head_sh
->batch_head
) {
1777 sh
= list_first_entry(&sh
->batch_list
,
1790 static void ops_complete_reconstruct(void *stripe_head_ref
)
1792 struct stripe_head
*sh
= stripe_head_ref
;
1793 int disks
= sh
->disks
;
1794 int pd_idx
= sh
->pd_idx
;
1795 int qd_idx
= sh
->qd_idx
;
1797 bool fua
= false, sync
= false, discard
= false;
1799 pr_debug("%s: stripe %llu\n", __func__
,
1800 (unsigned long long)sh
->sector
);
1802 for (i
= disks
; i
--; ) {
1803 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1804 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1805 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1808 for (i
= disks
; i
--; ) {
1809 struct r5dev
*dev
= &sh
->dev
[i
];
1811 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1812 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
)) {
1813 set_bit(R5_UPTODATE
, &dev
->flags
);
1814 if (test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
1815 set_bit(R5_Expanded
, &dev
->flags
);
1818 set_bit(R5_WantFUA
, &dev
->flags
);
1820 set_bit(R5_SyncIO
, &dev
->flags
);
1824 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1825 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1826 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1827 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1829 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1830 sh
->reconstruct_state
= reconstruct_state_result
;
1833 set_bit(STRIPE_HANDLE
, &sh
->state
);
1834 raid5_release_stripe(sh
);
1838 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1839 struct dma_async_tx_descriptor
*tx
)
1841 int disks
= sh
->disks
;
1842 struct page
**xor_srcs
;
1843 struct async_submit_ctl submit
;
1844 int count
, pd_idx
= sh
->pd_idx
, i
;
1845 struct page
*xor_dest
;
1847 unsigned long flags
;
1849 struct stripe_head
*head_sh
= sh
;
1852 pr_debug("%s: stripe %llu\n", __func__
,
1853 (unsigned long long)sh
->sector
);
1855 for (i
= 0; i
< sh
->disks
; i
++) {
1858 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1861 if (i
>= sh
->disks
) {
1862 atomic_inc(&sh
->count
);
1863 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1864 ops_complete_reconstruct(sh
);
1869 xor_srcs
= to_addr_page(percpu
, j
);
1870 /* check if prexor is active which means only process blocks
1871 * that are part of a read-modify-write (written)
1873 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1875 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1876 for (i
= disks
; i
--; ) {
1877 struct r5dev
*dev
= &sh
->dev
[i
];
1878 if (head_sh
->dev
[i
].written
||
1879 test_bit(R5_InJournal
, &head_sh
->dev
[i
].flags
))
1880 xor_srcs
[count
++] = dev
->page
;
1883 xor_dest
= sh
->dev
[pd_idx
].page
;
1884 for (i
= disks
; i
--; ) {
1885 struct r5dev
*dev
= &sh
->dev
[i
];
1887 xor_srcs
[count
++] = dev
->page
;
1891 /* 1/ if we prexor'd then the dest is reused as a source
1892 * 2/ if we did not prexor then we are redoing the parity
1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 * for the synchronous xor case
1896 last_stripe
= !head_sh
->batch_head
||
1897 list_first_entry(&sh
->batch_list
,
1898 struct stripe_head
, batch_list
) == head_sh
;
1900 flags
= ASYNC_TX_ACK
|
1901 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1903 atomic_inc(&head_sh
->count
);
1904 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1905 to_addr_conv(sh
, percpu
, j
));
1907 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1908 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1909 to_addr_conv(sh
, percpu
, j
));
1912 if (unlikely(count
== 1))
1913 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1915 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1918 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1925 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1926 struct dma_async_tx_descriptor
*tx
)
1928 struct async_submit_ctl submit
;
1929 struct page
**blocks
;
1930 int count
, i
, j
= 0;
1931 struct stripe_head
*head_sh
= sh
;
1934 unsigned long txflags
;
1936 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1938 for (i
= 0; i
< sh
->disks
; i
++) {
1939 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1941 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1944 if (i
>= sh
->disks
) {
1945 atomic_inc(&sh
->count
);
1946 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1947 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1948 ops_complete_reconstruct(sh
);
1953 blocks
= to_addr_page(percpu
, j
);
1955 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1956 synflags
= SYNDROME_SRC_WRITTEN
;
1957 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1959 synflags
= SYNDROME_SRC_ALL
;
1960 txflags
= ASYNC_TX_ACK
;
1963 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1964 last_stripe
= !head_sh
->batch_head
||
1965 list_first_entry(&sh
->batch_list
,
1966 struct stripe_head
, batch_list
) == head_sh
;
1969 atomic_inc(&head_sh
->count
);
1970 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1971 head_sh
, to_addr_conv(sh
, percpu
, j
));
1973 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1974 to_addr_conv(sh
, percpu
, j
));
1975 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1978 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1984 static void ops_complete_check(void *stripe_head_ref
)
1986 struct stripe_head
*sh
= stripe_head_ref
;
1988 pr_debug("%s: stripe %llu\n", __func__
,
1989 (unsigned long long)sh
->sector
);
1991 sh
->check_state
= check_state_check_result
;
1992 set_bit(STRIPE_HANDLE
, &sh
->state
);
1993 raid5_release_stripe(sh
);
1996 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1998 int disks
= sh
->disks
;
1999 int pd_idx
= sh
->pd_idx
;
2000 int qd_idx
= sh
->qd_idx
;
2001 struct page
*xor_dest
;
2002 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
2003 struct dma_async_tx_descriptor
*tx
;
2004 struct async_submit_ctl submit
;
2008 pr_debug("%s: stripe %llu\n", __func__
,
2009 (unsigned long long)sh
->sector
);
2011 BUG_ON(sh
->batch_head
);
2013 xor_dest
= sh
->dev
[pd_idx
].page
;
2014 xor_srcs
[count
++] = xor_dest
;
2015 for (i
= disks
; i
--; ) {
2016 if (i
== pd_idx
|| i
== qd_idx
)
2018 xor_srcs
[count
++] = sh
->dev
[i
].page
;
2021 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
2022 to_addr_conv(sh
, percpu
, 0));
2023 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
2024 &sh
->ops
.zero_sum_result
, &submit
);
2026 atomic_inc(&sh
->count
);
2027 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
2028 tx
= async_trigger_callback(&submit
);
2031 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
2033 struct page
**srcs
= to_addr_page(percpu
, 0);
2034 struct async_submit_ctl submit
;
2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
2038 (unsigned long long)sh
->sector
, checkp
);
2040 BUG_ON(sh
->batch_head
);
2041 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
2045 atomic_inc(&sh
->count
);
2046 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
2047 sh
, to_addr_conv(sh
, percpu
, 0));
2048 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
2049 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
2052 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
2054 int overlap_clear
= 0, i
, disks
= sh
->disks
;
2055 struct dma_async_tx_descriptor
*tx
= NULL
;
2056 struct r5conf
*conf
= sh
->raid_conf
;
2057 int level
= conf
->level
;
2058 struct raid5_percpu
*percpu
;
2062 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2063 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
2064 ops_run_biofill(sh
);
2068 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
2070 tx
= ops_run_compute5(sh
, percpu
);
2072 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
2073 tx
= ops_run_compute6_1(sh
, percpu
);
2075 tx
= ops_run_compute6_2(sh
, percpu
);
2077 /* terminate the chain if reconstruct is not set to be run */
2078 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
2082 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
2084 tx
= ops_run_prexor5(sh
, percpu
, tx
);
2086 tx
= ops_run_prexor6(sh
, percpu
, tx
);
2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY
, &ops_request
))
2090 tx
= ops_run_partial_parity(sh
, percpu
, tx
);
2092 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
2093 tx
= ops_run_biodrain(sh
, tx
);
2097 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
2099 ops_run_reconstruct5(sh
, percpu
, tx
);
2101 ops_run_reconstruct6(sh
, percpu
, tx
);
2104 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
2105 if (sh
->check_state
== check_state_run
)
2106 ops_run_check_p(sh
, percpu
);
2107 else if (sh
->check_state
== check_state_run_q
)
2108 ops_run_check_pq(sh
, percpu
, 0);
2109 else if (sh
->check_state
== check_state_run_pq
)
2110 ops_run_check_pq(sh
, percpu
, 1);
2115 if (overlap_clear
&& !sh
->batch_head
)
2116 for (i
= disks
; i
--; ) {
2117 struct r5dev
*dev
= &sh
->dev
[i
];
2118 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2119 wake_up(&sh
->raid_conf
->wait_for_overlap
);
2124 static void free_stripe(struct kmem_cache
*sc
, struct stripe_head
*sh
)
2127 __free_page(sh
->ppl_page
);
2128 kmem_cache_free(sc
, sh
);
2131 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
2132 int disks
, struct r5conf
*conf
)
2134 struct stripe_head
*sh
;
2137 sh
= kmem_cache_zalloc(sc
, gfp
);
2139 spin_lock_init(&sh
->stripe_lock
);
2140 spin_lock_init(&sh
->batch_lock
);
2141 INIT_LIST_HEAD(&sh
->batch_list
);
2142 INIT_LIST_HEAD(&sh
->lru
);
2143 INIT_LIST_HEAD(&sh
->r5c
);
2144 INIT_LIST_HEAD(&sh
->log_list
);
2145 atomic_set(&sh
->count
, 1);
2146 sh
->raid_conf
= conf
;
2147 sh
->log_start
= MaxSector
;
2148 for (i
= 0; i
< disks
; i
++) {
2149 struct r5dev
*dev
= &sh
->dev
[i
];
2151 bio_init(&dev
->req
, &dev
->vec
, 1);
2152 bio_init(&dev
->rreq
, &dev
->rvec
, 1);
2155 if (raid5_has_ppl(conf
)) {
2156 sh
->ppl_page
= alloc_page(gfp
);
2157 if (!sh
->ppl_page
) {
2158 free_stripe(sc
, sh
);
2165 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2167 struct stripe_head
*sh
;
2169 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
, conf
);
2173 if (grow_buffers(sh
, gfp
)) {
2175 free_stripe(conf
->slab_cache
, sh
);
2178 sh
->hash_lock_index
=
2179 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2180 /* we just created an active stripe so... */
2181 atomic_inc(&conf
->active_stripes
);
2183 raid5_release_stripe(sh
);
2184 conf
->max_nr_stripes
++;
2188 static int grow_stripes(struct r5conf
*conf
, int num
)
2190 struct kmem_cache
*sc
;
2191 size_t namelen
= sizeof(conf
->cache_name
[0]);
2192 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2194 if (conf
->mddev
->gendisk
)
2195 snprintf(conf
->cache_name
[0], namelen
,
2196 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2198 snprintf(conf
->cache_name
[0], namelen
,
2199 "raid%d-%p", conf
->level
, conf
->mddev
);
2200 snprintf(conf
->cache_name
[1], namelen
, "%.27s-alt", conf
->cache_name
[0]);
2202 conf
->active_name
= 0;
2203 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2204 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2208 conf
->slab_cache
= sc
;
2209 conf
->pool_size
= devs
;
2211 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 * (dma_map_page()) or page (page_address()) address.
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2230 static int scribble_alloc(struct raid5_percpu
*percpu
,
2231 int num
, int cnt
, gfp_t flags
)
2234 sizeof(struct page
*) * (num
+2) +
2235 sizeof(addr_conv_t
) * (num
+2);
2238 scribble
= kvmalloc_array(cnt
, obj_size
, flags
);
2242 kvfree(percpu
->scribble
);
2244 percpu
->scribble
= scribble
;
2245 percpu
->scribble_obj_size
= obj_size
;
2249 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2255 * Never shrink. And mddev_suspend() could deadlock if this is called
2256 * from raid5d. In that case, scribble_disks and scribble_sectors
2257 * should equal to new_disks and new_sectors
2259 if (conf
->scribble_disks
>= new_disks
&&
2260 conf
->scribble_sectors
>= new_sectors
)
2262 mddev_suspend(conf
->mddev
);
2265 for_each_present_cpu(cpu
) {
2266 struct raid5_percpu
*percpu
;
2268 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2269 err
= scribble_alloc(percpu
, new_disks
,
2270 new_sectors
/ STRIPE_SECTORS
,
2277 mddev_resume(conf
->mddev
);
2279 conf
->scribble_disks
= new_disks
;
2280 conf
->scribble_sectors
= new_sectors
;
2285 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2287 /* Make all the stripes able to hold 'newsize' devices.
2288 * New slots in each stripe get 'page' set to a new page.
2290 * This happens in stages:
2291 * 1/ create a new kmem_cache and allocate the required number of
2293 * 2/ gather all the old stripe_heads and transfer the pages across
2294 * to the new stripe_heads. This will have the side effect of
2295 * freezing the array as once all stripe_heads have been collected,
2296 * no IO will be possible. Old stripe heads are freed once their
2297 * pages have been transferred over, and the old kmem_cache is
2298 * freed when all stripes are done.
2299 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2300 * we simple return a failure status - no need to clean anything up.
2301 * 4/ allocate new pages for the new slots in the new stripe_heads.
2302 * If this fails, we don't bother trying the shrink the
2303 * stripe_heads down again, we just leave them as they are.
2304 * As each stripe_head is processed the new one is released into
2307 * Once step2 is started, we cannot afford to wait for a write,
2308 * so we use GFP_NOIO allocations.
2310 struct stripe_head
*osh
, *nsh
;
2311 LIST_HEAD(newstripes
);
2312 struct disk_info
*ndisks
;
2314 struct kmem_cache
*sc
;
2318 md_allow_write(conf
->mddev
);
2321 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2322 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2327 /* Need to ensure auto-resizing doesn't interfere */
2328 mutex_lock(&conf
->cache_size_mutex
);
2330 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2331 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
, conf
);
2335 list_add(&nsh
->lru
, &newstripes
);
2338 /* didn't get enough, give up */
2339 while (!list_empty(&newstripes
)) {
2340 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2341 list_del(&nsh
->lru
);
2342 free_stripe(sc
, nsh
);
2344 kmem_cache_destroy(sc
);
2345 mutex_unlock(&conf
->cache_size_mutex
);
2348 /* Step 2 - Must use GFP_NOIO now.
2349 * OK, we have enough stripes, start collecting inactive
2350 * stripes and copying them over
2354 list_for_each_entry(nsh
, &newstripes
, lru
) {
2355 lock_device_hash_lock(conf
, hash
);
2356 wait_event_cmd(conf
->wait_for_stripe
,
2357 !list_empty(conf
->inactive_list
+ hash
),
2358 unlock_device_hash_lock(conf
, hash
),
2359 lock_device_hash_lock(conf
, hash
));
2360 osh
= get_free_stripe(conf
, hash
);
2361 unlock_device_hash_lock(conf
, hash
);
2363 for(i
=0; i
<conf
->pool_size
; i
++) {
2364 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2365 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2367 nsh
->hash_lock_index
= hash
;
2368 free_stripe(conf
->slab_cache
, osh
);
2370 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2371 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2376 kmem_cache_destroy(conf
->slab_cache
);
2379 * At this point, we are holding all the stripes so the array
2380 * is completely stalled, so now is a good time to resize
2381 * conf->disks and the scribble region
2383 ndisks
= kcalloc(newsize
, sizeof(struct disk_info
), GFP_NOIO
);
2385 for (i
= 0; i
< conf
->pool_size
; i
++)
2386 ndisks
[i
] = conf
->disks
[i
];
2388 for (i
= conf
->pool_size
; i
< newsize
; i
++) {
2389 ndisks
[i
].extra_page
= alloc_page(GFP_NOIO
);
2390 if (!ndisks
[i
].extra_page
)
2395 for (i
= conf
->pool_size
; i
< newsize
; i
++)
2396 if (ndisks
[i
].extra_page
)
2397 put_page(ndisks
[i
].extra_page
);
2401 conf
->disks
= ndisks
;
2406 mutex_unlock(&conf
->cache_size_mutex
);
2408 conf
->slab_cache
= sc
;
2409 conf
->active_name
= 1-conf
->active_name
;
2411 /* Step 4, return new stripes to service */
2412 while(!list_empty(&newstripes
)) {
2413 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2414 list_del_init(&nsh
->lru
);
2416 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2417 if (nsh
->dev
[i
].page
== NULL
) {
2418 struct page
*p
= alloc_page(GFP_NOIO
);
2419 nsh
->dev
[i
].page
= p
;
2420 nsh
->dev
[i
].orig_page
= p
;
2424 raid5_release_stripe(nsh
);
2426 /* critical section pass, GFP_NOIO no longer needed */
2429 conf
->pool_size
= newsize
;
2433 static int drop_one_stripe(struct r5conf
*conf
)
2435 struct stripe_head
*sh
;
2436 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2438 spin_lock_irq(conf
->hash_locks
+ hash
);
2439 sh
= get_free_stripe(conf
, hash
);
2440 spin_unlock_irq(conf
->hash_locks
+ hash
);
2443 BUG_ON(atomic_read(&sh
->count
));
2445 free_stripe(conf
->slab_cache
, sh
);
2446 atomic_dec(&conf
->active_stripes
);
2447 conf
->max_nr_stripes
--;
2451 static void shrink_stripes(struct r5conf
*conf
)
2453 while (conf
->max_nr_stripes
&&
2454 drop_one_stripe(conf
))
2457 kmem_cache_destroy(conf
->slab_cache
);
2458 conf
->slab_cache
= NULL
;
2461 static void raid5_end_read_request(struct bio
* bi
)
2463 struct stripe_head
*sh
= bi
->bi_private
;
2464 struct r5conf
*conf
= sh
->raid_conf
;
2465 int disks
= sh
->disks
, i
;
2466 char b
[BDEVNAME_SIZE
];
2467 struct md_rdev
*rdev
= NULL
;
2470 for (i
=0 ; i
<disks
; i
++)
2471 if (bi
== &sh
->dev
[i
].req
)
2474 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2475 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2482 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2483 /* If replacement finished while this request was outstanding,
2484 * 'replacement' might be NULL already.
2485 * In that case it moved down to 'rdev'.
2486 * rdev is not removed until all requests are finished.
2488 rdev
= conf
->disks
[i
].replacement
;
2490 rdev
= conf
->disks
[i
].rdev
;
2492 if (use_new_offset(conf
, sh
))
2493 s
= sh
->sector
+ rdev
->new_data_offset
;
2495 s
= sh
->sector
+ rdev
->data_offset
;
2496 if (!bi
->bi_status
) {
2497 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2498 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2499 /* Note that this cannot happen on a
2500 * replacement device. We just fail those on
2503 pr_info_ratelimited(
2504 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2505 mdname(conf
->mddev
), STRIPE_SECTORS
,
2506 (unsigned long long)s
,
2507 bdevname(rdev
->bdev
, b
));
2508 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2509 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2510 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2511 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2512 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2514 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
2516 * end read for a page in journal, this
2517 * must be preparing for prexor in rmw
2519 set_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2521 if (atomic_read(&rdev
->read_errors
))
2522 atomic_set(&rdev
->read_errors
, 0);
2524 const char *bdn
= bdevname(rdev
->bdev
, b
);
2528 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2529 if (!(bi
->bi_status
== BLK_STS_PROTECTION
))
2530 atomic_inc(&rdev
->read_errors
);
2531 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2532 pr_warn_ratelimited(
2533 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2534 mdname(conf
->mddev
),
2535 (unsigned long long)s
,
2537 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2539 pr_warn_ratelimited(
2540 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2541 mdname(conf
->mddev
),
2542 (unsigned long long)s
,
2544 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2547 pr_warn_ratelimited(
2548 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2549 mdname(conf
->mddev
),
2550 (unsigned long long)s
,
2552 } else if (atomic_read(&rdev
->read_errors
)
2553 > conf
->max_nr_stripes
) {
2554 if (!test_bit(Faulty
, &rdev
->flags
)) {
2555 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2556 mdname(conf
->mddev
),
2557 atomic_read(&rdev
->read_errors
),
2558 conf
->max_nr_stripes
);
2559 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2560 mdname(conf
->mddev
), bdn
);
2564 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2565 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2568 if (sh
->qd_idx
>= 0 && sh
->pd_idx
== i
)
2569 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2570 else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2571 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2572 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2574 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2576 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2577 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2579 && test_bit(In_sync
, &rdev
->flags
)
2580 && rdev_set_badblocks(
2581 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2582 md_error(conf
->mddev
, rdev
);
2585 rdev_dec_pending(rdev
, conf
->mddev
);
2587 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2588 set_bit(STRIPE_HANDLE
, &sh
->state
);
2589 raid5_release_stripe(sh
);
2592 static void raid5_end_write_request(struct bio
*bi
)
2594 struct stripe_head
*sh
= bi
->bi_private
;
2595 struct r5conf
*conf
= sh
->raid_conf
;
2596 int disks
= sh
->disks
, i
;
2597 struct md_rdev
*uninitialized_var(rdev
);
2600 int replacement
= 0;
2602 for (i
= 0 ; i
< disks
; i
++) {
2603 if (bi
== &sh
->dev
[i
].req
) {
2604 rdev
= conf
->disks
[i
].rdev
;
2607 if (bi
== &sh
->dev
[i
].rreq
) {
2608 rdev
= conf
->disks
[i
].replacement
;
2612 /* rdev was removed and 'replacement'
2613 * replaced it. rdev is not removed
2614 * until all requests are finished.
2616 rdev
= conf
->disks
[i
].rdev
;
2620 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2621 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2631 md_error(conf
->mddev
, rdev
);
2632 else if (is_badblock(rdev
, sh
->sector
,
2634 &first_bad
, &bad_sectors
))
2635 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2637 if (bi
->bi_status
) {
2638 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2639 set_bit(WriteErrorSeen
, &rdev
->flags
);
2640 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2641 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2642 set_bit(MD_RECOVERY_NEEDED
,
2643 &rdev
->mddev
->recovery
);
2644 } else if (is_badblock(rdev
, sh
->sector
,
2646 &first_bad
, &bad_sectors
)) {
2647 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2648 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2649 /* That was a successful write so make
2650 * sure it looks like we already did
2653 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2656 rdev_dec_pending(rdev
, conf
->mddev
);
2658 if (sh
->batch_head
&& bi
->bi_status
&& !replacement
)
2659 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2662 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2663 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2664 set_bit(STRIPE_HANDLE
, &sh
->state
);
2665 raid5_release_stripe(sh
);
2667 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2668 raid5_release_stripe(sh
->batch_head
);
2671 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2673 char b
[BDEVNAME_SIZE
];
2674 struct r5conf
*conf
= mddev
->private;
2675 unsigned long flags
;
2676 pr_debug("raid456: error called\n");
2678 spin_lock_irqsave(&conf
->device_lock
, flags
);
2680 if (test_bit(In_sync
, &rdev
->flags
) &&
2681 mddev
->degraded
== conf
->max_degraded
) {
2683 * Don't allow to achieve failed state
2684 * Don't try to recover this device
2686 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2687 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2691 set_bit(Faulty
, &rdev
->flags
);
2692 clear_bit(In_sync
, &rdev
->flags
);
2693 mddev
->degraded
= raid5_calc_degraded(conf
);
2694 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2695 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2697 set_bit(Blocked
, &rdev
->flags
);
2698 set_mask_bits(&mddev
->sb_flags
, 0,
2699 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
2700 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2701 "md/raid:%s: Operation continuing on %d devices.\n",
2703 bdevname(rdev
->bdev
, b
),
2705 conf
->raid_disks
- mddev
->degraded
);
2706 r5c_update_on_rdev_error(mddev
, rdev
);
2710 * Input: a 'big' sector number,
2711 * Output: index of the data and parity disk, and the sector # in them.
2713 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2714 int previous
, int *dd_idx
,
2715 struct stripe_head
*sh
)
2717 sector_t stripe
, stripe2
;
2718 sector_t chunk_number
;
2719 unsigned int chunk_offset
;
2722 sector_t new_sector
;
2723 int algorithm
= previous
? conf
->prev_algo
2725 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2726 : conf
->chunk_sectors
;
2727 int raid_disks
= previous
? conf
->previous_raid_disks
2729 int data_disks
= raid_disks
- conf
->max_degraded
;
2731 /* First compute the information on this sector */
2734 * Compute the chunk number and the sector offset inside the chunk
2736 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2737 chunk_number
= r_sector
;
2740 * Compute the stripe number
2742 stripe
= chunk_number
;
2743 *dd_idx
= sector_div(stripe
, data_disks
);
2746 * Select the parity disk based on the user selected algorithm.
2748 pd_idx
= qd_idx
= -1;
2749 switch(conf
->level
) {
2751 pd_idx
= data_disks
;
2754 switch (algorithm
) {
2755 case ALGORITHM_LEFT_ASYMMETRIC
:
2756 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2757 if (*dd_idx
>= pd_idx
)
2760 case ALGORITHM_RIGHT_ASYMMETRIC
:
2761 pd_idx
= sector_div(stripe2
, raid_disks
);
2762 if (*dd_idx
>= pd_idx
)
2765 case ALGORITHM_LEFT_SYMMETRIC
:
2766 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2767 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2769 case ALGORITHM_RIGHT_SYMMETRIC
:
2770 pd_idx
= sector_div(stripe2
, raid_disks
);
2771 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2773 case ALGORITHM_PARITY_0
:
2777 case ALGORITHM_PARITY_N
:
2778 pd_idx
= data_disks
;
2786 switch (algorithm
) {
2787 case ALGORITHM_LEFT_ASYMMETRIC
:
2788 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2789 qd_idx
= pd_idx
+ 1;
2790 if (pd_idx
== raid_disks
-1) {
2791 (*dd_idx
)++; /* Q D D D P */
2793 } else if (*dd_idx
>= pd_idx
)
2794 (*dd_idx
) += 2; /* D D P Q D */
2796 case ALGORITHM_RIGHT_ASYMMETRIC
:
2797 pd_idx
= sector_div(stripe2
, raid_disks
);
2798 qd_idx
= pd_idx
+ 1;
2799 if (pd_idx
== raid_disks
-1) {
2800 (*dd_idx
)++; /* Q D D D P */
2802 } else if (*dd_idx
>= pd_idx
)
2803 (*dd_idx
) += 2; /* D D P Q D */
2805 case ALGORITHM_LEFT_SYMMETRIC
:
2806 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2807 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2808 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2810 case ALGORITHM_RIGHT_SYMMETRIC
:
2811 pd_idx
= sector_div(stripe2
, raid_disks
);
2812 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2813 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2816 case ALGORITHM_PARITY_0
:
2821 case ALGORITHM_PARITY_N
:
2822 pd_idx
= data_disks
;
2823 qd_idx
= data_disks
+ 1;
2826 case ALGORITHM_ROTATING_ZERO_RESTART
:
2827 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2828 * of blocks for computing Q is different.
2830 pd_idx
= sector_div(stripe2
, raid_disks
);
2831 qd_idx
= pd_idx
+ 1;
2832 if (pd_idx
== raid_disks
-1) {
2833 (*dd_idx
)++; /* Q D D D P */
2835 } else if (*dd_idx
>= pd_idx
)
2836 (*dd_idx
) += 2; /* D D P Q D */
2840 case ALGORITHM_ROTATING_N_RESTART
:
2841 /* Same a left_asymmetric, by first stripe is
2842 * D D D P Q rather than
2846 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2847 qd_idx
= pd_idx
+ 1;
2848 if (pd_idx
== raid_disks
-1) {
2849 (*dd_idx
)++; /* Q D D D P */
2851 } else if (*dd_idx
>= pd_idx
)
2852 (*dd_idx
) += 2; /* D D P Q D */
2856 case ALGORITHM_ROTATING_N_CONTINUE
:
2857 /* Same as left_symmetric but Q is before P */
2858 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2859 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2860 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2864 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2865 /* RAID5 left_asymmetric, with Q on last device */
2866 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2867 if (*dd_idx
>= pd_idx
)
2869 qd_idx
= raid_disks
- 1;
2872 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2873 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2874 if (*dd_idx
>= pd_idx
)
2876 qd_idx
= raid_disks
- 1;
2879 case ALGORITHM_LEFT_SYMMETRIC_6
:
2880 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2881 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2882 qd_idx
= raid_disks
- 1;
2885 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2886 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2887 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2888 qd_idx
= raid_disks
- 1;
2891 case ALGORITHM_PARITY_0_6
:
2894 qd_idx
= raid_disks
- 1;
2904 sh
->pd_idx
= pd_idx
;
2905 sh
->qd_idx
= qd_idx
;
2906 sh
->ddf_layout
= ddf_layout
;
2909 * Finally, compute the new sector number
2911 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2915 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2917 struct r5conf
*conf
= sh
->raid_conf
;
2918 int raid_disks
= sh
->disks
;
2919 int data_disks
= raid_disks
- conf
->max_degraded
;
2920 sector_t new_sector
= sh
->sector
, check
;
2921 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2922 : conf
->chunk_sectors
;
2923 int algorithm
= previous
? conf
->prev_algo
2927 sector_t chunk_number
;
2928 int dummy1
, dd_idx
= i
;
2930 struct stripe_head sh2
;
2932 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2933 stripe
= new_sector
;
2935 if (i
== sh
->pd_idx
)
2937 switch(conf
->level
) {
2940 switch (algorithm
) {
2941 case ALGORITHM_LEFT_ASYMMETRIC
:
2942 case ALGORITHM_RIGHT_ASYMMETRIC
:
2946 case ALGORITHM_LEFT_SYMMETRIC
:
2947 case ALGORITHM_RIGHT_SYMMETRIC
:
2950 i
-= (sh
->pd_idx
+ 1);
2952 case ALGORITHM_PARITY_0
:
2955 case ALGORITHM_PARITY_N
:
2962 if (i
== sh
->qd_idx
)
2963 return 0; /* It is the Q disk */
2964 switch (algorithm
) {
2965 case ALGORITHM_LEFT_ASYMMETRIC
:
2966 case ALGORITHM_RIGHT_ASYMMETRIC
:
2967 case ALGORITHM_ROTATING_ZERO_RESTART
:
2968 case ALGORITHM_ROTATING_N_RESTART
:
2969 if (sh
->pd_idx
== raid_disks
-1)
2970 i
--; /* Q D D D P */
2971 else if (i
> sh
->pd_idx
)
2972 i
-= 2; /* D D P Q D */
2974 case ALGORITHM_LEFT_SYMMETRIC
:
2975 case ALGORITHM_RIGHT_SYMMETRIC
:
2976 if (sh
->pd_idx
== raid_disks
-1)
2977 i
--; /* Q D D D P */
2982 i
-= (sh
->pd_idx
+ 2);
2985 case ALGORITHM_PARITY_0
:
2988 case ALGORITHM_PARITY_N
:
2990 case ALGORITHM_ROTATING_N_CONTINUE
:
2991 /* Like left_symmetric, but P is before Q */
2992 if (sh
->pd_idx
== 0)
2993 i
--; /* P D D D Q */
2998 i
-= (sh
->pd_idx
+ 1);
3001 case ALGORITHM_LEFT_ASYMMETRIC_6
:
3002 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
3006 case ALGORITHM_LEFT_SYMMETRIC_6
:
3007 case ALGORITHM_RIGHT_SYMMETRIC_6
:
3009 i
+= data_disks
+ 1;
3010 i
-= (sh
->pd_idx
+ 1);
3012 case ALGORITHM_PARITY_0_6
:
3021 chunk_number
= stripe
* data_disks
+ i
;
3022 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
3024 check
= raid5_compute_sector(conf
, r_sector
,
3025 previous
, &dummy1
, &sh2
);
3026 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
3027 || sh2
.qd_idx
!= sh
->qd_idx
) {
3028 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3029 mdname(conf
->mddev
));
3036 * There are cases where we want handle_stripe_dirtying() and
3037 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3039 * This function checks whether we want to delay the towrite. Specifically,
3040 * we delay the towrite when:
3042 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3043 * stripe has data in journal (for other devices).
3045 * In this case, when reading data for the non-overwrite dev, it is
3046 * necessary to handle complex rmw of write back cache (prexor with
3047 * orig_page, and xor with page). To keep read path simple, we would
3048 * like to flush data in journal to RAID disks first, so complex rmw
3049 * is handled in the write patch (handle_stripe_dirtying).
3051 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3053 * It is important to be able to flush all stripes in raid5-cache.
3054 * Therefore, we need reserve some space on the journal device for
3055 * these flushes. If flush operation includes pending writes to the
3056 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3057 * for the flush out. If we exclude these pending writes from flush
3058 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3059 * Therefore, excluding pending writes in these cases enables more
3060 * efficient use of the journal device.
3062 * Note: To make sure the stripe makes progress, we only delay
3063 * towrite for stripes with data already in journal (injournal > 0).
3064 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3065 * no_space_stripes list.
3067 * 3. during journal failure
3068 * In journal failure, we try to flush all cached data to raid disks
3069 * based on data in stripe cache. The array is read-only to upper
3070 * layers, so we would skip all pending writes.
3073 static inline bool delay_towrite(struct r5conf
*conf
,
3075 struct stripe_head_state
*s
)
3078 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3079 !test_bit(R5_Insync
, &dev
->flags
) && s
->injournal
)
3082 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
3086 if (s
->log_failed
&& s
->injournal
)
3092 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3093 int rcw
, int expand
)
3095 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
3096 struct r5conf
*conf
= sh
->raid_conf
;
3097 int level
= conf
->level
;
3101 * In some cases, handle_stripe_dirtying initially decided to
3102 * run rmw and allocates extra page for prexor. However, rcw is
3103 * cheaper later on. We need to free the extra page now,
3104 * because we won't be able to do that in ops_complete_prexor().
3106 r5c_release_extra_page(sh
);
3108 for (i
= disks
; i
--; ) {
3109 struct r5dev
*dev
= &sh
->dev
[i
];
3111 if (dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) {
3112 set_bit(R5_LOCKED
, &dev
->flags
);
3113 set_bit(R5_Wantdrain
, &dev
->flags
);
3115 clear_bit(R5_UPTODATE
, &dev
->flags
);
3117 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3118 set_bit(R5_LOCKED
, &dev
->flags
);
3122 /* if we are not expanding this is a proper write request, and
3123 * there will be bios with new data to be drained into the
3128 /* False alarm, nothing to do */
3130 sh
->reconstruct_state
= reconstruct_state_drain_run
;
3131 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3133 sh
->reconstruct_state
= reconstruct_state_run
;
3135 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3137 if (s
->locked
+ conf
->max_degraded
== disks
)
3138 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3139 atomic_inc(&conf
->pending_full_writes
);
3141 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
3142 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
3143 BUG_ON(level
== 6 &&
3144 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
3145 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
3147 for (i
= disks
; i
--; ) {
3148 struct r5dev
*dev
= &sh
->dev
[i
];
3149 if (i
== pd_idx
|| i
== qd_idx
)
3153 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3154 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3155 set_bit(R5_Wantdrain
, &dev
->flags
);
3156 set_bit(R5_LOCKED
, &dev
->flags
);
3157 clear_bit(R5_UPTODATE
, &dev
->flags
);
3159 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3160 set_bit(R5_LOCKED
, &dev
->flags
);
3165 /* False alarm - nothing to do */
3167 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
3168 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
3169 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3170 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3173 /* keep the parity disk(s) locked while asynchronous operations
3176 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
3177 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3181 int qd_idx
= sh
->qd_idx
;
3182 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
3184 set_bit(R5_LOCKED
, &dev
->flags
);
3185 clear_bit(R5_UPTODATE
, &dev
->flags
);
3189 if (raid5_has_ppl(sh
->raid_conf
) && sh
->ppl_page
&&
3190 test_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
) &&
3191 !test_bit(STRIPE_FULL_WRITE
, &sh
->state
) &&
3192 test_bit(R5_Insync
, &sh
->dev
[pd_idx
].flags
))
3193 set_bit(STRIPE_OP_PARTIAL_PARITY
, &s
->ops_request
);
3195 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3196 __func__
, (unsigned long long)sh
->sector
,
3197 s
->locked
, s
->ops_request
);
3201 * Each stripe/dev can have one or more bion attached.
3202 * toread/towrite point to the first in a chain.
3203 * The bi_next chain must be in order.
3205 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
3206 int forwrite
, int previous
)
3209 struct r5conf
*conf
= sh
->raid_conf
;
3212 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3213 (unsigned long long)bi
->bi_iter
.bi_sector
,
3214 (unsigned long long)sh
->sector
);
3216 spin_lock_irq(&sh
->stripe_lock
);
3217 sh
->dev
[dd_idx
].write_hint
= bi
->bi_write_hint
;
3218 /* Don't allow new IO added to stripes in batch list */
3222 bip
= &sh
->dev
[dd_idx
].towrite
;
3226 bip
= &sh
->dev
[dd_idx
].toread
;
3227 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
3228 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
3230 bip
= & (*bip
)->bi_next
;
3232 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3235 if (forwrite
&& raid5_has_ppl(conf
)) {
3237 * With PPL only writes to consecutive data chunks within a
3238 * stripe are allowed because for a single stripe_head we can
3239 * only have one PPL entry at a time, which describes one data
3240 * range. Not really an overlap, but wait_for_overlap can be
3241 * used to handle this.
3249 for (i
= 0; i
< sh
->disks
; i
++) {
3250 if (i
!= sh
->pd_idx
&&
3251 (i
== dd_idx
|| sh
->dev
[i
].towrite
)) {
3252 sector
= sh
->dev
[i
].sector
;
3253 if (count
== 0 || sector
< first
)
3261 if (first
+ conf
->chunk_sectors
* (count
- 1) != last
)
3265 if (!forwrite
|| previous
)
3266 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3268 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3272 bio_inc_remaining(bi
);
3273 md_write_inc(conf
->mddev
, bi
);
3276 /* check if page is covered */
3277 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3278 for (bi
=sh
->dev
[dd_idx
].towrite
;
3279 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3280 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3281 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3282 if (bio_end_sector(bi
) >= sector
)
3283 sector
= bio_end_sector(bi
);
3285 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3286 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3287 sh
->overwrite_disks
++;
3290 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3291 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3292 (unsigned long long)sh
->sector
, dd_idx
);
3294 if (conf
->mddev
->bitmap
&& firstwrite
) {
3295 /* Cannot hold spinlock over bitmap_startwrite,
3296 * but must ensure this isn't added to a batch until
3297 * we have added to the bitmap and set bm_seq.
3298 * So set STRIPE_BITMAP_PENDING to prevent
3300 * If multiple add_stripe_bio() calls race here they
3301 * much all set STRIPE_BITMAP_PENDING. So only the first one
3302 * to complete "bitmap_startwrite" gets to set
3303 * STRIPE_BIT_DELAY. This is important as once a stripe
3304 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3307 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3308 spin_unlock_irq(&sh
->stripe_lock
);
3309 md_bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3311 spin_lock_irq(&sh
->stripe_lock
);
3312 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3313 if (!sh
->batch_head
) {
3314 sh
->bm_seq
= conf
->seq_flush
+1;
3315 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3318 spin_unlock_irq(&sh
->stripe_lock
);
3320 if (stripe_can_batch(sh
))
3321 stripe_add_to_batch_list(conf
, sh
);
3325 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3326 spin_unlock_irq(&sh
->stripe_lock
);
3330 static void end_reshape(struct r5conf
*conf
);
3332 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3333 struct stripe_head
*sh
)
3335 int sectors_per_chunk
=
3336 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3338 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3339 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3341 raid5_compute_sector(conf
,
3342 stripe
* (disks
- conf
->max_degraded
)
3343 *sectors_per_chunk
+ chunk_offset
,
3349 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3350 struct stripe_head_state
*s
, int disks
)
3353 BUG_ON(sh
->batch_head
);
3354 for (i
= disks
; i
--; ) {
3358 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3359 struct md_rdev
*rdev
;
3361 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3362 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3363 !test_bit(Faulty
, &rdev
->flags
))
3364 atomic_inc(&rdev
->nr_pending
);
3369 if (!rdev_set_badblocks(
3373 md_error(conf
->mddev
, rdev
);
3374 rdev_dec_pending(rdev
, conf
->mddev
);
3377 spin_lock_irq(&sh
->stripe_lock
);
3378 /* fail all writes first */
3379 bi
= sh
->dev
[i
].towrite
;
3380 sh
->dev
[i
].towrite
= NULL
;
3381 sh
->overwrite_disks
= 0;
3382 spin_unlock_irq(&sh
->stripe_lock
);
3386 log_stripe_write_finished(sh
);
3388 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3389 wake_up(&conf
->wait_for_overlap
);
3391 while (bi
&& bi
->bi_iter
.bi_sector
<
3392 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3393 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3395 md_write_end(conf
->mddev
);
3400 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3401 STRIPE_SECTORS
, 0, 0);
3403 /* and fail all 'written' */
3404 bi
= sh
->dev
[i
].written
;
3405 sh
->dev
[i
].written
= NULL
;
3406 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3407 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3408 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3411 if (bi
) bitmap_end
= 1;
3412 while (bi
&& bi
->bi_iter
.bi_sector
<
3413 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3414 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3416 md_write_end(conf
->mddev
);
3421 /* fail any reads if this device is non-operational and
3422 * the data has not reached the cache yet.
3424 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3425 s
->failed
> conf
->max_degraded
&&
3426 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3427 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3428 spin_lock_irq(&sh
->stripe_lock
);
3429 bi
= sh
->dev
[i
].toread
;
3430 sh
->dev
[i
].toread
= NULL
;
3431 spin_unlock_irq(&sh
->stripe_lock
);
3432 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3433 wake_up(&conf
->wait_for_overlap
);
3436 while (bi
&& bi
->bi_iter
.bi_sector
<
3437 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3438 struct bio
*nextbi
=
3439 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3446 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3447 STRIPE_SECTORS
, 0, 0);
3448 /* If we were in the middle of a write the parity block might
3449 * still be locked - so just clear all R5_LOCKED flags
3451 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3456 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3457 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3458 md_wakeup_thread(conf
->mddev
->thread
);
3462 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3463 struct stripe_head_state
*s
)
3468 BUG_ON(sh
->batch_head
);
3469 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3470 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3471 wake_up(&conf
->wait_for_overlap
);
3474 /* There is nothing more to do for sync/check/repair.
3475 * Don't even need to abort as that is handled elsewhere
3476 * if needed, and not always wanted e.g. if there is a known
3478 * For recover/replace we need to record a bad block on all
3479 * non-sync devices, or abort the recovery
3481 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3482 /* During recovery devices cannot be removed, so
3483 * locking and refcounting of rdevs is not needed
3486 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3487 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3489 && !test_bit(Faulty
, &rdev
->flags
)
3490 && !test_bit(In_sync
, &rdev
->flags
)
3491 && !rdev_set_badblocks(rdev
, sh
->sector
,
3494 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3496 && !test_bit(Faulty
, &rdev
->flags
)
3497 && !test_bit(In_sync
, &rdev
->flags
)
3498 && !rdev_set_badblocks(rdev
, sh
->sector
,
3504 conf
->recovery_disabled
=
3505 conf
->mddev
->recovery_disabled
;
3507 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3510 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3512 struct md_rdev
*rdev
;
3516 rdev
= rcu_dereference(sh
->raid_conf
->disks
[disk_idx
].replacement
);
3518 && !test_bit(Faulty
, &rdev
->flags
)
3519 && !test_bit(In_sync
, &rdev
->flags
)
3520 && (rdev
->recovery_offset
<= sh
->sector
3521 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3527 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3528 int disk_idx
, int disks
)
3530 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3531 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3532 &sh
->dev
[s
->failed_num
[1]] };
3536 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3537 test_bit(R5_UPTODATE
, &dev
->flags
))
3538 /* No point reading this as we already have it or have
3539 * decided to get it.
3544 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3545 /* We need this block to directly satisfy a request */
3548 if (s
->syncing
|| s
->expanding
||
3549 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3550 /* When syncing, or expanding we read everything.
3551 * When replacing, we need the replaced block.
3555 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3556 (s
->failed
>= 2 && fdev
[1]->toread
))
3557 /* If we want to read from a failed device, then
3558 * we need to actually read every other device.
3562 /* Sometimes neither read-modify-write nor reconstruct-write
3563 * cycles can work. In those cases we read every block we
3564 * can. Then the parity-update is certain to have enough to
3566 * This can only be a problem when we need to write something,
3567 * and some device has failed. If either of those tests
3568 * fail we need look no further.
3570 if (!s
->failed
|| !s
->to_write
)
3573 if (test_bit(R5_Insync
, &dev
->flags
) &&
3574 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3575 /* Pre-reads at not permitted until after short delay
3576 * to gather multiple requests. However if this
3577 * device is no Insync, the block could only be computed
3578 * and there is no need to delay that.
3582 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3583 if (fdev
[i
]->towrite
&&
3584 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3585 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3586 /* If we have a partial write to a failed
3587 * device, then we will need to reconstruct
3588 * the content of that device, so all other
3589 * devices must be read.
3594 /* If we are forced to do a reconstruct-write, either because
3595 * the current RAID6 implementation only supports that, or
3596 * because parity cannot be trusted and we are currently
3597 * recovering it, there is extra need to be careful.
3598 * If one of the devices that we would need to read, because
3599 * it is not being overwritten (and maybe not written at all)
3600 * is missing/faulty, then we need to read everything we can.
3602 if (sh
->raid_conf
->level
!= 6 &&
3603 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3604 /* reconstruct-write isn't being forced */
3606 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3607 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3608 s
->failed_num
[i
] != sh
->qd_idx
&&
3609 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3610 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3617 /* fetch_block - checks the given member device to see if its data needs
3618 * to be read or computed to satisfy a request.
3620 * Returns 1 when no more member devices need to be checked, otherwise returns
3621 * 0 to tell the loop in handle_stripe_fill to continue
3623 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3624 int disk_idx
, int disks
)
3626 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3628 /* is the data in this block needed, and can we get it? */
3629 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3630 /* we would like to get this block, possibly by computing it,
3631 * otherwise read it if the backing disk is insync
3633 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3634 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3635 BUG_ON(sh
->batch_head
);
3638 * In the raid6 case if the only non-uptodate disk is P
3639 * then we already trusted P to compute the other failed
3640 * drives. It is safe to compute rather than re-read P.
3641 * In other cases we only compute blocks from failed
3642 * devices, otherwise check/repair might fail to detect
3643 * a real inconsistency.
3646 if ((s
->uptodate
== disks
- 1) &&
3647 ((sh
->qd_idx
>= 0 && sh
->pd_idx
== disk_idx
) ||
3648 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3649 disk_idx
== s
->failed_num
[1])))) {
3650 /* have disk failed, and we're requested to fetch it;
3653 pr_debug("Computing stripe %llu block %d\n",
3654 (unsigned long long)sh
->sector
, disk_idx
);
3655 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3656 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3657 set_bit(R5_Wantcompute
, &dev
->flags
);
3658 sh
->ops
.target
= disk_idx
;
3659 sh
->ops
.target2
= -1; /* no 2nd target */
3661 /* Careful: from this point on 'uptodate' is in the eye
3662 * of raid_run_ops which services 'compute' operations
3663 * before writes. R5_Wantcompute flags a block that will
3664 * be R5_UPTODATE by the time it is needed for a
3665 * subsequent operation.
3669 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3670 /* Computing 2-failure is *very* expensive; only
3671 * do it if failed >= 2
3674 for (other
= disks
; other
--; ) {
3675 if (other
== disk_idx
)
3677 if (!test_bit(R5_UPTODATE
,
3678 &sh
->dev
[other
].flags
))
3682 pr_debug("Computing stripe %llu blocks %d,%d\n",
3683 (unsigned long long)sh
->sector
,
3685 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3686 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3687 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3688 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3689 sh
->ops
.target
= disk_idx
;
3690 sh
->ops
.target2
= other
;
3694 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3695 set_bit(R5_LOCKED
, &dev
->flags
);
3696 set_bit(R5_Wantread
, &dev
->flags
);
3698 pr_debug("Reading block %d (sync=%d)\n",
3699 disk_idx
, s
->syncing
);
3707 * handle_stripe_fill - read or compute data to satisfy pending requests.
3709 static void handle_stripe_fill(struct stripe_head
*sh
,
3710 struct stripe_head_state
*s
,
3715 /* look for blocks to read/compute, skip this if a compute
3716 * is already in flight, or if the stripe contents are in the
3717 * midst of changing due to a write
3719 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3720 !sh
->reconstruct_state
) {
3723 * For degraded stripe with data in journal, do not handle
3724 * read requests yet, instead, flush the stripe to raid
3725 * disks first, this avoids handling complex rmw of write
3726 * back cache (prexor with orig_page, and then xor with
3727 * page) in the read path
3729 if (s
->injournal
&& s
->failed
) {
3730 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
3731 r5c_make_stripe_write_out(sh
);
3735 for (i
= disks
; i
--; )
3736 if (fetch_block(sh
, s
, i
, disks
))
3740 set_bit(STRIPE_HANDLE
, &sh
->state
);
3743 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3744 unsigned long handle_flags
);
3745 /* handle_stripe_clean_event
3746 * any written block on an uptodate or failed drive can be returned.
3747 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3748 * never LOCKED, so we don't need to test 'failed' directly.
3750 static void handle_stripe_clean_event(struct r5conf
*conf
,
3751 struct stripe_head
*sh
, int disks
)
3755 int discard_pending
= 0;
3756 struct stripe_head
*head_sh
= sh
;
3757 bool do_endio
= false;
3759 for (i
= disks
; i
--; )
3760 if (sh
->dev
[i
].written
) {
3762 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3763 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3764 test_bit(R5_Discard
, &dev
->flags
) ||
3765 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3766 /* We can return any write requests */
3767 struct bio
*wbi
, *wbi2
;
3768 pr_debug("Return write for disc %d\n", i
);
3769 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3770 clear_bit(R5_UPTODATE
, &dev
->flags
);
3771 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3772 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3777 dev
->page
= dev
->orig_page
;
3779 dev
->written
= NULL
;
3780 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3781 dev
->sector
+ STRIPE_SECTORS
) {
3782 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3783 md_write_end(conf
->mddev
);
3787 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3789 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3791 if (head_sh
->batch_head
) {
3792 sh
= list_first_entry(&sh
->batch_list
,
3795 if (sh
!= head_sh
) {
3802 } else if (test_bit(R5_Discard
, &dev
->flags
))
3803 discard_pending
= 1;
3806 log_stripe_write_finished(sh
);
3808 if (!discard_pending
&&
3809 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3811 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3812 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3813 if (sh
->qd_idx
>= 0) {
3814 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3815 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3817 /* now that discard is done we can proceed with any sync */
3818 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3820 * SCSI discard will change some bio fields and the stripe has
3821 * no updated data, so remove it from hash list and the stripe
3822 * will be reinitialized
3825 hash
= sh
->hash_lock_index
;
3826 spin_lock_irq(conf
->hash_locks
+ hash
);
3828 spin_unlock_irq(conf
->hash_locks
+ hash
);
3829 if (head_sh
->batch_head
) {
3830 sh
= list_first_entry(&sh
->batch_list
,
3831 struct stripe_head
, batch_list
);
3837 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3838 set_bit(STRIPE_HANDLE
, &sh
->state
);
3842 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3843 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3844 md_wakeup_thread(conf
->mddev
->thread
);
3846 if (head_sh
->batch_head
&& do_endio
)
3847 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3851 * For RMW in write back cache, we need extra page in prexor to store the
3852 * old data. This page is stored in dev->orig_page.
3854 * This function checks whether we have data for prexor. The exact logic
3856 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3858 static inline bool uptodate_for_rmw(struct r5dev
*dev
)
3860 return (test_bit(R5_UPTODATE
, &dev
->flags
)) &&
3861 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3862 test_bit(R5_OrigPageUPTDODATE
, &dev
->flags
));
3865 static int handle_stripe_dirtying(struct r5conf
*conf
,
3866 struct stripe_head
*sh
,
3867 struct stripe_head_state
*s
,
3870 int rmw
= 0, rcw
= 0, i
;
3871 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3873 /* Check whether resync is now happening or should start.
3874 * If yes, then the array is dirty (after unclean shutdown or
3875 * initial creation), so parity in some stripes might be inconsistent.
3876 * In this case, we need to always do reconstruct-write, to ensure
3877 * that in case of drive failure or read-error correction, we
3878 * generate correct data from the parity.
3880 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3881 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3883 /* Calculate the real rcw later - for now make it
3884 * look like rcw is cheaper
3887 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3888 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3889 (unsigned long long)sh
->sector
);
3890 } else for (i
= disks
; i
--; ) {
3891 /* would I have to read this buffer for read_modify_write */
3892 struct r5dev
*dev
= &sh
->dev
[i
];
3893 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3894 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3895 test_bit(R5_InJournal
, &dev
->flags
)) &&
3896 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3897 !(uptodate_for_rmw(dev
) ||
3898 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3899 if (test_bit(R5_Insync
, &dev
->flags
))
3902 rmw
+= 2*disks
; /* cannot read it */
3904 /* Would I have to read this buffer for reconstruct_write */
3905 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3906 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3907 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3908 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3909 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3910 if (test_bit(R5_Insync
, &dev
->flags
))
3917 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3918 (unsigned long long)sh
->sector
, sh
->state
, rmw
, rcw
);
3919 set_bit(STRIPE_HANDLE
, &sh
->state
);
3920 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
3921 /* prefer read-modify-write, but need to get some data */
3922 if (conf
->mddev
->queue
)
3923 blk_add_trace_msg(conf
->mddev
->queue
,
3924 "raid5 rmw %llu %d",
3925 (unsigned long long)sh
->sector
, rmw
);
3926 for (i
= disks
; i
--; ) {
3927 struct r5dev
*dev
= &sh
->dev
[i
];
3928 if (test_bit(R5_InJournal
, &dev
->flags
) &&
3929 dev
->page
== dev
->orig_page
&&
3930 !test_bit(R5_LOCKED
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3931 /* alloc page for prexor */
3932 struct page
*p
= alloc_page(GFP_NOIO
);
3940 * alloc_page() failed, try use
3941 * disk_info->extra_page
3943 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE
,
3944 &conf
->cache_state
)) {
3945 r5c_use_extra_page(sh
);
3949 /* extra_page in use, add to delayed_list */
3950 set_bit(STRIPE_DELAYED
, &sh
->state
);
3951 s
->waiting_extra_page
= 1;
3956 for (i
= disks
; i
--; ) {
3957 struct r5dev
*dev
= &sh
->dev
[i
];
3958 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3959 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3960 test_bit(R5_InJournal
, &dev
->flags
)) &&
3961 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3962 !(uptodate_for_rmw(dev
) ||
3963 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3964 test_bit(R5_Insync
, &dev
->flags
)) {
3965 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3967 pr_debug("Read_old block %d for r-m-w\n",
3969 set_bit(R5_LOCKED
, &dev
->flags
);
3970 set_bit(R5_Wantread
, &dev
->flags
);
3973 set_bit(STRIPE_DELAYED
, &sh
->state
);
3974 set_bit(STRIPE_HANDLE
, &sh
->state
);
3979 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
3980 /* want reconstruct write, but need to get some data */
3983 for (i
= disks
; i
--; ) {
3984 struct r5dev
*dev
= &sh
->dev
[i
];
3985 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3986 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3987 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3988 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3989 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3991 if (test_bit(R5_Insync
, &dev
->flags
) &&
3992 test_bit(STRIPE_PREREAD_ACTIVE
,
3994 pr_debug("Read_old block "
3995 "%d for Reconstruct\n", i
);
3996 set_bit(R5_LOCKED
, &dev
->flags
);
3997 set_bit(R5_Wantread
, &dev
->flags
);
4001 set_bit(STRIPE_DELAYED
, &sh
->state
);
4002 set_bit(STRIPE_HANDLE
, &sh
->state
);
4006 if (rcw
&& conf
->mddev
->queue
)
4007 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
4008 (unsigned long long)sh
->sector
,
4009 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
4012 if (rcw
> disks
&& rmw
> disks
&&
4013 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4014 set_bit(STRIPE_DELAYED
, &sh
->state
);
4016 /* now if nothing is locked, and if we have enough data,
4017 * we can start a write request
4019 /* since handle_stripe can be called at any time we need to handle the
4020 * case where a compute block operation has been submitted and then a
4021 * subsequent call wants to start a write request. raid_run_ops only
4022 * handles the case where compute block and reconstruct are requested
4023 * simultaneously. If this is not the case then new writes need to be
4024 * held off until the compute completes.
4026 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
4027 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
4028 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
4029 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
4033 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
4034 struct stripe_head_state
*s
, int disks
)
4036 struct r5dev
*dev
= NULL
;
4038 BUG_ON(sh
->batch_head
);
4039 set_bit(STRIPE_HANDLE
, &sh
->state
);
4041 switch (sh
->check_state
) {
4042 case check_state_idle
:
4043 /* start a new check operation if there are no failures */
4044 if (s
->failed
== 0) {
4045 BUG_ON(s
->uptodate
!= disks
);
4046 sh
->check_state
= check_state_run
;
4047 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4048 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
4052 dev
= &sh
->dev
[s
->failed_num
[0]];
4054 case check_state_compute_result
:
4055 sh
->check_state
= check_state_idle
;
4057 dev
= &sh
->dev
[sh
->pd_idx
];
4059 /* check that a write has not made the stripe insync */
4060 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4063 /* either failed parity check, or recovery is happening */
4064 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
4065 BUG_ON(s
->uptodate
!= disks
);
4067 set_bit(R5_LOCKED
, &dev
->flags
);
4069 set_bit(R5_Wantwrite
, &dev
->flags
);
4071 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4072 set_bit(STRIPE_INSYNC
, &sh
->state
);
4074 case check_state_run
:
4075 break; /* we will be called again upon completion */
4076 case check_state_check_result
:
4077 sh
->check_state
= check_state_idle
;
4079 /* if a failure occurred during the check operation, leave
4080 * STRIPE_INSYNC not set and let the stripe be handled again
4085 /* handle a successful check operation, if parity is correct
4086 * we are done. Otherwise update the mismatch count and repair
4087 * parity if !MD_RECOVERY_CHECK
4089 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
4090 /* parity is correct (on disc,
4091 * not in buffer any more)
4093 set_bit(STRIPE_INSYNC
, &sh
->state
);
4095 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4096 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4097 /* don't try to repair!! */
4098 set_bit(STRIPE_INSYNC
, &sh
->state
);
4099 pr_warn_ratelimited("%s: mismatch sector in range "
4100 "%llu-%llu\n", mdname(conf
->mddev
),
4101 (unsigned long long) sh
->sector
,
4102 (unsigned long long) sh
->sector
+
4105 sh
->check_state
= check_state_compute_run
;
4106 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4107 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4108 set_bit(R5_Wantcompute
,
4109 &sh
->dev
[sh
->pd_idx
].flags
);
4110 sh
->ops
.target
= sh
->pd_idx
;
4111 sh
->ops
.target2
= -1;
4116 case check_state_compute_run
:
4119 pr_err("%s: unknown check_state: %d sector: %llu\n",
4120 __func__
, sh
->check_state
,
4121 (unsigned long long) sh
->sector
);
4126 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
4127 struct stripe_head_state
*s
,
4130 int pd_idx
= sh
->pd_idx
;
4131 int qd_idx
= sh
->qd_idx
;
4134 BUG_ON(sh
->batch_head
);
4135 set_bit(STRIPE_HANDLE
, &sh
->state
);
4137 BUG_ON(s
->failed
> 2);
4139 /* Want to check and possibly repair P and Q.
4140 * However there could be one 'failed' device, in which
4141 * case we can only check one of them, possibly using the
4142 * other to generate missing data
4145 switch (sh
->check_state
) {
4146 case check_state_idle
:
4147 /* start a new check operation if there are < 2 failures */
4148 if (s
->failed
== s
->q_failed
) {
4149 /* The only possible failed device holds Q, so it
4150 * makes sense to check P (If anything else were failed,
4151 * we would have used P to recreate it).
4153 sh
->check_state
= check_state_run
;
4155 if (!s
->q_failed
&& s
->failed
< 2) {
4156 /* Q is not failed, and we didn't use it to generate
4157 * anything, so it makes sense to check it
4159 if (sh
->check_state
== check_state_run
)
4160 sh
->check_state
= check_state_run_pq
;
4162 sh
->check_state
= check_state_run_q
;
4165 /* discard potentially stale zero_sum_result */
4166 sh
->ops
.zero_sum_result
= 0;
4168 if (sh
->check_state
== check_state_run
) {
4169 /* async_xor_zero_sum destroys the contents of P */
4170 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
4173 if (sh
->check_state
>= check_state_run
&&
4174 sh
->check_state
<= check_state_run_pq
) {
4175 /* async_syndrome_zero_sum preserves P and Q, so
4176 * no need to mark them !uptodate here
4178 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4182 /* we have 2-disk failure */
4183 BUG_ON(s
->failed
!= 2);
4185 case check_state_compute_result
:
4186 sh
->check_state
= check_state_idle
;
4188 /* check that a write has not made the stripe insync */
4189 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4192 /* now write out any block on a failed drive,
4193 * or P or Q if they were recomputed
4196 if (s
->failed
== 2) {
4197 dev
= &sh
->dev
[s
->failed_num
[1]];
4199 set_bit(R5_LOCKED
, &dev
->flags
);
4200 set_bit(R5_Wantwrite
, &dev
->flags
);
4202 if (s
->failed
>= 1) {
4203 dev
= &sh
->dev
[s
->failed_num
[0]];
4205 set_bit(R5_LOCKED
, &dev
->flags
);
4206 set_bit(R5_Wantwrite
, &dev
->flags
);
4208 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4209 dev
= &sh
->dev
[pd_idx
];
4211 set_bit(R5_LOCKED
, &dev
->flags
);
4212 set_bit(R5_Wantwrite
, &dev
->flags
);
4214 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4215 dev
= &sh
->dev
[qd_idx
];
4217 set_bit(R5_LOCKED
, &dev
->flags
);
4218 set_bit(R5_Wantwrite
, &dev
->flags
);
4220 if (WARN_ONCE(dev
&& !test_bit(R5_UPTODATE
, &dev
->flags
),
4221 "%s: disk%td not up to date\n",
4222 mdname(conf
->mddev
),
4223 dev
- (struct r5dev
*) &sh
->dev
)) {
4224 clear_bit(R5_LOCKED
, &dev
->flags
);
4225 clear_bit(R5_Wantwrite
, &dev
->flags
);
4228 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4230 set_bit(STRIPE_INSYNC
, &sh
->state
);
4232 case check_state_run
:
4233 case check_state_run_q
:
4234 case check_state_run_pq
:
4235 break; /* we will be called again upon completion */
4236 case check_state_check_result
:
4237 sh
->check_state
= check_state_idle
;
4239 /* handle a successful check operation, if parity is correct
4240 * we are done. Otherwise update the mismatch count and repair
4241 * parity if !MD_RECOVERY_CHECK
4243 if (sh
->ops
.zero_sum_result
== 0) {
4244 /* both parities are correct */
4246 set_bit(STRIPE_INSYNC
, &sh
->state
);
4248 /* in contrast to the raid5 case we can validate
4249 * parity, but still have a failure to write
4252 sh
->check_state
= check_state_compute_result
;
4253 /* Returning at this point means that we may go
4254 * off and bring p and/or q uptodate again so
4255 * we make sure to check zero_sum_result again
4256 * to verify if p or q need writeback
4260 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4261 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4262 /* don't try to repair!! */
4263 set_bit(STRIPE_INSYNC
, &sh
->state
);
4264 pr_warn_ratelimited("%s: mismatch sector in range "
4265 "%llu-%llu\n", mdname(conf
->mddev
),
4266 (unsigned long long) sh
->sector
,
4267 (unsigned long long) sh
->sector
+
4270 int *target
= &sh
->ops
.target
;
4272 sh
->ops
.target
= -1;
4273 sh
->ops
.target2
= -1;
4274 sh
->check_state
= check_state_compute_run
;
4275 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4276 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4277 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4278 set_bit(R5_Wantcompute
,
4279 &sh
->dev
[pd_idx
].flags
);
4281 target
= &sh
->ops
.target2
;
4284 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4285 set_bit(R5_Wantcompute
,
4286 &sh
->dev
[qd_idx
].flags
);
4293 case check_state_compute_run
:
4296 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4297 __func__
, sh
->check_state
,
4298 (unsigned long long) sh
->sector
);
4303 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
4307 /* We have read all the blocks in this stripe and now we need to
4308 * copy some of them into a target stripe for expand.
4310 struct dma_async_tx_descriptor
*tx
= NULL
;
4311 BUG_ON(sh
->batch_head
);
4312 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4313 for (i
= 0; i
< sh
->disks
; i
++)
4314 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
4316 struct stripe_head
*sh2
;
4317 struct async_submit_ctl submit
;
4319 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
4320 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
4322 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
4324 /* so far only the early blocks of this stripe
4325 * have been requested. When later blocks
4326 * get requested, we will try again
4329 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
4330 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
4331 /* must have already done this block */
4332 raid5_release_stripe(sh2
);
4336 /* place all the copies on one channel */
4337 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
4338 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
4339 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
4342 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
4343 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4344 for (j
= 0; j
< conf
->raid_disks
; j
++)
4345 if (j
!= sh2
->pd_idx
&&
4347 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4349 if (j
== conf
->raid_disks
) {
4350 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4351 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4353 raid5_release_stripe(sh2
);
4356 /* done submitting copies, wait for them to complete */
4357 async_tx_quiesce(&tx
);
4361 * handle_stripe - do things to a stripe.
4363 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4364 * state of various bits to see what needs to be done.
4366 * return some read requests which now have data
4367 * return some write requests which are safely on storage
4368 * schedule a read on some buffers
4369 * schedule a write of some buffers
4370 * return confirmation of parity correctness
4374 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4376 struct r5conf
*conf
= sh
->raid_conf
;
4377 int disks
= sh
->disks
;
4380 int do_recovery
= 0;
4382 memset(s
, 0, sizeof(*s
));
4384 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4385 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4386 s
->failed_num
[0] = -1;
4387 s
->failed_num
[1] = -1;
4388 s
->log_failed
= r5l_log_disk_error(conf
);
4390 /* Now to look around and see what can be done */
4392 for (i
=disks
; i
--; ) {
4393 struct md_rdev
*rdev
;
4400 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4402 dev
->toread
, dev
->towrite
, dev
->written
);
4403 /* maybe we can reply to a read
4405 * new wantfill requests are only permitted while
4406 * ops_complete_biofill is guaranteed to be inactive
4408 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4409 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4410 set_bit(R5_Wantfill
, &dev
->flags
);
4412 /* now count some things */
4413 if (test_bit(R5_LOCKED
, &dev
->flags
))
4415 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4417 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4419 BUG_ON(s
->compute
> 2);
4422 if (test_bit(R5_Wantfill
, &dev
->flags
))
4424 else if (dev
->toread
)
4428 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4433 /* Prefer to use the replacement for reads, but only
4434 * if it is recovered enough and has no bad blocks.
4436 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4437 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4438 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4439 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4440 &first_bad
, &bad_sectors
))
4441 set_bit(R5_ReadRepl
, &dev
->flags
);
4443 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4444 set_bit(R5_NeedReplace
, &dev
->flags
);
4446 clear_bit(R5_NeedReplace
, &dev
->flags
);
4447 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4448 clear_bit(R5_ReadRepl
, &dev
->flags
);
4450 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4453 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4454 &first_bad
, &bad_sectors
);
4455 if (s
->blocked_rdev
== NULL
4456 && (test_bit(Blocked
, &rdev
->flags
)
4459 set_bit(BlockedBadBlocks
,
4461 s
->blocked_rdev
= rdev
;
4462 atomic_inc(&rdev
->nr_pending
);
4465 clear_bit(R5_Insync
, &dev
->flags
);
4469 /* also not in-sync */
4470 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4471 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4472 /* treat as in-sync, but with a read error
4473 * which we can now try to correct
4475 set_bit(R5_Insync
, &dev
->flags
);
4476 set_bit(R5_ReadError
, &dev
->flags
);
4478 } else if (test_bit(In_sync
, &rdev
->flags
))
4479 set_bit(R5_Insync
, &dev
->flags
);
4480 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4481 /* in sync if before recovery_offset */
4482 set_bit(R5_Insync
, &dev
->flags
);
4483 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4484 test_bit(R5_Expanded
, &dev
->flags
))
4485 /* If we've reshaped into here, we assume it is Insync.
4486 * We will shortly update recovery_offset to make
4489 set_bit(R5_Insync
, &dev
->flags
);
4491 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4492 /* This flag does not apply to '.replacement'
4493 * only to .rdev, so make sure to check that*/
4494 struct md_rdev
*rdev2
= rcu_dereference(
4495 conf
->disks
[i
].rdev
);
4497 clear_bit(R5_Insync
, &dev
->flags
);
4498 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4499 s
->handle_bad_blocks
= 1;
4500 atomic_inc(&rdev2
->nr_pending
);
4502 clear_bit(R5_WriteError
, &dev
->flags
);
4504 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4505 /* This flag does not apply to '.replacement'
4506 * only to .rdev, so make sure to check that*/
4507 struct md_rdev
*rdev2
= rcu_dereference(
4508 conf
->disks
[i
].rdev
);
4509 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4510 s
->handle_bad_blocks
= 1;
4511 atomic_inc(&rdev2
->nr_pending
);
4513 clear_bit(R5_MadeGood
, &dev
->flags
);
4515 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4516 struct md_rdev
*rdev2
= rcu_dereference(
4517 conf
->disks
[i
].replacement
);
4518 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4519 s
->handle_bad_blocks
= 1;
4520 atomic_inc(&rdev2
->nr_pending
);
4522 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4524 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4525 /* The ReadError flag will just be confusing now */
4526 clear_bit(R5_ReadError
, &dev
->flags
);
4527 clear_bit(R5_ReWrite
, &dev
->flags
);
4529 if (test_bit(R5_ReadError
, &dev
->flags
))
4530 clear_bit(R5_Insync
, &dev
->flags
);
4531 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4533 s
->failed_num
[s
->failed
] = i
;
4535 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4538 rdev
= rcu_dereference(
4539 conf
->disks
[i
].replacement
);
4540 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4545 if (test_bit(R5_InJournal
, &dev
->flags
))
4547 if (test_bit(R5_InJournal
, &dev
->flags
) && dev
->written
)
4550 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4551 /* If there is a failed device being replaced,
4552 * we must be recovering.
4553 * else if we are after recovery_cp, we must be syncing
4554 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4555 * else we can only be replacing
4556 * sync and recovery both need to read all devices, and so
4557 * use the same flag.
4560 sh
->sector
>= conf
->mddev
->recovery_cp
||
4561 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4569 static int clear_batch_ready(struct stripe_head
*sh
)
4571 /* Return '1' if this is a member of batch, or
4572 * '0' if it is a lone stripe or a head which can now be
4575 struct stripe_head
*tmp
;
4576 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4577 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4578 spin_lock(&sh
->stripe_lock
);
4579 if (!sh
->batch_head
) {
4580 spin_unlock(&sh
->stripe_lock
);
4585 * this stripe could be added to a batch list before we check
4586 * BATCH_READY, skips it
4588 if (sh
->batch_head
!= sh
) {
4589 spin_unlock(&sh
->stripe_lock
);
4592 spin_lock(&sh
->batch_lock
);
4593 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4594 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4595 spin_unlock(&sh
->batch_lock
);
4596 spin_unlock(&sh
->stripe_lock
);
4599 * BATCH_READY is cleared, no new stripes can be added.
4600 * batch_list can be accessed without lock
4605 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4606 unsigned long handle_flags
)
4608 struct stripe_head
*sh
, *next
;
4612 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4614 list_del_init(&sh
->batch_list
);
4616 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4617 (1 << STRIPE_SYNCING
) |
4618 (1 << STRIPE_REPLACED
) |
4619 (1 << STRIPE_DELAYED
) |
4620 (1 << STRIPE_BIT_DELAY
) |
4621 (1 << STRIPE_FULL_WRITE
) |
4622 (1 << STRIPE_BIOFILL_RUN
) |
4623 (1 << STRIPE_COMPUTE_RUN
) |
4624 (1 << STRIPE_DISCARD
) |
4625 (1 << STRIPE_BATCH_READY
) |
4626 (1 << STRIPE_BATCH_ERR
) |
4627 (1 << STRIPE_BITMAP_PENDING
)),
4628 "stripe state: %lx\n", sh
->state
);
4629 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4630 (1 << STRIPE_REPLACED
)),
4631 "head stripe state: %lx\n", head_sh
->state
);
4633 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4634 (1 << STRIPE_PREREAD_ACTIVE
) |
4635 (1 << STRIPE_DEGRADED
) |
4636 (1 << STRIPE_ON_UNPLUG_LIST
)),
4637 head_sh
->state
& (1 << STRIPE_INSYNC
));
4639 sh
->check_state
= head_sh
->check_state
;
4640 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4641 spin_lock_irq(&sh
->stripe_lock
);
4642 sh
->batch_head
= NULL
;
4643 spin_unlock_irq(&sh
->stripe_lock
);
4644 for (i
= 0; i
< sh
->disks
; i
++) {
4645 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4647 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4648 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4650 if (handle_flags
== 0 ||
4651 sh
->state
& handle_flags
)
4652 set_bit(STRIPE_HANDLE
, &sh
->state
);
4653 raid5_release_stripe(sh
);
4655 spin_lock_irq(&head_sh
->stripe_lock
);
4656 head_sh
->batch_head
= NULL
;
4657 spin_unlock_irq(&head_sh
->stripe_lock
);
4658 for (i
= 0; i
< head_sh
->disks
; i
++)
4659 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4661 if (head_sh
->state
& handle_flags
)
4662 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4665 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4668 static void handle_stripe(struct stripe_head
*sh
)
4670 struct stripe_head_state s
;
4671 struct r5conf
*conf
= sh
->raid_conf
;
4674 int disks
= sh
->disks
;
4675 struct r5dev
*pdev
, *qdev
;
4677 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4678 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4679 /* already being handled, ensure it gets handled
4680 * again when current action finishes */
4681 set_bit(STRIPE_HANDLE
, &sh
->state
);
4685 if (clear_batch_ready(sh
) ) {
4686 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4690 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4691 break_stripe_batch_list(sh
, 0);
4693 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4694 spin_lock(&sh
->stripe_lock
);
4696 * Cannot process 'sync' concurrently with 'discard'.
4697 * Flush data in r5cache before 'sync'.
4699 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
4700 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) &&
4701 !test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4702 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4703 set_bit(STRIPE_SYNCING
, &sh
->state
);
4704 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4705 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4707 spin_unlock(&sh
->stripe_lock
);
4709 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4711 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4712 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4713 (unsigned long long)sh
->sector
, sh
->state
,
4714 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4715 sh
->check_state
, sh
->reconstruct_state
);
4717 analyse_stripe(sh
, &s
);
4719 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4722 if (s
.handle_bad_blocks
||
4723 test_bit(MD_SB_CHANGE_PENDING
, &conf
->mddev
->sb_flags
)) {
4724 set_bit(STRIPE_HANDLE
, &sh
->state
);
4728 if (unlikely(s
.blocked_rdev
)) {
4729 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4730 s
.replacing
|| s
.to_write
|| s
.written
) {
4731 set_bit(STRIPE_HANDLE
, &sh
->state
);
4734 /* There is nothing for the blocked_rdev to block */
4735 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4736 s
.blocked_rdev
= NULL
;
4739 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4740 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4741 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4744 pr_debug("locked=%d uptodate=%d to_read=%d"
4745 " to_write=%d failed=%d failed_num=%d,%d\n",
4746 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4747 s
.failed_num
[0], s
.failed_num
[1]);
4749 * check if the array has lost more than max_degraded devices and,
4750 * if so, some requests might need to be failed.
4752 * When journal device failed (log_failed), we will only process
4753 * the stripe if there is data need write to raid disks
4755 if (s
.failed
> conf
->max_degraded
||
4756 (s
.log_failed
&& s
.injournal
== 0)) {
4757 sh
->check_state
= 0;
4758 sh
->reconstruct_state
= 0;
4759 break_stripe_batch_list(sh
, 0);
4760 if (s
.to_read
+s
.to_write
+s
.written
)
4761 handle_failed_stripe(conf
, sh
, &s
, disks
);
4762 if (s
.syncing
+ s
.replacing
)
4763 handle_failed_sync(conf
, sh
, &s
);
4766 /* Now we check to see if any write operations have recently
4770 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4772 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4773 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4774 sh
->reconstruct_state
= reconstruct_state_idle
;
4776 /* All the 'written' buffers and the parity block are ready to
4777 * be written back to disk
4779 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4780 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4781 BUG_ON(sh
->qd_idx
>= 0 &&
4782 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4783 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4784 for (i
= disks
; i
--; ) {
4785 struct r5dev
*dev
= &sh
->dev
[i
];
4786 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4787 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4788 dev
->written
|| test_bit(R5_InJournal
,
4790 pr_debug("Writing block %d\n", i
);
4791 set_bit(R5_Wantwrite
, &dev
->flags
);
4796 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4797 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4799 set_bit(STRIPE_INSYNC
, &sh
->state
);
4802 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4803 s
.dec_preread_active
= 1;
4807 * might be able to return some write requests if the parity blocks
4808 * are safe, or on a failed drive
4810 pdev
= &sh
->dev
[sh
->pd_idx
];
4811 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4812 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4813 qdev
= &sh
->dev
[sh
->qd_idx
];
4814 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4815 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4819 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4820 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4821 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4822 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4823 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4824 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4825 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4826 test_bit(R5_Discard
, &qdev
->flags
))))))
4827 handle_stripe_clean_event(conf
, sh
, disks
);
4830 r5c_handle_cached_data_endio(conf
, sh
, disks
);
4831 log_stripe_write_finished(sh
);
4833 /* Now we might consider reading some blocks, either to check/generate
4834 * parity, or to satisfy requests
4835 * or to load a block that is being partially written.
4837 if (s
.to_read
|| s
.non_overwrite
4838 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4839 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4842 handle_stripe_fill(sh
, &s
, disks
);
4845 * When the stripe finishes full journal write cycle (write to journal
4846 * and raid disk), this is the clean up procedure so it is ready for
4849 r5c_finish_stripe_write_out(conf
, sh
, &s
);
4852 * Now to consider new write requests, cache write back and what else,
4853 * if anything should be read. We do not handle new writes when:
4854 * 1/ A 'write' operation (copy+xor) is already in flight.
4855 * 2/ A 'check' operation is in flight, as it may clobber the parity
4857 * 3/ A r5c cache log write is in flight.
4860 if (!sh
->reconstruct_state
&& !sh
->check_state
&& !sh
->log_io
) {
4861 if (!r5c_is_writeback(conf
->log
)) {
4863 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4864 } else { /* write back cache */
4867 /* First, try handle writes in caching phase */
4869 ret
= r5c_try_caching_write(conf
, sh
, &s
,
4872 * If caching phase failed: ret == -EAGAIN
4874 * stripe under reclaim: !caching && injournal
4876 * fall back to handle_stripe_dirtying()
4878 if (ret
== -EAGAIN
||
4879 /* stripe under reclaim: !caching && injournal */
4880 (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
4882 ret
= handle_stripe_dirtying(conf
, sh
, &s
,
4890 /* maybe we need to check and possibly fix the parity for this stripe
4891 * Any reads will already have been scheduled, so we just see if enough
4892 * data is available. The parity check is held off while parity
4893 * dependent operations are in flight.
4895 if (sh
->check_state
||
4896 (s
.syncing
&& s
.locked
== 0 &&
4897 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4898 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4899 if (conf
->level
== 6)
4900 handle_parity_checks6(conf
, sh
, &s
, disks
);
4902 handle_parity_checks5(conf
, sh
, &s
, disks
);
4905 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4906 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4907 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4908 /* Write out to replacement devices where possible */
4909 for (i
= 0; i
< conf
->raid_disks
; i
++)
4910 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4911 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4912 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4913 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4917 set_bit(STRIPE_INSYNC
, &sh
->state
);
4918 set_bit(STRIPE_REPLACED
, &sh
->state
);
4920 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4921 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4922 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4923 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4924 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4925 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4926 wake_up(&conf
->wait_for_overlap
);
4929 /* If the failed drives are just a ReadError, then we might need
4930 * to progress the repair/check process
4932 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4933 for (i
= 0; i
< s
.failed
; i
++) {
4934 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4935 if (test_bit(R5_ReadError
, &dev
->flags
)
4936 && !test_bit(R5_LOCKED
, &dev
->flags
)
4937 && test_bit(R5_UPTODATE
, &dev
->flags
)
4939 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4940 set_bit(R5_Wantwrite
, &dev
->flags
);
4941 set_bit(R5_ReWrite
, &dev
->flags
);
4942 set_bit(R5_LOCKED
, &dev
->flags
);
4945 /* let's read it back */
4946 set_bit(R5_Wantread
, &dev
->flags
);
4947 set_bit(R5_LOCKED
, &dev
->flags
);
4953 /* Finish reconstruct operations initiated by the expansion process */
4954 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4955 struct stripe_head
*sh_src
4956 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4957 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4958 /* sh cannot be written until sh_src has been read.
4959 * so arrange for sh to be delayed a little
4961 set_bit(STRIPE_DELAYED
, &sh
->state
);
4962 set_bit(STRIPE_HANDLE
, &sh
->state
);
4963 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4965 atomic_inc(&conf
->preread_active_stripes
);
4966 raid5_release_stripe(sh_src
);
4970 raid5_release_stripe(sh_src
);
4972 sh
->reconstruct_state
= reconstruct_state_idle
;
4973 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4974 for (i
= conf
->raid_disks
; i
--; ) {
4975 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4976 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4981 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4982 !sh
->reconstruct_state
) {
4983 /* Need to write out all blocks after computing parity */
4984 sh
->disks
= conf
->raid_disks
;
4985 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4986 schedule_reconstruction(sh
, &s
, 1, 1);
4987 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4988 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4989 atomic_dec(&conf
->reshape_stripes
);
4990 wake_up(&conf
->wait_for_overlap
);
4991 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4994 if (s
.expanding
&& s
.locked
== 0 &&
4995 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4996 handle_stripe_expansion(conf
, sh
);
4999 /* wait for this device to become unblocked */
5000 if (unlikely(s
.blocked_rdev
)) {
5001 if (conf
->mddev
->external
)
5002 md_wait_for_blocked_rdev(s
.blocked_rdev
,
5005 /* Internal metadata will immediately
5006 * be written by raid5d, so we don't
5007 * need to wait here.
5009 rdev_dec_pending(s
.blocked_rdev
,
5013 if (s
.handle_bad_blocks
)
5014 for (i
= disks
; i
--; ) {
5015 struct md_rdev
*rdev
;
5016 struct r5dev
*dev
= &sh
->dev
[i
];
5017 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
5018 /* We own a safe reference to the rdev */
5019 rdev
= conf
->disks
[i
].rdev
;
5020 if (!rdev_set_badblocks(rdev
, sh
->sector
,
5022 md_error(conf
->mddev
, rdev
);
5023 rdev_dec_pending(rdev
, conf
->mddev
);
5025 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
5026 rdev
= conf
->disks
[i
].rdev
;
5027 rdev_clear_badblocks(rdev
, sh
->sector
,
5029 rdev_dec_pending(rdev
, conf
->mddev
);
5031 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
5032 rdev
= conf
->disks
[i
].replacement
;
5034 /* rdev have been moved down */
5035 rdev
= conf
->disks
[i
].rdev
;
5036 rdev_clear_badblocks(rdev
, sh
->sector
,
5038 rdev_dec_pending(rdev
, conf
->mddev
);
5043 raid_run_ops(sh
, s
.ops_request
);
5047 if (s
.dec_preread_active
) {
5048 /* We delay this until after ops_run_io so that if make_request
5049 * is waiting on a flush, it won't continue until the writes
5050 * have actually been submitted.
5052 atomic_dec(&conf
->preread_active_stripes
);
5053 if (atomic_read(&conf
->preread_active_stripes
) <
5055 md_wakeup_thread(conf
->mddev
->thread
);
5058 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
5061 static void raid5_activate_delayed(struct r5conf
*conf
)
5063 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
5064 while (!list_empty(&conf
->delayed_list
)) {
5065 struct list_head
*l
= conf
->delayed_list
.next
;
5066 struct stripe_head
*sh
;
5067 sh
= list_entry(l
, struct stripe_head
, lru
);
5069 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5070 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5071 atomic_inc(&conf
->preread_active_stripes
);
5072 list_add_tail(&sh
->lru
, &conf
->hold_list
);
5073 raid5_wakeup_stripe_thread(sh
);
5078 static void activate_bit_delay(struct r5conf
*conf
,
5079 struct list_head
*temp_inactive_list
)
5081 /* device_lock is held */
5082 struct list_head head
;
5083 list_add(&head
, &conf
->bitmap_list
);
5084 list_del_init(&conf
->bitmap_list
);
5085 while (!list_empty(&head
)) {
5086 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
5088 list_del_init(&sh
->lru
);
5089 atomic_inc(&sh
->count
);
5090 hash
= sh
->hash_lock_index
;
5091 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
5095 static int raid5_congested(struct mddev
*mddev
, int bits
)
5097 struct r5conf
*conf
= mddev
->private;
5099 /* No difference between reads and writes. Just check
5100 * how busy the stripe_cache is
5103 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
5106 /* Also checks whether there is pressure on r5cache log space */
5107 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
5111 if (atomic_read(&conf
->empty_inactive_list_nr
))
5117 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
5119 struct r5conf
*conf
= mddev
->private;
5120 sector_t sector
= bio
->bi_iter
.bi_sector
;
5121 unsigned int chunk_sectors
;
5122 unsigned int bio_sectors
= bio_sectors(bio
);
5124 WARN_ON_ONCE(bio
->bi_partno
);
5126 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5127 return chunk_sectors
>=
5128 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
5132 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5133 * later sampled by raid5d.
5135 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
5137 unsigned long flags
;
5139 spin_lock_irqsave(&conf
->device_lock
, flags
);
5141 bi
->bi_next
= conf
->retry_read_aligned_list
;
5142 conf
->retry_read_aligned_list
= bi
;
5144 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5145 md_wakeup_thread(conf
->mddev
->thread
);
5148 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
,
5149 unsigned int *offset
)
5153 bi
= conf
->retry_read_aligned
;
5155 *offset
= conf
->retry_read_offset
;
5156 conf
->retry_read_aligned
= NULL
;
5159 bi
= conf
->retry_read_aligned_list
;
5161 conf
->retry_read_aligned_list
= bi
->bi_next
;
5170 * The "raid5_align_endio" should check if the read succeeded and if it
5171 * did, call bio_endio on the original bio (having bio_put the new bio
5173 * If the read failed..
5175 static void raid5_align_endio(struct bio
*bi
)
5177 struct bio
* raid_bi
= bi
->bi_private
;
5178 struct mddev
*mddev
;
5179 struct r5conf
*conf
;
5180 struct md_rdev
*rdev
;
5181 blk_status_t error
= bi
->bi_status
;
5185 rdev
= (void*)raid_bi
->bi_next
;
5186 raid_bi
->bi_next
= NULL
;
5187 mddev
= rdev
->mddev
;
5188 conf
= mddev
->private;
5190 rdev_dec_pending(rdev
, conf
->mddev
);
5194 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5195 wake_up(&conf
->wait_for_quiescent
);
5199 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5201 add_bio_to_retry(raid_bi
, conf
);
5204 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
5206 struct r5conf
*conf
= mddev
->private;
5208 struct bio
* align_bi
;
5209 struct md_rdev
*rdev
;
5210 sector_t end_sector
;
5212 if (!in_chunk_boundary(mddev
, raid_bio
)) {
5213 pr_debug("%s: non aligned\n", __func__
);
5217 * use bio_clone_fast to make a copy of the bio
5219 align_bi
= bio_clone_fast(raid_bio
, GFP_NOIO
, &mddev
->bio_set
);
5223 * set bi_end_io to a new function, and set bi_private to the
5226 align_bi
->bi_end_io
= raid5_align_endio
;
5227 align_bi
->bi_private
= raid_bio
;
5231 align_bi
->bi_iter
.bi_sector
=
5232 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
5235 end_sector
= bio_end_sector(align_bi
);
5237 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
5238 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
5239 rdev
->recovery_offset
< end_sector
) {
5240 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
5242 (test_bit(Faulty
, &rdev
->flags
) ||
5243 !(test_bit(In_sync
, &rdev
->flags
) ||
5244 rdev
->recovery_offset
>= end_sector
)))
5248 if (r5c_big_stripe_cached(conf
, align_bi
->bi_iter
.bi_sector
)) {
5258 atomic_inc(&rdev
->nr_pending
);
5260 raid_bio
->bi_next
= (void*)rdev
;
5261 bio_set_dev(align_bi
, rdev
->bdev
);
5263 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
5264 bio_sectors(align_bi
),
5265 &first_bad
, &bad_sectors
)) {
5267 rdev_dec_pending(rdev
, mddev
);
5271 /* No reshape active, so we can trust rdev->data_offset */
5272 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
5274 spin_lock_irq(&conf
->device_lock
);
5275 wait_event_lock_irq(conf
->wait_for_quiescent
,
5278 atomic_inc(&conf
->active_aligned_reads
);
5279 spin_unlock_irq(&conf
->device_lock
);
5282 trace_block_bio_remap(align_bi
->bi_disk
->queue
,
5283 align_bi
, disk_devt(mddev
->gendisk
),
5284 raid_bio
->bi_iter
.bi_sector
);
5285 generic_make_request(align_bi
);
5294 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
5297 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
5298 unsigned chunk_sects
= mddev
->chunk_sectors
;
5299 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
5301 if (sectors
< bio_sectors(raid_bio
)) {
5302 struct r5conf
*conf
= mddev
->private;
5303 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, &conf
->bio_split
);
5304 bio_chain(split
, raid_bio
);
5305 generic_make_request(raid_bio
);
5309 if (!raid5_read_one_chunk(mddev
, raid_bio
))
5315 /* __get_priority_stripe - get the next stripe to process
5317 * Full stripe writes are allowed to pass preread active stripes up until
5318 * the bypass_threshold is exceeded. In general the bypass_count
5319 * increments when the handle_list is handled before the hold_list; however, it
5320 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5321 * stripe with in flight i/o. The bypass_count will be reset when the
5322 * head of the hold_list has changed, i.e. the head was promoted to the
5325 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
5327 struct stripe_head
*sh
, *tmp
;
5328 struct list_head
*handle_list
= NULL
;
5329 struct r5worker_group
*wg
;
5330 bool second_try
= !r5c_is_writeback(conf
->log
) &&
5331 !r5l_log_disk_error(conf
);
5332 bool try_loprio
= test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
) ||
5333 r5l_log_disk_error(conf
);
5338 if (conf
->worker_cnt_per_group
== 0) {
5339 handle_list
= try_loprio
? &conf
->loprio_list
:
5341 } else if (group
!= ANY_GROUP
) {
5342 handle_list
= try_loprio
? &conf
->worker_groups
[group
].loprio_list
:
5343 &conf
->worker_groups
[group
].handle_list
;
5344 wg
= &conf
->worker_groups
[group
];
5347 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5348 handle_list
= try_loprio
? &conf
->worker_groups
[i
].loprio_list
:
5349 &conf
->worker_groups
[i
].handle_list
;
5350 wg
= &conf
->worker_groups
[i
];
5351 if (!list_empty(handle_list
))
5356 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5358 list_empty(handle_list
) ? "empty" : "busy",
5359 list_empty(&conf
->hold_list
) ? "empty" : "busy",
5360 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
5362 if (!list_empty(handle_list
)) {
5363 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
5365 if (list_empty(&conf
->hold_list
))
5366 conf
->bypass_count
= 0;
5367 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
5368 if (conf
->hold_list
.next
== conf
->last_hold
)
5369 conf
->bypass_count
++;
5371 conf
->last_hold
= conf
->hold_list
.next
;
5372 conf
->bypass_count
-= conf
->bypass_threshold
;
5373 if (conf
->bypass_count
< 0)
5374 conf
->bypass_count
= 0;
5377 } else if (!list_empty(&conf
->hold_list
) &&
5378 ((conf
->bypass_threshold
&&
5379 conf
->bypass_count
> conf
->bypass_threshold
) ||
5380 atomic_read(&conf
->pending_full_writes
) == 0)) {
5382 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
5383 if (conf
->worker_cnt_per_group
== 0 ||
5384 group
== ANY_GROUP
||
5385 !cpu_online(tmp
->cpu
) ||
5386 cpu_to_group(tmp
->cpu
) == group
) {
5393 conf
->bypass_count
-= conf
->bypass_threshold
;
5394 if (conf
->bypass_count
< 0)
5395 conf
->bypass_count
= 0;
5404 try_loprio
= !try_loprio
;
5412 list_del_init(&sh
->lru
);
5413 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5417 struct raid5_plug_cb
{
5418 struct blk_plug_cb cb
;
5419 struct list_head list
;
5420 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5423 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5425 struct raid5_plug_cb
*cb
= container_of(
5426 blk_cb
, struct raid5_plug_cb
, cb
);
5427 struct stripe_head
*sh
;
5428 struct mddev
*mddev
= cb
->cb
.data
;
5429 struct r5conf
*conf
= mddev
->private;
5433 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5434 spin_lock_irq(&conf
->device_lock
);
5435 while (!list_empty(&cb
->list
)) {
5436 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5437 list_del_init(&sh
->lru
);
5439 * avoid race release_stripe_plug() sees
5440 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5441 * is still in our list
5443 smp_mb__before_atomic();
5444 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5446 * STRIPE_ON_RELEASE_LIST could be set here. In that
5447 * case, the count is always > 1 here
5449 hash
= sh
->hash_lock_index
;
5450 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5453 spin_unlock_irq(&conf
->device_lock
);
5455 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5456 NR_STRIPE_HASH_LOCKS
);
5458 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5462 static void release_stripe_plug(struct mddev
*mddev
,
5463 struct stripe_head
*sh
)
5465 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5466 raid5_unplug
, mddev
,
5467 sizeof(struct raid5_plug_cb
));
5468 struct raid5_plug_cb
*cb
;
5471 raid5_release_stripe(sh
);
5475 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5477 if (cb
->list
.next
== NULL
) {
5479 INIT_LIST_HEAD(&cb
->list
);
5480 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5481 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5484 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5485 list_add_tail(&sh
->lru
, &cb
->list
);
5487 raid5_release_stripe(sh
);
5490 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5492 struct r5conf
*conf
= mddev
->private;
5493 sector_t logical_sector
, last_sector
;
5494 struct stripe_head
*sh
;
5497 if (mddev
->reshape_position
!= MaxSector
)
5498 /* Skip discard while reshape is happening */
5501 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5502 last_sector
= bio_end_sector(bi
);
5506 stripe_sectors
= conf
->chunk_sectors
*
5507 (conf
->raid_disks
- conf
->max_degraded
);
5508 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5510 sector_div(last_sector
, stripe_sectors
);
5512 logical_sector
*= conf
->chunk_sectors
;
5513 last_sector
*= conf
->chunk_sectors
;
5515 for (; logical_sector
< last_sector
;
5516 logical_sector
+= STRIPE_SECTORS
) {
5520 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5521 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5522 TASK_UNINTERRUPTIBLE
);
5523 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5524 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5525 raid5_release_stripe(sh
);
5529 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5530 spin_lock_irq(&sh
->stripe_lock
);
5531 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5532 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5534 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5535 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5536 spin_unlock_irq(&sh
->stripe_lock
);
5537 raid5_release_stripe(sh
);
5542 set_bit(STRIPE_DISCARD
, &sh
->state
);
5543 finish_wait(&conf
->wait_for_overlap
, &w
);
5544 sh
->overwrite_disks
= 0;
5545 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5546 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5548 sh
->dev
[d
].towrite
= bi
;
5549 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5550 bio_inc_remaining(bi
);
5551 md_write_inc(mddev
, bi
);
5552 sh
->overwrite_disks
++;
5554 spin_unlock_irq(&sh
->stripe_lock
);
5555 if (conf
->mddev
->bitmap
) {
5557 d
< conf
->raid_disks
- conf
->max_degraded
;
5559 md_bitmap_startwrite(mddev
->bitmap
,
5563 sh
->bm_seq
= conf
->seq_flush
+ 1;
5564 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5567 set_bit(STRIPE_HANDLE
, &sh
->state
);
5568 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5569 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5570 atomic_inc(&conf
->preread_active_stripes
);
5571 release_stripe_plug(mddev
, sh
);
5577 static bool raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5579 struct r5conf
*conf
= mddev
->private;
5581 sector_t new_sector
;
5582 sector_t logical_sector
, last_sector
;
5583 struct stripe_head
*sh
;
5584 const int rw
= bio_data_dir(bi
);
5587 bool do_flush
= false;
5589 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
5590 int ret
= log_handle_flush_request(conf
, bi
);
5594 if (ret
== -ENODEV
) {
5595 if (md_flush_request(mddev
, bi
))
5598 /* ret == -EAGAIN, fallback */
5600 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5601 * we need to flush journal device
5603 do_flush
= bi
->bi_opf
& REQ_PREFLUSH
;
5606 if (!md_write_start(mddev
, bi
))
5609 * If array is degraded, better not do chunk aligned read because
5610 * later we might have to read it again in order to reconstruct
5611 * data on failed drives.
5613 if (rw
== READ
&& mddev
->degraded
== 0 &&
5614 mddev
->reshape_position
== MaxSector
) {
5615 bi
= chunk_aligned_read(mddev
, bi
);
5620 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
5621 make_discard_request(mddev
, bi
);
5622 md_write_end(mddev
);
5626 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5627 last_sector
= bio_end_sector(bi
);
5630 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5631 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5637 seq
= read_seqcount_begin(&conf
->gen_lock
);
5640 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5641 TASK_UNINTERRUPTIBLE
);
5642 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5643 /* spinlock is needed as reshape_progress may be
5644 * 64bit on a 32bit platform, and so it might be
5645 * possible to see a half-updated value
5646 * Of course reshape_progress could change after
5647 * the lock is dropped, so once we get a reference
5648 * to the stripe that we think it is, we will have
5651 spin_lock_irq(&conf
->device_lock
);
5652 if (mddev
->reshape_backwards
5653 ? logical_sector
< conf
->reshape_progress
5654 : logical_sector
>= conf
->reshape_progress
) {
5657 if (mddev
->reshape_backwards
5658 ? logical_sector
< conf
->reshape_safe
5659 : logical_sector
>= conf
->reshape_safe
) {
5660 spin_unlock_irq(&conf
->device_lock
);
5666 spin_unlock_irq(&conf
->device_lock
);
5669 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5672 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5673 (unsigned long long)new_sector
,
5674 (unsigned long long)logical_sector
);
5676 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5677 (bi
->bi_opf
& REQ_RAHEAD
), 0);
5679 if (unlikely(previous
)) {
5680 /* expansion might have moved on while waiting for a
5681 * stripe, so we must do the range check again.
5682 * Expansion could still move past after this
5683 * test, but as we are holding a reference to
5684 * 'sh', we know that if that happens,
5685 * STRIPE_EXPANDING will get set and the expansion
5686 * won't proceed until we finish with the stripe.
5689 spin_lock_irq(&conf
->device_lock
);
5690 if (mddev
->reshape_backwards
5691 ? logical_sector
>= conf
->reshape_progress
5692 : logical_sector
< conf
->reshape_progress
)
5693 /* mismatch, need to try again */
5695 spin_unlock_irq(&conf
->device_lock
);
5697 raid5_release_stripe(sh
);
5703 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5704 /* Might have got the wrong stripe_head
5707 raid5_release_stripe(sh
);
5711 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5712 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5713 /* Stripe is busy expanding or
5714 * add failed due to overlap. Flush everything
5717 md_wakeup_thread(mddev
->thread
);
5718 raid5_release_stripe(sh
);
5724 set_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
);
5725 /* we only need flush for one stripe */
5729 if (!sh
->batch_head
|| sh
== sh
->batch_head
)
5730 set_bit(STRIPE_HANDLE
, &sh
->state
);
5731 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5732 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5733 (bi
->bi_opf
& REQ_SYNC
) &&
5734 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5735 atomic_inc(&conf
->preread_active_stripes
);
5736 release_stripe_plug(mddev
, sh
);
5738 /* cannot get stripe for read-ahead, just give-up */
5739 bi
->bi_status
= BLK_STS_IOERR
;
5743 finish_wait(&conf
->wait_for_overlap
, &w
);
5746 md_write_end(mddev
);
5751 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5753 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5755 /* reshaping is quite different to recovery/resync so it is
5756 * handled quite separately ... here.
5758 * On each call to sync_request, we gather one chunk worth of
5759 * destination stripes and flag them as expanding.
5760 * Then we find all the source stripes and request reads.
5761 * As the reads complete, handle_stripe will copy the data
5762 * into the destination stripe and release that stripe.
5764 struct r5conf
*conf
= mddev
->private;
5765 struct stripe_head
*sh
;
5766 struct md_rdev
*rdev
;
5767 sector_t first_sector
, last_sector
;
5768 int raid_disks
= conf
->previous_raid_disks
;
5769 int data_disks
= raid_disks
- conf
->max_degraded
;
5770 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5773 sector_t writepos
, readpos
, safepos
;
5774 sector_t stripe_addr
;
5775 int reshape_sectors
;
5776 struct list_head stripes
;
5779 if (sector_nr
== 0) {
5780 /* If restarting in the middle, skip the initial sectors */
5781 if (mddev
->reshape_backwards
&&
5782 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5783 sector_nr
= raid5_size(mddev
, 0, 0)
5784 - conf
->reshape_progress
;
5785 } else if (mddev
->reshape_backwards
&&
5786 conf
->reshape_progress
== MaxSector
) {
5787 /* shouldn't happen, but just in case, finish up.*/
5788 sector_nr
= MaxSector
;
5789 } else if (!mddev
->reshape_backwards
&&
5790 conf
->reshape_progress
> 0)
5791 sector_nr
= conf
->reshape_progress
;
5792 sector_div(sector_nr
, new_data_disks
);
5794 mddev
->curr_resync_completed
= sector_nr
;
5795 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5802 /* We need to process a full chunk at a time.
5803 * If old and new chunk sizes differ, we need to process the
5807 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5809 /* We update the metadata at least every 10 seconds, or when
5810 * the data about to be copied would over-write the source of
5811 * the data at the front of the range. i.e. one new_stripe
5812 * along from reshape_progress new_maps to after where
5813 * reshape_safe old_maps to
5815 writepos
= conf
->reshape_progress
;
5816 sector_div(writepos
, new_data_disks
);
5817 readpos
= conf
->reshape_progress
;
5818 sector_div(readpos
, data_disks
);
5819 safepos
= conf
->reshape_safe
;
5820 sector_div(safepos
, data_disks
);
5821 if (mddev
->reshape_backwards
) {
5822 BUG_ON(writepos
< reshape_sectors
);
5823 writepos
-= reshape_sectors
;
5824 readpos
+= reshape_sectors
;
5825 safepos
+= reshape_sectors
;
5827 writepos
+= reshape_sectors
;
5828 /* readpos and safepos are worst-case calculations.
5829 * A negative number is overly pessimistic, and causes
5830 * obvious problems for unsigned storage. So clip to 0.
5832 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5833 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5836 /* Having calculated the 'writepos' possibly use it
5837 * to set 'stripe_addr' which is where we will write to.
5839 if (mddev
->reshape_backwards
) {
5840 BUG_ON(conf
->reshape_progress
== 0);
5841 stripe_addr
= writepos
;
5842 BUG_ON((mddev
->dev_sectors
&
5843 ~((sector_t
)reshape_sectors
- 1))
5844 - reshape_sectors
- stripe_addr
5847 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5848 stripe_addr
= sector_nr
;
5851 /* 'writepos' is the most advanced device address we might write.
5852 * 'readpos' is the least advanced device address we might read.
5853 * 'safepos' is the least address recorded in the metadata as having
5855 * If there is a min_offset_diff, these are adjusted either by
5856 * increasing the safepos/readpos if diff is negative, or
5857 * increasing writepos if diff is positive.
5858 * If 'readpos' is then behind 'writepos', there is no way that we can
5859 * ensure safety in the face of a crash - that must be done by userspace
5860 * making a backup of the data. So in that case there is no particular
5861 * rush to update metadata.
5862 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5863 * update the metadata to advance 'safepos' to match 'readpos' so that
5864 * we can be safe in the event of a crash.
5865 * So we insist on updating metadata if safepos is behind writepos and
5866 * readpos is beyond writepos.
5867 * In any case, update the metadata every 10 seconds.
5868 * Maybe that number should be configurable, but I'm not sure it is
5869 * worth it.... maybe it could be a multiple of safemode_delay???
5871 if (conf
->min_offset_diff
< 0) {
5872 safepos
+= -conf
->min_offset_diff
;
5873 readpos
+= -conf
->min_offset_diff
;
5875 writepos
+= conf
->min_offset_diff
;
5877 if ((mddev
->reshape_backwards
5878 ? (safepos
> writepos
&& readpos
< writepos
)
5879 : (safepos
< writepos
&& readpos
> writepos
)) ||
5880 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5881 /* Cannot proceed until we've updated the superblock... */
5882 wait_event(conf
->wait_for_overlap
,
5883 atomic_read(&conf
->reshape_stripes
)==0
5884 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5885 if (atomic_read(&conf
->reshape_stripes
) != 0)
5887 mddev
->reshape_position
= conf
->reshape_progress
;
5888 mddev
->curr_resync_completed
= sector_nr
;
5889 if (!mddev
->reshape_backwards
)
5890 /* Can update recovery_offset */
5891 rdev_for_each(rdev
, mddev
)
5892 if (rdev
->raid_disk
>= 0 &&
5893 !test_bit(Journal
, &rdev
->flags
) &&
5894 !test_bit(In_sync
, &rdev
->flags
) &&
5895 rdev
->recovery_offset
< sector_nr
)
5896 rdev
->recovery_offset
= sector_nr
;
5898 conf
->reshape_checkpoint
= jiffies
;
5899 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5900 md_wakeup_thread(mddev
->thread
);
5901 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
5902 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5903 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5905 spin_lock_irq(&conf
->device_lock
);
5906 conf
->reshape_safe
= mddev
->reshape_position
;
5907 spin_unlock_irq(&conf
->device_lock
);
5908 wake_up(&conf
->wait_for_overlap
);
5909 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5912 INIT_LIST_HEAD(&stripes
);
5913 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5915 int skipped_disk
= 0;
5916 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5917 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5918 atomic_inc(&conf
->reshape_stripes
);
5919 /* If any of this stripe is beyond the end of the old
5920 * array, then we need to zero those blocks
5922 for (j
=sh
->disks
; j
--;) {
5924 if (j
== sh
->pd_idx
)
5926 if (conf
->level
== 6 &&
5929 s
= raid5_compute_blocknr(sh
, j
, 0);
5930 if (s
< raid5_size(mddev
, 0, 0)) {
5934 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5935 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5936 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5938 if (!skipped_disk
) {
5939 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5940 set_bit(STRIPE_HANDLE
, &sh
->state
);
5942 list_add(&sh
->lru
, &stripes
);
5944 spin_lock_irq(&conf
->device_lock
);
5945 if (mddev
->reshape_backwards
)
5946 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5948 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5949 spin_unlock_irq(&conf
->device_lock
);
5950 /* Ok, those stripe are ready. We can start scheduling
5951 * reads on the source stripes.
5952 * The source stripes are determined by mapping the first and last
5953 * block on the destination stripes.
5956 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5959 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5960 * new_data_disks
- 1),
5962 if (last_sector
>= mddev
->dev_sectors
)
5963 last_sector
= mddev
->dev_sectors
- 1;
5964 while (first_sector
<= last_sector
) {
5965 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5966 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5967 set_bit(STRIPE_HANDLE
, &sh
->state
);
5968 raid5_release_stripe(sh
);
5969 first_sector
+= STRIPE_SECTORS
;
5971 /* Now that the sources are clearly marked, we can release
5972 * the destination stripes
5974 while (!list_empty(&stripes
)) {
5975 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5976 list_del_init(&sh
->lru
);
5977 raid5_release_stripe(sh
);
5979 /* If this takes us to the resync_max point where we have to pause,
5980 * then we need to write out the superblock.
5982 sector_nr
+= reshape_sectors
;
5983 retn
= reshape_sectors
;
5985 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5986 (sector_nr
- mddev
->curr_resync_completed
) * 2
5987 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5988 /* Cannot proceed until we've updated the superblock... */
5989 wait_event(conf
->wait_for_overlap
,
5990 atomic_read(&conf
->reshape_stripes
) == 0
5991 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5992 if (atomic_read(&conf
->reshape_stripes
) != 0)
5994 mddev
->reshape_position
= conf
->reshape_progress
;
5995 mddev
->curr_resync_completed
= sector_nr
;
5996 if (!mddev
->reshape_backwards
)
5997 /* Can update recovery_offset */
5998 rdev_for_each(rdev
, mddev
)
5999 if (rdev
->raid_disk
>= 0 &&
6000 !test_bit(Journal
, &rdev
->flags
) &&
6001 !test_bit(In_sync
, &rdev
->flags
) &&
6002 rdev
->recovery_offset
< sector_nr
)
6003 rdev
->recovery_offset
= sector_nr
;
6004 conf
->reshape_checkpoint
= jiffies
;
6005 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
6006 md_wakeup_thread(mddev
->thread
);
6007 wait_event(mddev
->sb_wait
,
6008 !test_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
)
6009 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
6010 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
6012 spin_lock_irq(&conf
->device_lock
);
6013 conf
->reshape_safe
= mddev
->reshape_position
;
6014 spin_unlock_irq(&conf
->device_lock
);
6015 wake_up(&conf
->wait_for_overlap
);
6016 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
6022 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
6025 struct r5conf
*conf
= mddev
->private;
6026 struct stripe_head
*sh
;
6027 sector_t max_sector
= mddev
->dev_sectors
;
6028 sector_t sync_blocks
;
6029 int still_degraded
= 0;
6032 if (sector_nr
>= max_sector
) {
6033 /* just being told to finish up .. nothing much to do */
6035 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
6040 if (mddev
->curr_resync
< max_sector
) /* aborted */
6041 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
6043 else /* completed sync */
6045 md_bitmap_close_sync(mddev
->bitmap
);
6050 /* Allow raid5_quiesce to complete */
6051 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
6053 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
6054 return reshape_request(mddev
, sector_nr
, skipped
);
6056 /* No need to check resync_max as we never do more than one
6057 * stripe, and as resync_max will always be on a chunk boundary,
6058 * if the check in md_do_sync didn't fire, there is no chance
6059 * of overstepping resync_max here
6062 /* if there is too many failed drives and we are trying
6063 * to resync, then assert that we are finished, because there is
6064 * nothing we can do.
6066 if (mddev
->degraded
>= conf
->max_degraded
&&
6067 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
6068 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
6072 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
6074 !md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
6075 sync_blocks
>= STRIPE_SECTORS
) {
6076 /* we can skip this block, and probably more */
6077 sync_blocks
/= STRIPE_SECTORS
;
6079 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
6082 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
6084 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
6086 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
6087 /* make sure we don't swamp the stripe cache if someone else
6088 * is trying to get access
6090 schedule_timeout_uninterruptible(1);
6092 /* Need to check if array will still be degraded after recovery/resync
6093 * Note in case of > 1 drive failures it's possible we're rebuilding
6094 * one drive while leaving another faulty drive in array.
6097 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6098 struct md_rdev
*rdev
= READ_ONCE(conf
->disks
[i
].rdev
);
6100 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
6105 md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
6107 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
6108 set_bit(STRIPE_HANDLE
, &sh
->state
);
6110 raid5_release_stripe(sh
);
6112 return STRIPE_SECTORS
;
6115 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
,
6116 unsigned int offset
)
6118 /* We may not be able to submit a whole bio at once as there
6119 * may not be enough stripe_heads available.
6120 * We cannot pre-allocate enough stripe_heads as we may need
6121 * more than exist in the cache (if we allow ever large chunks).
6122 * So we do one stripe head at a time and record in
6123 * ->bi_hw_segments how many have been done.
6125 * We *know* that this entire raid_bio is in one chunk, so
6126 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6128 struct stripe_head
*sh
;
6130 sector_t sector
, logical_sector
, last_sector
;
6134 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
6135 ~((sector_t
)STRIPE_SECTORS
-1);
6136 sector
= raid5_compute_sector(conf
, logical_sector
,
6138 last_sector
= bio_end_sector(raid_bio
);
6140 for (; logical_sector
< last_sector
;
6141 logical_sector
+= STRIPE_SECTORS
,
6142 sector
+= STRIPE_SECTORS
,
6146 /* already done this stripe */
6149 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
6152 /* failed to get a stripe - must wait */
6153 conf
->retry_read_aligned
= raid_bio
;
6154 conf
->retry_read_offset
= scnt
;
6158 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
6159 raid5_release_stripe(sh
);
6160 conf
->retry_read_aligned
= raid_bio
;
6161 conf
->retry_read_offset
= scnt
;
6165 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
6167 raid5_release_stripe(sh
);
6171 bio_endio(raid_bio
);
6173 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
6174 wake_up(&conf
->wait_for_quiescent
);
6178 static int handle_active_stripes(struct r5conf
*conf
, int group
,
6179 struct r5worker
*worker
,
6180 struct list_head
*temp_inactive_list
)
6181 __releases(&conf
->device_lock
)
6182 __acquires(&conf
->device_lock
)
6184 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
6185 int i
, batch_size
= 0, hash
;
6186 bool release_inactive
= false;
6188 while (batch_size
< MAX_STRIPE_BATCH
&&
6189 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
6190 batch
[batch_size
++] = sh
;
6192 if (batch_size
== 0) {
6193 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6194 if (!list_empty(temp_inactive_list
+ i
))
6196 if (i
== NR_STRIPE_HASH_LOCKS
) {
6197 spin_unlock_irq(&conf
->device_lock
);
6198 log_flush_stripe_to_raid(conf
);
6199 spin_lock_irq(&conf
->device_lock
);
6202 release_inactive
= true;
6204 spin_unlock_irq(&conf
->device_lock
);
6206 release_inactive_stripe_list(conf
, temp_inactive_list
,
6207 NR_STRIPE_HASH_LOCKS
);
6209 r5l_flush_stripe_to_raid(conf
->log
);
6210 if (release_inactive
) {
6211 spin_lock_irq(&conf
->device_lock
);
6215 for (i
= 0; i
< batch_size
; i
++)
6216 handle_stripe(batch
[i
]);
6217 log_write_stripe_run(conf
);
6221 spin_lock_irq(&conf
->device_lock
);
6222 for (i
= 0; i
< batch_size
; i
++) {
6223 hash
= batch
[i
]->hash_lock_index
;
6224 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
6229 static void raid5_do_work(struct work_struct
*work
)
6231 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
6232 struct r5worker_group
*group
= worker
->group
;
6233 struct r5conf
*conf
= group
->conf
;
6234 struct mddev
*mddev
= conf
->mddev
;
6235 int group_id
= group
- conf
->worker_groups
;
6237 struct blk_plug plug
;
6239 pr_debug("+++ raid5worker active\n");
6241 blk_start_plug(&plug
);
6243 spin_lock_irq(&conf
->device_lock
);
6245 int batch_size
, released
;
6247 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
6249 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
6250 worker
->temp_inactive_list
);
6251 worker
->working
= false;
6252 if (!batch_size
&& !released
)
6254 handled
+= batch_size
;
6255 wait_event_lock_irq(mddev
->sb_wait
,
6256 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
),
6259 pr_debug("%d stripes handled\n", handled
);
6261 spin_unlock_irq(&conf
->device_lock
);
6263 flush_deferred_bios(conf
);
6265 r5l_flush_stripe_to_raid(conf
->log
);
6267 async_tx_issue_pending_all();
6268 blk_finish_plug(&plug
);
6270 pr_debug("--- raid5worker inactive\n");
6274 * This is our raid5 kernel thread.
6276 * We scan the hash table for stripes which can be handled now.
6277 * During the scan, completed stripes are saved for us by the interrupt
6278 * handler, so that they will not have to wait for our next wakeup.
6280 static void raid5d(struct md_thread
*thread
)
6282 struct mddev
*mddev
= thread
->mddev
;
6283 struct r5conf
*conf
= mddev
->private;
6285 struct blk_plug plug
;
6287 pr_debug("+++ raid5d active\n");
6289 md_check_recovery(mddev
);
6291 blk_start_plug(&plug
);
6293 spin_lock_irq(&conf
->device_lock
);
6296 int batch_size
, released
;
6297 unsigned int offset
;
6299 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
6301 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6304 !list_empty(&conf
->bitmap_list
)) {
6305 /* Now is a good time to flush some bitmap updates */
6307 spin_unlock_irq(&conf
->device_lock
);
6308 md_bitmap_unplug(mddev
->bitmap
);
6309 spin_lock_irq(&conf
->device_lock
);
6310 conf
->seq_write
= conf
->seq_flush
;
6311 activate_bit_delay(conf
, conf
->temp_inactive_list
);
6313 raid5_activate_delayed(conf
);
6315 while ((bio
= remove_bio_from_retry(conf
, &offset
))) {
6317 spin_unlock_irq(&conf
->device_lock
);
6318 ok
= retry_aligned_read(conf
, bio
, offset
);
6319 spin_lock_irq(&conf
->device_lock
);
6325 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
6326 conf
->temp_inactive_list
);
6327 if (!batch_size
&& !released
)
6329 handled
+= batch_size
;
6331 if (mddev
->sb_flags
& ~(1 << MD_SB_CHANGE_PENDING
)) {
6332 spin_unlock_irq(&conf
->device_lock
);
6333 md_check_recovery(mddev
);
6334 spin_lock_irq(&conf
->device_lock
);
6337 pr_debug("%d stripes handled\n", handled
);
6339 spin_unlock_irq(&conf
->device_lock
);
6340 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
6341 mutex_trylock(&conf
->cache_size_mutex
)) {
6342 grow_one_stripe(conf
, __GFP_NOWARN
);
6343 /* Set flag even if allocation failed. This helps
6344 * slow down allocation requests when mem is short
6346 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6347 mutex_unlock(&conf
->cache_size_mutex
);
6350 flush_deferred_bios(conf
);
6352 r5l_flush_stripe_to_raid(conf
->log
);
6354 async_tx_issue_pending_all();
6355 blk_finish_plug(&plug
);
6357 pr_debug("--- raid5d inactive\n");
6361 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
6363 struct r5conf
*conf
;
6365 spin_lock(&mddev
->lock
);
6366 conf
= mddev
->private;
6368 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
6369 spin_unlock(&mddev
->lock
);
6374 raid5_set_cache_size(struct mddev
*mddev
, int size
)
6377 struct r5conf
*conf
= mddev
->private;
6379 if (size
<= 16 || size
> 32768)
6382 conf
->min_nr_stripes
= size
;
6383 mutex_lock(&conf
->cache_size_mutex
);
6384 while (size
< conf
->max_nr_stripes
&&
6385 drop_one_stripe(conf
))
6387 mutex_unlock(&conf
->cache_size_mutex
);
6389 md_allow_write(mddev
);
6391 mutex_lock(&conf
->cache_size_mutex
);
6392 while (size
> conf
->max_nr_stripes
)
6393 if (!grow_one_stripe(conf
, GFP_KERNEL
)) {
6394 conf
->min_nr_stripes
= conf
->max_nr_stripes
;
6398 mutex_unlock(&conf
->cache_size_mutex
);
6402 EXPORT_SYMBOL(raid5_set_cache_size
);
6405 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6407 struct r5conf
*conf
;
6411 if (len
>= PAGE_SIZE
)
6413 if (kstrtoul(page
, 10, &new))
6415 err
= mddev_lock(mddev
);
6418 conf
= mddev
->private;
6422 err
= raid5_set_cache_size(mddev
, new);
6423 mddev_unlock(mddev
);
6428 static struct md_sysfs_entry
6429 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6430 raid5_show_stripe_cache_size
,
6431 raid5_store_stripe_cache_size
);
6434 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6436 struct r5conf
*conf
= mddev
->private;
6438 return sprintf(page
, "%d\n", conf
->rmw_level
);
6444 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6446 struct r5conf
*conf
= mddev
->private;
6452 if (len
>= PAGE_SIZE
)
6455 if (kstrtoul(page
, 10, &new))
6458 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6461 if (new != PARITY_DISABLE_RMW
&&
6462 new != PARITY_ENABLE_RMW
&&
6463 new != PARITY_PREFER_RMW
)
6466 conf
->rmw_level
= new;
6470 static struct md_sysfs_entry
6471 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6472 raid5_show_rmw_level
,
6473 raid5_store_rmw_level
);
6477 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6479 struct r5conf
*conf
;
6481 spin_lock(&mddev
->lock
);
6482 conf
= mddev
->private;
6484 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6485 spin_unlock(&mddev
->lock
);
6490 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6492 struct r5conf
*conf
;
6496 if (len
>= PAGE_SIZE
)
6498 if (kstrtoul(page
, 10, &new))
6501 err
= mddev_lock(mddev
);
6504 conf
= mddev
->private;
6507 else if (new > conf
->min_nr_stripes
)
6510 conf
->bypass_threshold
= new;
6511 mddev_unlock(mddev
);
6515 static struct md_sysfs_entry
6516 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6518 raid5_show_preread_threshold
,
6519 raid5_store_preread_threshold
);
6522 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6524 struct r5conf
*conf
;
6526 spin_lock(&mddev
->lock
);
6527 conf
= mddev
->private;
6529 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6530 spin_unlock(&mddev
->lock
);
6535 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6537 struct r5conf
*conf
;
6541 if (len
>= PAGE_SIZE
)
6543 if (kstrtoul(page
, 10, &new))
6547 err
= mddev_lock(mddev
);
6550 conf
= mddev
->private;
6553 else if (new != conf
->skip_copy
) {
6554 mddev_suspend(mddev
);
6555 conf
->skip_copy
= new;
6557 mddev
->queue
->backing_dev_info
->capabilities
|=
6558 BDI_CAP_STABLE_WRITES
;
6560 mddev
->queue
->backing_dev_info
->capabilities
&=
6561 ~BDI_CAP_STABLE_WRITES
;
6562 mddev_resume(mddev
);
6564 mddev_unlock(mddev
);
6568 static struct md_sysfs_entry
6569 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6570 raid5_show_skip_copy
,
6571 raid5_store_skip_copy
);
6574 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6576 struct r5conf
*conf
= mddev
->private;
6578 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6583 static struct md_sysfs_entry
6584 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6587 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6589 struct r5conf
*conf
;
6591 spin_lock(&mddev
->lock
);
6592 conf
= mddev
->private;
6594 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6595 spin_unlock(&mddev
->lock
);
6599 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6601 struct r5worker_group
**worker_groups
);
6603 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6605 struct r5conf
*conf
;
6608 struct r5worker_group
*new_groups
, *old_groups
;
6611 if (len
>= PAGE_SIZE
)
6613 if (kstrtouint(page
, 10, &new))
6615 /* 8192 should be big enough */
6619 err
= mddev_lock(mddev
);
6622 conf
= mddev
->private;
6625 else if (new != conf
->worker_cnt_per_group
) {
6626 mddev_suspend(mddev
);
6628 old_groups
= conf
->worker_groups
;
6630 flush_workqueue(raid5_wq
);
6632 err
= alloc_thread_groups(conf
, new, &group_cnt
, &new_groups
);
6634 spin_lock_irq(&conf
->device_lock
);
6635 conf
->group_cnt
= group_cnt
;
6636 conf
->worker_cnt_per_group
= new;
6637 conf
->worker_groups
= new_groups
;
6638 spin_unlock_irq(&conf
->device_lock
);
6641 kfree(old_groups
[0].workers
);
6644 mddev_resume(mddev
);
6646 mddev_unlock(mddev
);
6651 static struct md_sysfs_entry
6652 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6653 raid5_show_group_thread_cnt
,
6654 raid5_store_group_thread_cnt
);
6656 static struct attribute
*raid5_attrs
[] = {
6657 &raid5_stripecache_size
.attr
,
6658 &raid5_stripecache_active
.attr
,
6659 &raid5_preread_bypass_threshold
.attr
,
6660 &raid5_group_thread_cnt
.attr
,
6661 &raid5_skip_copy
.attr
,
6662 &raid5_rmw_level
.attr
,
6663 &r5c_journal_mode
.attr
,
6664 &ppl_write_hint
.attr
,
6667 static struct attribute_group raid5_attrs_group
= {
6669 .attrs
= raid5_attrs
,
6672 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
, int *group_cnt
,
6673 struct r5worker_group
**worker_groups
)
6677 struct r5worker
*workers
;
6681 *worker_groups
= NULL
;
6684 *group_cnt
= num_possible_nodes();
6685 size
= sizeof(struct r5worker
) * cnt
;
6686 workers
= kcalloc(size
, *group_cnt
, GFP_NOIO
);
6687 *worker_groups
= kcalloc(*group_cnt
, sizeof(struct r5worker_group
),
6689 if (!*worker_groups
|| !workers
) {
6691 kfree(*worker_groups
);
6695 for (i
= 0; i
< *group_cnt
; i
++) {
6696 struct r5worker_group
*group
;
6698 group
= &(*worker_groups
)[i
];
6699 INIT_LIST_HEAD(&group
->handle_list
);
6700 INIT_LIST_HEAD(&group
->loprio_list
);
6702 group
->workers
= workers
+ i
* cnt
;
6704 for (j
= 0; j
< cnt
; j
++) {
6705 struct r5worker
*worker
= group
->workers
+ j
;
6706 worker
->group
= group
;
6707 INIT_WORK(&worker
->work
, raid5_do_work
);
6709 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6710 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6717 static void free_thread_groups(struct r5conf
*conf
)
6719 if (conf
->worker_groups
)
6720 kfree(conf
->worker_groups
[0].workers
);
6721 kfree(conf
->worker_groups
);
6722 conf
->worker_groups
= NULL
;
6726 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6728 struct r5conf
*conf
= mddev
->private;
6731 sectors
= mddev
->dev_sectors
;
6733 /* size is defined by the smallest of previous and new size */
6734 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6736 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6737 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6738 return sectors
* (raid_disks
- conf
->max_degraded
);
6741 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6743 safe_put_page(percpu
->spare_page
);
6744 percpu
->spare_page
= NULL
;
6745 kvfree(percpu
->scribble
);
6746 percpu
->scribble
= NULL
;
6749 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6751 if (conf
->level
== 6 && !percpu
->spare_page
) {
6752 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6753 if (!percpu
->spare_page
)
6757 if (scribble_alloc(percpu
,
6758 max(conf
->raid_disks
,
6759 conf
->previous_raid_disks
),
6760 max(conf
->chunk_sectors
,
6761 conf
->prev_chunk_sectors
)
6764 free_scratch_buffer(conf
, percpu
);
6771 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
6773 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6775 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6779 static void raid5_free_percpu(struct r5conf
*conf
)
6784 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6785 free_percpu(conf
->percpu
);
6788 static void free_conf(struct r5conf
*conf
)
6794 unregister_shrinker(&conf
->shrinker
);
6795 free_thread_groups(conf
);
6796 shrink_stripes(conf
);
6797 raid5_free_percpu(conf
);
6798 for (i
= 0; i
< conf
->pool_size
; i
++)
6799 if (conf
->disks
[i
].extra_page
)
6800 put_page(conf
->disks
[i
].extra_page
);
6802 bioset_exit(&conf
->bio_split
);
6803 kfree(conf
->stripe_hashtbl
);
6804 kfree(conf
->pending_data
);
6808 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
6810 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6811 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6813 if (alloc_scratch_buffer(conf
, percpu
)) {
6814 pr_warn("%s: failed memory allocation for cpu%u\n",
6821 static int raid5_alloc_percpu(struct r5conf
*conf
)
6825 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6829 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6831 conf
->scribble_disks
= max(conf
->raid_disks
,
6832 conf
->previous_raid_disks
);
6833 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6834 conf
->prev_chunk_sectors
);
6839 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6840 struct shrink_control
*sc
)
6842 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6843 unsigned long ret
= SHRINK_STOP
;
6845 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6847 while (ret
< sc
->nr_to_scan
&&
6848 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6849 if (drop_one_stripe(conf
) == 0) {
6855 mutex_unlock(&conf
->cache_size_mutex
);
6860 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6861 struct shrink_control
*sc
)
6863 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6865 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6866 /* unlikely, but not impossible */
6868 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6871 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6873 struct r5conf
*conf
;
6874 int raid_disk
, memory
, max_disks
;
6875 struct md_rdev
*rdev
;
6876 struct disk_info
*disk
;
6880 struct r5worker_group
*new_group
;
6883 if (mddev
->new_level
!= 5
6884 && mddev
->new_level
!= 4
6885 && mddev
->new_level
!= 6) {
6886 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6887 mdname(mddev
), mddev
->new_level
);
6888 return ERR_PTR(-EIO
);
6890 if ((mddev
->new_level
== 5
6891 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6892 (mddev
->new_level
== 6
6893 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6894 pr_warn("md/raid:%s: layout %d not supported\n",
6895 mdname(mddev
), mddev
->new_layout
);
6896 return ERR_PTR(-EIO
);
6898 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6899 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6900 mdname(mddev
), mddev
->raid_disks
);
6901 return ERR_PTR(-EINVAL
);
6904 if (!mddev
->new_chunk_sectors
||
6905 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6906 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6907 pr_warn("md/raid:%s: invalid chunk size %d\n",
6908 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6909 return ERR_PTR(-EINVAL
);
6912 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6915 INIT_LIST_HEAD(&conf
->free_list
);
6916 INIT_LIST_HEAD(&conf
->pending_list
);
6917 conf
->pending_data
= kcalloc(PENDING_IO_MAX
,
6918 sizeof(struct r5pending_data
),
6920 if (!conf
->pending_data
)
6922 for (i
= 0; i
< PENDING_IO_MAX
; i
++)
6923 list_add(&conf
->pending_data
[i
].sibling
, &conf
->free_list
);
6924 /* Don't enable multi-threading by default*/
6925 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &new_group
)) {
6926 conf
->group_cnt
= group_cnt
;
6927 conf
->worker_cnt_per_group
= 0;
6928 conf
->worker_groups
= new_group
;
6931 spin_lock_init(&conf
->device_lock
);
6932 seqcount_init(&conf
->gen_lock
);
6933 mutex_init(&conf
->cache_size_mutex
);
6934 init_waitqueue_head(&conf
->wait_for_quiescent
);
6935 init_waitqueue_head(&conf
->wait_for_stripe
);
6936 init_waitqueue_head(&conf
->wait_for_overlap
);
6937 INIT_LIST_HEAD(&conf
->handle_list
);
6938 INIT_LIST_HEAD(&conf
->loprio_list
);
6939 INIT_LIST_HEAD(&conf
->hold_list
);
6940 INIT_LIST_HEAD(&conf
->delayed_list
);
6941 INIT_LIST_HEAD(&conf
->bitmap_list
);
6942 init_llist_head(&conf
->released_stripes
);
6943 atomic_set(&conf
->active_stripes
, 0);
6944 atomic_set(&conf
->preread_active_stripes
, 0);
6945 atomic_set(&conf
->active_aligned_reads
, 0);
6946 spin_lock_init(&conf
->pending_bios_lock
);
6947 conf
->batch_bio_dispatch
= true;
6948 rdev_for_each(rdev
, mddev
) {
6949 if (test_bit(Journal
, &rdev
->flags
))
6951 if (blk_queue_nonrot(bdev_get_queue(rdev
->bdev
))) {
6952 conf
->batch_bio_dispatch
= false;
6957 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6958 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6960 conf
->raid_disks
= mddev
->raid_disks
;
6961 if (mddev
->reshape_position
== MaxSector
)
6962 conf
->previous_raid_disks
= mddev
->raid_disks
;
6964 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6965 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6967 conf
->disks
= kcalloc(max_disks
, sizeof(struct disk_info
),
6973 for (i
= 0; i
< max_disks
; i
++) {
6974 conf
->disks
[i
].extra_page
= alloc_page(GFP_KERNEL
);
6975 if (!conf
->disks
[i
].extra_page
)
6979 ret
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
6982 conf
->mddev
= mddev
;
6984 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6987 /* We init hash_locks[0] separately to that it can be used
6988 * as the reference lock in the spin_lock_nest_lock() call
6989 * in lock_all_device_hash_locks_irq in order to convince
6990 * lockdep that we know what we are doing.
6992 spin_lock_init(conf
->hash_locks
);
6993 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6994 spin_lock_init(conf
->hash_locks
+ i
);
6996 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6997 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6999 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
7000 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
7002 atomic_set(&conf
->r5c_cached_full_stripes
, 0);
7003 INIT_LIST_HEAD(&conf
->r5c_full_stripe_list
);
7004 atomic_set(&conf
->r5c_cached_partial_stripes
, 0);
7005 INIT_LIST_HEAD(&conf
->r5c_partial_stripe_list
);
7006 atomic_set(&conf
->r5c_flushing_full_stripes
, 0);
7007 atomic_set(&conf
->r5c_flushing_partial_stripes
, 0);
7009 conf
->level
= mddev
->new_level
;
7010 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7011 if (raid5_alloc_percpu(conf
) != 0)
7014 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
7016 rdev_for_each(rdev
, mddev
) {
7017 raid_disk
= rdev
->raid_disk
;
7018 if (raid_disk
>= max_disks
7019 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
7021 disk
= conf
->disks
+ raid_disk
;
7023 if (test_bit(Replacement
, &rdev
->flags
)) {
7024 if (disk
->replacement
)
7026 disk
->replacement
= rdev
;
7033 if (test_bit(In_sync
, &rdev
->flags
)) {
7034 char b
[BDEVNAME_SIZE
];
7035 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7036 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
7037 } else if (rdev
->saved_raid_disk
!= raid_disk
)
7038 /* Cannot rely on bitmap to complete recovery */
7042 conf
->level
= mddev
->new_level
;
7043 if (conf
->level
== 6) {
7044 conf
->max_degraded
= 2;
7045 if (raid6_call
.xor_syndrome
)
7046 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7048 conf
->rmw_level
= PARITY_DISABLE_RMW
;
7050 conf
->max_degraded
= 1;
7051 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7053 conf
->algorithm
= mddev
->new_layout
;
7054 conf
->reshape_progress
= mddev
->reshape_position
;
7055 if (conf
->reshape_progress
!= MaxSector
) {
7056 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
7057 conf
->prev_algo
= mddev
->layout
;
7059 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7060 conf
->prev_algo
= conf
->algorithm
;
7063 conf
->min_nr_stripes
= NR_STRIPES
;
7064 if (mddev
->reshape_position
!= MaxSector
) {
7065 int stripes
= max_t(int,
7066 ((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4,
7067 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4);
7068 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
7069 if (conf
->min_nr_stripes
!= NR_STRIPES
)
7070 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7071 mdname(mddev
), conf
->min_nr_stripes
);
7073 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
7074 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
7075 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
7076 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
7077 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7078 mdname(mddev
), memory
);
7081 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev
), memory
);
7083 * Losing a stripe head costs more than the time to refill it,
7084 * it reduces the queue depth and so can hurt throughput.
7085 * So set it rather large, scaled by number of devices.
7087 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
7088 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
7089 conf
->shrinker
.count_objects
= raid5_cache_count
;
7090 conf
->shrinker
.batch
= 128;
7091 conf
->shrinker
.flags
= 0;
7092 if (register_shrinker(&conf
->shrinker
)) {
7093 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7098 sprintf(pers_name
, "raid%d", mddev
->new_level
);
7099 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
7100 if (!conf
->thread
) {
7101 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7111 return ERR_PTR(-EIO
);
7113 return ERR_PTR(-ENOMEM
);
7116 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
7119 case ALGORITHM_PARITY_0
:
7120 if (raid_disk
< max_degraded
)
7123 case ALGORITHM_PARITY_N
:
7124 if (raid_disk
>= raid_disks
- max_degraded
)
7127 case ALGORITHM_PARITY_0_6
:
7128 if (raid_disk
== 0 ||
7129 raid_disk
== raid_disks
- 1)
7132 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7133 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7134 case ALGORITHM_LEFT_SYMMETRIC_6
:
7135 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7136 if (raid_disk
== raid_disks
- 1)
7142 static int raid5_run(struct mddev
*mddev
)
7144 struct r5conf
*conf
;
7145 int working_disks
= 0;
7146 int dirty_parity_disks
= 0;
7147 struct md_rdev
*rdev
;
7148 struct md_rdev
*journal_dev
= NULL
;
7149 sector_t reshape_offset
= 0;
7151 long long min_offset_diff
= 0;
7154 if (mddev_init_writes_pending(mddev
) < 0)
7157 if (mddev
->recovery_cp
!= MaxSector
)
7158 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7161 rdev_for_each(rdev
, mddev
) {
7164 if (test_bit(Journal
, &rdev
->flags
)) {
7168 if (rdev
->raid_disk
< 0)
7170 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
7172 min_offset_diff
= diff
;
7174 } else if (mddev
->reshape_backwards
&&
7175 diff
< min_offset_diff
)
7176 min_offset_diff
= diff
;
7177 else if (!mddev
->reshape_backwards
&&
7178 diff
> min_offset_diff
)
7179 min_offset_diff
= diff
;
7182 if ((test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) || journal_dev
) &&
7183 (mddev
->bitmap_info
.offset
|| mddev
->bitmap_info
.file
)) {
7184 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7189 if (mddev
->reshape_position
!= MaxSector
) {
7190 /* Check that we can continue the reshape.
7191 * Difficulties arise if the stripe we would write to
7192 * next is at or after the stripe we would read from next.
7193 * For a reshape that changes the number of devices, this
7194 * is only possible for a very short time, and mdadm makes
7195 * sure that time appears to have past before assembling
7196 * the array. So we fail if that time hasn't passed.
7197 * For a reshape that keeps the number of devices the same
7198 * mdadm must be monitoring the reshape can keeping the
7199 * critical areas read-only and backed up. It will start
7200 * the array in read-only mode, so we check for that.
7202 sector_t here_new
, here_old
;
7204 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
7209 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7214 if (mddev
->new_level
!= mddev
->level
) {
7215 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7219 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
7220 /* reshape_position must be on a new-stripe boundary, and one
7221 * further up in new geometry must map after here in old
7223 * If the chunk sizes are different, then as we perform reshape
7224 * in units of the largest of the two, reshape_position needs
7225 * be a multiple of the largest chunk size times new data disks.
7227 here_new
= mddev
->reshape_position
;
7228 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
7229 new_data_disks
= mddev
->raid_disks
- max_degraded
;
7230 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
7231 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7235 reshape_offset
= here_new
* chunk_sectors
;
7236 /* here_new is the stripe we will write to */
7237 here_old
= mddev
->reshape_position
;
7238 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
7239 /* here_old is the first stripe that we might need to read
7241 if (mddev
->delta_disks
== 0) {
7242 /* We cannot be sure it is safe to start an in-place
7243 * reshape. It is only safe if user-space is monitoring
7244 * and taking constant backups.
7245 * mdadm always starts a situation like this in
7246 * readonly mode so it can take control before
7247 * allowing any writes. So just check for that.
7249 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
7250 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
7251 /* not really in-place - so OK */;
7252 else if (mddev
->ro
== 0) {
7253 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7257 } else if (mddev
->reshape_backwards
7258 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
7259 here_old
* chunk_sectors
)
7260 : (here_new
* chunk_sectors
>=
7261 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
7262 /* Reading from the same stripe as writing to - bad */
7263 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7267 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev
));
7268 /* OK, we should be able to continue; */
7270 BUG_ON(mddev
->level
!= mddev
->new_level
);
7271 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
7272 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
7273 BUG_ON(mddev
->delta_disks
!= 0);
7276 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) &&
7277 test_bit(MD_HAS_PPL
, &mddev
->flags
)) {
7278 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7280 clear_bit(MD_HAS_PPL
, &mddev
->flags
);
7281 clear_bit(MD_HAS_MULTIPLE_PPLS
, &mddev
->flags
);
7284 if (mddev
->private == NULL
)
7285 conf
= setup_conf(mddev
);
7287 conf
= mddev
->private;
7290 return PTR_ERR(conf
);
7292 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
7294 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7297 set_disk_ro(mddev
->gendisk
, 1);
7298 } else if (mddev
->recovery_cp
== MaxSector
)
7299 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
7302 conf
->min_offset_diff
= min_offset_diff
;
7303 mddev
->thread
= conf
->thread
;
7304 conf
->thread
= NULL
;
7305 mddev
->private = conf
;
7307 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
7309 rdev
= conf
->disks
[i
].rdev
;
7310 if (!rdev
&& conf
->disks
[i
].replacement
) {
7311 /* The replacement is all we have yet */
7312 rdev
= conf
->disks
[i
].replacement
;
7313 conf
->disks
[i
].replacement
= NULL
;
7314 clear_bit(Replacement
, &rdev
->flags
);
7315 conf
->disks
[i
].rdev
= rdev
;
7319 if (conf
->disks
[i
].replacement
&&
7320 conf
->reshape_progress
!= MaxSector
) {
7321 /* replacements and reshape simply do not mix. */
7322 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7325 if (test_bit(In_sync
, &rdev
->flags
)) {
7329 /* This disc is not fully in-sync. However if it
7330 * just stored parity (beyond the recovery_offset),
7331 * when we don't need to be concerned about the
7332 * array being dirty.
7333 * When reshape goes 'backwards', we never have
7334 * partially completed devices, so we only need
7335 * to worry about reshape going forwards.
7337 /* Hack because v0.91 doesn't store recovery_offset properly. */
7338 if (mddev
->major_version
== 0 &&
7339 mddev
->minor_version
> 90)
7340 rdev
->recovery_offset
= reshape_offset
;
7342 if (rdev
->recovery_offset
< reshape_offset
) {
7343 /* We need to check old and new layout */
7344 if (!only_parity(rdev
->raid_disk
,
7347 conf
->max_degraded
))
7350 if (!only_parity(rdev
->raid_disk
,
7352 conf
->previous_raid_disks
,
7353 conf
->max_degraded
))
7355 dirty_parity_disks
++;
7359 * 0 for a fully functional array, 1 or 2 for a degraded array.
7361 mddev
->degraded
= raid5_calc_degraded(conf
);
7363 if (has_failed(conf
)) {
7364 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7365 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
7369 /* device size must be a multiple of chunk size */
7370 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
7371 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
7373 if (mddev
->degraded
> dirty_parity_disks
&&
7374 mddev
->recovery_cp
!= MaxSector
) {
7375 if (test_bit(MD_HAS_PPL
, &mddev
->flags
))
7376 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7378 else if (mddev
->ok_start_degraded
)
7379 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7382 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7388 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7389 mdname(mddev
), conf
->level
,
7390 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
7393 print_raid5_conf(conf
);
7395 if (conf
->reshape_progress
!= MaxSector
) {
7396 conf
->reshape_safe
= conf
->reshape_progress
;
7397 atomic_set(&conf
->reshape_stripes
, 0);
7398 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7399 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7400 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7401 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7402 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7404 if (!mddev
->sync_thread
)
7408 /* Ok, everything is just fine now */
7409 if (mddev
->to_remove
== &raid5_attrs_group
)
7410 mddev
->to_remove
= NULL
;
7411 else if (mddev
->kobj
.sd
&&
7412 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
7413 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7415 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7419 /* read-ahead size must cover two whole stripes, which
7420 * is 2 * (datadisks) * chunksize where 'n' is the
7421 * number of raid devices
7423 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
7424 int stripe
= data_disks
*
7425 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
7426 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
7427 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
7429 chunk_size
= mddev
->chunk_sectors
<< 9;
7430 blk_queue_io_min(mddev
->queue
, chunk_size
);
7431 blk_queue_io_opt(mddev
->queue
, chunk_size
*
7432 (conf
->raid_disks
- conf
->max_degraded
));
7433 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
7435 * We can only discard a whole stripe. It doesn't make sense to
7436 * discard data disk but write parity disk
7438 stripe
= stripe
* PAGE_SIZE
;
7439 /* Round up to power of 2, as discard handling
7440 * currently assumes that */
7441 while ((stripe
-1) & stripe
)
7442 stripe
= (stripe
| (stripe
-1)) + 1;
7443 mddev
->queue
->limits
.discard_alignment
= stripe
;
7444 mddev
->queue
->limits
.discard_granularity
= stripe
;
7446 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
7447 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
7449 rdev_for_each(rdev
, mddev
) {
7450 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7451 rdev
->data_offset
<< 9);
7452 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7453 rdev
->new_data_offset
<< 9);
7457 * zeroing is required, otherwise data
7458 * could be lost. Consider a scenario: discard a stripe
7459 * (the stripe could be inconsistent if
7460 * discard_zeroes_data is 0); write one disk of the
7461 * stripe (the stripe could be inconsistent again
7462 * depending on which disks are used to calculate
7463 * parity); the disk is broken; The stripe data of this
7466 * We only allow DISCARD if the sysadmin has confirmed that
7467 * only safe devices are in use by setting a module parameter.
7468 * A better idea might be to turn DISCARD into WRITE_ZEROES
7469 * requests, as that is required to be safe.
7471 if (devices_handle_discard_safely
&&
7472 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7473 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7474 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
7477 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
7480 blk_queue_max_hw_sectors(mddev
->queue
, UINT_MAX
);
7483 if (log_init(conf
, journal_dev
, raid5_has_ppl(conf
)))
7488 md_unregister_thread(&mddev
->thread
);
7489 print_raid5_conf(conf
);
7491 mddev
->private = NULL
;
7492 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7496 static void raid5_free(struct mddev
*mddev
, void *priv
)
7498 struct r5conf
*conf
= priv
;
7501 mddev
->to_remove
= &raid5_attrs_group
;
7504 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7506 struct r5conf
*conf
= mddev
->private;
7509 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7510 conf
->chunk_sectors
/ 2, mddev
->layout
);
7511 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7513 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7514 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
7515 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
7518 seq_printf (seq
, "]");
7521 static void print_raid5_conf (struct r5conf
*conf
)
7524 struct disk_info
*tmp
;
7526 pr_debug("RAID conf printout:\n");
7528 pr_debug("(conf==NULL)\n");
7531 pr_debug(" --- level:%d rd:%d wd:%d\n", conf
->level
,
7533 conf
->raid_disks
- conf
->mddev
->degraded
);
7535 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7536 char b
[BDEVNAME_SIZE
];
7537 tmp
= conf
->disks
+ i
;
7539 pr_debug(" disk %d, o:%d, dev:%s\n",
7540 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7541 bdevname(tmp
->rdev
->bdev
, b
));
7545 static int raid5_spare_active(struct mddev
*mddev
)
7548 struct r5conf
*conf
= mddev
->private;
7549 struct disk_info
*tmp
;
7551 unsigned long flags
;
7553 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7554 tmp
= conf
->disks
+ i
;
7555 if (tmp
->replacement
7556 && tmp
->replacement
->recovery_offset
== MaxSector
7557 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7558 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7559 /* Replacement has just become active. */
7561 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7564 /* Replaced device not technically faulty,
7565 * but we need to be sure it gets removed
7566 * and never re-added.
7568 set_bit(Faulty
, &tmp
->rdev
->flags
);
7569 sysfs_notify_dirent_safe(
7570 tmp
->rdev
->sysfs_state
);
7572 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7573 } else if (tmp
->rdev
7574 && tmp
->rdev
->recovery_offset
== MaxSector
7575 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7576 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7578 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7581 spin_lock_irqsave(&conf
->device_lock
, flags
);
7582 mddev
->degraded
= raid5_calc_degraded(conf
);
7583 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7584 print_raid5_conf(conf
);
7588 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7590 struct r5conf
*conf
= mddev
->private;
7592 int number
= rdev
->raid_disk
;
7593 struct md_rdev
**rdevp
;
7594 struct disk_info
*p
= conf
->disks
+ number
;
7596 print_raid5_conf(conf
);
7597 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7599 * we can't wait pending write here, as this is called in
7600 * raid5d, wait will deadlock.
7601 * neilb: there is no locking about new writes here,
7602 * so this cannot be safe.
7604 if (atomic_read(&conf
->active_stripes
) ||
7605 atomic_read(&conf
->r5c_cached_full_stripes
) ||
7606 atomic_read(&conf
->r5c_cached_partial_stripes
)) {
7612 if (rdev
== p
->rdev
)
7614 else if (rdev
== p
->replacement
)
7615 rdevp
= &p
->replacement
;
7619 if (number
>= conf
->raid_disks
&&
7620 conf
->reshape_progress
== MaxSector
)
7621 clear_bit(In_sync
, &rdev
->flags
);
7623 if (test_bit(In_sync
, &rdev
->flags
) ||
7624 atomic_read(&rdev
->nr_pending
)) {
7628 /* Only remove non-faulty devices if recovery
7631 if (!test_bit(Faulty
, &rdev
->flags
) &&
7632 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7633 !has_failed(conf
) &&
7634 (!p
->replacement
|| p
->replacement
== rdev
) &&
7635 number
< conf
->raid_disks
) {
7640 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
7642 if (atomic_read(&rdev
->nr_pending
)) {
7643 /* lost the race, try later */
7649 err
= log_modify(conf
, rdev
, false);
7653 if (p
->replacement
) {
7654 /* We must have just cleared 'rdev' */
7655 p
->rdev
= p
->replacement
;
7656 clear_bit(Replacement
, &p
->replacement
->flags
);
7657 smp_mb(); /* Make sure other CPUs may see both as identical
7658 * but will never see neither - if they are careful
7660 p
->replacement
= NULL
;
7663 err
= log_modify(conf
, p
->rdev
, true);
7666 clear_bit(WantReplacement
, &rdev
->flags
);
7669 print_raid5_conf(conf
);
7673 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7675 struct r5conf
*conf
= mddev
->private;
7676 int ret
, err
= -EEXIST
;
7678 struct disk_info
*p
;
7680 int last
= conf
->raid_disks
- 1;
7682 if (test_bit(Journal
, &rdev
->flags
)) {
7686 rdev
->raid_disk
= 0;
7688 * The array is in readonly mode if journal is missing, so no
7689 * write requests running. We should be safe
7691 ret
= log_init(conf
, rdev
, false);
7695 ret
= r5l_start(conf
->log
);
7701 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7704 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7705 /* no point adding a device */
7708 if (rdev
->raid_disk
>= 0)
7709 first
= last
= rdev
->raid_disk
;
7712 * find the disk ... but prefer rdev->saved_raid_disk
7715 if (rdev
->saved_raid_disk
>= 0 &&
7716 rdev
->saved_raid_disk
>= first
&&
7717 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7718 first
= rdev
->saved_raid_disk
;
7720 for (disk
= first
; disk
<= last
; disk
++) {
7721 p
= conf
->disks
+ disk
;
7722 if (p
->rdev
== NULL
) {
7723 clear_bit(In_sync
, &rdev
->flags
);
7724 rdev
->raid_disk
= disk
;
7725 if (rdev
->saved_raid_disk
!= disk
)
7727 rcu_assign_pointer(p
->rdev
, rdev
);
7729 err
= log_modify(conf
, rdev
, true);
7734 for (disk
= first
; disk
<= last
; disk
++) {
7735 p
= conf
->disks
+ disk
;
7736 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7737 p
->replacement
== NULL
) {
7738 clear_bit(In_sync
, &rdev
->flags
);
7739 set_bit(Replacement
, &rdev
->flags
);
7740 rdev
->raid_disk
= disk
;
7743 rcu_assign_pointer(p
->replacement
, rdev
);
7748 print_raid5_conf(conf
);
7752 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7754 /* no resync is happening, and there is enough space
7755 * on all devices, so we can resize.
7756 * We need to make sure resync covers any new space.
7757 * If the array is shrinking we should possibly wait until
7758 * any io in the removed space completes, but it hardly seems
7762 struct r5conf
*conf
= mddev
->private;
7764 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
7766 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7767 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7768 if (mddev
->external_size
&&
7769 mddev
->array_sectors
> newsize
)
7771 if (mddev
->bitmap
) {
7772 int ret
= md_bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7776 md_set_array_sectors(mddev
, newsize
);
7777 if (sectors
> mddev
->dev_sectors
&&
7778 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7779 mddev
->recovery_cp
= mddev
->dev_sectors
;
7780 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7782 mddev
->dev_sectors
= sectors
;
7783 mddev
->resync_max_sectors
= sectors
;
7787 static int check_stripe_cache(struct mddev
*mddev
)
7789 /* Can only proceed if there are plenty of stripe_heads.
7790 * We need a minimum of one full stripe,, and for sensible progress
7791 * it is best to have about 4 times that.
7792 * If we require 4 times, then the default 256 4K stripe_heads will
7793 * allow for chunk sizes up to 256K, which is probably OK.
7794 * If the chunk size is greater, user-space should request more
7795 * stripe_heads first.
7797 struct r5conf
*conf
= mddev
->private;
7798 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7799 > conf
->min_nr_stripes
||
7800 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7801 > conf
->min_nr_stripes
) {
7802 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7804 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7811 static int check_reshape(struct mddev
*mddev
)
7813 struct r5conf
*conf
= mddev
->private;
7815 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
7817 if (mddev
->delta_disks
== 0 &&
7818 mddev
->new_layout
== mddev
->layout
&&
7819 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7820 return 0; /* nothing to do */
7821 if (has_failed(conf
))
7823 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7824 /* We might be able to shrink, but the devices must
7825 * be made bigger first.
7826 * For raid6, 4 is the minimum size.
7827 * Otherwise 2 is the minimum
7830 if (mddev
->level
== 6)
7832 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7836 if (!check_stripe_cache(mddev
))
7839 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7840 mddev
->delta_disks
> 0)
7841 if (resize_chunks(conf
,
7842 conf
->previous_raid_disks
7843 + max(0, mddev
->delta_disks
),
7844 max(mddev
->new_chunk_sectors
,
7845 mddev
->chunk_sectors
)
7849 if (conf
->previous_raid_disks
+ mddev
->delta_disks
<= conf
->pool_size
)
7850 return 0; /* never bother to shrink */
7851 return resize_stripes(conf
, (conf
->previous_raid_disks
7852 + mddev
->delta_disks
));
7855 static int raid5_start_reshape(struct mddev
*mddev
)
7857 struct r5conf
*conf
= mddev
->private;
7858 struct md_rdev
*rdev
;
7860 unsigned long flags
;
7862 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7865 if (!check_stripe_cache(mddev
))
7868 if (has_failed(conf
))
7871 rdev_for_each(rdev
, mddev
) {
7872 if (!test_bit(In_sync
, &rdev
->flags
)
7873 && !test_bit(Faulty
, &rdev
->flags
))
7877 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7878 /* Not enough devices even to make a degraded array
7883 /* Refuse to reduce size of the array. Any reductions in
7884 * array size must be through explicit setting of array_size
7887 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7888 < mddev
->array_sectors
) {
7889 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7894 atomic_set(&conf
->reshape_stripes
, 0);
7895 spin_lock_irq(&conf
->device_lock
);
7896 write_seqcount_begin(&conf
->gen_lock
);
7897 conf
->previous_raid_disks
= conf
->raid_disks
;
7898 conf
->raid_disks
+= mddev
->delta_disks
;
7899 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7900 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7901 conf
->prev_algo
= conf
->algorithm
;
7902 conf
->algorithm
= mddev
->new_layout
;
7904 /* Code that selects data_offset needs to see the generation update
7905 * if reshape_progress has been set - so a memory barrier needed.
7908 if (mddev
->reshape_backwards
)
7909 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7911 conf
->reshape_progress
= 0;
7912 conf
->reshape_safe
= conf
->reshape_progress
;
7913 write_seqcount_end(&conf
->gen_lock
);
7914 spin_unlock_irq(&conf
->device_lock
);
7916 /* Now make sure any requests that proceeded on the assumption
7917 * the reshape wasn't running - like Discard or Read - have
7920 mddev_suspend(mddev
);
7921 mddev_resume(mddev
);
7923 /* Add some new drives, as many as will fit.
7924 * We know there are enough to make the newly sized array work.
7925 * Don't add devices if we are reducing the number of
7926 * devices in the array. This is because it is not possible
7927 * to correctly record the "partially reconstructed" state of
7928 * such devices during the reshape and confusion could result.
7930 if (mddev
->delta_disks
>= 0) {
7931 rdev_for_each(rdev
, mddev
)
7932 if (rdev
->raid_disk
< 0 &&
7933 !test_bit(Faulty
, &rdev
->flags
)) {
7934 if (raid5_add_disk(mddev
, rdev
) == 0) {
7936 >= conf
->previous_raid_disks
)
7937 set_bit(In_sync
, &rdev
->flags
);
7939 rdev
->recovery_offset
= 0;
7941 if (sysfs_link_rdev(mddev
, rdev
))
7942 /* Failure here is OK */;
7944 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7945 && !test_bit(Faulty
, &rdev
->flags
)) {
7946 /* This is a spare that was manually added */
7947 set_bit(In_sync
, &rdev
->flags
);
7950 /* When a reshape changes the number of devices,
7951 * ->degraded is measured against the larger of the
7952 * pre and post number of devices.
7954 spin_lock_irqsave(&conf
->device_lock
, flags
);
7955 mddev
->degraded
= raid5_calc_degraded(conf
);
7956 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7958 mddev
->raid_disks
= conf
->raid_disks
;
7959 mddev
->reshape_position
= conf
->reshape_progress
;
7960 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
7962 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7963 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7964 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7965 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7966 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7967 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7969 if (!mddev
->sync_thread
) {
7970 mddev
->recovery
= 0;
7971 spin_lock_irq(&conf
->device_lock
);
7972 write_seqcount_begin(&conf
->gen_lock
);
7973 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7974 mddev
->new_chunk_sectors
=
7975 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7976 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7977 rdev_for_each(rdev
, mddev
)
7978 rdev
->new_data_offset
= rdev
->data_offset
;
7980 conf
->generation
--;
7981 conf
->reshape_progress
= MaxSector
;
7982 mddev
->reshape_position
= MaxSector
;
7983 write_seqcount_end(&conf
->gen_lock
);
7984 spin_unlock_irq(&conf
->device_lock
);
7987 conf
->reshape_checkpoint
= jiffies
;
7988 md_wakeup_thread(mddev
->sync_thread
);
7989 md_new_event(mddev
);
7993 /* This is called from the reshape thread and should make any
7994 * changes needed in 'conf'
7996 static void end_reshape(struct r5conf
*conf
)
7999 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
8000 struct md_rdev
*rdev
;
8002 spin_lock_irq(&conf
->device_lock
);
8003 conf
->previous_raid_disks
= conf
->raid_disks
;
8004 md_finish_reshape(conf
->mddev
);
8006 conf
->reshape_progress
= MaxSector
;
8007 conf
->mddev
->reshape_position
= MaxSector
;
8008 rdev_for_each(rdev
, conf
->mddev
)
8009 if (rdev
->raid_disk
>= 0 &&
8010 !test_bit(Journal
, &rdev
->flags
) &&
8011 !test_bit(In_sync
, &rdev
->flags
))
8012 rdev
->recovery_offset
= MaxSector
;
8013 spin_unlock_irq(&conf
->device_lock
);
8014 wake_up(&conf
->wait_for_overlap
);
8016 /* read-ahead size must cover two whole stripes, which is
8017 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8019 if (conf
->mddev
->queue
) {
8020 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
8021 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
8023 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
8024 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
8029 /* This is called from the raid5d thread with mddev_lock held.
8030 * It makes config changes to the device.
8032 static void raid5_finish_reshape(struct mddev
*mddev
)
8034 struct r5conf
*conf
= mddev
->private;
8036 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
8038 if (mddev
->delta_disks
<= 0) {
8040 spin_lock_irq(&conf
->device_lock
);
8041 mddev
->degraded
= raid5_calc_degraded(conf
);
8042 spin_unlock_irq(&conf
->device_lock
);
8043 for (d
= conf
->raid_disks
;
8044 d
< conf
->raid_disks
- mddev
->delta_disks
;
8046 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
8048 clear_bit(In_sync
, &rdev
->flags
);
8049 rdev
= conf
->disks
[d
].replacement
;
8051 clear_bit(In_sync
, &rdev
->flags
);
8054 mddev
->layout
= conf
->algorithm
;
8055 mddev
->chunk_sectors
= conf
->chunk_sectors
;
8056 mddev
->reshape_position
= MaxSector
;
8057 mddev
->delta_disks
= 0;
8058 mddev
->reshape_backwards
= 0;
8062 static void raid5_quiesce(struct mddev
*mddev
, int quiesce
)
8064 struct r5conf
*conf
= mddev
->private;
8067 /* stop all writes */
8068 lock_all_device_hash_locks_irq(conf
);
8069 /* '2' tells resync/reshape to pause so that all
8070 * active stripes can drain
8072 r5c_flush_cache(conf
, INT_MAX
);
8074 wait_event_cmd(conf
->wait_for_quiescent
,
8075 atomic_read(&conf
->active_stripes
) == 0 &&
8076 atomic_read(&conf
->active_aligned_reads
) == 0,
8077 unlock_all_device_hash_locks_irq(conf
),
8078 lock_all_device_hash_locks_irq(conf
));
8080 unlock_all_device_hash_locks_irq(conf
);
8081 /* allow reshape to continue */
8082 wake_up(&conf
->wait_for_overlap
);
8084 /* re-enable writes */
8085 lock_all_device_hash_locks_irq(conf
);
8087 wake_up(&conf
->wait_for_quiescent
);
8088 wake_up(&conf
->wait_for_overlap
);
8089 unlock_all_device_hash_locks_irq(conf
);
8091 log_quiesce(conf
, quiesce
);
8094 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
8096 struct r0conf
*raid0_conf
= mddev
->private;
8099 /* for raid0 takeover only one zone is supported */
8100 if (raid0_conf
->nr_strip_zones
> 1) {
8101 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8103 return ERR_PTR(-EINVAL
);
8106 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
8107 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
8108 mddev
->dev_sectors
= sectors
;
8109 mddev
->new_level
= level
;
8110 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8111 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
8112 mddev
->raid_disks
+= 1;
8113 mddev
->delta_disks
= 1;
8114 /* make sure it will be not marked as dirty */
8115 mddev
->recovery_cp
= MaxSector
;
8117 return setup_conf(mddev
);
8120 static void *raid5_takeover_raid1(struct mddev
*mddev
)
8125 if (mddev
->raid_disks
!= 2 ||
8126 mddev
->degraded
> 1)
8127 return ERR_PTR(-EINVAL
);
8129 /* Should check if there are write-behind devices? */
8131 chunksect
= 64*2; /* 64K by default */
8133 /* The array must be an exact multiple of chunksize */
8134 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
8137 if ((chunksect
<<9) < STRIPE_SIZE
)
8138 /* array size does not allow a suitable chunk size */
8139 return ERR_PTR(-EINVAL
);
8141 mddev
->new_level
= 5;
8142 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8143 mddev
->new_chunk_sectors
= chunksect
;
8145 ret
= setup_conf(mddev
);
8147 mddev_clear_unsupported_flags(mddev
,
8148 UNSUPPORTED_MDDEV_FLAGS
);
8152 static void *raid5_takeover_raid6(struct mddev
*mddev
)
8156 switch (mddev
->layout
) {
8157 case ALGORITHM_LEFT_ASYMMETRIC_6
:
8158 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
8160 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
8161 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
8163 case ALGORITHM_LEFT_SYMMETRIC_6
:
8164 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8166 case ALGORITHM_RIGHT_SYMMETRIC_6
:
8167 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
8169 case ALGORITHM_PARITY_0_6
:
8170 new_layout
= ALGORITHM_PARITY_0
;
8172 case ALGORITHM_PARITY_N
:
8173 new_layout
= ALGORITHM_PARITY_N
;
8176 return ERR_PTR(-EINVAL
);
8178 mddev
->new_level
= 5;
8179 mddev
->new_layout
= new_layout
;
8180 mddev
->delta_disks
= -1;
8181 mddev
->raid_disks
-= 1;
8182 return setup_conf(mddev
);
8185 static int raid5_check_reshape(struct mddev
*mddev
)
8187 /* For a 2-drive array, the layout and chunk size can be changed
8188 * immediately as not restriping is needed.
8189 * For larger arrays we record the new value - after validation
8190 * to be used by a reshape pass.
8192 struct r5conf
*conf
= mddev
->private;
8193 int new_chunk
= mddev
->new_chunk_sectors
;
8195 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
8197 if (new_chunk
> 0) {
8198 if (!is_power_of_2(new_chunk
))
8200 if (new_chunk
< (PAGE_SIZE
>>9))
8202 if (mddev
->array_sectors
& (new_chunk
-1))
8203 /* not factor of array size */
8207 /* They look valid */
8209 if (mddev
->raid_disks
== 2) {
8210 /* can make the change immediately */
8211 if (mddev
->new_layout
>= 0) {
8212 conf
->algorithm
= mddev
->new_layout
;
8213 mddev
->layout
= mddev
->new_layout
;
8215 if (new_chunk
> 0) {
8216 conf
->chunk_sectors
= new_chunk
;
8217 mddev
->chunk_sectors
= new_chunk
;
8219 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
8220 md_wakeup_thread(mddev
->thread
);
8222 return check_reshape(mddev
);
8225 static int raid6_check_reshape(struct mddev
*mddev
)
8227 int new_chunk
= mddev
->new_chunk_sectors
;
8229 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
8231 if (new_chunk
> 0) {
8232 if (!is_power_of_2(new_chunk
))
8234 if (new_chunk
< (PAGE_SIZE
>> 9))
8236 if (mddev
->array_sectors
& (new_chunk
-1))
8237 /* not factor of array size */
8241 /* They look valid */
8242 return check_reshape(mddev
);
8245 static void *raid5_takeover(struct mddev
*mddev
)
8247 /* raid5 can take over:
8248 * raid0 - if there is only one strip zone - make it a raid4 layout
8249 * raid1 - if there are two drives. We need to know the chunk size
8250 * raid4 - trivial - just use a raid4 layout.
8251 * raid6 - Providing it is a *_6 layout
8253 if (mddev
->level
== 0)
8254 return raid45_takeover_raid0(mddev
, 5);
8255 if (mddev
->level
== 1)
8256 return raid5_takeover_raid1(mddev
);
8257 if (mddev
->level
== 4) {
8258 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8259 mddev
->new_level
= 5;
8260 return setup_conf(mddev
);
8262 if (mddev
->level
== 6)
8263 return raid5_takeover_raid6(mddev
);
8265 return ERR_PTR(-EINVAL
);
8268 static void *raid4_takeover(struct mddev
*mddev
)
8270 /* raid4 can take over:
8271 * raid0 - if there is only one strip zone
8272 * raid5 - if layout is right
8274 if (mddev
->level
== 0)
8275 return raid45_takeover_raid0(mddev
, 4);
8276 if (mddev
->level
== 5 &&
8277 mddev
->layout
== ALGORITHM_PARITY_N
) {
8278 mddev
->new_layout
= 0;
8279 mddev
->new_level
= 4;
8280 return setup_conf(mddev
);
8282 return ERR_PTR(-EINVAL
);
8285 static struct md_personality raid5_personality
;
8287 static void *raid6_takeover(struct mddev
*mddev
)
8289 /* Currently can only take over a raid5. We map the
8290 * personality to an equivalent raid6 personality
8291 * with the Q block at the end.
8295 if (mddev
->pers
!= &raid5_personality
)
8296 return ERR_PTR(-EINVAL
);
8297 if (mddev
->degraded
> 1)
8298 return ERR_PTR(-EINVAL
);
8299 if (mddev
->raid_disks
> 253)
8300 return ERR_PTR(-EINVAL
);
8301 if (mddev
->raid_disks
< 3)
8302 return ERR_PTR(-EINVAL
);
8304 switch (mddev
->layout
) {
8305 case ALGORITHM_LEFT_ASYMMETRIC
:
8306 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
8308 case ALGORITHM_RIGHT_ASYMMETRIC
:
8309 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
8311 case ALGORITHM_LEFT_SYMMETRIC
:
8312 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
8314 case ALGORITHM_RIGHT_SYMMETRIC
:
8315 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
8317 case ALGORITHM_PARITY_0
:
8318 new_layout
= ALGORITHM_PARITY_0_6
;
8320 case ALGORITHM_PARITY_N
:
8321 new_layout
= ALGORITHM_PARITY_N
;
8324 return ERR_PTR(-EINVAL
);
8326 mddev
->new_level
= 6;
8327 mddev
->new_layout
= new_layout
;
8328 mddev
->delta_disks
= 1;
8329 mddev
->raid_disks
+= 1;
8330 return setup_conf(mddev
);
8333 static int raid5_change_consistency_policy(struct mddev
*mddev
, const char *buf
)
8335 struct r5conf
*conf
;
8338 err
= mddev_lock(mddev
);
8341 conf
= mddev
->private;
8343 mddev_unlock(mddev
);
8347 if (strncmp(buf
, "ppl", 3) == 0) {
8348 /* ppl only works with RAID 5 */
8349 if (!raid5_has_ppl(conf
) && conf
->level
== 5) {
8350 err
= log_init(conf
, NULL
, true);
8352 err
= resize_stripes(conf
, conf
->pool_size
);
8358 } else if (strncmp(buf
, "resync", 6) == 0) {
8359 if (raid5_has_ppl(conf
)) {
8360 mddev_suspend(mddev
);
8362 mddev_resume(mddev
);
8363 err
= resize_stripes(conf
, conf
->pool_size
);
8364 } else if (test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
) &&
8365 r5l_log_disk_error(conf
)) {
8366 bool journal_dev_exists
= false;
8367 struct md_rdev
*rdev
;
8369 rdev_for_each(rdev
, mddev
)
8370 if (test_bit(Journal
, &rdev
->flags
)) {
8371 journal_dev_exists
= true;
8375 if (!journal_dev_exists
) {
8376 mddev_suspend(mddev
);
8377 clear_bit(MD_HAS_JOURNAL
, &mddev
->flags
);
8378 mddev_resume(mddev
);
8379 } else /* need remove journal device first */
8388 md_update_sb(mddev
, 1);
8390 mddev_unlock(mddev
);
8395 static int raid5_start(struct mddev
*mddev
)
8397 struct r5conf
*conf
= mddev
->private;
8399 return r5l_start(conf
->log
);
8402 static struct md_personality raid6_personality
=
8406 .owner
= THIS_MODULE
,
8407 .make_request
= raid5_make_request
,
8409 .start
= raid5_start
,
8411 .status
= raid5_status
,
8412 .error_handler
= raid5_error
,
8413 .hot_add_disk
= raid5_add_disk
,
8414 .hot_remove_disk
= raid5_remove_disk
,
8415 .spare_active
= raid5_spare_active
,
8416 .sync_request
= raid5_sync_request
,
8417 .resize
= raid5_resize
,
8419 .check_reshape
= raid6_check_reshape
,
8420 .start_reshape
= raid5_start_reshape
,
8421 .finish_reshape
= raid5_finish_reshape
,
8422 .quiesce
= raid5_quiesce
,
8423 .takeover
= raid6_takeover
,
8424 .congested
= raid5_congested
,
8425 .change_consistency_policy
= raid5_change_consistency_policy
,
8427 static struct md_personality raid5_personality
=
8431 .owner
= THIS_MODULE
,
8432 .make_request
= raid5_make_request
,
8434 .start
= raid5_start
,
8436 .status
= raid5_status
,
8437 .error_handler
= raid5_error
,
8438 .hot_add_disk
= raid5_add_disk
,
8439 .hot_remove_disk
= raid5_remove_disk
,
8440 .spare_active
= raid5_spare_active
,
8441 .sync_request
= raid5_sync_request
,
8442 .resize
= raid5_resize
,
8444 .check_reshape
= raid5_check_reshape
,
8445 .start_reshape
= raid5_start_reshape
,
8446 .finish_reshape
= raid5_finish_reshape
,
8447 .quiesce
= raid5_quiesce
,
8448 .takeover
= raid5_takeover
,
8449 .congested
= raid5_congested
,
8450 .change_consistency_policy
= raid5_change_consistency_policy
,
8453 static struct md_personality raid4_personality
=
8457 .owner
= THIS_MODULE
,
8458 .make_request
= raid5_make_request
,
8460 .start
= raid5_start
,
8462 .status
= raid5_status
,
8463 .error_handler
= raid5_error
,
8464 .hot_add_disk
= raid5_add_disk
,
8465 .hot_remove_disk
= raid5_remove_disk
,
8466 .spare_active
= raid5_spare_active
,
8467 .sync_request
= raid5_sync_request
,
8468 .resize
= raid5_resize
,
8470 .check_reshape
= raid5_check_reshape
,
8471 .start_reshape
= raid5_start_reshape
,
8472 .finish_reshape
= raid5_finish_reshape
,
8473 .quiesce
= raid5_quiesce
,
8474 .takeover
= raid4_takeover
,
8475 .congested
= raid5_congested
,
8476 .change_consistency_policy
= raid5_change_consistency_policy
,
8479 static int __init
raid5_init(void)
8483 raid5_wq
= alloc_workqueue("raid5wq",
8484 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
8488 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
8490 raid456_cpu_up_prepare
,
8493 destroy_workqueue(raid5_wq
);
8496 register_md_personality(&raid6_personality
);
8497 register_md_personality(&raid5_personality
);
8498 register_md_personality(&raid4_personality
);
8502 static void raid5_exit(void)
8504 unregister_md_personality(&raid6_personality
);
8505 unregister_md_personality(&raid5_personality
);
8506 unregister_md_personality(&raid4_personality
);
8507 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
8508 destroy_workqueue(raid5_wq
);
8511 module_init(raid5_init
);
8512 module_exit(raid5_exit
);
8513 MODULE_LICENSE("GPL");
8514 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8515 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8516 MODULE_ALIAS("md-raid5");
8517 MODULE_ALIAS("md-raid4");
8518 MODULE_ALIAS("md-level-5");
8519 MODULE_ALIAS("md-level-4");
8520 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8521 MODULE_ALIAS("md-raid6");
8522 MODULE_ALIAS("md-level-6");
8524 /* This used to be two separate modules, they were: */
8525 MODULE_ALIAS("raid5");
8526 MODULE_ALIAS("raid6");